mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-28 11:18:45 +07:00
a62bc07392
With this patch for kdump the s390 vector registers are stored into the prepared save areas in the old kernel and into the REGSET_VX_LOW and REGSET_VX_HIGH ELF notes for /proc/vmcore in the new kernel. The NT_S390_VXRS_LOW note contains the lower halves of the first 16 vector registers 0-15. The higher halves are stored in the floating point register ELF note. The NT_S390_VXRS_HIGH contains the full vector registers 16-31. The kernel provides a save area for storing vector register in case of machine checks. A pointer to this save are is stored in the CPU lowcore at offset 0x11b0. This save area is also used to save the registers for kdump. In case of a dumped crashed kdump those areas are used to extract the registers of the production system. The vector registers for remote CPUs are stored using the "store additional status at address" SIGP. For the dump CPU the vector registers are stored with the VSTM instruction. With this patch also zfcpdump stores the vector registers. Reviewed-by: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Michael Holzheu <holzheu@linux.vnet.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
688 lines
16 KiB
C
688 lines
16 KiB
C
/*
|
|
* S390 kdump implementation
|
|
*
|
|
* Copyright IBM Corp. 2011
|
|
* Author(s): Michael Holzheu <holzheu@linux.vnet.ibm.com>
|
|
*/
|
|
|
|
#include <linux/crash_dump.h>
|
|
#include <asm/lowcore.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/gfp.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/bootmem.h>
|
|
#include <linux/elf.h>
|
|
#include <linux/memblock.h>
|
|
#include <asm/os_info.h>
|
|
#include <asm/elf.h>
|
|
#include <asm/ipl.h>
|
|
#include <asm/sclp.h>
|
|
|
|
#define PTR_ADD(x, y) (((char *) (x)) + ((unsigned long) (y)))
|
|
#define PTR_SUB(x, y) (((char *) (x)) - ((unsigned long) (y)))
|
|
#define PTR_DIFF(x, y) ((unsigned long)(((char *) (x)) - ((unsigned long) (y))))
|
|
|
|
static struct memblock_region oldmem_region;
|
|
|
|
static struct memblock_type oldmem_type = {
|
|
.cnt = 1,
|
|
.max = 1,
|
|
.total_size = 0,
|
|
.regions = &oldmem_region,
|
|
};
|
|
|
|
#define for_each_dump_mem_range(i, nid, p_start, p_end, p_nid) \
|
|
for (i = 0, __next_mem_range(&i, nid, &memblock.physmem, \
|
|
&oldmem_type, p_start, \
|
|
p_end, p_nid); \
|
|
i != (u64)ULLONG_MAX; \
|
|
__next_mem_range(&i, nid, &memblock.physmem, \
|
|
&oldmem_type, \
|
|
p_start, p_end, p_nid))
|
|
|
|
struct dump_save_areas dump_save_areas;
|
|
|
|
/*
|
|
* Allocate and add a save area for a CPU
|
|
*/
|
|
struct save_area_ext *dump_save_area_create(int cpu)
|
|
{
|
|
struct save_area_ext **save_areas, *save_area;
|
|
|
|
save_area = kmalloc(sizeof(*save_area), GFP_KERNEL);
|
|
if (!save_area)
|
|
return NULL;
|
|
if (cpu + 1 > dump_save_areas.count) {
|
|
dump_save_areas.count = cpu + 1;
|
|
save_areas = krealloc(dump_save_areas.areas,
|
|
dump_save_areas.count * sizeof(void *),
|
|
GFP_KERNEL | __GFP_ZERO);
|
|
if (!save_areas) {
|
|
kfree(save_area);
|
|
return NULL;
|
|
}
|
|
dump_save_areas.areas = save_areas;
|
|
}
|
|
dump_save_areas.areas[cpu] = save_area;
|
|
return save_area;
|
|
}
|
|
|
|
/*
|
|
* Return physical address for virtual address
|
|
*/
|
|
static inline void *load_real_addr(void *addr)
|
|
{
|
|
unsigned long real_addr;
|
|
|
|
asm volatile(
|
|
" lra %0,0(%1)\n"
|
|
" jz 0f\n"
|
|
" la %0,0\n"
|
|
"0:"
|
|
: "=a" (real_addr) : "a" (addr) : "cc");
|
|
return (void *)real_addr;
|
|
}
|
|
|
|
/*
|
|
* Copy real to virtual or real memory
|
|
*/
|
|
static int copy_from_realmem(void *dest, void *src, size_t count)
|
|
{
|
|
unsigned long size;
|
|
|
|
if (!count)
|
|
return 0;
|
|
if (!is_vmalloc_or_module_addr(dest))
|
|
return memcpy_real(dest, src, count);
|
|
do {
|
|
size = min(count, PAGE_SIZE - (__pa(dest) & ~PAGE_MASK));
|
|
if (memcpy_real(load_real_addr(dest), src, size))
|
|
return -EFAULT;
|
|
count -= size;
|
|
dest += size;
|
|
src += size;
|
|
} while (count);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Pointer to ELF header in new kernel
|
|
*/
|
|
static void *elfcorehdr_newmem;
|
|
|
|
/*
|
|
* Copy one page from zfcpdump "oldmem"
|
|
*
|
|
* For pages below HSA size memory from the HSA is copied. Otherwise
|
|
* real memory copy is used.
|
|
*/
|
|
static ssize_t copy_oldmem_page_zfcpdump(char *buf, size_t csize,
|
|
unsigned long src, int userbuf)
|
|
{
|
|
int rc;
|
|
|
|
if (src < sclp_get_hsa_size()) {
|
|
rc = memcpy_hsa(buf, src, csize, userbuf);
|
|
} else {
|
|
if (userbuf)
|
|
rc = copy_to_user_real((void __force __user *) buf,
|
|
(void *) src, csize);
|
|
else
|
|
rc = memcpy_real(buf, (void *) src, csize);
|
|
}
|
|
return rc ? rc : csize;
|
|
}
|
|
|
|
/*
|
|
* Copy one page from kdump "oldmem"
|
|
*
|
|
* For the kdump reserved memory this functions performs a swap operation:
|
|
* - [OLDMEM_BASE - OLDMEM_BASE + OLDMEM_SIZE] is mapped to [0 - OLDMEM_SIZE].
|
|
* - [0 - OLDMEM_SIZE] is mapped to [OLDMEM_BASE - OLDMEM_BASE + OLDMEM_SIZE]
|
|
*/
|
|
static ssize_t copy_oldmem_page_kdump(char *buf, size_t csize,
|
|
unsigned long src, int userbuf)
|
|
|
|
{
|
|
int rc;
|
|
|
|
if (src < OLDMEM_SIZE)
|
|
src += OLDMEM_BASE;
|
|
else if (src > OLDMEM_BASE &&
|
|
src < OLDMEM_BASE + OLDMEM_SIZE)
|
|
src -= OLDMEM_BASE;
|
|
if (userbuf)
|
|
rc = copy_to_user_real((void __force __user *) buf,
|
|
(void *) src, csize);
|
|
else
|
|
rc = copy_from_realmem(buf, (void *) src, csize);
|
|
return (rc == 0) ? rc : csize;
|
|
}
|
|
|
|
/*
|
|
* Copy one page from "oldmem"
|
|
*/
|
|
ssize_t copy_oldmem_page(unsigned long pfn, char *buf, size_t csize,
|
|
unsigned long offset, int userbuf)
|
|
{
|
|
unsigned long src;
|
|
|
|
if (!csize)
|
|
return 0;
|
|
src = (pfn << PAGE_SHIFT) + offset;
|
|
if (OLDMEM_BASE)
|
|
return copy_oldmem_page_kdump(buf, csize, src, userbuf);
|
|
else
|
|
return copy_oldmem_page_zfcpdump(buf, csize, src, userbuf);
|
|
}
|
|
|
|
/*
|
|
* Remap "oldmem" for kdump
|
|
*
|
|
* For the kdump reserved memory this functions performs a swap operation:
|
|
* [0 - OLDMEM_SIZE] is mapped to [OLDMEM_BASE - OLDMEM_BASE + OLDMEM_SIZE]
|
|
*/
|
|
static int remap_oldmem_pfn_range_kdump(struct vm_area_struct *vma,
|
|
unsigned long from, unsigned long pfn,
|
|
unsigned long size, pgprot_t prot)
|
|
{
|
|
unsigned long size_old;
|
|
int rc;
|
|
|
|
if (pfn < OLDMEM_SIZE >> PAGE_SHIFT) {
|
|
size_old = min(size, OLDMEM_SIZE - (pfn << PAGE_SHIFT));
|
|
rc = remap_pfn_range(vma, from,
|
|
pfn + (OLDMEM_BASE >> PAGE_SHIFT),
|
|
size_old, prot);
|
|
if (rc || size == size_old)
|
|
return rc;
|
|
size -= size_old;
|
|
from += size_old;
|
|
pfn += size_old >> PAGE_SHIFT;
|
|
}
|
|
return remap_pfn_range(vma, from, pfn, size, prot);
|
|
}
|
|
|
|
/*
|
|
* Remap "oldmem" for zfcpdump
|
|
*
|
|
* We only map available memory above HSA size. Memory below HSA size
|
|
* is read on demand using the copy_oldmem_page() function.
|
|
*/
|
|
static int remap_oldmem_pfn_range_zfcpdump(struct vm_area_struct *vma,
|
|
unsigned long from,
|
|
unsigned long pfn,
|
|
unsigned long size, pgprot_t prot)
|
|
{
|
|
unsigned long hsa_end = sclp_get_hsa_size();
|
|
unsigned long size_hsa;
|
|
|
|
if (pfn < hsa_end >> PAGE_SHIFT) {
|
|
size_hsa = min(size, hsa_end - (pfn << PAGE_SHIFT));
|
|
if (size == size_hsa)
|
|
return 0;
|
|
size -= size_hsa;
|
|
from += size_hsa;
|
|
pfn += size_hsa >> PAGE_SHIFT;
|
|
}
|
|
return remap_pfn_range(vma, from, pfn, size, prot);
|
|
}
|
|
|
|
/*
|
|
* Remap "oldmem" for kdump or zfcpdump
|
|
*/
|
|
int remap_oldmem_pfn_range(struct vm_area_struct *vma, unsigned long from,
|
|
unsigned long pfn, unsigned long size, pgprot_t prot)
|
|
{
|
|
if (OLDMEM_BASE)
|
|
return remap_oldmem_pfn_range_kdump(vma, from, pfn, size, prot);
|
|
else
|
|
return remap_oldmem_pfn_range_zfcpdump(vma, from, pfn, size,
|
|
prot);
|
|
}
|
|
|
|
/*
|
|
* Copy memory from old kernel
|
|
*/
|
|
int copy_from_oldmem(void *dest, void *src, size_t count)
|
|
{
|
|
unsigned long copied = 0;
|
|
int rc;
|
|
|
|
if (OLDMEM_BASE) {
|
|
if ((unsigned long) src < OLDMEM_SIZE) {
|
|
copied = min(count, OLDMEM_SIZE - (unsigned long) src);
|
|
rc = copy_from_realmem(dest, src + OLDMEM_BASE, copied);
|
|
if (rc)
|
|
return rc;
|
|
}
|
|
} else {
|
|
unsigned long hsa_end = sclp_get_hsa_size();
|
|
if ((unsigned long) src < hsa_end) {
|
|
copied = min(count, hsa_end - (unsigned long) src);
|
|
rc = memcpy_hsa(dest, (unsigned long) src, copied, 0);
|
|
if (rc)
|
|
return rc;
|
|
}
|
|
}
|
|
return copy_from_realmem(dest + copied, src + copied, count - copied);
|
|
}
|
|
|
|
/*
|
|
* Alloc memory and panic in case of ENOMEM
|
|
*/
|
|
static void *kzalloc_panic(int len)
|
|
{
|
|
void *rc;
|
|
|
|
rc = kzalloc(len, GFP_KERNEL);
|
|
if (!rc)
|
|
panic("s390 kdump kzalloc (%d) failed", len);
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* Initialize ELF note
|
|
*/
|
|
static void *nt_init(void *buf, Elf64_Word type, void *desc, int d_len,
|
|
const char *name)
|
|
{
|
|
Elf64_Nhdr *note;
|
|
u64 len;
|
|
|
|
note = (Elf64_Nhdr *)buf;
|
|
note->n_namesz = strlen(name) + 1;
|
|
note->n_descsz = d_len;
|
|
note->n_type = type;
|
|
len = sizeof(Elf64_Nhdr);
|
|
|
|
memcpy(buf + len, name, note->n_namesz);
|
|
len = roundup(len + note->n_namesz, 4);
|
|
|
|
memcpy(buf + len, desc, note->n_descsz);
|
|
len = roundup(len + note->n_descsz, 4);
|
|
|
|
return PTR_ADD(buf, len);
|
|
}
|
|
|
|
/*
|
|
* Initialize prstatus note
|
|
*/
|
|
static void *nt_prstatus(void *ptr, struct save_area *sa)
|
|
{
|
|
struct elf_prstatus nt_prstatus;
|
|
static int cpu_nr = 1;
|
|
|
|
memset(&nt_prstatus, 0, sizeof(nt_prstatus));
|
|
memcpy(&nt_prstatus.pr_reg.gprs, sa->gp_regs, sizeof(sa->gp_regs));
|
|
memcpy(&nt_prstatus.pr_reg.psw, sa->psw, sizeof(sa->psw));
|
|
memcpy(&nt_prstatus.pr_reg.acrs, sa->acc_regs, sizeof(sa->acc_regs));
|
|
nt_prstatus.pr_pid = cpu_nr;
|
|
cpu_nr++;
|
|
|
|
return nt_init(ptr, NT_PRSTATUS, &nt_prstatus, sizeof(nt_prstatus),
|
|
"CORE");
|
|
}
|
|
|
|
/*
|
|
* Initialize fpregset (floating point) note
|
|
*/
|
|
static void *nt_fpregset(void *ptr, struct save_area *sa)
|
|
{
|
|
elf_fpregset_t nt_fpregset;
|
|
|
|
memset(&nt_fpregset, 0, sizeof(nt_fpregset));
|
|
memcpy(&nt_fpregset.fpc, &sa->fp_ctrl_reg, sizeof(sa->fp_ctrl_reg));
|
|
memcpy(&nt_fpregset.fprs, &sa->fp_regs, sizeof(sa->fp_regs));
|
|
|
|
return nt_init(ptr, NT_PRFPREG, &nt_fpregset, sizeof(nt_fpregset),
|
|
"CORE");
|
|
}
|
|
|
|
/*
|
|
* Initialize timer note
|
|
*/
|
|
static void *nt_s390_timer(void *ptr, struct save_area *sa)
|
|
{
|
|
return nt_init(ptr, NT_S390_TIMER, &sa->timer, sizeof(sa->timer),
|
|
KEXEC_CORE_NOTE_NAME);
|
|
}
|
|
|
|
/*
|
|
* Initialize TOD clock comparator note
|
|
*/
|
|
static void *nt_s390_tod_cmp(void *ptr, struct save_area *sa)
|
|
{
|
|
return nt_init(ptr, NT_S390_TODCMP, &sa->clk_cmp,
|
|
sizeof(sa->clk_cmp), KEXEC_CORE_NOTE_NAME);
|
|
}
|
|
|
|
/*
|
|
* Initialize TOD programmable register note
|
|
*/
|
|
static void *nt_s390_tod_preg(void *ptr, struct save_area *sa)
|
|
{
|
|
return nt_init(ptr, NT_S390_TODPREG, &sa->tod_reg,
|
|
sizeof(sa->tod_reg), KEXEC_CORE_NOTE_NAME);
|
|
}
|
|
|
|
/*
|
|
* Initialize control register note
|
|
*/
|
|
static void *nt_s390_ctrs(void *ptr, struct save_area *sa)
|
|
{
|
|
return nt_init(ptr, NT_S390_CTRS, &sa->ctrl_regs,
|
|
sizeof(sa->ctrl_regs), KEXEC_CORE_NOTE_NAME);
|
|
}
|
|
|
|
/*
|
|
* Initialize prefix register note
|
|
*/
|
|
static void *nt_s390_prefix(void *ptr, struct save_area *sa)
|
|
{
|
|
return nt_init(ptr, NT_S390_PREFIX, &sa->pref_reg,
|
|
sizeof(sa->pref_reg), KEXEC_CORE_NOTE_NAME);
|
|
}
|
|
|
|
/*
|
|
* Initialize vxrs high note (full 128 bit VX registers 16-31)
|
|
*/
|
|
static void *nt_s390_vx_high(void *ptr, __vector128 *vx_regs)
|
|
{
|
|
return nt_init(ptr, NT_S390_VXRS_HIGH, &vx_regs[16],
|
|
16 * sizeof(__vector128), KEXEC_CORE_NOTE_NAME);
|
|
}
|
|
|
|
/*
|
|
* Initialize vxrs low note (lower halves of VX registers 0-15)
|
|
*/
|
|
static void *nt_s390_vx_low(void *ptr, __vector128 *vx_regs)
|
|
{
|
|
Elf64_Nhdr *note;
|
|
u64 len;
|
|
int i;
|
|
|
|
note = (Elf64_Nhdr *)ptr;
|
|
note->n_namesz = strlen(KEXEC_CORE_NOTE_NAME) + 1;
|
|
note->n_descsz = 16 * 8;
|
|
note->n_type = NT_S390_VXRS_LOW;
|
|
len = sizeof(Elf64_Nhdr);
|
|
|
|
memcpy(ptr + len, KEXEC_CORE_NOTE_NAME, note->n_namesz);
|
|
len = roundup(len + note->n_namesz, 4);
|
|
|
|
ptr += len;
|
|
/* Copy lower halves of SIMD registers 0-15 */
|
|
for (i = 0; i < 16; i++) {
|
|
memcpy(ptr, &vx_regs[i], 8);
|
|
ptr += 8;
|
|
}
|
|
return ptr;
|
|
}
|
|
|
|
/*
|
|
* Fill ELF notes for one CPU with save area registers
|
|
*/
|
|
void *fill_cpu_elf_notes(void *ptr, struct save_area *sa, __vector128 *vx_regs)
|
|
{
|
|
ptr = nt_prstatus(ptr, sa);
|
|
ptr = nt_fpregset(ptr, sa);
|
|
ptr = nt_s390_timer(ptr, sa);
|
|
ptr = nt_s390_tod_cmp(ptr, sa);
|
|
ptr = nt_s390_tod_preg(ptr, sa);
|
|
ptr = nt_s390_ctrs(ptr, sa);
|
|
ptr = nt_s390_prefix(ptr, sa);
|
|
if (MACHINE_HAS_VX && vx_regs) {
|
|
ptr = nt_s390_vx_low(ptr, vx_regs);
|
|
ptr = nt_s390_vx_high(ptr, vx_regs);
|
|
}
|
|
return ptr;
|
|
}
|
|
|
|
/*
|
|
* Initialize prpsinfo note (new kernel)
|
|
*/
|
|
static void *nt_prpsinfo(void *ptr)
|
|
{
|
|
struct elf_prpsinfo prpsinfo;
|
|
|
|
memset(&prpsinfo, 0, sizeof(prpsinfo));
|
|
prpsinfo.pr_sname = 'R';
|
|
strcpy(prpsinfo.pr_fname, "vmlinux");
|
|
return nt_init(ptr, NT_PRPSINFO, &prpsinfo, sizeof(prpsinfo),
|
|
KEXEC_CORE_NOTE_NAME);
|
|
}
|
|
|
|
/*
|
|
* Get vmcoreinfo using lowcore->vmcore_info (new kernel)
|
|
*/
|
|
static void *get_vmcoreinfo_old(unsigned long *size)
|
|
{
|
|
char nt_name[11], *vmcoreinfo;
|
|
Elf64_Nhdr note;
|
|
void *addr;
|
|
|
|
if (copy_from_oldmem(&addr, &S390_lowcore.vmcore_info, sizeof(addr)))
|
|
return NULL;
|
|
memset(nt_name, 0, sizeof(nt_name));
|
|
if (copy_from_oldmem(¬e, addr, sizeof(note)))
|
|
return NULL;
|
|
if (copy_from_oldmem(nt_name, addr + sizeof(note), sizeof(nt_name) - 1))
|
|
return NULL;
|
|
if (strcmp(nt_name, "VMCOREINFO") != 0)
|
|
return NULL;
|
|
vmcoreinfo = kzalloc_panic(note.n_descsz);
|
|
if (copy_from_oldmem(vmcoreinfo, addr + 24, note.n_descsz))
|
|
return NULL;
|
|
*size = note.n_descsz;
|
|
return vmcoreinfo;
|
|
}
|
|
|
|
/*
|
|
* Initialize vmcoreinfo note (new kernel)
|
|
*/
|
|
static void *nt_vmcoreinfo(void *ptr)
|
|
{
|
|
unsigned long size;
|
|
void *vmcoreinfo;
|
|
|
|
vmcoreinfo = os_info_old_entry(OS_INFO_VMCOREINFO, &size);
|
|
if (!vmcoreinfo)
|
|
vmcoreinfo = get_vmcoreinfo_old(&size);
|
|
if (!vmcoreinfo)
|
|
return ptr;
|
|
return nt_init(ptr, 0, vmcoreinfo, size, "VMCOREINFO");
|
|
}
|
|
|
|
/*
|
|
* Initialize ELF header (new kernel)
|
|
*/
|
|
static void *ehdr_init(Elf64_Ehdr *ehdr, int mem_chunk_cnt)
|
|
{
|
|
memset(ehdr, 0, sizeof(*ehdr));
|
|
memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
|
|
ehdr->e_ident[EI_CLASS] = ELFCLASS64;
|
|
ehdr->e_ident[EI_DATA] = ELFDATA2MSB;
|
|
ehdr->e_ident[EI_VERSION] = EV_CURRENT;
|
|
memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
|
|
ehdr->e_type = ET_CORE;
|
|
ehdr->e_machine = EM_S390;
|
|
ehdr->e_version = EV_CURRENT;
|
|
ehdr->e_phoff = sizeof(Elf64_Ehdr);
|
|
ehdr->e_ehsize = sizeof(Elf64_Ehdr);
|
|
ehdr->e_phentsize = sizeof(Elf64_Phdr);
|
|
ehdr->e_phnum = mem_chunk_cnt + 1;
|
|
return ehdr + 1;
|
|
}
|
|
|
|
/*
|
|
* Return CPU count for ELF header (new kernel)
|
|
*/
|
|
static int get_cpu_cnt(void)
|
|
{
|
|
int i, cpus = 0;
|
|
|
|
for (i = 0; i < dump_save_areas.count; i++) {
|
|
if (dump_save_areas.areas[i]->sa.pref_reg == 0)
|
|
continue;
|
|
cpus++;
|
|
}
|
|
return cpus;
|
|
}
|
|
|
|
/*
|
|
* Return memory chunk count for ELF header (new kernel)
|
|
*/
|
|
static int get_mem_chunk_cnt(void)
|
|
{
|
|
int cnt = 0;
|
|
u64 idx;
|
|
|
|
for_each_dump_mem_range(idx, NUMA_NO_NODE, NULL, NULL, NULL)
|
|
cnt++;
|
|
return cnt;
|
|
}
|
|
|
|
/*
|
|
* Initialize ELF loads (new kernel)
|
|
*/
|
|
static void loads_init(Elf64_Phdr *phdr, u64 loads_offset)
|
|
{
|
|
phys_addr_t start, end;
|
|
u64 idx;
|
|
|
|
for_each_dump_mem_range(idx, NUMA_NO_NODE, &start, &end, NULL) {
|
|
phdr->p_filesz = end - start;
|
|
phdr->p_type = PT_LOAD;
|
|
phdr->p_offset = start;
|
|
phdr->p_vaddr = start;
|
|
phdr->p_paddr = start;
|
|
phdr->p_memsz = end - start;
|
|
phdr->p_flags = PF_R | PF_W | PF_X;
|
|
phdr->p_align = PAGE_SIZE;
|
|
phdr++;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Initialize notes (new kernel)
|
|
*/
|
|
static void *notes_init(Elf64_Phdr *phdr, void *ptr, u64 notes_offset)
|
|
{
|
|
struct save_area_ext *sa_ext;
|
|
void *ptr_start = ptr;
|
|
int i;
|
|
|
|
ptr = nt_prpsinfo(ptr);
|
|
|
|
for (i = 0; i < dump_save_areas.count; i++) {
|
|
sa_ext = dump_save_areas.areas[i];
|
|
if (sa_ext->sa.pref_reg == 0)
|
|
continue;
|
|
ptr = fill_cpu_elf_notes(ptr, &sa_ext->sa, sa_ext->vx_regs);
|
|
}
|
|
ptr = nt_vmcoreinfo(ptr);
|
|
memset(phdr, 0, sizeof(*phdr));
|
|
phdr->p_type = PT_NOTE;
|
|
phdr->p_offset = notes_offset;
|
|
phdr->p_filesz = (unsigned long) PTR_SUB(ptr, ptr_start);
|
|
phdr->p_memsz = phdr->p_filesz;
|
|
return ptr;
|
|
}
|
|
|
|
/*
|
|
* Create ELF core header (new kernel)
|
|
*/
|
|
int elfcorehdr_alloc(unsigned long long *addr, unsigned long long *size)
|
|
{
|
|
Elf64_Phdr *phdr_notes, *phdr_loads;
|
|
int mem_chunk_cnt;
|
|
void *ptr, *hdr;
|
|
u32 alloc_size;
|
|
u64 hdr_off;
|
|
|
|
/* If we are not in kdump or zfcpdump mode return */
|
|
if (!OLDMEM_BASE && ipl_info.type != IPL_TYPE_FCP_DUMP)
|
|
return 0;
|
|
/* If elfcorehdr= has been passed via cmdline, we use that one */
|
|
if (elfcorehdr_addr != ELFCORE_ADDR_MAX)
|
|
return 0;
|
|
/* If we cannot get HSA size for zfcpdump return error */
|
|
if (ipl_info.type == IPL_TYPE_FCP_DUMP && !sclp_get_hsa_size())
|
|
return -ENODEV;
|
|
|
|
/* For kdump, exclude previous crashkernel memory */
|
|
if (OLDMEM_BASE) {
|
|
oldmem_region.base = OLDMEM_BASE;
|
|
oldmem_region.size = OLDMEM_SIZE;
|
|
oldmem_type.total_size = OLDMEM_SIZE;
|
|
}
|
|
|
|
mem_chunk_cnt = get_mem_chunk_cnt();
|
|
|
|
alloc_size = 0x1000 + get_cpu_cnt() * 0x4a0 +
|
|
mem_chunk_cnt * sizeof(Elf64_Phdr);
|
|
hdr = kzalloc_panic(alloc_size);
|
|
/* Init elf header */
|
|
ptr = ehdr_init(hdr, mem_chunk_cnt);
|
|
/* Init program headers */
|
|
phdr_notes = ptr;
|
|
ptr = PTR_ADD(ptr, sizeof(Elf64_Phdr));
|
|
phdr_loads = ptr;
|
|
ptr = PTR_ADD(ptr, sizeof(Elf64_Phdr) * mem_chunk_cnt);
|
|
/* Init notes */
|
|
hdr_off = PTR_DIFF(ptr, hdr);
|
|
ptr = notes_init(phdr_notes, ptr, ((unsigned long) hdr) + hdr_off);
|
|
/* Init loads */
|
|
hdr_off = PTR_DIFF(ptr, hdr);
|
|
loads_init(phdr_loads, hdr_off);
|
|
*addr = (unsigned long long) hdr;
|
|
elfcorehdr_newmem = hdr;
|
|
*size = (unsigned long long) hdr_off;
|
|
BUG_ON(elfcorehdr_size > alloc_size);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Free ELF core header (new kernel)
|
|
*/
|
|
void elfcorehdr_free(unsigned long long addr)
|
|
{
|
|
if (!elfcorehdr_newmem)
|
|
return;
|
|
kfree((void *)(unsigned long)addr);
|
|
}
|
|
|
|
/*
|
|
* Read from ELF header
|
|
*/
|
|
ssize_t elfcorehdr_read(char *buf, size_t count, u64 *ppos)
|
|
{
|
|
void *src = (void *)(unsigned long)*ppos;
|
|
|
|
src = elfcorehdr_newmem ? src : src - OLDMEM_BASE;
|
|
memcpy(buf, src, count);
|
|
*ppos += count;
|
|
return count;
|
|
}
|
|
|
|
/*
|
|
* Read from ELF notes data
|
|
*/
|
|
ssize_t elfcorehdr_read_notes(char *buf, size_t count, u64 *ppos)
|
|
{
|
|
void *src = (void *)(unsigned long)*ppos;
|
|
int rc;
|
|
|
|
if (elfcorehdr_newmem) {
|
|
memcpy(buf, src, count);
|
|
} else {
|
|
rc = copy_from_oldmem(buf, src, count);
|
|
if (rc)
|
|
return rc;
|
|
}
|
|
*ppos += count;
|
|
return count;
|
|
}
|