mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-16 01:57:18 +07:00
e4e29dc484
Compare pointer-typed values to NULL rather than 0. The semantic patch that makes this change is available in scripts/coccinelle/null/badzero.cocci. Signed-off-by: Fabio Estevam <fabio.estevam@freescale.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
680 lines
16 KiB
C
680 lines
16 KiB
C
/* Lzma decompressor for Linux kernel. Shamelessly snarfed
|
|
*from busybox 1.1.1
|
|
*
|
|
*Linux kernel adaptation
|
|
*Copyright (C) 2006 Alain < alain@knaff.lu >
|
|
*
|
|
*Based on small lzma deflate implementation/Small range coder
|
|
*implementation for lzma.
|
|
*Copyright (C) 2006 Aurelien Jacobs < aurel@gnuage.org >
|
|
*
|
|
*Based on LzmaDecode.c from the LZMA SDK 4.22 (http://www.7-zip.org/)
|
|
*Copyright (C) 1999-2005 Igor Pavlov
|
|
*
|
|
*Copyrights of the parts, see headers below.
|
|
*
|
|
*
|
|
*This program is free software; you can redistribute it and/or
|
|
*modify it under the terms of the GNU Lesser General Public
|
|
*License as published by the Free Software Foundation; either
|
|
*version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
*This program is distributed in the hope that it will be useful,
|
|
*but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
*MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
*Lesser General Public License for more details.
|
|
*
|
|
*You should have received a copy of the GNU Lesser General Public
|
|
*License along with this library; if not, write to the Free Software
|
|
*Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
#ifdef STATIC
|
|
#define PREBOOT
|
|
#else
|
|
#include <linux/decompress/unlzma.h>
|
|
#endif /* STATIC */
|
|
|
|
#include <linux/decompress/mm.h>
|
|
|
|
#define MIN(a, b) (((a) < (b)) ? (a) : (b))
|
|
|
|
static long long INIT read_int(unsigned char *ptr, int size)
|
|
{
|
|
int i;
|
|
long long ret = 0;
|
|
|
|
for (i = 0; i < size; i++)
|
|
ret = (ret << 8) | ptr[size-i-1];
|
|
return ret;
|
|
}
|
|
|
|
#define ENDIAN_CONVERT(x) \
|
|
x = (typeof(x))read_int((unsigned char *)&x, sizeof(x))
|
|
|
|
|
|
/* Small range coder implementation for lzma.
|
|
*Copyright (C) 2006 Aurelien Jacobs < aurel@gnuage.org >
|
|
*
|
|
*Based on LzmaDecode.c from the LZMA SDK 4.22 (http://www.7-zip.org/)
|
|
*Copyright (c) 1999-2005 Igor Pavlov
|
|
*/
|
|
|
|
#include <linux/compiler.h>
|
|
|
|
#define LZMA_IOBUF_SIZE 0x10000
|
|
|
|
struct rc {
|
|
long (*fill)(void*, unsigned long);
|
|
uint8_t *ptr;
|
|
uint8_t *buffer;
|
|
uint8_t *buffer_end;
|
|
long buffer_size;
|
|
uint32_t code;
|
|
uint32_t range;
|
|
uint32_t bound;
|
|
void (*error)(char *);
|
|
};
|
|
|
|
|
|
#define RC_TOP_BITS 24
|
|
#define RC_MOVE_BITS 5
|
|
#define RC_MODEL_TOTAL_BITS 11
|
|
|
|
|
|
static long INIT nofill(void *buffer, unsigned long len)
|
|
{
|
|
return -1;
|
|
}
|
|
|
|
/* Called twice: once at startup and once in rc_normalize() */
|
|
static void INIT rc_read(struct rc *rc)
|
|
{
|
|
rc->buffer_size = rc->fill((char *)rc->buffer, LZMA_IOBUF_SIZE);
|
|
if (rc->buffer_size <= 0)
|
|
rc->error("unexpected EOF");
|
|
rc->ptr = rc->buffer;
|
|
rc->buffer_end = rc->buffer + rc->buffer_size;
|
|
}
|
|
|
|
/* Called once */
|
|
static inline void INIT rc_init(struct rc *rc,
|
|
long (*fill)(void*, unsigned long),
|
|
char *buffer, long buffer_size)
|
|
{
|
|
if (fill)
|
|
rc->fill = fill;
|
|
else
|
|
rc->fill = nofill;
|
|
rc->buffer = (uint8_t *)buffer;
|
|
rc->buffer_size = buffer_size;
|
|
rc->buffer_end = rc->buffer + rc->buffer_size;
|
|
rc->ptr = rc->buffer;
|
|
|
|
rc->code = 0;
|
|
rc->range = 0xFFFFFFFF;
|
|
}
|
|
|
|
static inline void INIT rc_init_code(struct rc *rc)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < 5; i++) {
|
|
if (rc->ptr >= rc->buffer_end)
|
|
rc_read(rc);
|
|
rc->code = (rc->code << 8) | *rc->ptr++;
|
|
}
|
|
}
|
|
|
|
|
|
/* Called twice, but one callsite is in inline'd rc_is_bit_0_helper() */
|
|
static void INIT rc_do_normalize(struct rc *rc)
|
|
{
|
|
if (rc->ptr >= rc->buffer_end)
|
|
rc_read(rc);
|
|
rc->range <<= 8;
|
|
rc->code = (rc->code << 8) | *rc->ptr++;
|
|
}
|
|
static inline void INIT rc_normalize(struct rc *rc)
|
|
{
|
|
if (rc->range < (1 << RC_TOP_BITS))
|
|
rc_do_normalize(rc);
|
|
}
|
|
|
|
/* Called 9 times */
|
|
/* Why rc_is_bit_0_helper exists?
|
|
*Because we want to always expose (rc->code < rc->bound) to optimizer
|
|
*/
|
|
static inline uint32_t INIT rc_is_bit_0_helper(struct rc *rc, uint16_t *p)
|
|
{
|
|
rc_normalize(rc);
|
|
rc->bound = *p * (rc->range >> RC_MODEL_TOTAL_BITS);
|
|
return rc->bound;
|
|
}
|
|
static inline int INIT rc_is_bit_0(struct rc *rc, uint16_t *p)
|
|
{
|
|
uint32_t t = rc_is_bit_0_helper(rc, p);
|
|
return rc->code < t;
|
|
}
|
|
|
|
/* Called ~10 times, but very small, thus inlined */
|
|
static inline void INIT rc_update_bit_0(struct rc *rc, uint16_t *p)
|
|
{
|
|
rc->range = rc->bound;
|
|
*p += ((1 << RC_MODEL_TOTAL_BITS) - *p) >> RC_MOVE_BITS;
|
|
}
|
|
static inline void INIT rc_update_bit_1(struct rc *rc, uint16_t *p)
|
|
{
|
|
rc->range -= rc->bound;
|
|
rc->code -= rc->bound;
|
|
*p -= *p >> RC_MOVE_BITS;
|
|
}
|
|
|
|
/* Called 4 times in unlzma loop */
|
|
static int INIT rc_get_bit(struct rc *rc, uint16_t *p, int *symbol)
|
|
{
|
|
if (rc_is_bit_0(rc, p)) {
|
|
rc_update_bit_0(rc, p);
|
|
*symbol *= 2;
|
|
return 0;
|
|
} else {
|
|
rc_update_bit_1(rc, p);
|
|
*symbol = *symbol * 2 + 1;
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
/* Called once */
|
|
static inline int INIT rc_direct_bit(struct rc *rc)
|
|
{
|
|
rc_normalize(rc);
|
|
rc->range >>= 1;
|
|
if (rc->code >= rc->range) {
|
|
rc->code -= rc->range;
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Called twice */
|
|
static inline void INIT
|
|
rc_bit_tree_decode(struct rc *rc, uint16_t *p, int num_levels, int *symbol)
|
|
{
|
|
int i = num_levels;
|
|
|
|
*symbol = 1;
|
|
while (i--)
|
|
rc_get_bit(rc, p + *symbol, symbol);
|
|
*symbol -= 1 << num_levels;
|
|
}
|
|
|
|
|
|
/*
|
|
* Small lzma deflate implementation.
|
|
* Copyright (C) 2006 Aurelien Jacobs < aurel@gnuage.org >
|
|
*
|
|
* Based on LzmaDecode.c from the LZMA SDK 4.22 (http://www.7-zip.org/)
|
|
* Copyright (C) 1999-2005 Igor Pavlov
|
|
*/
|
|
|
|
|
|
struct lzma_header {
|
|
uint8_t pos;
|
|
uint32_t dict_size;
|
|
uint64_t dst_size;
|
|
} __attribute__ ((packed)) ;
|
|
|
|
|
|
#define LZMA_BASE_SIZE 1846
|
|
#define LZMA_LIT_SIZE 768
|
|
|
|
#define LZMA_NUM_POS_BITS_MAX 4
|
|
|
|
#define LZMA_LEN_NUM_LOW_BITS 3
|
|
#define LZMA_LEN_NUM_MID_BITS 3
|
|
#define LZMA_LEN_NUM_HIGH_BITS 8
|
|
|
|
#define LZMA_LEN_CHOICE 0
|
|
#define LZMA_LEN_CHOICE_2 (LZMA_LEN_CHOICE + 1)
|
|
#define LZMA_LEN_LOW (LZMA_LEN_CHOICE_2 + 1)
|
|
#define LZMA_LEN_MID (LZMA_LEN_LOW \
|
|
+ (1 << (LZMA_NUM_POS_BITS_MAX + LZMA_LEN_NUM_LOW_BITS)))
|
|
#define LZMA_LEN_HIGH (LZMA_LEN_MID \
|
|
+(1 << (LZMA_NUM_POS_BITS_MAX + LZMA_LEN_NUM_MID_BITS)))
|
|
#define LZMA_NUM_LEN_PROBS (LZMA_LEN_HIGH + (1 << LZMA_LEN_NUM_HIGH_BITS))
|
|
|
|
#define LZMA_NUM_STATES 12
|
|
#define LZMA_NUM_LIT_STATES 7
|
|
|
|
#define LZMA_START_POS_MODEL_INDEX 4
|
|
#define LZMA_END_POS_MODEL_INDEX 14
|
|
#define LZMA_NUM_FULL_DISTANCES (1 << (LZMA_END_POS_MODEL_INDEX >> 1))
|
|
|
|
#define LZMA_NUM_POS_SLOT_BITS 6
|
|
#define LZMA_NUM_LEN_TO_POS_STATES 4
|
|
|
|
#define LZMA_NUM_ALIGN_BITS 4
|
|
|
|
#define LZMA_MATCH_MIN_LEN 2
|
|
|
|
#define LZMA_IS_MATCH 0
|
|
#define LZMA_IS_REP (LZMA_IS_MATCH + (LZMA_NUM_STATES << LZMA_NUM_POS_BITS_MAX))
|
|
#define LZMA_IS_REP_G0 (LZMA_IS_REP + LZMA_NUM_STATES)
|
|
#define LZMA_IS_REP_G1 (LZMA_IS_REP_G0 + LZMA_NUM_STATES)
|
|
#define LZMA_IS_REP_G2 (LZMA_IS_REP_G1 + LZMA_NUM_STATES)
|
|
#define LZMA_IS_REP_0_LONG (LZMA_IS_REP_G2 + LZMA_NUM_STATES)
|
|
#define LZMA_POS_SLOT (LZMA_IS_REP_0_LONG \
|
|
+ (LZMA_NUM_STATES << LZMA_NUM_POS_BITS_MAX))
|
|
#define LZMA_SPEC_POS (LZMA_POS_SLOT \
|
|
+(LZMA_NUM_LEN_TO_POS_STATES << LZMA_NUM_POS_SLOT_BITS))
|
|
#define LZMA_ALIGN (LZMA_SPEC_POS \
|
|
+ LZMA_NUM_FULL_DISTANCES - LZMA_END_POS_MODEL_INDEX)
|
|
#define LZMA_LEN_CODER (LZMA_ALIGN + (1 << LZMA_NUM_ALIGN_BITS))
|
|
#define LZMA_REP_LEN_CODER (LZMA_LEN_CODER + LZMA_NUM_LEN_PROBS)
|
|
#define LZMA_LITERAL (LZMA_REP_LEN_CODER + LZMA_NUM_LEN_PROBS)
|
|
|
|
|
|
struct writer {
|
|
uint8_t *buffer;
|
|
uint8_t previous_byte;
|
|
size_t buffer_pos;
|
|
int bufsize;
|
|
size_t global_pos;
|
|
long (*flush)(void*, unsigned long);
|
|
struct lzma_header *header;
|
|
};
|
|
|
|
struct cstate {
|
|
int state;
|
|
uint32_t rep0, rep1, rep2, rep3;
|
|
};
|
|
|
|
static inline size_t INIT get_pos(struct writer *wr)
|
|
{
|
|
return
|
|
wr->global_pos + wr->buffer_pos;
|
|
}
|
|
|
|
static inline uint8_t INIT peek_old_byte(struct writer *wr,
|
|
uint32_t offs)
|
|
{
|
|
if (!wr->flush) {
|
|
int32_t pos;
|
|
while (offs > wr->header->dict_size)
|
|
offs -= wr->header->dict_size;
|
|
pos = wr->buffer_pos - offs;
|
|
return wr->buffer[pos];
|
|
} else {
|
|
uint32_t pos = wr->buffer_pos - offs;
|
|
while (pos >= wr->header->dict_size)
|
|
pos += wr->header->dict_size;
|
|
return wr->buffer[pos];
|
|
}
|
|
|
|
}
|
|
|
|
static inline int INIT write_byte(struct writer *wr, uint8_t byte)
|
|
{
|
|
wr->buffer[wr->buffer_pos++] = wr->previous_byte = byte;
|
|
if (wr->flush && wr->buffer_pos == wr->header->dict_size) {
|
|
wr->buffer_pos = 0;
|
|
wr->global_pos += wr->header->dict_size;
|
|
if (wr->flush((char *)wr->buffer, wr->header->dict_size)
|
|
!= wr->header->dict_size)
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
static inline int INIT copy_byte(struct writer *wr, uint32_t offs)
|
|
{
|
|
return write_byte(wr, peek_old_byte(wr, offs));
|
|
}
|
|
|
|
static inline int INIT copy_bytes(struct writer *wr,
|
|
uint32_t rep0, int len)
|
|
{
|
|
do {
|
|
if (copy_byte(wr, rep0))
|
|
return -1;
|
|
len--;
|
|
} while (len != 0 && wr->buffer_pos < wr->header->dst_size);
|
|
|
|
return len;
|
|
}
|
|
|
|
static inline int INIT process_bit0(struct writer *wr, struct rc *rc,
|
|
struct cstate *cst, uint16_t *p,
|
|
int pos_state, uint16_t *prob,
|
|
int lc, uint32_t literal_pos_mask) {
|
|
int mi = 1;
|
|
rc_update_bit_0(rc, prob);
|
|
prob = (p + LZMA_LITERAL +
|
|
(LZMA_LIT_SIZE
|
|
* (((get_pos(wr) & literal_pos_mask) << lc)
|
|
+ (wr->previous_byte >> (8 - lc))))
|
|
);
|
|
|
|
if (cst->state >= LZMA_NUM_LIT_STATES) {
|
|
int match_byte = peek_old_byte(wr, cst->rep0);
|
|
do {
|
|
int bit;
|
|
uint16_t *prob_lit;
|
|
|
|
match_byte <<= 1;
|
|
bit = match_byte & 0x100;
|
|
prob_lit = prob + 0x100 + bit + mi;
|
|
if (rc_get_bit(rc, prob_lit, &mi)) {
|
|
if (!bit)
|
|
break;
|
|
} else {
|
|
if (bit)
|
|
break;
|
|
}
|
|
} while (mi < 0x100);
|
|
}
|
|
while (mi < 0x100) {
|
|
uint16_t *prob_lit = prob + mi;
|
|
rc_get_bit(rc, prob_lit, &mi);
|
|
}
|
|
if (cst->state < 4)
|
|
cst->state = 0;
|
|
else if (cst->state < 10)
|
|
cst->state -= 3;
|
|
else
|
|
cst->state -= 6;
|
|
|
|
return write_byte(wr, mi);
|
|
}
|
|
|
|
static inline int INIT process_bit1(struct writer *wr, struct rc *rc,
|
|
struct cstate *cst, uint16_t *p,
|
|
int pos_state, uint16_t *prob) {
|
|
int offset;
|
|
uint16_t *prob_len;
|
|
int num_bits;
|
|
int len;
|
|
|
|
rc_update_bit_1(rc, prob);
|
|
prob = p + LZMA_IS_REP + cst->state;
|
|
if (rc_is_bit_0(rc, prob)) {
|
|
rc_update_bit_0(rc, prob);
|
|
cst->rep3 = cst->rep2;
|
|
cst->rep2 = cst->rep1;
|
|
cst->rep1 = cst->rep0;
|
|
cst->state = cst->state < LZMA_NUM_LIT_STATES ? 0 : 3;
|
|
prob = p + LZMA_LEN_CODER;
|
|
} else {
|
|
rc_update_bit_1(rc, prob);
|
|
prob = p + LZMA_IS_REP_G0 + cst->state;
|
|
if (rc_is_bit_0(rc, prob)) {
|
|
rc_update_bit_0(rc, prob);
|
|
prob = (p + LZMA_IS_REP_0_LONG
|
|
+ (cst->state <<
|
|
LZMA_NUM_POS_BITS_MAX) +
|
|
pos_state);
|
|
if (rc_is_bit_0(rc, prob)) {
|
|
rc_update_bit_0(rc, prob);
|
|
|
|
cst->state = cst->state < LZMA_NUM_LIT_STATES ?
|
|
9 : 11;
|
|
return copy_byte(wr, cst->rep0);
|
|
} else {
|
|
rc_update_bit_1(rc, prob);
|
|
}
|
|
} else {
|
|
uint32_t distance;
|
|
|
|
rc_update_bit_1(rc, prob);
|
|
prob = p + LZMA_IS_REP_G1 + cst->state;
|
|
if (rc_is_bit_0(rc, prob)) {
|
|
rc_update_bit_0(rc, prob);
|
|
distance = cst->rep1;
|
|
} else {
|
|
rc_update_bit_1(rc, prob);
|
|
prob = p + LZMA_IS_REP_G2 + cst->state;
|
|
if (rc_is_bit_0(rc, prob)) {
|
|
rc_update_bit_0(rc, prob);
|
|
distance = cst->rep2;
|
|
} else {
|
|
rc_update_bit_1(rc, prob);
|
|
distance = cst->rep3;
|
|
cst->rep3 = cst->rep2;
|
|
}
|
|
cst->rep2 = cst->rep1;
|
|
}
|
|
cst->rep1 = cst->rep0;
|
|
cst->rep0 = distance;
|
|
}
|
|
cst->state = cst->state < LZMA_NUM_LIT_STATES ? 8 : 11;
|
|
prob = p + LZMA_REP_LEN_CODER;
|
|
}
|
|
|
|
prob_len = prob + LZMA_LEN_CHOICE;
|
|
if (rc_is_bit_0(rc, prob_len)) {
|
|
rc_update_bit_0(rc, prob_len);
|
|
prob_len = (prob + LZMA_LEN_LOW
|
|
+ (pos_state <<
|
|
LZMA_LEN_NUM_LOW_BITS));
|
|
offset = 0;
|
|
num_bits = LZMA_LEN_NUM_LOW_BITS;
|
|
} else {
|
|
rc_update_bit_1(rc, prob_len);
|
|
prob_len = prob + LZMA_LEN_CHOICE_2;
|
|
if (rc_is_bit_0(rc, prob_len)) {
|
|
rc_update_bit_0(rc, prob_len);
|
|
prob_len = (prob + LZMA_LEN_MID
|
|
+ (pos_state <<
|
|
LZMA_LEN_NUM_MID_BITS));
|
|
offset = 1 << LZMA_LEN_NUM_LOW_BITS;
|
|
num_bits = LZMA_LEN_NUM_MID_BITS;
|
|
} else {
|
|
rc_update_bit_1(rc, prob_len);
|
|
prob_len = prob + LZMA_LEN_HIGH;
|
|
offset = ((1 << LZMA_LEN_NUM_LOW_BITS)
|
|
+ (1 << LZMA_LEN_NUM_MID_BITS));
|
|
num_bits = LZMA_LEN_NUM_HIGH_BITS;
|
|
}
|
|
}
|
|
|
|
rc_bit_tree_decode(rc, prob_len, num_bits, &len);
|
|
len += offset;
|
|
|
|
if (cst->state < 4) {
|
|
int pos_slot;
|
|
|
|
cst->state += LZMA_NUM_LIT_STATES;
|
|
prob =
|
|
p + LZMA_POS_SLOT +
|
|
((len <
|
|
LZMA_NUM_LEN_TO_POS_STATES ? len :
|
|
LZMA_NUM_LEN_TO_POS_STATES - 1)
|
|
<< LZMA_NUM_POS_SLOT_BITS);
|
|
rc_bit_tree_decode(rc, prob,
|
|
LZMA_NUM_POS_SLOT_BITS,
|
|
&pos_slot);
|
|
if (pos_slot >= LZMA_START_POS_MODEL_INDEX) {
|
|
int i, mi;
|
|
num_bits = (pos_slot >> 1) - 1;
|
|
cst->rep0 = 2 | (pos_slot & 1);
|
|
if (pos_slot < LZMA_END_POS_MODEL_INDEX) {
|
|
cst->rep0 <<= num_bits;
|
|
prob = p + LZMA_SPEC_POS +
|
|
cst->rep0 - pos_slot - 1;
|
|
} else {
|
|
num_bits -= LZMA_NUM_ALIGN_BITS;
|
|
while (num_bits--)
|
|
cst->rep0 = (cst->rep0 << 1) |
|
|
rc_direct_bit(rc);
|
|
prob = p + LZMA_ALIGN;
|
|
cst->rep0 <<= LZMA_NUM_ALIGN_BITS;
|
|
num_bits = LZMA_NUM_ALIGN_BITS;
|
|
}
|
|
i = 1;
|
|
mi = 1;
|
|
while (num_bits--) {
|
|
if (rc_get_bit(rc, prob + mi, &mi))
|
|
cst->rep0 |= i;
|
|
i <<= 1;
|
|
}
|
|
} else
|
|
cst->rep0 = pos_slot;
|
|
if (++(cst->rep0) == 0)
|
|
return 0;
|
|
if (cst->rep0 > wr->header->dict_size
|
|
|| cst->rep0 > get_pos(wr))
|
|
return -1;
|
|
}
|
|
|
|
len += LZMA_MATCH_MIN_LEN;
|
|
|
|
return copy_bytes(wr, cst->rep0, len);
|
|
}
|
|
|
|
|
|
|
|
STATIC inline int INIT unlzma(unsigned char *buf, long in_len,
|
|
long (*fill)(void*, unsigned long),
|
|
long (*flush)(void*, unsigned long),
|
|
unsigned char *output,
|
|
long *posp,
|
|
void(*error)(char *x)
|
|
)
|
|
{
|
|
struct lzma_header header;
|
|
int lc, pb, lp;
|
|
uint32_t pos_state_mask;
|
|
uint32_t literal_pos_mask;
|
|
uint16_t *p;
|
|
int num_probs;
|
|
struct rc rc;
|
|
int i, mi;
|
|
struct writer wr;
|
|
struct cstate cst;
|
|
unsigned char *inbuf;
|
|
int ret = -1;
|
|
|
|
rc.error = error;
|
|
|
|
if (buf)
|
|
inbuf = buf;
|
|
else
|
|
inbuf = malloc(LZMA_IOBUF_SIZE);
|
|
if (!inbuf) {
|
|
error("Could not allocate input buffer");
|
|
goto exit_0;
|
|
}
|
|
|
|
cst.state = 0;
|
|
cst.rep0 = cst.rep1 = cst.rep2 = cst.rep3 = 1;
|
|
|
|
wr.header = &header;
|
|
wr.flush = flush;
|
|
wr.global_pos = 0;
|
|
wr.previous_byte = 0;
|
|
wr.buffer_pos = 0;
|
|
|
|
rc_init(&rc, fill, inbuf, in_len);
|
|
|
|
for (i = 0; i < sizeof(header); i++) {
|
|
if (rc.ptr >= rc.buffer_end)
|
|
rc_read(&rc);
|
|
((unsigned char *)&header)[i] = *rc.ptr++;
|
|
}
|
|
|
|
if (header.pos >= (9 * 5 * 5)) {
|
|
error("bad header");
|
|
goto exit_1;
|
|
}
|
|
|
|
mi = 0;
|
|
lc = header.pos;
|
|
while (lc >= 9) {
|
|
mi++;
|
|
lc -= 9;
|
|
}
|
|
pb = 0;
|
|
lp = mi;
|
|
while (lp >= 5) {
|
|
pb++;
|
|
lp -= 5;
|
|
}
|
|
pos_state_mask = (1 << pb) - 1;
|
|
literal_pos_mask = (1 << lp) - 1;
|
|
|
|
ENDIAN_CONVERT(header.dict_size);
|
|
ENDIAN_CONVERT(header.dst_size);
|
|
|
|
if (header.dict_size == 0)
|
|
header.dict_size = 1;
|
|
|
|
if (output)
|
|
wr.buffer = output;
|
|
else {
|
|
wr.bufsize = MIN(header.dst_size, header.dict_size);
|
|
wr.buffer = large_malloc(wr.bufsize);
|
|
}
|
|
if (wr.buffer == NULL)
|
|
goto exit_1;
|
|
|
|
num_probs = LZMA_BASE_SIZE + (LZMA_LIT_SIZE << (lc + lp));
|
|
p = (uint16_t *) large_malloc(num_probs * sizeof(*p));
|
|
if (p == NULL)
|
|
goto exit_2;
|
|
num_probs = LZMA_LITERAL + (LZMA_LIT_SIZE << (lc + lp));
|
|
for (i = 0; i < num_probs; i++)
|
|
p[i] = (1 << RC_MODEL_TOTAL_BITS) >> 1;
|
|
|
|
rc_init_code(&rc);
|
|
|
|
while (get_pos(&wr) < header.dst_size) {
|
|
int pos_state = get_pos(&wr) & pos_state_mask;
|
|
uint16_t *prob = p + LZMA_IS_MATCH +
|
|
(cst.state << LZMA_NUM_POS_BITS_MAX) + pos_state;
|
|
if (rc_is_bit_0(&rc, prob)) {
|
|
if (process_bit0(&wr, &rc, &cst, p, pos_state, prob,
|
|
lc, literal_pos_mask)) {
|
|
error("LZMA data is corrupt");
|
|
goto exit_3;
|
|
}
|
|
} else {
|
|
if (process_bit1(&wr, &rc, &cst, p, pos_state, prob)) {
|
|
error("LZMA data is corrupt");
|
|
goto exit_3;
|
|
}
|
|
if (cst.rep0 == 0)
|
|
break;
|
|
}
|
|
if (rc.buffer_size <= 0)
|
|
goto exit_3;
|
|
}
|
|
|
|
if (posp)
|
|
*posp = rc.ptr-rc.buffer;
|
|
if (!wr.flush || wr.flush(wr.buffer, wr.buffer_pos) == wr.buffer_pos)
|
|
ret = 0;
|
|
exit_3:
|
|
large_free(p);
|
|
exit_2:
|
|
if (!output)
|
|
large_free(wr.buffer);
|
|
exit_1:
|
|
if (!buf)
|
|
free(inbuf);
|
|
exit_0:
|
|
return ret;
|
|
}
|
|
|
|
#ifdef PREBOOT
|
|
STATIC int INIT __decompress(unsigned char *buf, long in_len,
|
|
long (*fill)(void*, unsigned long),
|
|
long (*flush)(void*, unsigned long),
|
|
unsigned char *output, long out_len,
|
|
long *posp,
|
|
void (*error)(char *x))
|
|
{
|
|
return unlzma(buf, in_len - 4, fill, flush, output, posp, error);
|
|
}
|
|
#endif
|