mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-11-30 19:26:38 +07:00
5d3667eee4
In ancient times it was necessary to manually initialize the bus field of an spi_driver to spi_bus_type. These days this is done in spi_driver_register(), so we can drop the manual assignment. The patch was generated using the following coccinelle semantic patch: // <smpl> @@ identifier _driver; @@ struct spi_driver _driver = { .driver = { - .bus = &spi_bus_type, }, }; // </smpl> Signed-off-by: Lars-Peter Clausen <lars@metafoo.de> Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@linux.intel.com> Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
1026 lines
28 KiB
C
1026 lines
28 KiB
C
/*
|
|
* MTD SPI driver for ST M25Pxx (and similar) serial flash chips
|
|
*
|
|
* Author: Mike Lavender, mike@steroidmicros.com
|
|
*
|
|
* Copyright (c) 2005, Intec Automation Inc.
|
|
*
|
|
* Some parts are based on lart.c by Abraham Van Der Merwe
|
|
*
|
|
* Cleaned up and generalized based on mtd_dataflash.c
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
*/
|
|
|
|
#include <linux/init.h>
|
|
#include <linux/err.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/module.h>
|
|
#include <linux/device.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/math64.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/mod_devicetable.h>
|
|
|
|
#include <linux/mtd/cfi.h>
|
|
#include <linux/mtd/mtd.h>
|
|
#include <linux/mtd/partitions.h>
|
|
#include <linux/of_platform.h>
|
|
|
|
#include <linux/spi/spi.h>
|
|
#include <linux/spi/flash.h>
|
|
|
|
/* Flash opcodes. */
|
|
#define OPCODE_WREN 0x06 /* Write enable */
|
|
#define OPCODE_RDSR 0x05 /* Read status register */
|
|
#define OPCODE_WRSR 0x01 /* Write status register 1 byte */
|
|
#define OPCODE_NORM_READ 0x03 /* Read data bytes (low frequency) */
|
|
#define OPCODE_FAST_READ 0x0b /* Read data bytes (high frequency) */
|
|
#define OPCODE_PP 0x02 /* Page program (up to 256 bytes) */
|
|
#define OPCODE_BE_4K 0x20 /* Erase 4KiB block */
|
|
#define OPCODE_BE_32K 0x52 /* Erase 32KiB block */
|
|
#define OPCODE_CHIP_ERASE 0xc7 /* Erase whole flash chip */
|
|
#define OPCODE_SE 0xd8 /* Sector erase (usually 64KiB) */
|
|
#define OPCODE_RDID 0x9f /* Read JEDEC ID */
|
|
|
|
/* Used for SST flashes only. */
|
|
#define OPCODE_BP 0x02 /* Byte program */
|
|
#define OPCODE_WRDI 0x04 /* Write disable */
|
|
#define OPCODE_AAI_WP 0xad /* Auto address increment word program */
|
|
|
|
/* Used for Macronix flashes only. */
|
|
#define OPCODE_EN4B 0xb7 /* Enter 4-byte mode */
|
|
#define OPCODE_EX4B 0xe9 /* Exit 4-byte mode */
|
|
|
|
/* Used for Spansion flashes only. */
|
|
#define OPCODE_BRWR 0x17 /* Bank register write */
|
|
|
|
/* Status Register bits. */
|
|
#define SR_WIP 1 /* Write in progress */
|
|
#define SR_WEL 2 /* Write enable latch */
|
|
/* meaning of other SR_* bits may differ between vendors */
|
|
#define SR_BP0 4 /* Block protect 0 */
|
|
#define SR_BP1 8 /* Block protect 1 */
|
|
#define SR_BP2 0x10 /* Block protect 2 */
|
|
#define SR_SRWD 0x80 /* SR write protect */
|
|
|
|
/* Define max times to check status register before we give up. */
|
|
#define MAX_READY_WAIT_JIFFIES (40 * HZ) /* M25P16 specs 40s max chip erase */
|
|
#define MAX_CMD_SIZE 5
|
|
|
|
#ifdef CONFIG_M25PXX_USE_FAST_READ
|
|
#define OPCODE_READ OPCODE_FAST_READ
|
|
#define FAST_READ_DUMMY_BYTE 1
|
|
#else
|
|
#define OPCODE_READ OPCODE_NORM_READ
|
|
#define FAST_READ_DUMMY_BYTE 0
|
|
#endif
|
|
|
|
#define JEDEC_MFR(_jedec_id) ((_jedec_id) >> 16)
|
|
|
|
/****************************************************************************/
|
|
|
|
struct m25p {
|
|
struct spi_device *spi;
|
|
struct mutex lock;
|
|
struct mtd_info mtd;
|
|
u16 page_size;
|
|
u16 addr_width;
|
|
u8 erase_opcode;
|
|
u8 *command;
|
|
};
|
|
|
|
static inline struct m25p *mtd_to_m25p(struct mtd_info *mtd)
|
|
{
|
|
return container_of(mtd, struct m25p, mtd);
|
|
}
|
|
|
|
/****************************************************************************/
|
|
|
|
/*
|
|
* Internal helper functions
|
|
*/
|
|
|
|
/*
|
|
* Read the status register, returning its value in the location
|
|
* Return the status register value.
|
|
* Returns negative if error occurred.
|
|
*/
|
|
static int read_sr(struct m25p *flash)
|
|
{
|
|
ssize_t retval;
|
|
u8 code = OPCODE_RDSR;
|
|
u8 val;
|
|
|
|
retval = spi_write_then_read(flash->spi, &code, 1, &val, 1);
|
|
|
|
if (retval < 0) {
|
|
dev_err(&flash->spi->dev, "error %d reading SR\n",
|
|
(int) retval);
|
|
return retval;
|
|
}
|
|
|
|
return val;
|
|
}
|
|
|
|
/*
|
|
* Write status register 1 byte
|
|
* Returns negative if error occurred.
|
|
*/
|
|
static int write_sr(struct m25p *flash, u8 val)
|
|
{
|
|
flash->command[0] = OPCODE_WRSR;
|
|
flash->command[1] = val;
|
|
|
|
return spi_write(flash->spi, flash->command, 2);
|
|
}
|
|
|
|
/*
|
|
* Set write enable latch with Write Enable command.
|
|
* Returns negative if error occurred.
|
|
*/
|
|
static inline int write_enable(struct m25p *flash)
|
|
{
|
|
u8 code = OPCODE_WREN;
|
|
|
|
return spi_write_then_read(flash->spi, &code, 1, NULL, 0);
|
|
}
|
|
|
|
/*
|
|
* Send write disble instruction to the chip.
|
|
*/
|
|
static inline int write_disable(struct m25p *flash)
|
|
{
|
|
u8 code = OPCODE_WRDI;
|
|
|
|
return spi_write_then_read(flash->spi, &code, 1, NULL, 0);
|
|
}
|
|
|
|
/*
|
|
* Enable/disable 4-byte addressing mode.
|
|
*/
|
|
static inline int set_4byte(struct m25p *flash, u32 jedec_id, int enable)
|
|
{
|
|
switch (JEDEC_MFR(jedec_id)) {
|
|
case CFI_MFR_MACRONIX:
|
|
flash->command[0] = enable ? OPCODE_EN4B : OPCODE_EX4B;
|
|
return spi_write(flash->spi, flash->command, 1);
|
|
default:
|
|
/* Spansion style */
|
|
flash->command[0] = OPCODE_BRWR;
|
|
flash->command[1] = enable << 7;
|
|
return spi_write(flash->spi, flash->command, 2);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Service routine to read status register until ready, or timeout occurs.
|
|
* Returns non-zero if error.
|
|
*/
|
|
static int wait_till_ready(struct m25p *flash)
|
|
{
|
|
unsigned long deadline;
|
|
int sr;
|
|
|
|
deadline = jiffies + MAX_READY_WAIT_JIFFIES;
|
|
|
|
do {
|
|
if ((sr = read_sr(flash)) < 0)
|
|
break;
|
|
else if (!(sr & SR_WIP))
|
|
return 0;
|
|
|
|
cond_resched();
|
|
|
|
} while (!time_after_eq(jiffies, deadline));
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Erase the whole flash memory
|
|
*
|
|
* Returns 0 if successful, non-zero otherwise.
|
|
*/
|
|
static int erase_chip(struct m25p *flash)
|
|
{
|
|
pr_debug("%s: %s %lldKiB\n", dev_name(&flash->spi->dev), __func__,
|
|
(long long)(flash->mtd.size >> 10));
|
|
|
|
/* Wait until finished previous write command. */
|
|
if (wait_till_ready(flash))
|
|
return 1;
|
|
|
|
/* Send write enable, then erase commands. */
|
|
write_enable(flash);
|
|
|
|
/* Set up command buffer. */
|
|
flash->command[0] = OPCODE_CHIP_ERASE;
|
|
|
|
spi_write(flash->spi, flash->command, 1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void m25p_addr2cmd(struct m25p *flash, unsigned int addr, u8 *cmd)
|
|
{
|
|
/* opcode is in cmd[0] */
|
|
cmd[1] = addr >> (flash->addr_width * 8 - 8);
|
|
cmd[2] = addr >> (flash->addr_width * 8 - 16);
|
|
cmd[3] = addr >> (flash->addr_width * 8 - 24);
|
|
cmd[4] = addr >> (flash->addr_width * 8 - 32);
|
|
}
|
|
|
|
static int m25p_cmdsz(struct m25p *flash)
|
|
{
|
|
return 1 + flash->addr_width;
|
|
}
|
|
|
|
/*
|
|
* Erase one sector of flash memory at offset ``offset'' which is any
|
|
* address within the sector which should be erased.
|
|
*
|
|
* Returns 0 if successful, non-zero otherwise.
|
|
*/
|
|
static int erase_sector(struct m25p *flash, u32 offset)
|
|
{
|
|
pr_debug("%s: %s %dKiB at 0x%08x\n", dev_name(&flash->spi->dev),
|
|
__func__, flash->mtd.erasesize / 1024, offset);
|
|
|
|
/* Wait until finished previous write command. */
|
|
if (wait_till_ready(flash))
|
|
return 1;
|
|
|
|
/* Send write enable, then erase commands. */
|
|
write_enable(flash);
|
|
|
|
/* Set up command buffer. */
|
|
flash->command[0] = flash->erase_opcode;
|
|
m25p_addr2cmd(flash, offset, flash->command);
|
|
|
|
spi_write(flash->spi, flash->command, m25p_cmdsz(flash));
|
|
|
|
return 0;
|
|
}
|
|
|
|
/****************************************************************************/
|
|
|
|
/*
|
|
* MTD implementation
|
|
*/
|
|
|
|
/*
|
|
* Erase an address range on the flash chip. The address range may extend
|
|
* one or more erase sectors. Return an error is there is a problem erasing.
|
|
*/
|
|
static int m25p80_erase(struct mtd_info *mtd, struct erase_info *instr)
|
|
{
|
|
struct m25p *flash = mtd_to_m25p(mtd);
|
|
u32 addr,len;
|
|
uint32_t rem;
|
|
|
|
pr_debug("%s: %s at 0x%llx, len %lld\n", dev_name(&flash->spi->dev),
|
|
__func__, (long long)instr->addr,
|
|
(long long)instr->len);
|
|
|
|
/* sanity checks */
|
|
if (instr->addr + instr->len > flash->mtd.size)
|
|
return -EINVAL;
|
|
div_u64_rem(instr->len, mtd->erasesize, &rem);
|
|
if (rem)
|
|
return -EINVAL;
|
|
|
|
addr = instr->addr;
|
|
len = instr->len;
|
|
|
|
mutex_lock(&flash->lock);
|
|
|
|
/* whole-chip erase? */
|
|
if (len == flash->mtd.size) {
|
|
if (erase_chip(flash)) {
|
|
instr->state = MTD_ERASE_FAILED;
|
|
mutex_unlock(&flash->lock);
|
|
return -EIO;
|
|
}
|
|
|
|
/* REVISIT in some cases we could speed up erasing large regions
|
|
* by using OPCODE_SE instead of OPCODE_BE_4K. We may have set up
|
|
* to use "small sector erase", but that's not always optimal.
|
|
*/
|
|
|
|
/* "sector"-at-a-time erase */
|
|
} else {
|
|
while (len) {
|
|
if (erase_sector(flash, addr)) {
|
|
instr->state = MTD_ERASE_FAILED;
|
|
mutex_unlock(&flash->lock);
|
|
return -EIO;
|
|
}
|
|
|
|
addr += mtd->erasesize;
|
|
len -= mtd->erasesize;
|
|
}
|
|
}
|
|
|
|
mutex_unlock(&flash->lock);
|
|
|
|
instr->state = MTD_ERASE_DONE;
|
|
mtd_erase_callback(instr);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Read an address range from the flash chip. The address range
|
|
* may be any size provided it is within the physical boundaries.
|
|
*/
|
|
static int m25p80_read(struct mtd_info *mtd, loff_t from, size_t len,
|
|
size_t *retlen, u_char *buf)
|
|
{
|
|
struct m25p *flash = mtd_to_m25p(mtd);
|
|
struct spi_transfer t[2];
|
|
struct spi_message m;
|
|
|
|
pr_debug("%s: %s from 0x%08x, len %zd\n", dev_name(&flash->spi->dev),
|
|
__func__, (u32)from, len);
|
|
|
|
/* sanity checks */
|
|
if (!len)
|
|
return 0;
|
|
|
|
if (from + len > flash->mtd.size)
|
|
return -EINVAL;
|
|
|
|
spi_message_init(&m);
|
|
memset(t, 0, (sizeof t));
|
|
|
|
/* NOTE:
|
|
* OPCODE_FAST_READ (if available) is faster.
|
|
* Should add 1 byte DUMMY_BYTE.
|
|
*/
|
|
t[0].tx_buf = flash->command;
|
|
t[0].len = m25p_cmdsz(flash) + FAST_READ_DUMMY_BYTE;
|
|
spi_message_add_tail(&t[0], &m);
|
|
|
|
t[1].rx_buf = buf;
|
|
t[1].len = len;
|
|
spi_message_add_tail(&t[1], &m);
|
|
|
|
/* Byte count starts at zero. */
|
|
*retlen = 0;
|
|
|
|
mutex_lock(&flash->lock);
|
|
|
|
/* Wait till previous write/erase is done. */
|
|
if (wait_till_ready(flash)) {
|
|
/* REVISIT status return?? */
|
|
mutex_unlock(&flash->lock);
|
|
return 1;
|
|
}
|
|
|
|
/* FIXME switch to OPCODE_FAST_READ. It's required for higher
|
|
* clocks; and at this writing, every chip this driver handles
|
|
* supports that opcode.
|
|
*/
|
|
|
|
/* Set up the write data buffer. */
|
|
flash->command[0] = OPCODE_READ;
|
|
m25p_addr2cmd(flash, from, flash->command);
|
|
|
|
spi_sync(flash->spi, &m);
|
|
|
|
*retlen = m.actual_length - m25p_cmdsz(flash) - FAST_READ_DUMMY_BYTE;
|
|
|
|
mutex_unlock(&flash->lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Write an address range to the flash chip. Data must be written in
|
|
* FLASH_PAGESIZE chunks. The address range may be any size provided
|
|
* it is within the physical boundaries.
|
|
*/
|
|
static int m25p80_write(struct mtd_info *mtd, loff_t to, size_t len,
|
|
size_t *retlen, const u_char *buf)
|
|
{
|
|
struct m25p *flash = mtd_to_m25p(mtd);
|
|
u32 page_offset, page_size;
|
|
struct spi_transfer t[2];
|
|
struct spi_message m;
|
|
|
|
pr_debug("%s: %s to 0x%08x, len %zd\n", dev_name(&flash->spi->dev),
|
|
__func__, (u32)to, len);
|
|
|
|
*retlen = 0;
|
|
|
|
/* sanity checks */
|
|
if (!len)
|
|
return(0);
|
|
|
|
if (to + len > flash->mtd.size)
|
|
return -EINVAL;
|
|
|
|
spi_message_init(&m);
|
|
memset(t, 0, (sizeof t));
|
|
|
|
t[0].tx_buf = flash->command;
|
|
t[0].len = m25p_cmdsz(flash);
|
|
spi_message_add_tail(&t[0], &m);
|
|
|
|
t[1].tx_buf = buf;
|
|
spi_message_add_tail(&t[1], &m);
|
|
|
|
mutex_lock(&flash->lock);
|
|
|
|
/* Wait until finished previous write command. */
|
|
if (wait_till_ready(flash)) {
|
|
mutex_unlock(&flash->lock);
|
|
return 1;
|
|
}
|
|
|
|
write_enable(flash);
|
|
|
|
/* Set up the opcode in the write buffer. */
|
|
flash->command[0] = OPCODE_PP;
|
|
m25p_addr2cmd(flash, to, flash->command);
|
|
|
|
page_offset = to & (flash->page_size - 1);
|
|
|
|
/* do all the bytes fit onto one page? */
|
|
if (page_offset + len <= flash->page_size) {
|
|
t[1].len = len;
|
|
|
|
spi_sync(flash->spi, &m);
|
|
|
|
*retlen = m.actual_length - m25p_cmdsz(flash);
|
|
} else {
|
|
u32 i;
|
|
|
|
/* the size of data remaining on the first page */
|
|
page_size = flash->page_size - page_offset;
|
|
|
|
t[1].len = page_size;
|
|
spi_sync(flash->spi, &m);
|
|
|
|
*retlen = m.actual_length - m25p_cmdsz(flash);
|
|
|
|
/* write everything in flash->page_size chunks */
|
|
for (i = page_size; i < len; i += page_size) {
|
|
page_size = len - i;
|
|
if (page_size > flash->page_size)
|
|
page_size = flash->page_size;
|
|
|
|
/* write the next page to flash */
|
|
m25p_addr2cmd(flash, to + i, flash->command);
|
|
|
|
t[1].tx_buf = buf + i;
|
|
t[1].len = page_size;
|
|
|
|
wait_till_ready(flash);
|
|
|
|
write_enable(flash);
|
|
|
|
spi_sync(flash->spi, &m);
|
|
|
|
*retlen += m.actual_length - m25p_cmdsz(flash);
|
|
}
|
|
}
|
|
|
|
mutex_unlock(&flash->lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sst_write(struct mtd_info *mtd, loff_t to, size_t len,
|
|
size_t *retlen, const u_char *buf)
|
|
{
|
|
struct m25p *flash = mtd_to_m25p(mtd);
|
|
struct spi_transfer t[2];
|
|
struct spi_message m;
|
|
size_t actual;
|
|
int cmd_sz, ret;
|
|
|
|
pr_debug("%s: %s to 0x%08x, len %zd\n", dev_name(&flash->spi->dev),
|
|
__func__, (u32)to, len);
|
|
|
|
*retlen = 0;
|
|
|
|
/* sanity checks */
|
|
if (!len)
|
|
return 0;
|
|
|
|
if (to + len > flash->mtd.size)
|
|
return -EINVAL;
|
|
|
|
spi_message_init(&m);
|
|
memset(t, 0, (sizeof t));
|
|
|
|
t[0].tx_buf = flash->command;
|
|
t[0].len = m25p_cmdsz(flash);
|
|
spi_message_add_tail(&t[0], &m);
|
|
|
|
t[1].tx_buf = buf;
|
|
spi_message_add_tail(&t[1], &m);
|
|
|
|
mutex_lock(&flash->lock);
|
|
|
|
/* Wait until finished previous write command. */
|
|
ret = wait_till_ready(flash);
|
|
if (ret)
|
|
goto time_out;
|
|
|
|
write_enable(flash);
|
|
|
|
actual = to % 2;
|
|
/* Start write from odd address. */
|
|
if (actual) {
|
|
flash->command[0] = OPCODE_BP;
|
|
m25p_addr2cmd(flash, to, flash->command);
|
|
|
|
/* write one byte. */
|
|
t[1].len = 1;
|
|
spi_sync(flash->spi, &m);
|
|
ret = wait_till_ready(flash);
|
|
if (ret)
|
|
goto time_out;
|
|
*retlen += m.actual_length - m25p_cmdsz(flash);
|
|
}
|
|
to += actual;
|
|
|
|
flash->command[0] = OPCODE_AAI_WP;
|
|
m25p_addr2cmd(flash, to, flash->command);
|
|
|
|
/* Write out most of the data here. */
|
|
cmd_sz = m25p_cmdsz(flash);
|
|
for (; actual < len - 1; actual += 2) {
|
|
t[0].len = cmd_sz;
|
|
/* write two bytes. */
|
|
t[1].len = 2;
|
|
t[1].tx_buf = buf + actual;
|
|
|
|
spi_sync(flash->spi, &m);
|
|
ret = wait_till_ready(flash);
|
|
if (ret)
|
|
goto time_out;
|
|
*retlen += m.actual_length - cmd_sz;
|
|
cmd_sz = 1;
|
|
to += 2;
|
|
}
|
|
write_disable(flash);
|
|
ret = wait_till_ready(flash);
|
|
if (ret)
|
|
goto time_out;
|
|
|
|
/* Write out trailing byte if it exists. */
|
|
if (actual != len) {
|
|
write_enable(flash);
|
|
flash->command[0] = OPCODE_BP;
|
|
m25p_addr2cmd(flash, to, flash->command);
|
|
t[0].len = m25p_cmdsz(flash);
|
|
t[1].len = 1;
|
|
t[1].tx_buf = buf + actual;
|
|
|
|
spi_sync(flash->spi, &m);
|
|
ret = wait_till_ready(flash);
|
|
if (ret)
|
|
goto time_out;
|
|
*retlen += m.actual_length - m25p_cmdsz(flash);
|
|
write_disable(flash);
|
|
}
|
|
|
|
time_out:
|
|
mutex_unlock(&flash->lock);
|
|
return ret;
|
|
}
|
|
|
|
/****************************************************************************/
|
|
|
|
/*
|
|
* SPI device driver setup and teardown
|
|
*/
|
|
|
|
struct flash_info {
|
|
/* JEDEC id zero means "no ID" (most older chips); otherwise it has
|
|
* a high byte of zero plus three data bytes: the manufacturer id,
|
|
* then a two byte device id.
|
|
*/
|
|
u32 jedec_id;
|
|
u16 ext_id;
|
|
|
|
/* The size listed here is what works with OPCODE_SE, which isn't
|
|
* necessarily called a "sector" by the vendor.
|
|
*/
|
|
unsigned sector_size;
|
|
u16 n_sectors;
|
|
|
|
u16 page_size;
|
|
u16 addr_width;
|
|
|
|
u16 flags;
|
|
#define SECT_4K 0x01 /* OPCODE_BE_4K works uniformly */
|
|
#define M25P_NO_ERASE 0x02 /* No erase command needed */
|
|
};
|
|
|
|
#define INFO(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags) \
|
|
((kernel_ulong_t)&(struct flash_info) { \
|
|
.jedec_id = (_jedec_id), \
|
|
.ext_id = (_ext_id), \
|
|
.sector_size = (_sector_size), \
|
|
.n_sectors = (_n_sectors), \
|
|
.page_size = 256, \
|
|
.flags = (_flags), \
|
|
})
|
|
|
|
#define CAT25_INFO(_sector_size, _n_sectors, _page_size, _addr_width) \
|
|
((kernel_ulong_t)&(struct flash_info) { \
|
|
.sector_size = (_sector_size), \
|
|
.n_sectors = (_n_sectors), \
|
|
.page_size = (_page_size), \
|
|
.addr_width = (_addr_width), \
|
|
.flags = M25P_NO_ERASE, \
|
|
})
|
|
|
|
/* NOTE: double check command sets and memory organization when you add
|
|
* more flash chips. This current list focusses on newer chips, which
|
|
* have been converging on command sets which including JEDEC ID.
|
|
*/
|
|
static const struct spi_device_id m25p_ids[] = {
|
|
/* Atmel -- some are (confusingly) marketed as "DataFlash" */
|
|
{ "at25fs010", INFO(0x1f6601, 0, 32 * 1024, 4, SECT_4K) },
|
|
{ "at25fs040", INFO(0x1f6604, 0, 64 * 1024, 8, SECT_4K) },
|
|
|
|
{ "at25df041a", INFO(0x1f4401, 0, 64 * 1024, 8, SECT_4K) },
|
|
{ "at25df321a", INFO(0x1f4701, 0, 64 * 1024, 64, SECT_4K) },
|
|
{ "at25df641", INFO(0x1f4800, 0, 64 * 1024, 128, SECT_4K) },
|
|
|
|
{ "at26f004", INFO(0x1f0400, 0, 64 * 1024, 8, SECT_4K) },
|
|
{ "at26df081a", INFO(0x1f4501, 0, 64 * 1024, 16, SECT_4K) },
|
|
{ "at26df161a", INFO(0x1f4601, 0, 64 * 1024, 32, SECT_4K) },
|
|
{ "at26df321", INFO(0x1f4700, 0, 64 * 1024, 64, SECT_4K) },
|
|
|
|
/* EON -- en25xxx */
|
|
{ "en25f32", INFO(0x1c3116, 0, 64 * 1024, 64, SECT_4K) },
|
|
{ "en25p32", INFO(0x1c2016, 0, 64 * 1024, 64, 0) },
|
|
{ "en25q32b", INFO(0x1c3016, 0, 64 * 1024, 64, 0) },
|
|
{ "en25p64", INFO(0x1c2017, 0, 64 * 1024, 128, 0) },
|
|
|
|
/* Intel/Numonyx -- xxxs33b */
|
|
{ "160s33b", INFO(0x898911, 0, 64 * 1024, 32, 0) },
|
|
{ "320s33b", INFO(0x898912, 0, 64 * 1024, 64, 0) },
|
|
{ "640s33b", INFO(0x898913, 0, 64 * 1024, 128, 0) },
|
|
|
|
/* Macronix */
|
|
{ "mx25l4005a", INFO(0xc22013, 0, 64 * 1024, 8, SECT_4K) },
|
|
{ "mx25l8005", INFO(0xc22014, 0, 64 * 1024, 16, 0) },
|
|
{ "mx25l1606e", INFO(0xc22015, 0, 64 * 1024, 32, SECT_4K) },
|
|
{ "mx25l3205d", INFO(0xc22016, 0, 64 * 1024, 64, 0) },
|
|
{ "mx25l6405d", INFO(0xc22017, 0, 64 * 1024, 128, 0) },
|
|
{ "mx25l12805d", INFO(0xc22018, 0, 64 * 1024, 256, 0) },
|
|
{ "mx25l12855e", INFO(0xc22618, 0, 64 * 1024, 256, 0) },
|
|
{ "mx25l25635e", INFO(0xc22019, 0, 64 * 1024, 512, 0) },
|
|
{ "mx25l25655e", INFO(0xc22619, 0, 64 * 1024, 512, 0) },
|
|
|
|
/* Spansion -- single (large) sector size only, at least
|
|
* for the chips listed here (without boot sectors).
|
|
*/
|
|
{ "s25sl004a", INFO(0x010212, 0, 64 * 1024, 8, 0) },
|
|
{ "s25sl008a", INFO(0x010213, 0, 64 * 1024, 16, 0) },
|
|
{ "s25sl016a", INFO(0x010214, 0, 64 * 1024, 32, 0) },
|
|
{ "s25sl032a", INFO(0x010215, 0, 64 * 1024, 64, 0) },
|
|
{ "s25sl032p", INFO(0x010215, 0x4d00, 64 * 1024, 64, SECT_4K) },
|
|
{ "s25sl064a", INFO(0x010216, 0, 64 * 1024, 128, 0) },
|
|
{ "s25fl256s0", INFO(0x010219, 0x4d00, 256 * 1024, 128, 0) },
|
|
{ "s25fl256s1", INFO(0x010219, 0x4d01, 64 * 1024, 512, 0) },
|
|
{ "s25fl512s", INFO(0x010220, 0x4d00, 256 * 1024, 256, 0) },
|
|
{ "s70fl01gs", INFO(0x010221, 0x4d00, 256 * 1024, 256, 0) },
|
|
{ "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024, 64, 0) },
|
|
{ "s25sl12801", INFO(0x012018, 0x0301, 64 * 1024, 256, 0) },
|
|
{ "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024, 64, 0) },
|
|
{ "s25fl129p1", INFO(0x012018, 0x4d01, 64 * 1024, 256, 0) },
|
|
{ "s25fl016k", INFO(0xef4015, 0, 64 * 1024, 32, SECT_4K) },
|
|
{ "s25fl064k", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) },
|
|
|
|
/* SST -- large erase sizes are "overlays", "sectors" are 4K */
|
|
{ "sst25vf040b", INFO(0xbf258d, 0, 64 * 1024, 8, SECT_4K) },
|
|
{ "sst25vf080b", INFO(0xbf258e, 0, 64 * 1024, 16, SECT_4K) },
|
|
{ "sst25vf016b", INFO(0xbf2541, 0, 64 * 1024, 32, SECT_4K) },
|
|
{ "sst25vf032b", INFO(0xbf254a, 0, 64 * 1024, 64, SECT_4K) },
|
|
{ "sst25wf512", INFO(0xbf2501, 0, 64 * 1024, 1, SECT_4K) },
|
|
{ "sst25wf010", INFO(0xbf2502, 0, 64 * 1024, 2, SECT_4K) },
|
|
{ "sst25wf020", INFO(0xbf2503, 0, 64 * 1024, 4, SECT_4K) },
|
|
{ "sst25wf040", INFO(0xbf2504, 0, 64 * 1024, 8, SECT_4K) },
|
|
|
|
/* ST Microelectronics -- newer production may have feature updates */
|
|
{ "m25p05", INFO(0x202010, 0, 32 * 1024, 2, 0) },
|
|
{ "m25p10", INFO(0x202011, 0, 32 * 1024, 4, 0) },
|
|
{ "m25p20", INFO(0x202012, 0, 64 * 1024, 4, 0) },
|
|
{ "m25p40", INFO(0x202013, 0, 64 * 1024, 8, 0) },
|
|
{ "m25p80", INFO(0x202014, 0, 64 * 1024, 16, 0) },
|
|
{ "m25p16", INFO(0x202015, 0, 64 * 1024, 32, 0) },
|
|
{ "m25p32", INFO(0x202016, 0, 64 * 1024, 64, 0) },
|
|
{ "m25p64", INFO(0x202017, 0, 64 * 1024, 128, 0) },
|
|
{ "m25p128", INFO(0x202018, 0, 256 * 1024, 64, 0) },
|
|
|
|
{ "m25p05-nonjedec", INFO(0, 0, 32 * 1024, 2, 0) },
|
|
{ "m25p10-nonjedec", INFO(0, 0, 32 * 1024, 4, 0) },
|
|
{ "m25p20-nonjedec", INFO(0, 0, 64 * 1024, 4, 0) },
|
|
{ "m25p40-nonjedec", INFO(0, 0, 64 * 1024, 8, 0) },
|
|
{ "m25p80-nonjedec", INFO(0, 0, 64 * 1024, 16, 0) },
|
|
{ "m25p16-nonjedec", INFO(0, 0, 64 * 1024, 32, 0) },
|
|
{ "m25p32-nonjedec", INFO(0, 0, 64 * 1024, 64, 0) },
|
|
{ "m25p64-nonjedec", INFO(0, 0, 64 * 1024, 128, 0) },
|
|
{ "m25p128-nonjedec", INFO(0, 0, 256 * 1024, 64, 0) },
|
|
|
|
{ "m45pe10", INFO(0x204011, 0, 64 * 1024, 2, 0) },
|
|
{ "m45pe80", INFO(0x204014, 0, 64 * 1024, 16, 0) },
|
|
{ "m45pe16", INFO(0x204015, 0, 64 * 1024, 32, 0) },
|
|
|
|
{ "m25pe80", INFO(0x208014, 0, 64 * 1024, 16, 0) },
|
|
{ "m25pe16", INFO(0x208015, 0, 64 * 1024, 32, SECT_4K) },
|
|
|
|
{ "m25px32", INFO(0x207116, 0, 64 * 1024, 64, SECT_4K) },
|
|
{ "m25px32-s0", INFO(0x207316, 0, 64 * 1024, 64, SECT_4K) },
|
|
{ "m25px32-s1", INFO(0x206316, 0, 64 * 1024, 64, SECT_4K) },
|
|
{ "m25px64", INFO(0x207117, 0, 64 * 1024, 128, 0) },
|
|
|
|
/* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
|
|
{ "w25x10", INFO(0xef3011, 0, 64 * 1024, 2, SECT_4K) },
|
|
{ "w25x20", INFO(0xef3012, 0, 64 * 1024, 4, SECT_4K) },
|
|
{ "w25x40", INFO(0xef3013, 0, 64 * 1024, 8, SECT_4K) },
|
|
{ "w25x80", INFO(0xef3014, 0, 64 * 1024, 16, SECT_4K) },
|
|
{ "w25x16", INFO(0xef3015, 0, 64 * 1024, 32, SECT_4K) },
|
|
{ "w25x32", INFO(0xef3016, 0, 64 * 1024, 64, SECT_4K) },
|
|
{ "w25q32", INFO(0xef4016, 0, 64 * 1024, 64, SECT_4K) },
|
|
{ "w25x64", INFO(0xef3017, 0, 64 * 1024, 128, SECT_4K) },
|
|
{ "w25q64", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) },
|
|
|
|
/* Catalyst / On Semiconductor -- non-JEDEC */
|
|
{ "cat25c11", CAT25_INFO( 16, 8, 16, 1) },
|
|
{ "cat25c03", CAT25_INFO( 32, 8, 16, 2) },
|
|
{ "cat25c09", CAT25_INFO( 128, 8, 32, 2) },
|
|
{ "cat25c17", CAT25_INFO( 256, 8, 32, 2) },
|
|
{ "cat25128", CAT25_INFO(2048, 8, 64, 2) },
|
|
{ },
|
|
};
|
|
MODULE_DEVICE_TABLE(spi, m25p_ids);
|
|
|
|
static const struct spi_device_id *__devinit jedec_probe(struct spi_device *spi)
|
|
{
|
|
int tmp;
|
|
u8 code = OPCODE_RDID;
|
|
u8 id[5];
|
|
u32 jedec;
|
|
u16 ext_jedec;
|
|
struct flash_info *info;
|
|
|
|
/* JEDEC also defines an optional "extended device information"
|
|
* string for after vendor-specific data, after the three bytes
|
|
* we use here. Supporting some chips might require using it.
|
|
*/
|
|
tmp = spi_write_then_read(spi, &code, 1, id, 5);
|
|
if (tmp < 0) {
|
|
pr_debug("%s: error %d reading JEDEC ID\n",
|
|
dev_name(&spi->dev), tmp);
|
|
return ERR_PTR(tmp);
|
|
}
|
|
jedec = id[0];
|
|
jedec = jedec << 8;
|
|
jedec |= id[1];
|
|
jedec = jedec << 8;
|
|
jedec |= id[2];
|
|
|
|
ext_jedec = id[3] << 8 | id[4];
|
|
|
|
for (tmp = 0; tmp < ARRAY_SIZE(m25p_ids) - 1; tmp++) {
|
|
info = (void *)m25p_ids[tmp].driver_data;
|
|
if (info->jedec_id == jedec) {
|
|
if (info->ext_id != 0 && info->ext_id != ext_jedec)
|
|
continue;
|
|
return &m25p_ids[tmp];
|
|
}
|
|
}
|
|
dev_err(&spi->dev, "unrecognized JEDEC id %06x\n", jedec);
|
|
return ERR_PTR(-ENODEV);
|
|
}
|
|
|
|
|
|
/*
|
|
* board specific setup should have ensured the SPI clock used here
|
|
* matches what the READ command supports, at least until this driver
|
|
* understands FAST_READ (for clocks over 25 MHz).
|
|
*/
|
|
static int __devinit m25p_probe(struct spi_device *spi)
|
|
{
|
|
const struct spi_device_id *id = spi_get_device_id(spi);
|
|
struct flash_platform_data *data;
|
|
struct m25p *flash;
|
|
struct flash_info *info;
|
|
unsigned i;
|
|
struct mtd_part_parser_data ppdata;
|
|
|
|
#ifdef CONFIG_MTD_OF_PARTS
|
|
if (!of_device_is_available(spi->dev.of_node))
|
|
return -ENODEV;
|
|
#endif
|
|
|
|
/* Platform data helps sort out which chip type we have, as
|
|
* well as how this board partitions it. If we don't have
|
|
* a chip ID, try the JEDEC id commands; they'll work for most
|
|
* newer chips, even if we don't recognize the particular chip.
|
|
*/
|
|
data = spi->dev.platform_data;
|
|
if (data && data->type) {
|
|
const struct spi_device_id *plat_id;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(m25p_ids) - 1; i++) {
|
|
plat_id = &m25p_ids[i];
|
|
if (strcmp(data->type, plat_id->name))
|
|
continue;
|
|
break;
|
|
}
|
|
|
|
if (i < ARRAY_SIZE(m25p_ids) - 1)
|
|
id = plat_id;
|
|
else
|
|
dev_warn(&spi->dev, "unrecognized id %s\n", data->type);
|
|
}
|
|
|
|
info = (void *)id->driver_data;
|
|
|
|
if (info->jedec_id) {
|
|
const struct spi_device_id *jid;
|
|
|
|
jid = jedec_probe(spi);
|
|
if (IS_ERR(jid)) {
|
|
return PTR_ERR(jid);
|
|
} else if (jid != id) {
|
|
/*
|
|
* JEDEC knows better, so overwrite platform ID. We
|
|
* can't trust partitions any longer, but we'll let
|
|
* mtd apply them anyway, since some partitions may be
|
|
* marked read-only, and we don't want to lose that
|
|
* information, even if it's not 100% accurate.
|
|
*/
|
|
dev_warn(&spi->dev, "found %s, expected %s\n",
|
|
jid->name, id->name);
|
|
id = jid;
|
|
info = (void *)jid->driver_data;
|
|
}
|
|
}
|
|
|
|
flash = kzalloc(sizeof *flash, GFP_KERNEL);
|
|
if (!flash)
|
|
return -ENOMEM;
|
|
flash->command = kmalloc(MAX_CMD_SIZE + FAST_READ_DUMMY_BYTE, GFP_KERNEL);
|
|
if (!flash->command) {
|
|
kfree(flash);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
flash->spi = spi;
|
|
mutex_init(&flash->lock);
|
|
dev_set_drvdata(&spi->dev, flash);
|
|
|
|
/*
|
|
* Atmel, SST and Intel/Numonyx serial flash tend to power
|
|
* up with the software protection bits set
|
|
*/
|
|
|
|
if (JEDEC_MFR(info->jedec_id) == CFI_MFR_ATMEL ||
|
|
JEDEC_MFR(info->jedec_id) == CFI_MFR_INTEL ||
|
|
JEDEC_MFR(info->jedec_id) == CFI_MFR_SST) {
|
|
write_enable(flash);
|
|
write_sr(flash, 0);
|
|
}
|
|
|
|
if (data && data->name)
|
|
flash->mtd.name = data->name;
|
|
else
|
|
flash->mtd.name = dev_name(&spi->dev);
|
|
|
|
flash->mtd.type = MTD_NORFLASH;
|
|
flash->mtd.writesize = 1;
|
|
flash->mtd.flags = MTD_CAP_NORFLASH;
|
|
flash->mtd.size = info->sector_size * info->n_sectors;
|
|
flash->mtd.erase = m25p80_erase;
|
|
flash->mtd.read = m25p80_read;
|
|
|
|
/* sst flash chips use AAI word program */
|
|
if (JEDEC_MFR(info->jedec_id) == CFI_MFR_SST)
|
|
flash->mtd.write = sst_write;
|
|
else
|
|
flash->mtd.write = m25p80_write;
|
|
|
|
/* prefer "small sector" erase if possible */
|
|
if (info->flags & SECT_4K) {
|
|
flash->erase_opcode = OPCODE_BE_4K;
|
|
flash->mtd.erasesize = 4096;
|
|
} else {
|
|
flash->erase_opcode = OPCODE_SE;
|
|
flash->mtd.erasesize = info->sector_size;
|
|
}
|
|
|
|
if (info->flags & M25P_NO_ERASE)
|
|
flash->mtd.flags |= MTD_NO_ERASE;
|
|
|
|
ppdata.of_node = spi->dev.of_node;
|
|
flash->mtd.dev.parent = &spi->dev;
|
|
flash->page_size = info->page_size;
|
|
|
|
if (info->addr_width)
|
|
flash->addr_width = info->addr_width;
|
|
else {
|
|
/* enable 4-byte addressing if the device exceeds 16MiB */
|
|
if (flash->mtd.size > 0x1000000) {
|
|
flash->addr_width = 4;
|
|
set_4byte(flash, info->jedec_id, 1);
|
|
} else
|
|
flash->addr_width = 3;
|
|
}
|
|
|
|
dev_info(&spi->dev, "%s (%lld Kbytes)\n", id->name,
|
|
(long long)flash->mtd.size >> 10);
|
|
|
|
pr_debug("mtd .name = %s, .size = 0x%llx (%lldMiB) "
|
|
".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
|
|
flash->mtd.name,
|
|
(long long)flash->mtd.size, (long long)(flash->mtd.size >> 20),
|
|
flash->mtd.erasesize, flash->mtd.erasesize / 1024,
|
|
flash->mtd.numeraseregions);
|
|
|
|
if (flash->mtd.numeraseregions)
|
|
for (i = 0; i < flash->mtd.numeraseregions; i++)
|
|
pr_debug("mtd.eraseregions[%d] = { .offset = 0x%llx, "
|
|
".erasesize = 0x%.8x (%uKiB), "
|
|
".numblocks = %d }\n",
|
|
i, (long long)flash->mtd.eraseregions[i].offset,
|
|
flash->mtd.eraseregions[i].erasesize,
|
|
flash->mtd.eraseregions[i].erasesize / 1024,
|
|
flash->mtd.eraseregions[i].numblocks);
|
|
|
|
|
|
/* partitions should match sector boundaries; and it may be good to
|
|
* use readonly partitions for writeprotected sectors (BP2..BP0).
|
|
*/
|
|
return mtd_device_parse_register(&flash->mtd, NULL, &ppdata,
|
|
data ? data->parts : NULL,
|
|
data ? data->nr_parts : 0);
|
|
}
|
|
|
|
|
|
static int __devexit m25p_remove(struct spi_device *spi)
|
|
{
|
|
struct m25p *flash = dev_get_drvdata(&spi->dev);
|
|
int status;
|
|
|
|
/* Clean up MTD stuff. */
|
|
status = mtd_device_unregister(&flash->mtd);
|
|
if (status == 0) {
|
|
kfree(flash->command);
|
|
kfree(flash);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
static struct spi_driver m25p80_driver = {
|
|
.driver = {
|
|
.name = "m25p80",
|
|
.owner = THIS_MODULE,
|
|
},
|
|
.id_table = m25p_ids,
|
|
.probe = m25p_probe,
|
|
.remove = __devexit_p(m25p_remove),
|
|
|
|
/* REVISIT: many of these chips have deep power-down modes, which
|
|
* should clearly be entered on suspend() to minimize power use.
|
|
* And also when they're otherwise idle...
|
|
*/
|
|
};
|
|
|
|
|
|
static int __init m25p80_init(void)
|
|
{
|
|
return spi_register_driver(&m25p80_driver);
|
|
}
|
|
|
|
|
|
static void __exit m25p80_exit(void)
|
|
{
|
|
spi_unregister_driver(&m25p80_driver);
|
|
}
|
|
|
|
|
|
module_init(m25p80_init);
|
|
module_exit(m25p80_exit);
|
|
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_AUTHOR("Mike Lavender");
|
|
MODULE_DESCRIPTION("MTD SPI driver for ST M25Pxx flash chips");
|