mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-24 12:39:48 +07:00
b24413180f
Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
281 lines
7.1 KiB
C
281 lines
7.1 KiB
C
/* SPDX-License-Identifier: GPL-2.0 */
|
|
#ifndef _LINUX_CPUSET_H
|
|
#define _LINUX_CPUSET_H
|
|
/*
|
|
* cpuset interface
|
|
*
|
|
* Copyright (C) 2003 BULL SA
|
|
* Copyright (C) 2004-2006 Silicon Graphics, Inc.
|
|
*
|
|
*/
|
|
|
|
#include <linux/sched.h>
|
|
#include <linux/sched/topology.h>
|
|
#include <linux/sched/task.h>
|
|
#include <linux/cpumask.h>
|
|
#include <linux/nodemask.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/jump_label.h>
|
|
|
|
#ifdef CONFIG_CPUSETS
|
|
|
|
/*
|
|
* Static branch rewrites can happen in an arbitrary order for a given
|
|
* key. In code paths where we need to loop with read_mems_allowed_begin() and
|
|
* read_mems_allowed_retry() to get a consistent view of mems_allowed, we need
|
|
* to ensure that begin() always gets rewritten before retry() in the
|
|
* disabled -> enabled transition. If not, then if local irqs are disabled
|
|
* around the loop, we can deadlock since retry() would always be
|
|
* comparing the latest value of the mems_allowed seqcount against 0 as
|
|
* begin() still would see cpusets_enabled() as false. The enabled -> disabled
|
|
* transition should happen in reverse order for the same reasons (want to stop
|
|
* looking at real value of mems_allowed.sequence in retry() first).
|
|
*/
|
|
extern struct static_key_false cpusets_pre_enable_key;
|
|
extern struct static_key_false cpusets_enabled_key;
|
|
static inline bool cpusets_enabled(void)
|
|
{
|
|
return static_branch_unlikely(&cpusets_enabled_key);
|
|
}
|
|
|
|
static inline void cpuset_inc(void)
|
|
{
|
|
static_branch_inc(&cpusets_pre_enable_key);
|
|
static_branch_inc(&cpusets_enabled_key);
|
|
}
|
|
|
|
static inline void cpuset_dec(void)
|
|
{
|
|
static_branch_dec(&cpusets_enabled_key);
|
|
static_branch_dec(&cpusets_pre_enable_key);
|
|
}
|
|
|
|
extern int cpuset_init(void);
|
|
extern void cpuset_init_smp(void);
|
|
extern void cpuset_force_rebuild(void);
|
|
extern void cpuset_update_active_cpus(void);
|
|
extern void cpuset_wait_for_hotplug(void);
|
|
extern void cpuset_cpus_allowed(struct task_struct *p, struct cpumask *mask);
|
|
extern void cpuset_cpus_allowed_fallback(struct task_struct *p);
|
|
extern nodemask_t cpuset_mems_allowed(struct task_struct *p);
|
|
#define cpuset_current_mems_allowed (current->mems_allowed)
|
|
void cpuset_init_current_mems_allowed(void);
|
|
int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask);
|
|
|
|
extern bool __cpuset_node_allowed(int node, gfp_t gfp_mask);
|
|
|
|
static inline bool cpuset_node_allowed(int node, gfp_t gfp_mask)
|
|
{
|
|
if (cpusets_enabled())
|
|
return __cpuset_node_allowed(node, gfp_mask);
|
|
return true;
|
|
}
|
|
|
|
static inline bool __cpuset_zone_allowed(struct zone *z, gfp_t gfp_mask)
|
|
{
|
|
return __cpuset_node_allowed(zone_to_nid(z), gfp_mask);
|
|
}
|
|
|
|
static inline bool cpuset_zone_allowed(struct zone *z, gfp_t gfp_mask)
|
|
{
|
|
if (cpusets_enabled())
|
|
return __cpuset_zone_allowed(z, gfp_mask);
|
|
return true;
|
|
}
|
|
|
|
extern int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
|
|
const struct task_struct *tsk2);
|
|
|
|
#define cpuset_memory_pressure_bump() \
|
|
do { \
|
|
if (cpuset_memory_pressure_enabled) \
|
|
__cpuset_memory_pressure_bump(); \
|
|
} while (0)
|
|
extern int cpuset_memory_pressure_enabled;
|
|
extern void __cpuset_memory_pressure_bump(void);
|
|
|
|
extern void cpuset_task_status_allowed(struct seq_file *m,
|
|
struct task_struct *task);
|
|
extern int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
|
|
struct pid *pid, struct task_struct *tsk);
|
|
|
|
extern int cpuset_mem_spread_node(void);
|
|
extern int cpuset_slab_spread_node(void);
|
|
|
|
static inline int cpuset_do_page_mem_spread(void)
|
|
{
|
|
return task_spread_page(current);
|
|
}
|
|
|
|
static inline int cpuset_do_slab_mem_spread(void)
|
|
{
|
|
return task_spread_slab(current);
|
|
}
|
|
|
|
extern int current_cpuset_is_being_rebound(void);
|
|
|
|
extern void rebuild_sched_domains(void);
|
|
|
|
extern void cpuset_print_current_mems_allowed(void);
|
|
|
|
/*
|
|
* read_mems_allowed_begin is required when making decisions involving
|
|
* mems_allowed such as during page allocation. mems_allowed can be updated in
|
|
* parallel and depending on the new value an operation can fail potentially
|
|
* causing process failure. A retry loop with read_mems_allowed_begin and
|
|
* read_mems_allowed_retry prevents these artificial failures.
|
|
*/
|
|
static inline unsigned int read_mems_allowed_begin(void)
|
|
{
|
|
if (!static_branch_unlikely(&cpusets_pre_enable_key))
|
|
return 0;
|
|
|
|
return read_seqcount_begin(¤t->mems_allowed_seq);
|
|
}
|
|
|
|
/*
|
|
* If this returns true, the operation that took place after
|
|
* read_mems_allowed_begin may have failed artificially due to a concurrent
|
|
* update of mems_allowed. It is up to the caller to retry the operation if
|
|
* appropriate.
|
|
*/
|
|
static inline bool read_mems_allowed_retry(unsigned int seq)
|
|
{
|
|
if (!static_branch_unlikely(&cpusets_enabled_key))
|
|
return false;
|
|
|
|
return read_seqcount_retry(¤t->mems_allowed_seq, seq);
|
|
}
|
|
|
|
static inline void set_mems_allowed(nodemask_t nodemask)
|
|
{
|
|
unsigned long flags;
|
|
|
|
task_lock(current);
|
|
local_irq_save(flags);
|
|
write_seqcount_begin(¤t->mems_allowed_seq);
|
|
current->mems_allowed = nodemask;
|
|
write_seqcount_end(¤t->mems_allowed_seq);
|
|
local_irq_restore(flags);
|
|
task_unlock(current);
|
|
}
|
|
|
|
#else /* !CONFIG_CPUSETS */
|
|
|
|
static inline bool cpusets_enabled(void) { return false; }
|
|
|
|
static inline int cpuset_init(void) { return 0; }
|
|
static inline void cpuset_init_smp(void) {}
|
|
|
|
static inline void cpuset_force_rebuild(void) { }
|
|
|
|
static inline void cpuset_update_active_cpus(void)
|
|
{
|
|
partition_sched_domains(1, NULL, NULL);
|
|
}
|
|
|
|
static inline void cpuset_wait_for_hotplug(void) { }
|
|
|
|
static inline void cpuset_cpus_allowed(struct task_struct *p,
|
|
struct cpumask *mask)
|
|
{
|
|
cpumask_copy(mask, cpu_possible_mask);
|
|
}
|
|
|
|
static inline void cpuset_cpus_allowed_fallback(struct task_struct *p)
|
|
{
|
|
}
|
|
|
|
static inline nodemask_t cpuset_mems_allowed(struct task_struct *p)
|
|
{
|
|
return node_possible_map;
|
|
}
|
|
|
|
#define cpuset_current_mems_allowed (node_states[N_MEMORY])
|
|
static inline void cpuset_init_current_mems_allowed(void) {}
|
|
|
|
static inline int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
static inline bool cpuset_node_allowed(int node, gfp_t gfp_mask)
|
|
{
|
|
return true;
|
|
}
|
|
|
|
static inline bool __cpuset_zone_allowed(struct zone *z, gfp_t gfp_mask)
|
|
{
|
|
return true;
|
|
}
|
|
|
|
static inline bool cpuset_zone_allowed(struct zone *z, gfp_t gfp_mask)
|
|
{
|
|
return true;
|
|
}
|
|
|
|
static inline int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
|
|
const struct task_struct *tsk2)
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
static inline void cpuset_memory_pressure_bump(void) {}
|
|
|
|
static inline void cpuset_task_status_allowed(struct seq_file *m,
|
|
struct task_struct *task)
|
|
{
|
|
}
|
|
|
|
static inline int cpuset_mem_spread_node(void)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline int cpuset_slab_spread_node(void)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline int cpuset_do_page_mem_spread(void)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline int cpuset_do_slab_mem_spread(void)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline int current_cpuset_is_being_rebound(void)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline void rebuild_sched_domains(void)
|
|
{
|
|
partition_sched_domains(1, NULL, NULL);
|
|
}
|
|
|
|
static inline void cpuset_print_current_mems_allowed(void)
|
|
{
|
|
}
|
|
|
|
static inline void set_mems_allowed(nodemask_t nodemask)
|
|
{
|
|
}
|
|
|
|
static inline unsigned int read_mems_allowed_begin(void)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline bool read_mems_allowed_retry(unsigned int seq)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
#endif /* !CONFIG_CPUSETS */
|
|
|
|
#endif /* _LINUX_CPUSET_H */
|