mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-13 19:16:42 +07:00
c626e3f5ca
Previous size thresholds were guessed from various user space benchmarks using a kernel with and without the alternative uaccess option. This is however not as precise as a kernel based test to measure the real speed of each method. This adds a simple test bench to show the time needed for each method. With this, the optimal size treshold for the alternative implementation can be determined with more confidence. It appears that the optimal threshold for both copy_to_user and clear_user is around 64 bytes. This is not a surprise knowing that the memcpy and memset implementations need at least 64 bytes to achieve maximum throughput. One might suggest that such test be used to determine the optimal threshold at run time instead, but results are near enough to 64 on tested targets concerned by this alternative copy_to_user implementation, so adding some overhead associated with a variable threshold is probably not worth it for now. Signed-off-by: Nicolas Pitre <nico@marvell.com>
229 lines
5.2 KiB
C
229 lines
5.2 KiB
C
/*
|
|
* linux/arch/arm/lib/uaccess_with_memcpy.c
|
|
*
|
|
* Written by: Lennert Buytenhek and Nicolas Pitre
|
|
* Copyright (C) 2009 Marvell Semiconductor
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/ctype.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/rwsem.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/hardirq.h> /* for in_atomic() */
|
|
#include <asm/current.h>
|
|
#include <asm/page.h>
|
|
|
|
static int
|
|
pin_page_for_write(const void __user *_addr, pte_t **ptep, spinlock_t **ptlp)
|
|
{
|
|
unsigned long addr = (unsigned long)_addr;
|
|
pgd_t *pgd;
|
|
pmd_t *pmd;
|
|
pte_t *pte;
|
|
spinlock_t *ptl;
|
|
|
|
pgd = pgd_offset(current->mm, addr);
|
|
if (unlikely(pgd_none(*pgd) || pgd_bad(*pgd)))
|
|
return 0;
|
|
|
|
pmd = pmd_offset(pgd, addr);
|
|
if (unlikely(pmd_none(*pmd) || pmd_bad(*pmd)))
|
|
return 0;
|
|
|
|
pte = pte_offset_map_lock(current->mm, pmd, addr, &ptl);
|
|
if (unlikely(!pte_present(*pte) || !pte_young(*pte) ||
|
|
!pte_write(*pte) || !pte_dirty(*pte))) {
|
|
pte_unmap_unlock(pte, ptl);
|
|
return 0;
|
|
}
|
|
|
|
*ptep = pte;
|
|
*ptlp = ptl;
|
|
|
|
return 1;
|
|
}
|
|
|
|
static unsigned long noinline
|
|
__copy_to_user_memcpy(void __user *to, const void *from, unsigned long n)
|
|
{
|
|
int atomic;
|
|
|
|
if (unlikely(segment_eq(get_fs(), KERNEL_DS))) {
|
|
memcpy((void *)to, from, n);
|
|
return 0;
|
|
}
|
|
|
|
/* the mmap semaphore is taken only if not in an atomic context */
|
|
atomic = in_atomic();
|
|
|
|
if (!atomic)
|
|
down_read(¤t->mm->mmap_sem);
|
|
while (n) {
|
|
pte_t *pte;
|
|
spinlock_t *ptl;
|
|
int tocopy;
|
|
|
|
while (!pin_page_for_write(to, &pte, &ptl)) {
|
|
if (!atomic)
|
|
up_read(¤t->mm->mmap_sem);
|
|
if (__put_user(0, (char __user *)to))
|
|
goto out;
|
|
if (!atomic)
|
|
down_read(¤t->mm->mmap_sem);
|
|
}
|
|
|
|
tocopy = (~(unsigned long)to & ~PAGE_MASK) + 1;
|
|
if (tocopy > n)
|
|
tocopy = n;
|
|
|
|
memcpy((void *)to, from, tocopy);
|
|
to += tocopy;
|
|
from += tocopy;
|
|
n -= tocopy;
|
|
|
|
pte_unmap_unlock(pte, ptl);
|
|
}
|
|
if (!atomic)
|
|
up_read(¤t->mm->mmap_sem);
|
|
|
|
out:
|
|
return n;
|
|
}
|
|
|
|
unsigned long
|
|
__copy_to_user(void __user *to, const void *from, unsigned long n)
|
|
{
|
|
/*
|
|
* This test is stubbed out of the main function above to keep
|
|
* the overhead for small copies low by avoiding a large
|
|
* register dump on the stack just to reload them right away.
|
|
* With frame pointer disabled, tail call optimization kicks in
|
|
* as well making this test almost invisible.
|
|
*/
|
|
if (n < 64)
|
|
return __copy_to_user_std(to, from, n);
|
|
return __copy_to_user_memcpy(to, from, n);
|
|
}
|
|
|
|
static unsigned long noinline
|
|
__clear_user_memset(void __user *addr, unsigned long n)
|
|
{
|
|
if (unlikely(segment_eq(get_fs(), KERNEL_DS))) {
|
|
memset((void *)addr, 0, n);
|
|
return 0;
|
|
}
|
|
|
|
down_read(¤t->mm->mmap_sem);
|
|
while (n) {
|
|
pte_t *pte;
|
|
spinlock_t *ptl;
|
|
int tocopy;
|
|
|
|
while (!pin_page_for_write(addr, &pte, &ptl)) {
|
|
up_read(¤t->mm->mmap_sem);
|
|
if (__put_user(0, (char __user *)addr))
|
|
goto out;
|
|
down_read(¤t->mm->mmap_sem);
|
|
}
|
|
|
|
tocopy = (~(unsigned long)addr & ~PAGE_MASK) + 1;
|
|
if (tocopy > n)
|
|
tocopy = n;
|
|
|
|
memset((void *)addr, 0, tocopy);
|
|
addr += tocopy;
|
|
n -= tocopy;
|
|
|
|
pte_unmap_unlock(pte, ptl);
|
|
}
|
|
up_read(¤t->mm->mmap_sem);
|
|
|
|
out:
|
|
return n;
|
|
}
|
|
|
|
unsigned long __clear_user(void __user *addr, unsigned long n)
|
|
{
|
|
/* See rational for this in __copy_to_user() above. */
|
|
if (n < 64)
|
|
return __clear_user_std(addr, n);
|
|
return __clear_user_memset(addr, n);
|
|
}
|
|
|
|
#if 0
|
|
|
|
/*
|
|
* This code is disabled by default, but kept around in case the chosen
|
|
* thresholds need to be revalidated. Some overhead (small but still)
|
|
* would be implied by a runtime determined variable threshold, and
|
|
* so far the measurement on concerned targets didn't show a worthwhile
|
|
* variation.
|
|
*
|
|
* Note that a fairly precise sched_clock() implementation is needed
|
|
* for results to make some sense.
|
|
*/
|
|
|
|
#include <linux/vmalloc.h>
|
|
|
|
static int __init test_size_treshold(void)
|
|
{
|
|
struct page *src_page, *dst_page;
|
|
void *user_ptr, *kernel_ptr;
|
|
unsigned long long t0, t1, t2;
|
|
int size, ret;
|
|
|
|
ret = -ENOMEM;
|
|
src_page = alloc_page(GFP_KERNEL);
|
|
if (!src_page)
|
|
goto no_src;
|
|
dst_page = alloc_page(GFP_KERNEL);
|
|
if (!dst_page)
|
|
goto no_dst;
|
|
kernel_ptr = page_address(src_page);
|
|
user_ptr = vmap(&dst_page, 1, VM_IOREMAP, __pgprot(__P010));
|
|
if (!user_ptr)
|
|
goto no_vmap;
|
|
|
|
/* warm up the src page dcache */
|
|
ret = __copy_to_user_memcpy(user_ptr, kernel_ptr, PAGE_SIZE);
|
|
|
|
for (size = PAGE_SIZE; size >= 4; size /= 2) {
|
|
t0 = sched_clock();
|
|
ret |= __copy_to_user_memcpy(user_ptr, kernel_ptr, size);
|
|
t1 = sched_clock();
|
|
ret |= __copy_to_user_std(user_ptr, kernel_ptr, size);
|
|
t2 = sched_clock();
|
|
printk("copy_to_user: %d %llu %llu\n", size, t1 - t0, t2 - t1);
|
|
}
|
|
|
|
for (size = PAGE_SIZE; size >= 4; size /= 2) {
|
|
t0 = sched_clock();
|
|
ret |= __clear_user_memset(user_ptr, size);
|
|
t1 = sched_clock();
|
|
ret |= __clear_user_std(user_ptr, size);
|
|
t2 = sched_clock();
|
|
printk("clear_user: %d %llu %llu\n", size, t1 - t0, t2 - t1);
|
|
}
|
|
|
|
if (ret)
|
|
ret = -EFAULT;
|
|
|
|
vunmap(user_ptr);
|
|
no_vmap:
|
|
put_page(dst_page);
|
|
no_dst:
|
|
put_page(src_page);
|
|
no_src:
|
|
return ret;
|
|
}
|
|
|
|
subsys_initcall(test_size_treshold);
|
|
|
|
#endif
|