linux_dsm_epyc7002/drivers/hwmon/nct7904.c
Stephen Kitt 6748703856 hwmon: use simple i2c probe function
Many hwmon drivers don't use the id information provided by the old
i2c probe function, and the remainder can easily be adapted to the new
form ("probe_new") by calling i2c_match_id explicitly.

This avoids scanning the identifier tables during probes.

Drivers which didn't use the id are converted as-is; drivers which did
are modified as follows:

* if the information in i2c_client is sufficient, that's used instead
  (client->name);
* anything else is handled by calling i2c_match_id() with the same
  level of error-handling (if any) as before.

A few drivers aren't included in this patch because they have a
different set of maintainers. They will be covered by other patches.

Signed-off-by: Stephen Kitt <steve@sk2.org>
Link: https://lore.kernel.org/r/20200813160222.1503401-1-steve@sk2.org
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
2020-09-23 09:42:39 -07:00

1185 lines
31 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* nct7904.c - driver for Nuvoton NCT7904D.
*
* Copyright (c) 2015 Kontron
* Author: Vadim V. Vlasov <vvlasov@dev.rtsoft.ru>
*
* Copyright (c) 2019 Advantech
* Author: Amy.Shih <amy.shih@advantech.com.tw>
*
* Copyright (c) 2020 Advantech
* Author: Yuechao Zhao <yuechao.zhao@advantech.com.cn>
*
* Supports the following chips:
*
* Chip #vin #fan #pwm #temp #dts chip ID
* nct7904d 20 12 4 5 8 0xc5
*/
#include <linux/module.h>
#include <linux/device.h>
#include <linux/init.h>
#include <linux/i2c.h>
#include <linux/mutex.h>
#include <linux/hwmon.h>
#include <linux/watchdog.h>
#define VENDOR_ID_REG 0x7A /* Any bank */
#define NUVOTON_ID 0x50
#define CHIP_ID_REG 0x7B /* Any bank */
#define NCT7904_ID 0xC5
#define DEVICE_ID_REG 0x7C /* Any bank */
#define BANK_SEL_REG 0xFF
#define BANK_0 0x00
#define BANK_1 0x01
#define BANK_2 0x02
#define BANK_3 0x03
#define BANK_4 0x04
#define BANK_MAX 0x04
#define FANIN_MAX 12 /* Counted from 1 */
#define VSEN_MAX 21 /* VSEN1..14, 3VDD, VBAT, V3VSB,
LTD (not a voltage), VSEN17..19 */
#define FANCTL_MAX 4 /* Counted from 1 */
#define TCPU_MAX 8 /* Counted from 1 */
#define TEMP_MAX 4 /* Counted from 1 */
#define SMI_STS_MAX 10 /* Counted from 1 */
#define VT_ADC_CTRL0_REG 0x20 /* Bank 0 */
#define VT_ADC_CTRL1_REG 0x21 /* Bank 0 */
#define VT_ADC_CTRL2_REG 0x22 /* Bank 0 */
#define FANIN_CTRL0_REG 0x24
#define FANIN_CTRL1_REG 0x25
#define DTS_T_CTRL0_REG 0x26
#define DTS_T_CTRL1_REG 0x27
#define VT_ADC_MD_REG 0x2E
#define VSEN1_HV_LL_REG 0x02 /* Bank 1; 2 regs (HV/LV) per sensor */
#define VSEN1_LV_LL_REG 0x03 /* Bank 1; 2 regs (HV/LV) per sensor */
#define VSEN1_HV_HL_REG 0x00 /* Bank 1; 2 regs (HV/LV) per sensor */
#define VSEN1_LV_HL_REG 0x01 /* Bank 1; 2 regs (HV/LV) per sensor */
#define SMI_STS1_REG 0xC1 /* Bank 0; SMI Status Register */
#define SMI_STS3_REG 0xC3 /* Bank 0; SMI Status Register */
#define SMI_STS5_REG 0xC5 /* Bank 0; SMI Status Register */
#define SMI_STS7_REG 0xC7 /* Bank 0; SMI Status Register */
#define SMI_STS8_REG 0xC8 /* Bank 0; SMI Status Register */
#define VSEN1_HV_REG 0x40 /* Bank 0; 2 regs (HV/LV) per sensor */
#define TEMP_CH1_HV_REG 0x42 /* Bank 0; same as VSEN2_HV */
#define LTD_HV_REG 0x62 /* Bank 0; 2 regs in VSEN range */
#define LTD_HV_HL_REG 0x44 /* Bank 1; 1 reg for LTD */
#define LTD_LV_HL_REG 0x45 /* Bank 1; 1 reg for LTD */
#define LTD_HV_LL_REG 0x46 /* Bank 1; 1 reg for LTD */
#define LTD_LV_LL_REG 0x47 /* Bank 1; 1 reg for LTD */
#define TEMP_CH1_CH_REG 0x05 /* Bank 1; 1 reg for LTD */
#define TEMP_CH1_W_REG 0x06 /* Bank 1; 1 reg for LTD */
#define TEMP_CH1_WH_REG 0x07 /* Bank 1; 1 reg for LTD */
#define TEMP_CH1_C_REG 0x04 /* Bank 1; 1 reg per sensor */
#define DTS_T_CPU1_C_REG 0x90 /* Bank 1; 1 reg per sensor */
#define DTS_T_CPU1_CH_REG 0x91 /* Bank 1; 1 reg per sensor */
#define DTS_T_CPU1_W_REG 0x92 /* Bank 1; 1 reg per sensor */
#define DTS_T_CPU1_WH_REG 0x93 /* Bank 1; 1 reg per sensor */
#define FANIN1_HV_REG 0x80 /* Bank 0; 2 regs (HV/LV) per sensor */
#define FANIN1_HV_HL_REG 0x60 /* Bank 1; 2 regs (HV/LV) per sensor */
#define FANIN1_LV_HL_REG 0x61 /* Bank 1; 2 regs (HV/LV) per sensor */
#define T_CPU1_HV_REG 0xA0 /* Bank 0; 2 regs (HV/LV) per sensor */
#define PRTS_REG 0x03 /* Bank 2 */
#define PFE_REG 0x00 /* Bank 2; PECI Function Enable */
#define TSI_CTRL_REG 0x50 /* Bank 2; TSI Control Register */
#define FANCTL1_FMR_REG 0x00 /* Bank 3; 1 reg per channel */
#define FANCTL1_OUT_REG 0x10 /* Bank 3; 1 reg per channel */
#define WDT_LOCK_REG 0xE0 /* W/O Lock Watchdog Register */
#define WDT_EN_REG 0xE1 /* R/O Watchdog Enable Register */
#define WDT_STS_REG 0xE2 /* R/O Watchdog Status Register */
#define WDT_TIMER_REG 0xE3 /* R/W Watchdog Timer Register */
#define WDT_SOFT_EN 0x55 /* Enable soft watchdog timer */
#define WDT_SOFT_DIS 0xAA /* Disable soft watchdog timer */
#define VOLT_MONITOR_MODE 0x0
#define THERMAL_DIODE_MODE 0x1
#define THERMISTOR_MODE 0x3
#define ENABLE_TSI BIT(1)
#define WATCHDOG_TIMEOUT 1 /* 1 minute default timeout */
/*The timeout range is 1-255 minutes*/
#define MIN_TIMEOUT (1 * 60)
#define MAX_TIMEOUT (255 * 60)
static int timeout;
module_param(timeout, int, 0);
MODULE_PARM_DESC(timeout, "Watchdog timeout in minutes. 1 <= timeout <= 255, default="
__MODULE_STRING(WATCHDOG_TIMEOUT) ".");
static bool nowayout = WATCHDOG_NOWAYOUT;
module_param(nowayout, bool, 0);
MODULE_PARM_DESC(nowayout, "Watchdog cannot be stopped once started (default="
__MODULE_STRING(WATCHDOG_NOWAYOUT) ")");
static const unsigned short normal_i2c[] = {
0x2d, 0x2e, I2C_CLIENT_END
};
struct nct7904_data {
struct i2c_client *client;
struct watchdog_device wdt;
struct mutex bank_lock;
int bank_sel;
u32 fanin_mask;
u32 vsen_mask;
u32 tcpu_mask;
u8 fan_mode[FANCTL_MAX];
u8 enable_dts;
u8 has_dts;
u8 temp_mode; /* 0: TR mode, 1: TD mode */
u8 fan_alarm[2];
u8 vsen_alarm[3];
};
/* Access functions */
static int nct7904_bank_lock(struct nct7904_data *data, unsigned int bank)
{
int ret;
mutex_lock(&data->bank_lock);
if (data->bank_sel == bank)
return 0;
ret = i2c_smbus_write_byte_data(data->client, BANK_SEL_REG, bank);
if (ret == 0)
data->bank_sel = bank;
else
data->bank_sel = -1;
return ret;
}
static inline void nct7904_bank_release(struct nct7904_data *data)
{
mutex_unlock(&data->bank_lock);
}
/* Read 1-byte register. Returns unsigned reg or -ERRNO on error. */
static int nct7904_read_reg(struct nct7904_data *data,
unsigned int bank, unsigned int reg)
{
struct i2c_client *client = data->client;
int ret;
ret = nct7904_bank_lock(data, bank);
if (ret == 0)
ret = i2c_smbus_read_byte_data(client, reg);
nct7904_bank_release(data);
return ret;
}
/*
* Read 2-byte register. Returns register in big-endian format or
* -ERRNO on error.
*/
static int nct7904_read_reg16(struct nct7904_data *data,
unsigned int bank, unsigned int reg)
{
struct i2c_client *client = data->client;
int ret, hi;
ret = nct7904_bank_lock(data, bank);
if (ret == 0) {
ret = i2c_smbus_read_byte_data(client, reg);
if (ret >= 0) {
hi = ret;
ret = i2c_smbus_read_byte_data(client, reg + 1);
if (ret >= 0)
ret |= hi << 8;
}
}
nct7904_bank_release(data);
return ret;
}
/* Write 1-byte register. Returns 0 or -ERRNO on error. */
static int nct7904_write_reg(struct nct7904_data *data,
unsigned int bank, unsigned int reg, u8 val)
{
struct i2c_client *client = data->client;
int ret;
ret = nct7904_bank_lock(data, bank);
if (ret == 0)
ret = i2c_smbus_write_byte_data(client, reg, val);
nct7904_bank_release(data);
return ret;
}
static int nct7904_read_fan(struct device *dev, u32 attr, int channel,
long *val)
{
struct nct7904_data *data = dev_get_drvdata(dev);
unsigned int cnt, rpm;
int ret;
switch (attr) {
case hwmon_fan_input:
ret = nct7904_read_reg16(data, BANK_0,
FANIN1_HV_REG + channel * 2);
if (ret < 0)
return ret;
cnt = ((ret & 0xff00) >> 3) | (ret & 0x1f);
if (cnt == 0 || cnt == 0x1fff)
rpm = 0;
else
rpm = 1350000 / cnt;
*val = rpm;
return 0;
case hwmon_fan_min:
ret = nct7904_read_reg16(data, BANK_1,
FANIN1_HV_HL_REG + channel * 2);
if (ret < 0)
return ret;
cnt = ((ret & 0xff00) >> 3) | (ret & 0x1f);
if (cnt == 0 || cnt == 0x1fff)
rpm = 0;
else
rpm = 1350000 / cnt;
*val = rpm;
return 0;
case hwmon_fan_alarm:
ret = nct7904_read_reg(data, BANK_0,
SMI_STS5_REG + (channel >> 3));
if (ret < 0)
return ret;
if (!data->fan_alarm[channel >> 3])
data->fan_alarm[channel >> 3] = ret & 0xff;
else
/* If there is new alarm showing up */
data->fan_alarm[channel >> 3] |= (ret & 0xff);
*val = (data->fan_alarm[channel >> 3] >> (channel & 0x07)) & 1;
/* Needs to clean the alarm if alarm existing */
if (*val)
data->fan_alarm[channel >> 3] ^= 1 << (channel & 0x07);
return 0;
default:
return -EOPNOTSUPP;
}
}
static umode_t nct7904_fan_is_visible(const void *_data, u32 attr, int channel)
{
const struct nct7904_data *data = _data;
switch (attr) {
case hwmon_fan_input:
case hwmon_fan_alarm:
if (data->fanin_mask & (1 << channel))
return 0444;
break;
case hwmon_fan_min:
if (data->fanin_mask & (1 << channel))
return 0644;
break;
default:
break;
}
return 0;
}
static u8 nct7904_chan_to_index[] = {
0, /* Not used */
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
18, 19, 20, 16
};
static int nct7904_read_in(struct device *dev, u32 attr, int channel,
long *val)
{
struct nct7904_data *data = dev_get_drvdata(dev);
int ret, volt, index;
index = nct7904_chan_to_index[channel];
switch (attr) {
case hwmon_in_input:
ret = nct7904_read_reg16(data, BANK_0,
VSEN1_HV_REG + index * 2);
if (ret < 0)
return ret;
volt = ((ret & 0xff00) >> 5) | (ret & 0x7);
if (index < 14)
volt *= 2; /* 0.002V scale */
else
volt *= 6; /* 0.006V scale */
*val = volt;
return 0;
case hwmon_in_min:
ret = nct7904_read_reg16(data, BANK_1,
VSEN1_HV_LL_REG + index * 4);
if (ret < 0)
return ret;
volt = ((ret & 0xff00) >> 5) | (ret & 0x7);
if (index < 14)
volt *= 2; /* 0.002V scale */
else
volt *= 6; /* 0.006V scale */
*val = volt;
return 0;
case hwmon_in_max:
ret = nct7904_read_reg16(data, BANK_1,
VSEN1_HV_HL_REG + index * 4);
if (ret < 0)
return ret;
volt = ((ret & 0xff00) >> 5) | (ret & 0x7);
if (index < 14)
volt *= 2; /* 0.002V scale */
else
volt *= 6; /* 0.006V scale */
*val = volt;
return 0;
case hwmon_in_alarm:
ret = nct7904_read_reg(data, BANK_0,
SMI_STS1_REG + (index >> 3));
if (ret < 0)
return ret;
if (!data->vsen_alarm[index >> 3])
data->vsen_alarm[index >> 3] = ret & 0xff;
else
/* If there is new alarm showing up */
data->vsen_alarm[index >> 3] |= (ret & 0xff);
*val = (data->vsen_alarm[index >> 3] >> (index & 0x07)) & 1;
/* Needs to clean the alarm if alarm existing */
if (*val)
data->vsen_alarm[index >> 3] ^= 1 << (index & 0x07);
return 0;
default:
return -EOPNOTSUPP;
}
}
static umode_t nct7904_in_is_visible(const void *_data, u32 attr, int channel)
{
const struct nct7904_data *data = _data;
int index = nct7904_chan_to_index[channel];
switch (attr) {
case hwmon_in_input:
case hwmon_in_alarm:
if (channel > 0 && (data->vsen_mask & BIT(index)))
return 0444;
break;
case hwmon_in_min:
case hwmon_in_max:
if (channel > 0 && (data->vsen_mask & BIT(index)))
return 0644;
break;
default:
break;
}
return 0;
}
static int nct7904_read_temp(struct device *dev, u32 attr, int channel,
long *val)
{
struct nct7904_data *data = dev_get_drvdata(dev);
int ret, temp;
unsigned int reg1, reg2, reg3;
s8 temps;
switch (attr) {
case hwmon_temp_input:
if (channel == 4)
ret = nct7904_read_reg16(data, BANK_0, LTD_HV_REG);
else if (channel < 5)
ret = nct7904_read_reg16(data, BANK_0,
TEMP_CH1_HV_REG + channel * 4);
else
ret = nct7904_read_reg16(data, BANK_0,
T_CPU1_HV_REG + (channel - 5)
* 2);
if (ret < 0)
return ret;
temp = ((ret & 0xff00) >> 5) | (ret & 0x7);
*val = sign_extend32(temp, 10) * 125;
return 0;
case hwmon_temp_alarm:
if (channel == 4) {
ret = nct7904_read_reg(data, BANK_0,
SMI_STS3_REG);
if (ret < 0)
return ret;
*val = (ret >> 1) & 1;
} else if (channel < 4) {
ret = nct7904_read_reg(data, BANK_0,
SMI_STS1_REG);
if (ret < 0)
return ret;
*val = (ret >> (((channel * 2) + 1) & 0x07)) & 1;
} else {
if ((channel - 5) < 4) {
ret = nct7904_read_reg(data, BANK_0,
SMI_STS7_REG +
((channel - 5) >> 3));
if (ret < 0)
return ret;
*val = (ret >> ((channel - 5) & 0x07)) & 1;
} else {
ret = nct7904_read_reg(data, BANK_0,
SMI_STS8_REG +
((channel - 5) >> 3));
if (ret < 0)
return ret;
*val = (ret >> (((channel - 5) & 0x07) - 4))
& 1;
}
}
return 0;
case hwmon_temp_type:
if (channel < 5) {
if ((data->tcpu_mask >> channel) & 0x01) {
if ((data->temp_mode >> channel) & 0x01)
*val = 3; /* TD */
else
*val = 4; /* TR */
} else {
*val = 0;
}
} else {
if ((data->has_dts >> (channel - 5)) & 0x01) {
if (data->enable_dts & ENABLE_TSI)
*val = 5; /* TSI */
else
*val = 6; /* PECI */
} else {
*val = 0;
}
}
return 0;
case hwmon_temp_max:
reg1 = LTD_HV_LL_REG;
reg2 = TEMP_CH1_W_REG;
reg3 = DTS_T_CPU1_W_REG;
break;
case hwmon_temp_max_hyst:
reg1 = LTD_LV_LL_REG;
reg2 = TEMP_CH1_WH_REG;
reg3 = DTS_T_CPU1_WH_REG;
break;
case hwmon_temp_crit:
reg1 = LTD_HV_HL_REG;
reg2 = TEMP_CH1_C_REG;
reg3 = DTS_T_CPU1_C_REG;
break;
case hwmon_temp_crit_hyst:
reg1 = LTD_LV_HL_REG;
reg2 = TEMP_CH1_CH_REG;
reg3 = DTS_T_CPU1_CH_REG;
break;
default:
return -EOPNOTSUPP;
}
if (channel == 4)
ret = nct7904_read_reg(data, BANK_1, reg1);
else if (channel < 5)
ret = nct7904_read_reg(data, BANK_1,
reg2 + channel * 8);
else
ret = nct7904_read_reg(data, BANK_1,
reg3 + (channel - 5) * 4);
if (ret < 0)
return ret;
temps = ret;
*val = temps * 1000;
return 0;
}
static umode_t nct7904_temp_is_visible(const void *_data, u32 attr, int channel)
{
const struct nct7904_data *data = _data;
switch (attr) {
case hwmon_temp_input:
case hwmon_temp_alarm:
case hwmon_temp_type:
if (channel < 5) {
if (data->tcpu_mask & BIT(channel))
return 0444;
} else {
if (data->has_dts & BIT(channel - 5))
return 0444;
}
break;
case hwmon_temp_max:
case hwmon_temp_max_hyst:
case hwmon_temp_crit:
case hwmon_temp_crit_hyst:
if (channel < 5) {
if (data->tcpu_mask & BIT(channel))
return 0644;
} else {
if (data->has_dts & BIT(channel - 5))
return 0644;
}
break;
default:
break;
}
return 0;
}
static int nct7904_read_pwm(struct device *dev, u32 attr, int channel,
long *val)
{
struct nct7904_data *data = dev_get_drvdata(dev);
int ret;
switch (attr) {
case hwmon_pwm_input:
ret = nct7904_read_reg(data, BANK_3, FANCTL1_OUT_REG + channel);
if (ret < 0)
return ret;
*val = ret;
return 0;
case hwmon_pwm_enable:
ret = nct7904_read_reg(data, BANK_3, FANCTL1_FMR_REG + channel);
if (ret < 0)
return ret;
*val = ret ? 2 : 1;
return 0;
default:
return -EOPNOTSUPP;
}
}
static int nct7904_write_temp(struct device *dev, u32 attr, int channel,
long val)
{
struct nct7904_data *data = dev_get_drvdata(dev);
int ret;
unsigned int reg1, reg2, reg3;
val = clamp_val(val / 1000, -128, 127);
switch (attr) {
case hwmon_temp_max:
reg1 = LTD_HV_LL_REG;
reg2 = TEMP_CH1_W_REG;
reg3 = DTS_T_CPU1_W_REG;
break;
case hwmon_temp_max_hyst:
reg1 = LTD_LV_LL_REG;
reg2 = TEMP_CH1_WH_REG;
reg3 = DTS_T_CPU1_WH_REG;
break;
case hwmon_temp_crit:
reg1 = LTD_HV_HL_REG;
reg2 = TEMP_CH1_C_REG;
reg3 = DTS_T_CPU1_C_REG;
break;
case hwmon_temp_crit_hyst:
reg1 = LTD_LV_HL_REG;
reg2 = TEMP_CH1_CH_REG;
reg3 = DTS_T_CPU1_CH_REG;
break;
default:
return -EOPNOTSUPP;
}
if (channel == 4)
ret = nct7904_write_reg(data, BANK_1, reg1, val);
else if (channel < 5)
ret = nct7904_write_reg(data, BANK_1,
reg2 + channel * 8, val);
else
ret = nct7904_write_reg(data, BANK_1,
reg3 + (channel - 5) * 4, val);
return ret;
}
static int nct7904_write_fan(struct device *dev, u32 attr, int channel,
long val)
{
struct nct7904_data *data = dev_get_drvdata(dev);
int ret;
u8 tmp;
switch (attr) {
case hwmon_fan_min:
if (val <= 0)
return -EINVAL;
val = clamp_val(DIV_ROUND_CLOSEST(1350000, val), 1, 0x1fff);
tmp = (val >> 5) & 0xff;
ret = nct7904_write_reg(data, BANK_1,
FANIN1_HV_HL_REG + channel * 2, tmp);
if (ret < 0)
return ret;
tmp = val & 0x1f;
ret = nct7904_write_reg(data, BANK_1,
FANIN1_LV_HL_REG + channel * 2, tmp);
return ret;
default:
return -EOPNOTSUPP;
}
}
static int nct7904_write_in(struct device *dev, u32 attr, int channel,
long val)
{
struct nct7904_data *data = dev_get_drvdata(dev);
int ret, index, tmp;
index = nct7904_chan_to_index[channel];
if (index < 14)
val = val / 2; /* 0.002V scale */
else
val = val / 6; /* 0.006V scale */
val = clamp_val(val, 0, 0x7ff);
switch (attr) {
case hwmon_in_min:
tmp = nct7904_read_reg(data, BANK_1,
VSEN1_LV_LL_REG + index * 4);
if (tmp < 0)
return tmp;
tmp &= ~0x7;
tmp |= val & 0x7;
ret = nct7904_write_reg(data, BANK_1,
VSEN1_LV_LL_REG + index * 4, tmp);
if (ret < 0)
return ret;
tmp = nct7904_read_reg(data, BANK_1,
VSEN1_HV_LL_REG + index * 4);
if (tmp < 0)
return tmp;
tmp = (val >> 3) & 0xff;
ret = nct7904_write_reg(data, BANK_1,
VSEN1_HV_LL_REG + index * 4, tmp);
return ret;
case hwmon_in_max:
tmp = nct7904_read_reg(data, BANK_1,
VSEN1_LV_HL_REG + index * 4);
if (tmp < 0)
return tmp;
tmp &= ~0x7;
tmp |= val & 0x7;
ret = nct7904_write_reg(data, BANK_1,
VSEN1_LV_HL_REG + index * 4, tmp);
if (ret < 0)
return ret;
tmp = nct7904_read_reg(data, BANK_1,
VSEN1_HV_HL_REG + index * 4);
if (tmp < 0)
return tmp;
tmp = (val >> 3) & 0xff;
ret = nct7904_write_reg(data, BANK_1,
VSEN1_HV_HL_REG + index * 4, tmp);
return ret;
default:
return -EOPNOTSUPP;
}
}
static int nct7904_write_pwm(struct device *dev, u32 attr, int channel,
long val)
{
struct nct7904_data *data = dev_get_drvdata(dev);
int ret;
switch (attr) {
case hwmon_pwm_input:
if (val < 0 || val > 255)
return -EINVAL;
ret = nct7904_write_reg(data, BANK_3, FANCTL1_OUT_REG + channel,
val);
return ret;
case hwmon_pwm_enable:
if (val < 1 || val > 2 ||
(val == 2 && !data->fan_mode[channel]))
return -EINVAL;
ret = nct7904_write_reg(data, BANK_3, FANCTL1_FMR_REG + channel,
val == 2 ? data->fan_mode[channel] : 0);
return ret;
default:
return -EOPNOTSUPP;
}
}
static umode_t nct7904_pwm_is_visible(const void *_data, u32 attr, int channel)
{
switch (attr) {
case hwmon_pwm_input:
case hwmon_pwm_enable:
return 0644;
default:
return 0;
}
}
static int nct7904_read(struct device *dev, enum hwmon_sensor_types type,
u32 attr, int channel, long *val)
{
switch (type) {
case hwmon_in:
return nct7904_read_in(dev, attr, channel, val);
case hwmon_fan:
return nct7904_read_fan(dev, attr, channel, val);
case hwmon_pwm:
return nct7904_read_pwm(dev, attr, channel, val);
case hwmon_temp:
return nct7904_read_temp(dev, attr, channel, val);
default:
return -EOPNOTSUPP;
}
}
static int nct7904_write(struct device *dev, enum hwmon_sensor_types type,
u32 attr, int channel, long val)
{
switch (type) {
case hwmon_in:
return nct7904_write_in(dev, attr, channel, val);
case hwmon_fan:
return nct7904_write_fan(dev, attr, channel, val);
case hwmon_pwm:
return nct7904_write_pwm(dev, attr, channel, val);
case hwmon_temp:
return nct7904_write_temp(dev, attr, channel, val);
default:
return -EOPNOTSUPP;
}
}
static umode_t nct7904_is_visible(const void *data,
enum hwmon_sensor_types type,
u32 attr, int channel)
{
switch (type) {
case hwmon_in:
return nct7904_in_is_visible(data, attr, channel);
case hwmon_fan:
return nct7904_fan_is_visible(data, attr, channel);
case hwmon_pwm:
return nct7904_pwm_is_visible(data, attr, channel);
case hwmon_temp:
return nct7904_temp_is_visible(data, attr, channel);
default:
return 0;
}
}
/* Return 0 if detection is successful, -ENODEV otherwise */
static int nct7904_detect(struct i2c_client *client,
struct i2c_board_info *info)
{
struct i2c_adapter *adapter = client->adapter;
if (!i2c_check_functionality(adapter,
I2C_FUNC_SMBUS_READ_BYTE |
I2C_FUNC_SMBUS_WRITE_BYTE_DATA))
return -ENODEV;
/* Determine the chip type. */
if (i2c_smbus_read_byte_data(client, VENDOR_ID_REG) != NUVOTON_ID ||
i2c_smbus_read_byte_data(client, CHIP_ID_REG) != NCT7904_ID ||
(i2c_smbus_read_byte_data(client, DEVICE_ID_REG) & 0xf0) != 0x50 ||
(i2c_smbus_read_byte_data(client, BANK_SEL_REG) & 0xf8) != 0x00)
return -ENODEV;
strlcpy(info->type, "nct7904", I2C_NAME_SIZE);
return 0;
}
static const struct hwmon_channel_info *nct7904_info[] = {
HWMON_CHANNEL_INFO(in,
/* dummy, skipped in is_visible */
HWMON_I_INPUT | HWMON_I_MIN | HWMON_I_MAX |
HWMON_I_ALARM,
HWMON_I_INPUT | HWMON_I_MIN | HWMON_I_MAX |
HWMON_I_ALARM,
HWMON_I_INPUT | HWMON_I_MIN | HWMON_I_MAX |
HWMON_I_ALARM,
HWMON_I_INPUT | HWMON_I_MIN | HWMON_I_MAX |
HWMON_I_ALARM,
HWMON_I_INPUT | HWMON_I_MIN | HWMON_I_MAX |
HWMON_I_ALARM,
HWMON_I_INPUT | HWMON_I_MIN | HWMON_I_MAX |
HWMON_I_ALARM,
HWMON_I_INPUT | HWMON_I_MIN | HWMON_I_MAX |
HWMON_I_ALARM,
HWMON_I_INPUT | HWMON_I_MIN | HWMON_I_MAX |
HWMON_I_ALARM,
HWMON_I_INPUT | HWMON_I_MIN | HWMON_I_MAX |
HWMON_I_ALARM,
HWMON_I_INPUT | HWMON_I_MIN | HWMON_I_MAX |
HWMON_I_ALARM,
HWMON_I_INPUT | HWMON_I_MIN | HWMON_I_MAX |
HWMON_I_ALARM,
HWMON_I_INPUT | HWMON_I_MIN | HWMON_I_MAX |
HWMON_I_ALARM,
HWMON_I_INPUT | HWMON_I_MIN | HWMON_I_MAX |
HWMON_I_ALARM,
HWMON_I_INPUT | HWMON_I_MIN | HWMON_I_MAX |
HWMON_I_ALARM,
HWMON_I_INPUT | HWMON_I_MIN | HWMON_I_MAX |
HWMON_I_ALARM,
HWMON_I_INPUT | HWMON_I_MIN | HWMON_I_MAX |
HWMON_I_ALARM,
HWMON_I_INPUT | HWMON_I_MIN | HWMON_I_MAX |
HWMON_I_ALARM,
HWMON_I_INPUT | HWMON_I_MIN | HWMON_I_MAX |
HWMON_I_ALARM,
HWMON_I_INPUT | HWMON_I_MIN | HWMON_I_MAX |
HWMON_I_ALARM,
HWMON_I_INPUT | HWMON_I_MIN | HWMON_I_MAX |
HWMON_I_ALARM,
HWMON_I_INPUT | HWMON_I_MIN | HWMON_I_MAX |
HWMON_I_ALARM),
HWMON_CHANNEL_INFO(fan,
HWMON_F_INPUT | HWMON_F_MIN | HWMON_F_ALARM,
HWMON_F_INPUT | HWMON_F_MIN | HWMON_F_ALARM,
HWMON_F_INPUT | HWMON_F_MIN | HWMON_F_ALARM,
HWMON_F_INPUT | HWMON_F_MIN | HWMON_F_ALARM,
HWMON_F_INPUT | HWMON_F_MIN | HWMON_F_ALARM,
HWMON_F_INPUT | HWMON_F_MIN | HWMON_F_ALARM,
HWMON_F_INPUT | HWMON_F_MIN | HWMON_F_ALARM,
HWMON_F_INPUT | HWMON_F_MIN | HWMON_F_ALARM,
HWMON_F_INPUT | HWMON_F_MIN | HWMON_F_ALARM,
HWMON_F_INPUT | HWMON_F_MIN | HWMON_F_ALARM,
HWMON_F_INPUT | HWMON_F_MIN | HWMON_F_ALARM,
HWMON_F_INPUT | HWMON_F_MIN | HWMON_F_ALARM),
HWMON_CHANNEL_INFO(pwm,
HWMON_PWM_INPUT | HWMON_PWM_ENABLE,
HWMON_PWM_INPUT | HWMON_PWM_ENABLE,
HWMON_PWM_INPUT | HWMON_PWM_ENABLE,
HWMON_PWM_INPUT | HWMON_PWM_ENABLE),
HWMON_CHANNEL_INFO(temp,
HWMON_T_INPUT | HWMON_T_ALARM | HWMON_T_MAX |
HWMON_T_MAX_HYST | HWMON_T_TYPE | HWMON_T_CRIT |
HWMON_T_CRIT_HYST,
HWMON_T_INPUT | HWMON_T_ALARM | HWMON_T_MAX |
HWMON_T_MAX_HYST | HWMON_T_TYPE | HWMON_T_CRIT |
HWMON_T_CRIT_HYST,
HWMON_T_INPUT | HWMON_T_ALARM | HWMON_T_MAX |
HWMON_T_MAX_HYST | HWMON_T_TYPE | HWMON_T_CRIT |
HWMON_T_CRIT_HYST,
HWMON_T_INPUT | HWMON_T_ALARM | HWMON_T_MAX |
HWMON_T_MAX_HYST | HWMON_T_TYPE | HWMON_T_CRIT |
HWMON_T_CRIT_HYST,
HWMON_T_INPUT | HWMON_T_ALARM | HWMON_T_MAX |
HWMON_T_MAX_HYST | HWMON_T_TYPE | HWMON_T_CRIT |
HWMON_T_CRIT_HYST,
HWMON_T_INPUT | HWMON_T_ALARM | HWMON_T_MAX |
HWMON_T_MAX_HYST | HWMON_T_TYPE | HWMON_T_CRIT |
HWMON_T_CRIT_HYST,
HWMON_T_INPUT | HWMON_T_ALARM | HWMON_T_MAX |
HWMON_T_MAX_HYST | HWMON_T_TYPE | HWMON_T_CRIT |
HWMON_T_CRIT_HYST,
HWMON_T_INPUT | HWMON_T_ALARM | HWMON_T_MAX |
HWMON_T_MAX_HYST | HWMON_T_TYPE | HWMON_T_CRIT |
HWMON_T_CRIT_HYST,
HWMON_T_INPUT | HWMON_T_ALARM | HWMON_T_MAX |
HWMON_T_MAX_HYST | HWMON_T_TYPE | HWMON_T_CRIT |
HWMON_T_CRIT_HYST,
HWMON_T_INPUT | HWMON_T_ALARM | HWMON_T_MAX |
HWMON_T_MAX_HYST | HWMON_T_TYPE | HWMON_T_CRIT |
HWMON_T_CRIT_HYST,
HWMON_T_INPUT | HWMON_T_ALARM | HWMON_T_MAX |
HWMON_T_MAX_HYST | HWMON_T_TYPE | HWMON_T_CRIT |
HWMON_T_CRIT_HYST,
HWMON_T_INPUT | HWMON_T_ALARM | HWMON_T_MAX |
HWMON_T_MAX_HYST | HWMON_T_TYPE | HWMON_T_CRIT |
HWMON_T_CRIT_HYST,
HWMON_T_INPUT | HWMON_T_ALARM | HWMON_T_MAX |
HWMON_T_MAX_HYST | HWMON_T_TYPE | HWMON_T_CRIT |
HWMON_T_CRIT_HYST),
NULL
};
static const struct hwmon_ops nct7904_hwmon_ops = {
.is_visible = nct7904_is_visible,
.read = nct7904_read,
.write = nct7904_write,
};
static const struct hwmon_chip_info nct7904_chip_info = {
.ops = &nct7904_hwmon_ops,
.info = nct7904_info,
};
/*
* Watchdog Function
*/
static int nct7904_wdt_start(struct watchdog_device *wdt)
{
struct nct7904_data *data = watchdog_get_drvdata(wdt);
/* Enable soft watchdog timer */
return nct7904_write_reg(data, BANK_0, WDT_LOCK_REG, WDT_SOFT_EN);
}
static int nct7904_wdt_stop(struct watchdog_device *wdt)
{
struct nct7904_data *data = watchdog_get_drvdata(wdt);
return nct7904_write_reg(data, BANK_0, WDT_LOCK_REG, WDT_SOFT_DIS);
}
static int nct7904_wdt_set_timeout(struct watchdog_device *wdt,
unsigned int timeout)
{
struct nct7904_data *data = watchdog_get_drvdata(wdt);
/*
* The NCT7904 is very special in watchdog function.
* Its minimum unit is minutes. And wdt->timeout needs
* to match the actual timeout selected. So, this needs
* to be: wdt->timeout = timeout / 60 * 60.
* For example, if the user configures a timeout of
* 119 seconds, the actual timeout will be 60 seconds.
* So, wdt->timeout must then be set to 60 seconds.
*/
wdt->timeout = timeout / 60 * 60;
return nct7904_write_reg(data, BANK_0, WDT_TIMER_REG,
wdt->timeout / 60);
}
static int nct7904_wdt_ping(struct watchdog_device *wdt)
{
/*
* Note:
* NCT7904 does not support refreshing WDT_TIMER_REG register when
* the watchdog is active. Please disable watchdog before feeding
* the watchdog and enable it again.
*/
struct nct7904_data *data = watchdog_get_drvdata(wdt);
int ret;
/* Disable soft watchdog timer */
ret = nct7904_write_reg(data, BANK_0, WDT_LOCK_REG, WDT_SOFT_DIS);
if (ret < 0)
return ret;
/* feed watchdog */
ret = nct7904_write_reg(data, BANK_0, WDT_TIMER_REG, wdt->timeout / 60);
if (ret < 0)
return ret;
/* Enable soft watchdog timer */
return nct7904_write_reg(data, BANK_0, WDT_LOCK_REG, WDT_SOFT_EN);
}
static unsigned int nct7904_wdt_get_timeleft(struct watchdog_device *wdt)
{
struct nct7904_data *data = watchdog_get_drvdata(wdt);
int ret;
ret = nct7904_read_reg(data, BANK_0, WDT_TIMER_REG);
if (ret < 0)
return 0;
return ret * 60;
}
static const struct watchdog_info nct7904_wdt_info = {
.options = WDIOF_SETTIMEOUT | WDIOF_KEEPALIVEPING |
WDIOF_MAGICCLOSE,
.identity = "nct7904 watchdog",
};
static const struct watchdog_ops nct7904_wdt_ops = {
.owner = THIS_MODULE,
.start = nct7904_wdt_start,
.stop = nct7904_wdt_stop,
.ping = nct7904_wdt_ping,
.set_timeout = nct7904_wdt_set_timeout,
.get_timeleft = nct7904_wdt_get_timeleft,
};
static int nct7904_probe(struct i2c_client *client)
{
struct nct7904_data *data;
struct device *hwmon_dev;
struct device *dev = &client->dev;
int ret, i;
u32 mask;
u8 val, bit;
data = devm_kzalloc(dev, sizeof(struct nct7904_data), GFP_KERNEL);
if (!data)
return -ENOMEM;
data->client = client;
mutex_init(&data->bank_lock);
data->bank_sel = -1;
/* Setup sensor groups. */
/* FANIN attributes */
ret = nct7904_read_reg16(data, BANK_0, FANIN_CTRL0_REG);
if (ret < 0)
return ret;
data->fanin_mask = (ret >> 8) | ((ret & 0xff) << 8);
/*
* VSEN attributes
*
* Note: voltage sensors overlap with external temperature
* sensors. So, if we ever decide to support the latter
* we will have to adjust 'vsen_mask' accordingly.
*/
mask = 0;
ret = nct7904_read_reg16(data, BANK_0, VT_ADC_CTRL0_REG);
if (ret >= 0)
mask = (ret >> 8) | ((ret & 0xff) << 8);
ret = nct7904_read_reg(data, BANK_0, VT_ADC_CTRL2_REG);
if (ret >= 0)
mask |= (ret << 16);
data->vsen_mask = mask;
/* CPU_TEMP attributes */
ret = nct7904_read_reg(data, BANK_0, VT_ADC_CTRL0_REG);
if (ret < 0)
return ret;
if ((ret & 0x6) == 0x6)
data->tcpu_mask |= 1; /* TR1 */
if ((ret & 0x18) == 0x18)
data->tcpu_mask |= 2; /* TR2 */
if ((ret & 0x20) == 0x20)
data->tcpu_mask |= 4; /* TR3 */
if ((ret & 0x80) == 0x80)
data->tcpu_mask |= 8; /* TR4 */
/* LTD */
ret = nct7904_read_reg(data, BANK_0, VT_ADC_CTRL2_REG);
if (ret < 0)
return ret;
if ((ret & 0x02) == 0x02)
data->tcpu_mask |= 0x10;
/* Multi-Function detecting for Volt and TR/TD */
ret = nct7904_read_reg(data, BANK_0, VT_ADC_MD_REG);
if (ret < 0)
return ret;
data->temp_mode = 0;
for (i = 0; i < 4; i++) {
val = (ret >> (i * 2)) & 0x03;
bit = (1 << i);
if (val == VOLT_MONITOR_MODE) {
data->tcpu_mask &= ~bit;
} else if (val == THERMAL_DIODE_MODE && i < 2) {
data->temp_mode |= bit;
data->vsen_mask &= ~(0x06 << (i * 2));
} else if (val == THERMISTOR_MODE) {
data->vsen_mask &= ~(0x02 << (i * 2));
} else {
/* Reserved */
data->tcpu_mask &= ~bit;
data->vsen_mask &= ~(0x06 << (i * 2));
}
}
/* PECI */
ret = nct7904_read_reg(data, BANK_2, PFE_REG);
if (ret < 0)
return ret;
if (ret & 0x80) {
data->enable_dts = 1; /* Enable DTS & PECI */
} else {
ret = nct7904_read_reg(data, BANK_2, TSI_CTRL_REG);
if (ret < 0)
return ret;
if (ret & 0x80)
data->enable_dts = 0x3; /* Enable DTS & TSI */
}
/* Check DTS enable status */
if (data->enable_dts) {
ret = nct7904_read_reg(data, BANK_0, DTS_T_CTRL0_REG);
if (ret < 0)
return ret;
data->has_dts = ret & 0xF;
if (data->enable_dts & ENABLE_TSI) {
ret = nct7904_read_reg(data, BANK_0, DTS_T_CTRL1_REG);
if (ret < 0)
return ret;
data->has_dts |= (ret & 0xF) << 4;
}
}
for (i = 0; i < FANCTL_MAX; i++) {
ret = nct7904_read_reg(data, BANK_3, FANCTL1_FMR_REG + i);
if (ret < 0)
return ret;
data->fan_mode[i] = ret;
}
/* Read all of SMI status register to clear alarms */
for (i = 0; i < SMI_STS_MAX; i++) {
ret = nct7904_read_reg(data, BANK_0, SMI_STS1_REG + i);
if (ret < 0)
return ret;
}
hwmon_dev =
devm_hwmon_device_register_with_info(dev, client->name, data,
&nct7904_chip_info, NULL);
ret = PTR_ERR_OR_ZERO(hwmon_dev);
if (ret)
return ret;
/* Watchdog initialization */
data->wdt.ops = &nct7904_wdt_ops;
data->wdt.info = &nct7904_wdt_info;
data->wdt.timeout = WATCHDOG_TIMEOUT * 60; /* Set default timeout */
data->wdt.min_timeout = MIN_TIMEOUT;
data->wdt.max_timeout = MAX_TIMEOUT;
data->wdt.parent = &client->dev;
watchdog_init_timeout(&data->wdt, timeout * 60, &client->dev);
watchdog_set_nowayout(&data->wdt, nowayout);
watchdog_set_drvdata(&data->wdt, data);
watchdog_stop_on_unregister(&data->wdt);
return devm_watchdog_register_device(dev, &data->wdt);
}
static const struct i2c_device_id nct7904_id[] = {
{"nct7904", 0},
{}
};
MODULE_DEVICE_TABLE(i2c, nct7904_id);
static struct i2c_driver nct7904_driver = {
.class = I2C_CLASS_HWMON,
.driver = {
.name = "nct7904",
},
.probe_new = nct7904_probe,
.id_table = nct7904_id,
.detect = nct7904_detect,
.address_list = normal_i2c,
};
module_i2c_driver(nct7904_driver);
MODULE_AUTHOR("Vadim V. Vlasov <vvlasov@dev.rtsoft.ru>");
MODULE_DESCRIPTION("Hwmon driver for NUVOTON NCT7904");
MODULE_LICENSE("GPL");