linux_dsm_epyc7002/arch/powerpc/kvm/book3s_hv.c
Paul Mackerras b4072df407 KVM: PPC: Book3S HV: Handle guest-caused machine checks on POWER7 without panicking
Currently, if a machine check interrupt happens while we are in the
guest, we exit the guest and call the host's machine check handler,
which tends to cause the host to panic.  Some machine checks can be
triggered by the guest; for example, if the guest creates two entries
in the SLB that map the same effective address, and then accesses that
effective address, the CPU will take a machine check interrupt.

To handle this better, when a machine check happens inside the guest,
we call a new function, kvmppc_realmode_machine_check(), while still in
real mode before exiting the guest.  On POWER7, it handles the cases
that the guest can trigger, either by flushing and reloading the SLB,
or by flushing the TLB, and then it delivers the machine check interrupt
directly to the guest without going back to the host.  On POWER7, the
OPAL firmware patches the machine check interrupt vector so that it
gets control first, and it leaves behind its analysis of the situation
in a structure pointed to by the opal_mc_evt field of the paca.  The
kvmppc_realmode_machine_check() function looks at this, and if OPAL
reports that there was no error, or that it has handled the error, we
also go straight back to the guest with a machine check.  We have to
deliver a machine check to the guest since the machine check interrupt
might have trashed valid values in SRR0/1.

If the machine check is one we can't handle in real mode, and one that
OPAL hasn't already handled, or on PPC970, we exit the guest and call
the host's machine check handler.  We do this by jumping to the
machine_check_fwnmi label, rather than absolute address 0x200, because
we don't want to re-execute OPAL's handler on POWER7.  On PPC970, the
two are equivalent because address 0x200 just contains a branch.

Then, if the host machine check handler decides that the system can
continue executing, kvmppc_handle_exit() delivers a machine check
interrupt to the guest -- once again to let the guest know that SRR0/1
have been modified.

Signed-off-by: Paul Mackerras <paulus@samba.org>
[agraf: fix checkpatch warnings]
Signed-off-by: Alexander Graf <agraf@suse.de>
2012-12-06 01:34:07 +01:00

1916 lines
49 KiB
C

/*
* Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
* Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
*
* Authors:
* Paul Mackerras <paulus@au1.ibm.com>
* Alexander Graf <agraf@suse.de>
* Kevin Wolf <mail@kevin-wolf.de>
*
* Description: KVM functions specific to running on Book 3S
* processors in hypervisor mode (specifically POWER7 and later).
*
* This file is derived from arch/powerpc/kvm/book3s.c,
* by Alexander Graf <agraf@suse.de>.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License, version 2, as
* published by the Free Software Foundation.
*/
#include <linux/kvm_host.h>
#include <linux/err.h>
#include <linux/slab.h>
#include <linux/preempt.h>
#include <linux/sched.h>
#include <linux/delay.h>
#include <linux/export.h>
#include <linux/fs.h>
#include <linux/anon_inodes.h>
#include <linux/cpumask.h>
#include <linux/spinlock.h>
#include <linux/page-flags.h>
#include <linux/srcu.h>
#include <asm/reg.h>
#include <asm/cputable.h>
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
#include <asm/uaccess.h>
#include <asm/io.h>
#include <asm/kvm_ppc.h>
#include <asm/kvm_book3s.h>
#include <asm/mmu_context.h>
#include <asm/lppaca.h>
#include <asm/processor.h>
#include <asm/cputhreads.h>
#include <asm/page.h>
#include <asm/hvcall.h>
#include <asm/switch_to.h>
#include <asm/smp.h>
#include <linux/gfp.h>
#include <linux/vmalloc.h>
#include <linux/highmem.h>
#include <linux/hugetlb.h>
/* #define EXIT_DEBUG */
/* #define EXIT_DEBUG_SIMPLE */
/* #define EXIT_DEBUG_INT */
/* Used to indicate that a guest page fault needs to be handled */
#define RESUME_PAGE_FAULT (RESUME_GUEST | RESUME_FLAG_ARCH1)
/* Used as a "null" value for timebase values */
#define TB_NIL (~(u64)0)
static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
/*
* We use the vcpu_load/put functions to measure stolen time.
* Stolen time is counted as time when either the vcpu is able to
* run as part of a virtual core, but the task running the vcore
* is preempted or sleeping, or when the vcpu needs something done
* in the kernel by the task running the vcpu, but that task is
* preempted or sleeping. Those two things have to be counted
* separately, since one of the vcpu tasks will take on the job
* of running the core, and the other vcpu tasks in the vcore will
* sleep waiting for it to do that, but that sleep shouldn't count
* as stolen time.
*
* Hence we accumulate stolen time when the vcpu can run as part of
* a vcore using vc->stolen_tb, and the stolen time when the vcpu
* needs its task to do other things in the kernel (for example,
* service a page fault) in busy_stolen. We don't accumulate
* stolen time for a vcore when it is inactive, or for a vcpu
* when it is in state RUNNING or NOTREADY. NOTREADY is a bit of
* a misnomer; it means that the vcpu task is not executing in
* the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
* the kernel. We don't have any way of dividing up that time
* between time that the vcpu is genuinely stopped, time that
* the task is actively working on behalf of the vcpu, and time
* that the task is preempted, so we don't count any of it as
* stolen.
*
* Updates to busy_stolen are protected by arch.tbacct_lock;
* updates to vc->stolen_tb are protected by the arch.tbacct_lock
* of the vcpu that has taken responsibility for running the vcore
* (i.e. vc->runner). The stolen times are measured in units of
* timebase ticks. (Note that the != TB_NIL checks below are
* purely defensive; they should never fail.)
*/
void kvmppc_core_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
struct kvmppc_vcore *vc = vcpu->arch.vcore;
spin_lock(&vcpu->arch.tbacct_lock);
if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE &&
vc->preempt_tb != TB_NIL) {
vc->stolen_tb += mftb() - vc->preempt_tb;
vc->preempt_tb = TB_NIL;
}
if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
vcpu->arch.busy_preempt != TB_NIL) {
vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
vcpu->arch.busy_preempt = TB_NIL;
}
spin_unlock(&vcpu->arch.tbacct_lock);
}
void kvmppc_core_vcpu_put(struct kvm_vcpu *vcpu)
{
struct kvmppc_vcore *vc = vcpu->arch.vcore;
spin_lock(&vcpu->arch.tbacct_lock);
if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE)
vc->preempt_tb = mftb();
if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
vcpu->arch.busy_preempt = mftb();
spin_unlock(&vcpu->arch.tbacct_lock);
}
void kvmppc_set_msr(struct kvm_vcpu *vcpu, u64 msr)
{
vcpu->arch.shregs.msr = msr;
kvmppc_end_cede(vcpu);
}
void kvmppc_set_pvr(struct kvm_vcpu *vcpu, u32 pvr)
{
vcpu->arch.pvr = pvr;
}
void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
{
int r;
pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
pr_err("pc = %.16lx msr = %.16llx trap = %x\n",
vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap);
for (r = 0; r < 16; ++r)
pr_err("r%2d = %.16lx r%d = %.16lx\n",
r, kvmppc_get_gpr(vcpu, r),
r+16, kvmppc_get_gpr(vcpu, r+16));
pr_err("ctr = %.16lx lr = %.16lx\n",
vcpu->arch.ctr, vcpu->arch.lr);
pr_err("srr0 = %.16llx srr1 = %.16llx\n",
vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
pr_err("cr = %.8x xer = %.16lx dsisr = %.8x\n",
vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr);
pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
pr_err("fault dar = %.16lx dsisr = %.8x\n",
vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
for (r = 0; r < vcpu->arch.slb_max; ++r)
pr_err(" ESID = %.16llx VSID = %.16llx\n",
vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
vcpu->kvm->arch.lpcr, vcpu->kvm->arch.sdr1,
vcpu->arch.last_inst);
}
struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
{
int r;
struct kvm_vcpu *v, *ret = NULL;
mutex_lock(&kvm->lock);
kvm_for_each_vcpu(r, v, kvm) {
if (v->vcpu_id == id) {
ret = v;
break;
}
}
mutex_unlock(&kvm->lock);
return ret;
}
static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
{
vpa->shared_proc = 1;
vpa->yield_count = 1;
}
static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
unsigned long addr, unsigned long len)
{
/* check address is cacheline aligned */
if (addr & (L1_CACHE_BYTES - 1))
return -EINVAL;
spin_lock(&vcpu->arch.vpa_update_lock);
if (v->next_gpa != addr || v->len != len) {
v->next_gpa = addr;
v->len = addr ? len : 0;
v->update_pending = 1;
}
spin_unlock(&vcpu->arch.vpa_update_lock);
return 0;
}
/* Length for a per-processor buffer is passed in at offset 4 in the buffer */
struct reg_vpa {
u32 dummy;
union {
u16 hword;
u32 word;
} length;
};
static int vpa_is_registered(struct kvmppc_vpa *vpap)
{
if (vpap->update_pending)
return vpap->next_gpa != 0;
return vpap->pinned_addr != NULL;
}
static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
unsigned long flags,
unsigned long vcpuid, unsigned long vpa)
{
struct kvm *kvm = vcpu->kvm;
unsigned long len, nb;
void *va;
struct kvm_vcpu *tvcpu;
int err;
int subfunc;
struct kvmppc_vpa *vpap;
tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
if (!tvcpu)
return H_PARAMETER;
subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
subfunc == H_VPA_REG_SLB) {
/* Registering new area - address must be cache-line aligned */
if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
return H_PARAMETER;
/* convert logical addr to kernel addr and read length */
va = kvmppc_pin_guest_page(kvm, vpa, &nb);
if (va == NULL)
return H_PARAMETER;
if (subfunc == H_VPA_REG_VPA)
len = ((struct reg_vpa *)va)->length.hword;
else
len = ((struct reg_vpa *)va)->length.word;
kvmppc_unpin_guest_page(kvm, va);
/* Check length */
if (len > nb || len < sizeof(struct reg_vpa))
return H_PARAMETER;
} else {
vpa = 0;
len = 0;
}
err = H_PARAMETER;
vpap = NULL;
spin_lock(&tvcpu->arch.vpa_update_lock);
switch (subfunc) {
case H_VPA_REG_VPA: /* register VPA */
if (len < sizeof(struct lppaca))
break;
vpap = &tvcpu->arch.vpa;
err = 0;
break;
case H_VPA_REG_DTL: /* register DTL */
if (len < sizeof(struct dtl_entry))
break;
len -= len % sizeof(struct dtl_entry);
/* Check that they have previously registered a VPA */
err = H_RESOURCE;
if (!vpa_is_registered(&tvcpu->arch.vpa))
break;
vpap = &tvcpu->arch.dtl;
err = 0;
break;
case H_VPA_REG_SLB: /* register SLB shadow buffer */
/* Check that they have previously registered a VPA */
err = H_RESOURCE;
if (!vpa_is_registered(&tvcpu->arch.vpa))
break;
vpap = &tvcpu->arch.slb_shadow;
err = 0;
break;
case H_VPA_DEREG_VPA: /* deregister VPA */
/* Check they don't still have a DTL or SLB buf registered */
err = H_RESOURCE;
if (vpa_is_registered(&tvcpu->arch.dtl) ||
vpa_is_registered(&tvcpu->arch.slb_shadow))
break;
vpap = &tvcpu->arch.vpa;
err = 0;
break;
case H_VPA_DEREG_DTL: /* deregister DTL */
vpap = &tvcpu->arch.dtl;
err = 0;
break;
case H_VPA_DEREG_SLB: /* deregister SLB shadow buffer */
vpap = &tvcpu->arch.slb_shadow;
err = 0;
break;
}
if (vpap) {
vpap->next_gpa = vpa;
vpap->len = len;
vpap->update_pending = 1;
}
spin_unlock(&tvcpu->arch.vpa_update_lock);
return err;
}
static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
{
struct kvm *kvm = vcpu->kvm;
void *va;
unsigned long nb;
unsigned long gpa;
/*
* We need to pin the page pointed to by vpap->next_gpa,
* but we can't call kvmppc_pin_guest_page under the lock
* as it does get_user_pages() and down_read(). So we
* have to drop the lock, pin the page, then get the lock
* again and check that a new area didn't get registered
* in the meantime.
*/
for (;;) {
gpa = vpap->next_gpa;
spin_unlock(&vcpu->arch.vpa_update_lock);
va = NULL;
nb = 0;
if (gpa)
va = kvmppc_pin_guest_page(kvm, vpap->next_gpa, &nb);
spin_lock(&vcpu->arch.vpa_update_lock);
if (gpa == vpap->next_gpa)
break;
/* sigh... unpin that one and try again */
if (va)
kvmppc_unpin_guest_page(kvm, va);
}
vpap->update_pending = 0;
if (va && nb < vpap->len) {
/*
* If it's now too short, it must be that userspace
* has changed the mappings underlying guest memory,
* so unregister the region.
*/
kvmppc_unpin_guest_page(kvm, va);
va = NULL;
}
if (vpap->pinned_addr)
kvmppc_unpin_guest_page(kvm, vpap->pinned_addr);
vpap->pinned_addr = va;
if (va)
vpap->pinned_end = va + vpap->len;
}
static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
{
if (!(vcpu->arch.vpa.update_pending ||
vcpu->arch.slb_shadow.update_pending ||
vcpu->arch.dtl.update_pending))
return;
spin_lock(&vcpu->arch.vpa_update_lock);
if (vcpu->arch.vpa.update_pending) {
kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
if (vcpu->arch.vpa.pinned_addr)
init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
}
if (vcpu->arch.dtl.update_pending) {
kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
vcpu->arch.dtl_index = 0;
}
if (vcpu->arch.slb_shadow.update_pending)
kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
spin_unlock(&vcpu->arch.vpa_update_lock);
}
/*
* Return the accumulated stolen time for the vcore up until `now'.
* The caller should hold the vcore lock.
*/
static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
{
u64 p;
/*
* If we are the task running the vcore, then since we hold
* the vcore lock, we can't be preempted, so stolen_tb/preempt_tb
* can't be updated, so we don't need the tbacct_lock.
* If the vcore is inactive, it can't become active (since we
* hold the vcore lock), so the vcpu load/put functions won't
* update stolen_tb/preempt_tb, and we don't need tbacct_lock.
*/
if (vc->vcore_state != VCORE_INACTIVE &&
vc->runner->arch.run_task != current) {
spin_lock(&vc->runner->arch.tbacct_lock);
p = vc->stolen_tb;
if (vc->preempt_tb != TB_NIL)
p += now - vc->preempt_tb;
spin_unlock(&vc->runner->arch.tbacct_lock);
} else {
p = vc->stolen_tb;
}
return p;
}
static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
struct kvmppc_vcore *vc)
{
struct dtl_entry *dt;
struct lppaca *vpa;
unsigned long stolen;
unsigned long core_stolen;
u64 now;
dt = vcpu->arch.dtl_ptr;
vpa = vcpu->arch.vpa.pinned_addr;
now = mftb();
core_stolen = vcore_stolen_time(vc, now);
stolen = core_stolen - vcpu->arch.stolen_logged;
vcpu->arch.stolen_logged = core_stolen;
spin_lock(&vcpu->arch.tbacct_lock);
stolen += vcpu->arch.busy_stolen;
vcpu->arch.busy_stolen = 0;
spin_unlock(&vcpu->arch.tbacct_lock);
if (!dt || !vpa)
return;
memset(dt, 0, sizeof(struct dtl_entry));
dt->dispatch_reason = 7;
dt->processor_id = vc->pcpu + vcpu->arch.ptid;
dt->timebase = now;
dt->enqueue_to_dispatch_time = stolen;
dt->srr0 = kvmppc_get_pc(vcpu);
dt->srr1 = vcpu->arch.shregs.msr;
++dt;
if (dt == vcpu->arch.dtl.pinned_end)
dt = vcpu->arch.dtl.pinned_addr;
vcpu->arch.dtl_ptr = dt;
/* order writing *dt vs. writing vpa->dtl_idx */
smp_wmb();
vpa->dtl_idx = ++vcpu->arch.dtl_index;
}
int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
{
unsigned long req = kvmppc_get_gpr(vcpu, 3);
unsigned long target, ret = H_SUCCESS;
struct kvm_vcpu *tvcpu;
int idx;
switch (req) {
case H_ENTER:
idx = srcu_read_lock(&vcpu->kvm->srcu);
ret = kvmppc_virtmode_h_enter(vcpu, kvmppc_get_gpr(vcpu, 4),
kvmppc_get_gpr(vcpu, 5),
kvmppc_get_gpr(vcpu, 6),
kvmppc_get_gpr(vcpu, 7));
srcu_read_unlock(&vcpu->kvm->srcu, idx);
break;
case H_CEDE:
break;
case H_PROD:
target = kvmppc_get_gpr(vcpu, 4);
tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
if (!tvcpu) {
ret = H_PARAMETER;
break;
}
tvcpu->arch.prodded = 1;
smp_mb();
if (vcpu->arch.ceded) {
if (waitqueue_active(&vcpu->wq)) {
wake_up_interruptible(&vcpu->wq);
vcpu->stat.halt_wakeup++;
}
}
break;
case H_CONFER:
break;
case H_REGISTER_VPA:
ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
kvmppc_get_gpr(vcpu, 5),
kvmppc_get_gpr(vcpu, 6));
break;
default:
return RESUME_HOST;
}
kvmppc_set_gpr(vcpu, 3, ret);
vcpu->arch.hcall_needed = 0;
return RESUME_GUEST;
}
static int kvmppc_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu,
struct task_struct *tsk)
{
int r = RESUME_HOST;
vcpu->stat.sum_exits++;
run->exit_reason = KVM_EXIT_UNKNOWN;
run->ready_for_interrupt_injection = 1;
switch (vcpu->arch.trap) {
/* We're good on these - the host merely wanted to get our attention */
case BOOK3S_INTERRUPT_HV_DECREMENTER:
vcpu->stat.dec_exits++;
r = RESUME_GUEST;
break;
case BOOK3S_INTERRUPT_EXTERNAL:
vcpu->stat.ext_intr_exits++;
r = RESUME_GUEST;
break;
case BOOK3S_INTERRUPT_PERFMON:
r = RESUME_GUEST;
break;
case BOOK3S_INTERRUPT_MACHINE_CHECK:
/*
* Deliver a machine check interrupt to the guest.
* We have to do this, even if the host has handled the
* machine check, because machine checks use SRR0/1 and
* the interrupt might have trashed guest state in them.
*/
kvmppc_book3s_queue_irqprio(vcpu,
BOOK3S_INTERRUPT_MACHINE_CHECK);
r = RESUME_GUEST;
break;
case BOOK3S_INTERRUPT_PROGRAM:
{
ulong flags;
/*
* Normally program interrupts are delivered directly
* to the guest by the hardware, but we can get here
* as a result of a hypervisor emulation interrupt
* (e40) getting turned into a 700 by BML RTAS.
*/
flags = vcpu->arch.shregs.msr & 0x1f0000ull;
kvmppc_core_queue_program(vcpu, flags);
r = RESUME_GUEST;
break;
}
case BOOK3S_INTERRUPT_SYSCALL:
{
/* hcall - punt to userspace */
int i;
if (vcpu->arch.shregs.msr & MSR_PR) {
/* sc 1 from userspace - reflect to guest syscall */
kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_SYSCALL);
r = RESUME_GUEST;
break;
}
run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
for (i = 0; i < 9; ++i)
run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
run->exit_reason = KVM_EXIT_PAPR_HCALL;
vcpu->arch.hcall_needed = 1;
r = RESUME_HOST;
break;
}
/*
* We get these next two if the guest accesses a page which it thinks
* it has mapped but which is not actually present, either because
* it is for an emulated I/O device or because the corresonding
* host page has been paged out. Any other HDSI/HISI interrupts
* have been handled already.
*/
case BOOK3S_INTERRUPT_H_DATA_STORAGE:
r = RESUME_PAGE_FAULT;
break;
case BOOK3S_INTERRUPT_H_INST_STORAGE:
vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
vcpu->arch.fault_dsisr = 0;
r = RESUME_PAGE_FAULT;
break;
/*
* This occurs if the guest executes an illegal instruction.
* We just generate a program interrupt to the guest, since
* we don't emulate any guest instructions at this stage.
*/
case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
kvmppc_core_queue_program(vcpu, 0x80000);
r = RESUME_GUEST;
break;
default:
kvmppc_dump_regs(vcpu);
printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
vcpu->arch.trap, kvmppc_get_pc(vcpu),
vcpu->arch.shregs.msr);
r = RESUME_HOST;
BUG();
break;
}
return r;
}
int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
struct kvm_sregs *sregs)
{
int i;
sregs->pvr = vcpu->arch.pvr;
memset(sregs, 0, sizeof(struct kvm_sregs));
for (i = 0; i < vcpu->arch.slb_max; i++) {
sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
}
return 0;
}
int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
struct kvm_sregs *sregs)
{
int i, j;
kvmppc_set_pvr(vcpu, sregs->pvr);
j = 0;
for (i = 0; i < vcpu->arch.slb_nr; i++) {
if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
++j;
}
}
vcpu->arch.slb_max = j;
return 0;
}
int kvmppc_get_one_reg(struct kvm_vcpu *vcpu, u64 id, union kvmppc_one_reg *val)
{
int r = 0;
long int i;
switch (id) {
case KVM_REG_PPC_HIOR:
*val = get_reg_val(id, 0);
break;
case KVM_REG_PPC_DABR:
*val = get_reg_val(id, vcpu->arch.dabr);
break;
case KVM_REG_PPC_DSCR:
*val = get_reg_val(id, vcpu->arch.dscr);
break;
case KVM_REG_PPC_PURR:
*val = get_reg_val(id, vcpu->arch.purr);
break;
case KVM_REG_PPC_SPURR:
*val = get_reg_val(id, vcpu->arch.spurr);
break;
case KVM_REG_PPC_AMR:
*val = get_reg_val(id, vcpu->arch.amr);
break;
case KVM_REG_PPC_UAMOR:
*val = get_reg_val(id, vcpu->arch.uamor);
break;
case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRA:
i = id - KVM_REG_PPC_MMCR0;
*val = get_reg_val(id, vcpu->arch.mmcr[i]);
break;
case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
i = id - KVM_REG_PPC_PMC1;
*val = get_reg_val(id, vcpu->arch.pmc[i]);
break;
#ifdef CONFIG_VSX
case KVM_REG_PPC_FPR0 ... KVM_REG_PPC_FPR31:
if (cpu_has_feature(CPU_FTR_VSX)) {
/* VSX => FP reg i is stored in arch.vsr[2*i] */
long int i = id - KVM_REG_PPC_FPR0;
*val = get_reg_val(id, vcpu->arch.vsr[2 * i]);
} else {
/* let generic code handle it */
r = -EINVAL;
}
break;
case KVM_REG_PPC_VSR0 ... KVM_REG_PPC_VSR31:
if (cpu_has_feature(CPU_FTR_VSX)) {
long int i = id - KVM_REG_PPC_VSR0;
val->vsxval[0] = vcpu->arch.vsr[2 * i];
val->vsxval[1] = vcpu->arch.vsr[2 * i + 1];
} else {
r = -ENXIO;
}
break;
#endif /* CONFIG_VSX */
case KVM_REG_PPC_VPA_ADDR:
spin_lock(&vcpu->arch.vpa_update_lock);
*val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
spin_unlock(&vcpu->arch.vpa_update_lock);
break;
case KVM_REG_PPC_VPA_SLB:
spin_lock(&vcpu->arch.vpa_update_lock);
val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
val->vpaval.length = vcpu->arch.slb_shadow.len;
spin_unlock(&vcpu->arch.vpa_update_lock);
break;
case KVM_REG_PPC_VPA_DTL:
spin_lock(&vcpu->arch.vpa_update_lock);
val->vpaval.addr = vcpu->arch.dtl.next_gpa;
val->vpaval.length = vcpu->arch.dtl.len;
spin_unlock(&vcpu->arch.vpa_update_lock);
break;
default:
r = -EINVAL;
break;
}
return r;
}
int kvmppc_set_one_reg(struct kvm_vcpu *vcpu, u64 id, union kvmppc_one_reg *val)
{
int r = 0;
long int i;
unsigned long addr, len;
switch (id) {
case KVM_REG_PPC_HIOR:
/* Only allow this to be set to zero */
if (set_reg_val(id, *val))
r = -EINVAL;
break;
case KVM_REG_PPC_DABR:
vcpu->arch.dabr = set_reg_val(id, *val);
break;
case KVM_REG_PPC_DSCR:
vcpu->arch.dscr = set_reg_val(id, *val);
break;
case KVM_REG_PPC_PURR:
vcpu->arch.purr = set_reg_val(id, *val);
break;
case KVM_REG_PPC_SPURR:
vcpu->arch.spurr = set_reg_val(id, *val);
break;
case KVM_REG_PPC_AMR:
vcpu->arch.amr = set_reg_val(id, *val);
break;
case KVM_REG_PPC_UAMOR:
vcpu->arch.uamor = set_reg_val(id, *val);
break;
case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRA:
i = id - KVM_REG_PPC_MMCR0;
vcpu->arch.mmcr[i] = set_reg_val(id, *val);
break;
case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
i = id - KVM_REG_PPC_PMC1;
vcpu->arch.pmc[i] = set_reg_val(id, *val);
break;
#ifdef CONFIG_VSX
case KVM_REG_PPC_FPR0 ... KVM_REG_PPC_FPR31:
if (cpu_has_feature(CPU_FTR_VSX)) {
/* VSX => FP reg i is stored in arch.vsr[2*i] */
long int i = id - KVM_REG_PPC_FPR0;
vcpu->arch.vsr[2 * i] = set_reg_val(id, *val);
} else {
/* let generic code handle it */
r = -EINVAL;
}
break;
case KVM_REG_PPC_VSR0 ... KVM_REG_PPC_VSR31:
if (cpu_has_feature(CPU_FTR_VSX)) {
long int i = id - KVM_REG_PPC_VSR0;
vcpu->arch.vsr[2 * i] = val->vsxval[0];
vcpu->arch.vsr[2 * i + 1] = val->vsxval[1];
} else {
r = -ENXIO;
}
break;
#endif /* CONFIG_VSX */
case KVM_REG_PPC_VPA_ADDR:
addr = set_reg_val(id, *val);
r = -EINVAL;
if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
vcpu->arch.dtl.next_gpa))
break;
r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
break;
case KVM_REG_PPC_VPA_SLB:
addr = val->vpaval.addr;
len = val->vpaval.length;
r = -EINVAL;
if (addr && !vcpu->arch.vpa.next_gpa)
break;
r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
break;
case KVM_REG_PPC_VPA_DTL:
addr = val->vpaval.addr;
len = val->vpaval.length;
r = -EINVAL;
if (addr && (len < sizeof(struct dtl_entry) ||
!vcpu->arch.vpa.next_gpa))
break;
len -= len % sizeof(struct dtl_entry);
r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
break;
default:
r = -EINVAL;
break;
}
return r;
}
int kvmppc_core_check_processor_compat(void)
{
if (cpu_has_feature(CPU_FTR_HVMODE))
return 0;
return -EIO;
}
struct kvm_vcpu *kvmppc_core_vcpu_create(struct kvm *kvm, unsigned int id)
{
struct kvm_vcpu *vcpu;
int err = -EINVAL;
int core;
struct kvmppc_vcore *vcore;
core = id / threads_per_core;
if (core >= KVM_MAX_VCORES)
goto out;
err = -ENOMEM;
vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
if (!vcpu)
goto out;
err = kvm_vcpu_init(vcpu, kvm, id);
if (err)
goto free_vcpu;
vcpu->arch.shared = &vcpu->arch.shregs;
vcpu->arch.mmcr[0] = MMCR0_FC;
vcpu->arch.ctrl = CTRL_RUNLATCH;
/* default to host PVR, since we can't spoof it */
vcpu->arch.pvr = mfspr(SPRN_PVR);
kvmppc_set_pvr(vcpu, vcpu->arch.pvr);
spin_lock_init(&vcpu->arch.vpa_update_lock);
spin_lock_init(&vcpu->arch.tbacct_lock);
vcpu->arch.busy_preempt = TB_NIL;
kvmppc_mmu_book3s_hv_init(vcpu);
vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
init_waitqueue_head(&vcpu->arch.cpu_run);
mutex_lock(&kvm->lock);
vcore = kvm->arch.vcores[core];
if (!vcore) {
vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
if (vcore) {
INIT_LIST_HEAD(&vcore->runnable_threads);
spin_lock_init(&vcore->lock);
init_waitqueue_head(&vcore->wq);
vcore->preempt_tb = TB_NIL;
}
kvm->arch.vcores[core] = vcore;
kvm->arch.online_vcores++;
}
mutex_unlock(&kvm->lock);
if (!vcore)
goto free_vcpu;
spin_lock(&vcore->lock);
++vcore->num_threads;
spin_unlock(&vcore->lock);
vcpu->arch.vcore = vcore;
vcpu->arch.cpu_type = KVM_CPU_3S_64;
kvmppc_sanity_check(vcpu);
return vcpu;
free_vcpu:
kmem_cache_free(kvm_vcpu_cache, vcpu);
out:
return ERR_PTR(err);
}
void kvmppc_core_vcpu_free(struct kvm_vcpu *vcpu)
{
spin_lock(&vcpu->arch.vpa_update_lock);
if (vcpu->arch.dtl.pinned_addr)
kvmppc_unpin_guest_page(vcpu->kvm, vcpu->arch.dtl.pinned_addr);
if (vcpu->arch.slb_shadow.pinned_addr)
kvmppc_unpin_guest_page(vcpu->kvm, vcpu->arch.slb_shadow.pinned_addr);
if (vcpu->arch.vpa.pinned_addr)
kvmppc_unpin_guest_page(vcpu->kvm, vcpu->arch.vpa.pinned_addr);
spin_unlock(&vcpu->arch.vpa_update_lock);
kvm_vcpu_uninit(vcpu);
kmem_cache_free(kvm_vcpu_cache, vcpu);
}
static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
{
unsigned long dec_nsec, now;
now = get_tb();
if (now > vcpu->arch.dec_expires) {
/* decrementer has already gone negative */
kvmppc_core_queue_dec(vcpu);
kvmppc_core_prepare_to_enter(vcpu);
return;
}
dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
/ tb_ticks_per_sec;
hrtimer_start(&vcpu->arch.dec_timer, ktime_set(0, dec_nsec),
HRTIMER_MODE_REL);
vcpu->arch.timer_running = 1;
}
static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
{
vcpu->arch.ceded = 0;
if (vcpu->arch.timer_running) {
hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
vcpu->arch.timer_running = 0;
}
}
extern int __kvmppc_vcore_entry(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu);
extern void xics_wake_cpu(int cpu);
static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
struct kvm_vcpu *vcpu)
{
u64 now;
if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
return;
spin_lock(&vcpu->arch.tbacct_lock);
now = mftb();
vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
vcpu->arch.stolen_logged;
vcpu->arch.busy_preempt = now;
vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
spin_unlock(&vcpu->arch.tbacct_lock);
--vc->n_runnable;
list_del(&vcpu->arch.run_list);
}
static int kvmppc_grab_hwthread(int cpu)
{
struct paca_struct *tpaca;
long timeout = 1000;
tpaca = &paca[cpu];
/* Ensure the thread won't go into the kernel if it wakes */
tpaca->kvm_hstate.hwthread_req = 1;
tpaca->kvm_hstate.kvm_vcpu = NULL;
/*
* If the thread is already executing in the kernel (e.g. handling
* a stray interrupt), wait for it to get back to nap mode.
* The smp_mb() is to ensure that our setting of hwthread_req
* is visible before we look at hwthread_state, so if this
* races with the code at system_reset_pSeries and the thread
* misses our setting of hwthread_req, we are sure to see its
* setting of hwthread_state, and vice versa.
*/
smp_mb();
while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
if (--timeout <= 0) {
pr_err("KVM: couldn't grab cpu %d\n", cpu);
return -EBUSY;
}
udelay(1);
}
return 0;
}
static void kvmppc_release_hwthread(int cpu)
{
struct paca_struct *tpaca;
tpaca = &paca[cpu];
tpaca->kvm_hstate.hwthread_req = 0;
tpaca->kvm_hstate.kvm_vcpu = NULL;
}
static void kvmppc_start_thread(struct kvm_vcpu *vcpu)
{
int cpu;
struct paca_struct *tpaca;
struct kvmppc_vcore *vc = vcpu->arch.vcore;
if (vcpu->arch.timer_running) {
hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
vcpu->arch.timer_running = 0;
}
cpu = vc->pcpu + vcpu->arch.ptid;
tpaca = &paca[cpu];
tpaca->kvm_hstate.kvm_vcpu = vcpu;
tpaca->kvm_hstate.kvm_vcore = vc;
tpaca->kvm_hstate.napping = 0;
vcpu->cpu = vc->pcpu;
smp_wmb();
#if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
if (vcpu->arch.ptid) {
xics_wake_cpu(cpu);
++vc->n_woken;
}
#endif
}
static void kvmppc_wait_for_nap(struct kvmppc_vcore *vc)
{
int i;
HMT_low();
i = 0;
while (vc->nap_count < vc->n_woken) {
if (++i >= 1000000) {
pr_err("kvmppc_wait_for_nap timeout %d %d\n",
vc->nap_count, vc->n_woken);
break;
}
cpu_relax();
}
HMT_medium();
}
/*
* Check that we are on thread 0 and that any other threads in
* this core are off-line. Then grab the threads so they can't
* enter the kernel.
*/
static int on_primary_thread(void)
{
int cpu = smp_processor_id();
int thr = cpu_thread_in_core(cpu);
if (thr)
return 0;
while (++thr < threads_per_core)
if (cpu_online(cpu + thr))
return 0;
/* Grab all hw threads so they can't go into the kernel */
for (thr = 1; thr < threads_per_core; ++thr) {
if (kvmppc_grab_hwthread(cpu + thr)) {
/* Couldn't grab one; let the others go */
do {
kvmppc_release_hwthread(cpu + thr);
} while (--thr > 0);
return 0;
}
}
return 1;
}
/*
* Run a set of guest threads on a physical core.
* Called with vc->lock held.
*/
static void kvmppc_run_core(struct kvmppc_vcore *vc)
{
struct kvm_vcpu *vcpu, *vcpu0, *vnext;
long ret;
u64 now;
int ptid, i, need_vpa_update;
int srcu_idx;
struct kvm_vcpu *vcpus_to_update[threads_per_core];
/* don't start if any threads have a signal pending */
need_vpa_update = 0;
list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
if (signal_pending(vcpu->arch.run_task))
return;
if (vcpu->arch.vpa.update_pending ||
vcpu->arch.slb_shadow.update_pending ||
vcpu->arch.dtl.update_pending)
vcpus_to_update[need_vpa_update++] = vcpu;
}
/*
* Initialize *vc, in particular vc->vcore_state, so we can
* drop the vcore lock if necessary.
*/
vc->n_woken = 0;
vc->nap_count = 0;
vc->entry_exit_count = 0;
vc->vcore_state = VCORE_STARTING;
vc->in_guest = 0;
vc->napping_threads = 0;
/*
* Updating any of the vpas requires calling kvmppc_pin_guest_page,
* which can't be called with any spinlocks held.
*/
if (need_vpa_update) {
spin_unlock(&vc->lock);
for (i = 0; i < need_vpa_update; ++i)
kvmppc_update_vpas(vcpus_to_update[i]);
spin_lock(&vc->lock);
}
/*
* Assign physical thread IDs, first to non-ceded vcpus
* and then to ceded ones.
*/
ptid = 0;
vcpu0 = NULL;
list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
if (!vcpu->arch.ceded) {
if (!ptid)
vcpu0 = vcpu;
vcpu->arch.ptid = ptid++;
}
}
if (!vcpu0)
goto out; /* nothing to run; should never happen */
list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
if (vcpu->arch.ceded)
vcpu->arch.ptid = ptid++;
/*
* Make sure we are running on thread 0, and that
* secondary threads are offline.
*/
if (threads_per_core > 1 && !on_primary_thread()) {
list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
vcpu->arch.ret = -EBUSY;
goto out;
}
vc->pcpu = smp_processor_id();
list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
kvmppc_start_thread(vcpu);
kvmppc_create_dtl_entry(vcpu, vc);
}
vc->vcore_state = VCORE_RUNNING;
preempt_disable();
spin_unlock(&vc->lock);
kvm_guest_enter();
srcu_idx = srcu_read_lock(&vcpu0->kvm->srcu);
__kvmppc_vcore_entry(NULL, vcpu0);
spin_lock(&vc->lock);
/* disable sending of IPIs on virtual external irqs */
list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
vcpu->cpu = -1;
/* wait for secondary threads to finish writing their state to memory */
if (vc->nap_count < vc->n_woken)
kvmppc_wait_for_nap(vc);
for (i = 0; i < threads_per_core; ++i)
kvmppc_release_hwthread(vc->pcpu + i);
/* prevent other vcpu threads from doing kvmppc_start_thread() now */
vc->vcore_state = VCORE_EXITING;
spin_unlock(&vc->lock);
srcu_read_unlock(&vcpu0->kvm->srcu, srcu_idx);
/* make sure updates to secondary vcpu structs are visible now */
smp_mb();
kvm_guest_exit();
preempt_enable();
kvm_resched(vcpu);
spin_lock(&vc->lock);
now = get_tb();
list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
/* cancel pending dec exception if dec is positive */
if (now < vcpu->arch.dec_expires &&
kvmppc_core_pending_dec(vcpu))
kvmppc_core_dequeue_dec(vcpu);
ret = RESUME_GUEST;
if (vcpu->arch.trap)
ret = kvmppc_handle_exit(vcpu->arch.kvm_run, vcpu,
vcpu->arch.run_task);
vcpu->arch.ret = ret;
vcpu->arch.trap = 0;
if (vcpu->arch.ceded) {
if (ret != RESUME_GUEST)
kvmppc_end_cede(vcpu);
else
kvmppc_set_timer(vcpu);
}
}
out:
vc->vcore_state = VCORE_INACTIVE;
list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads,
arch.run_list) {
if (vcpu->arch.ret != RESUME_GUEST) {
kvmppc_remove_runnable(vc, vcpu);
wake_up(&vcpu->arch.cpu_run);
}
}
}
/*
* Wait for some other vcpu thread to execute us, and
* wake us up when we need to handle something in the host.
*/
static void kvmppc_wait_for_exec(struct kvm_vcpu *vcpu, int wait_state)
{
DEFINE_WAIT(wait);
prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE)
schedule();
finish_wait(&vcpu->arch.cpu_run, &wait);
}
/*
* All the vcpus in this vcore are idle, so wait for a decrementer
* or external interrupt to one of the vcpus. vc->lock is held.
*/
static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
{
DEFINE_WAIT(wait);
prepare_to_wait(&vc->wq, &wait, TASK_INTERRUPTIBLE);
vc->vcore_state = VCORE_SLEEPING;
spin_unlock(&vc->lock);
schedule();
finish_wait(&vc->wq, &wait);
spin_lock(&vc->lock);
vc->vcore_state = VCORE_INACTIVE;
}
static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
{
int n_ceded;
struct kvmppc_vcore *vc;
struct kvm_vcpu *v, *vn;
kvm_run->exit_reason = 0;
vcpu->arch.ret = RESUME_GUEST;
vcpu->arch.trap = 0;
kvmppc_update_vpas(vcpu);
/*
* Synchronize with other threads in this virtual core
*/
vc = vcpu->arch.vcore;
spin_lock(&vc->lock);
vcpu->arch.ceded = 0;
vcpu->arch.run_task = current;
vcpu->arch.kvm_run = kvm_run;
vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
vcpu->arch.busy_preempt = TB_NIL;
list_add_tail(&vcpu->arch.run_list, &vc->runnable_threads);
++vc->n_runnable;
/*
* This happens the first time this is called for a vcpu.
* If the vcore is already running, we may be able to start
* this thread straight away and have it join in.
*/
if (!signal_pending(current)) {
if (vc->vcore_state == VCORE_RUNNING &&
VCORE_EXIT_COUNT(vc) == 0) {
vcpu->arch.ptid = vc->n_runnable - 1;
kvmppc_create_dtl_entry(vcpu, vc);
kvmppc_start_thread(vcpu);
} else if (vc->vcore_state == VCORE_SLEEPING) {
wake_up(&vc->wq);
}
}
while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
!signal_pending(current)) {
if (vc->vcore_state != VCORE_INACTIVE) {
spin_unlock(&vc->lock);
kvmppc_wait_for_exec(vcpu, TASK_INTERRUPTIBLE);
spin_lock(&vc->lock);
continue;
}
list_for_each_entry_safe(v, vn, &vc->runnable_threads,
arch.run_list) {
kvmppc_core_prepare_to_enter(v);
if (signal_pending(v->arch.run_task)) {
kvmppc_remove_runnable(vc, v);
v->stat.signal_exits++;
v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
v->arch.ret = -EINTR;
wake_up(&v->arch.cpu_run);
}
}
if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
break;
vc->runner = vcpu;
n_ceded = 0;
list_for_each_entry(v, &vc->runnable_threads, arch.run_list)
if (!v->arch.pending_exceptions)
n_ceded += v->arch.ceded;
if (n_ceded == vc->n_runnable)
kvmppc_vcore_blocked(vc);
else
kvmppc_run_core(vc);
vc->runner = NULL;
}
while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
(vc->vcore_state == VCORE_RUNNING ||
vc->vcore_state == VCORE_EXITING)) {
spin_unlock(&vc->lock);
kvmppc_wait_for_exec(vcpu, TASK_UNINTERRUPTIBLE);
spin_lock(&vc->lock);
}
if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
kvmppc_remove_runnable(vc, vcpu);
vcpu->stat.signal_exits++;
kvm_run->exit_reason = KVM_EXIT_INTR;
vcpu->arch.ret = -EINTR;
}
if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
/* Wake up some vcpu to run the core */
v = list_first_entry(&vc->runnable_threads,
struct kvm_vcpu, arch.run_list);
wake_up(&v->arch.cpu_run);
}
spin_unlock(&vc->lock);
return vcpu->arch.ret;
}
int kvmppc_vcpu_run(struct kvm_run *run, struct kvm_vcpu *vcpu)
{
int r;
int srcu_idx;
if (!vcpu->arch.sane) {
run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
return -EINVAL;
}
kvmppc_core_prepare_to_enter(vcpu);
/* No need to go into the guest when all we'll do is come back out */
if (signal_pending(current)) {
run->exit_reason = KVM_EXIT_INTR;
return -EINTR;
}
atomic_inc(&vcpu->kvm->arch.vcpus_running);
/* Order vcpus_running vs. rma_setup_done, see kvmppc_alloc_reset_hpt */
smp_mb();
/* On the first time here, set up HTAB and VRMA or RMA */
if (!vcpu->kvm->arch.rma_setup_done) {
r = kvmppc_hv_setup_htab_rma(vcpu);
if (r)
goto out;
}
flush_fp_to_thread(current);
flush_altivec_to_thread(current);
flush_vsx_to_thread(current);
vcpu->arch.wqp = &vcpu->arch.vcore->wq;
vcpu->arch.pgdir = current->mm->pgd;
vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
do {
r = kvmppc_run_vcpu(run, vcpu);
if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
!(vcpu->arch.shregs.msr & MSR_PR)) {
r = kvmppc_pseries_do_hcall(vcpu);
kvmppc_core_prepare_to_enter(vcpu);
} else if (r == RESUME_PAGE_FAULT) {
srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
r = kvmppc_book3s_hv_page_fault(run, vcpu,
vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
}
} while (r == RESUME_GUEST);
out:
vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
atomic_dec(&vcpu->kvm->arch.vcpus_running);
return r;
}
/* Work out RMLS (real mode limit selector) field value for a given RMA size.
Assumes POWER7 or PPC970. */
static inline int lpcr_rmls(unsigned long rma_size)
{
switch (rma_size) {
case 32ul << 20: /* 32 MB */
if (cpu_has_feature(CPU_FTR_ARCH_206))
return 8; /* only supported on POWER7 */
return -1;
case 64ul << 20: /* 64 MB */
return 3;
case 128ul << 20: /* 128 MB */
return 7;
case 256ul << 20: /* 256 MB */
return 4;
case 1ul << 30: /* 1 GB */
return 2;
case 16ul << 30: /* 16 GB */
return 1;
case 256ul << 30: /* 256 GB */
return 0;
default:
return -1;
}
}
static int kvm_rma_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
struct kvmppc_linear_info *ri = vma->vm_file->private_data;
struct page *page;
if (vmf->pgoff >= ri->npages)
return VM_FAULT_SIGBUS;
page = pfn_to_page(ri->base_pfn + vmf->pgoff);
get_page(page);
vmf->page = page;
return 0;
}
static const struct vm_operations_struct kvm_rma_vm_ops = {
.fault = kvm_rma_fault,
};
static int kvm_rma_mmap(struct file *file, struct vm_area_struct *vma)
{
vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
vma->vm_ops = &kvm_rma_vm_ops;
return 0;
}
static int kvm_rma_release(struct inode *inode, struct file *filp)
{
struct kvmppc_linear_info *ri = filp->private_data;
kvm_release_rma(ri);
return 0;
}
static struct file_operations kvm_rma_fops = {
.mmap = kvm_rma_mmap,
.release = kvm_rma_release,
};
long kvm_vm_ioctl_allocate_rma(struct kvm *kvm, struct kvm_allocate_rma *ret)
{
struct kvmppc_linear_info *ri;
long fd;
ri = kvm_alloc_rma();
if (!ri)
return -ENOMEM;
fd = anon_inode_getfd("kvm-rma", &kvm_rma_fops, ri, O_RDWR);
if (fd < 0)
kvm_release_rma(ri);
ret->rma_size = ri->npages << PAGE_SHIFT;
return fd;
}
static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
int linux_psize)
{
struct mmu_psize_def *def = &mmu_psize_defs[linux_psize];
if (!def->shift)
return;
(*sps)->page_shift = def->shift;
(*sps)->slb_enc = def->sllp;
(*sps)->enc[0].page_shift = def->shift;
(*sps)->enc[0].pte_enc = def->penc;
(*sps)++;
}
int kvm_vm_ioctl_get_smmu_info(struct kvm *kvm, struct kvm_ppc_smmu_info *info)
{
struct kvm_ppc_one_seg_page_size *sps;
info->flags = KVM_PPC_PAGE_SIZES_REAL;
if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
info->flags |= KVM_PPC_1T_SEGMENTS;
info->slb_size = mmu_slb_size;
/* We only support these sizes for now, and no muti-size segments */
sps = &info->sps[0];
kvmppc_add_seg_page_size(&sps, MMU_PAGE_4K);
kvmppc_add_seg_page_size(&sps, MMU_PAGE_64K);
kvmppc_add_seg_page_size(&sps, MMU_PAGE_16M);
return 0;
}
/*
* Get (and clear) the dirty memory log for a memory slot.
*/
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
{
struct kvm_memory_slot *memslot;
int r;
unsigned long n;
mutex_lock(&kvm->slots_lock);
r = -EINVAL;
if (log->slot >= KVM_MEMORY_SLOTS)
goto out;
memslot = id_to_memslot(kvm->memslots, log->slot);
r = -ENOENT;
if (!memslot->dirty_bitmap)
goto out;
n = kvm_dirty_bitmap_bytes(memslot);
memset(memslot->dirty_bitmap, 0, n);
r = kvmppc_hv_get_dirty_log(kvm, memslot, memslot->dirty_bitmap);
if (r)
goto out;
r = -EFAULT;
if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
goto out;
r = 0;
out:
mutex_unlock(&kvm->slots_lock);
return r;
}
static void unpin_slot(struct kvm_memory_slot *memslot)
{
unsigned long *physp;
unsigned long j, npages, pfn;
struct page *page;
physp = memslot->arch.slot_phys;
npages = memslot->npages;
if (!physp)
return;
for (j = 0; j < npages; j++) {
if (!(physp[j] & KVMPPC_GOT_PAGE))
continue;
pfn = physp[j] >> PAGE_SHIFT;
page = pfn_to_page(pfn);
SetPageDirty(page);
put_page(page);
}
}
void kvmppc_core_free_memslot(struct kvm_memory_slot *free,
struct kvm_memory_slot *dont)
{
if (!dont || free->arch.rmap != dont->arch.rmap) {
vfree(free->arch.rmap);
free->arch.rmap = NULL;
}
if (!dont || free->arch.slot_phys != dont->arch.slot_phys) {
unpin_slot(free);
vfree(free->arch.slot_phys);
free->arch.slot_phys = NULL;
}
}
int kvmppc_core_create_memslot(struct kvm_memory_slot *slot,
unsigned long npages)
{
slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap));
if (!slot->arch.rmap)
return -ENOMEM;
slot->arch.slot_phys = NULL;
return 0;
}
int kvmppc_core_prepare_memory_region(struct kvm *kvm,
struct kvm_memory_slot *memslot,
struct kvm_userspace_memory_region *mem)
{
unsigned long *phys;
/* Allocate a slot_phys array if needed */
phys = memslot->arch.slot_phys;
if (!kvm->arch.using_mmu_notifiers && !phys && memslot->npages) {
phys = vzalloc(memslot->npages * sizeof(unsigned long));
if (!phys)
return -ENOMEM;
memslot->arch.slot_phys = phys;
}
return 0;
}
void kvmppc_core_commit_memory_region(struct kvm *kvm,
struct kvm_userspace_memory_region *mem,
struct kvm_memory_slot old)
{
unsigned long npages = mem->memory_size >> PAGE_SHIFT;
struct kvm_memory_slot *memslot;
if (npages && old.npages) {
/*
* If modifying a memslot, reset all the rmap dirty bits.
* If this is a new memslot, we don't need to do anything
* since the rmap array starts out as all zeroes,
* i.e. no pages are dirty.
*/
memslot = id_to_memslot(kvm->memslots, mem->slot);
kvmppc_hv_get_dirty_log(kvm, memslot, NULL);
}
}
static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
{
int err = 0;
struct kvm *kvm = vcpu->kvm;
struct kvmppc_linear_info *ri = NULL;
unsigned long hva;
struct kvm_memory_slot *memslot;
struct vm_area_struct *vma;
unsigned long lpcr, senc;
unsigned long psize, porder;
unsigned long rma_size;
unsigned long rmls;
unsigned long *physp;
unsigned long i, npages;
int srcu_idx;
mutex_lock(&kvm->lock);
if (kvm->arch.rma_setup_done)
goto out; /* another vcpu beat us to it */
/* Allocate hashed page table (if not done already) and reset it */
if (!kvm->arch.hpt_virt) {
err = kvmppc_alloc_hpt(kvm, NULL);
if (err) {
pr_err("KVM: Couldn't alloc HPT\n");
goto out;
}
}
/* Look up the memslot for guest physical address 0 */
srcu_idx = srcu_read_lock(&kvm->srcu);
memslot = gfn_to_memslot(kvm, 0);
/* We must have some memory at 0 by now */
err = -EINVAL;
if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
goto out_srcu;
/* Look up the VMA for the start of this memory slot */
hva = memslot->userspace_addr;
down_read(&current->mm->mmap_sem);
vma = find_vma(current->mm, hva);
if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
goto up_out;
psize = vma_kernel_pagesize(vma);
porder = __ilog2(psize);
/* Is this one of our preallocated RMAs? */
if (vma->vm_file && vma->vm_file->f_op == &kvm_rma_fops &&
hva == vma->vm_start)
ri = vma->vm_file->private_data;
up_read(&current->mm->mmap_sem);
if (!ri) {
/* On POWER7, use VRMA; on PPC970, give up */
err = -EPERM;
if (cpu_has_feature(CPU_FTR_ARCH_201)) {
pr_err("KVM: CPU requires an RMO\n");
goto out_srcu;
}
/* We can handle 4k, 64k or 16M pages in the VRMA */
err = -EINVAL;
if (!(psize == 0x1000 || psize == 0x10000 ||
psize == 0x1000000))
goto out_srcu;
/* Update VRMASD field in the LPCR */
senc = slb_pgsize_encoding(psize);
kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
(VRMA_VSID << SLB_VSID_SHIFT_1T);
lpcr = kvm->arch.lpcr & ~LPCR_VRMASD;
lpcr |= senc << (LPCR_VRMASD_SH - 4);
kvm->arch.lpcr = lpcr;
/* Create HPTEs in the hash page table for the VRMA */
kvmppc_map_vrma(vcpu, memslot, porder);
} else {
/* Set up to use an RMO region */
rma_size = ri->npages;
if (rma_size > memslot->npages)
rma_size = memslot->npages;
rma_size <<= PAGE_SHIFT;
rmls = lpcr_rmls(rma_size);
err = -EINVAL;
if (rmls < 0) {
pr_err("KVM: Can't use RMA of 0x%lx bytes\n", rma_size);
goto out_srcu;
}
atomic_inc(&ri->use_count);
kvm->arch.rma = ri;
/* Update LPCR and RMOR */
lpcr = kvm->arch.lpcr;
if (cpu_has_feature(CPU_FTR_ARCH_201)) {
/* PPC970; insert RMLS value (split field) in HID4 */
lpcr &= ~((1ul << HID4_RMLS0_SH) |
(3ul << HID4_RMLS2_SH));
lpcr |= ((rmls >> 2) << HID4_RMLS0_SH) |
((rmls & 3) << HID4_RMLS2_SH);
/* RMOR is also in HID4 */
lpcr |= ((ri->base_pfn >> (26 - PAGE_SHIFT)) & 0xffff)
<< HID4_RMOR_SH;
} else {
/* POWER7 */
lpcr &= ~(LPCR_VPM0 | LPCR_VRMA_L);
lpcr |= rmls << LPCR_RMLS_SH;
kvm->arch.rmor = kvm->arch.rma->base_pfn << PAGE_SHIFT;
}
kvm->arch.lpcr = lpcr;
pr_info("KVM: Using RMO at %lx size %lx (LPCR = %lx)\n",
ri->base_pfn << PAGE_SHIFT, rma_size, lpcr);
/* Initialize phys addrs of pages in RMO */
npages = ri->npages;
porder = __ilog2(npages);
physp = memslot->arch.slot_phys;
if (physp) {
if (npages > memslot->npages)
npages = memslot->npages;
spin_lock(&kvm->arch.slot_phys_lock);
for (i = 0; i < npages; ++i)
physp[i] = ((ri->base_pfn + i) << PAGE_SHIFT) +
porder;
spin_unlock(&kvm->arch.slot_phys_lock);
}
}
/* Order updates to kvm->arch.lpcr etc. vs. rma_setup_done */
smp_wmb();
kvm->arch.rma_setup_done = 1;
err = 0;
out_srcu:
srcu_read_unlock(&kvm->srcu, srcu_idx);
out:
mutex_unlock(&kvm->lock);
return err;
up_out:
up_read(&current->mm->mmap_sem);
goto out;
}
int kvmppc_core_init_vm(struct kvm *kvm)
{
unsigned long lpcr, lpid;
/* Allocate the guest's logical partition ID */
lpid = kvmppc_alloc_lpid();
if (lpid < 0)
return -ENOMEM;
kvm->arch.lpid = lpid;
/*
* Since we don't flush the TLB when tearing down a VM,
* and this lpid might have previously been used,
* make sure we flush on each core before running the new VM.
*/
cpumask_setall(&kvm->arch.need_tlb_flush);
INIT_LIST_HEAD(&kvm->arch.spapr_tce_tables);
kvm->arch.rma = NULL;
kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
if (cpu_has_feature(CPU_FTR_ARCH_201)) {
/* PPC970; HID4 is effectively the LPCR */
kvm->arch.host_lpid = 0;
kvm->arch.host_lpcr = lpcr = mfspr(SPRN_HID4);
lpcr &= ~((3 << HID4_LPID1_SH) | (0xful << HID4_LPID5_SH));
lpcr |= ((lpid >> 4) << HID4_LPID1_SH) |
((lpid & 0xf) << HID4_LPID5_SH);
} else {
/* POWER7; init LPCR for virtual RMA mode */
kvm->arch.host_lpid = mfspr(SPRN_LPID);
kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
lpcr &= LPCR_PECE | LPCR_LPES;
lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
LPCR_VPM0 | LPCR_VPM1;
kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
(VRMA_VSID << SLB_VSID_SHIFT_1T);
}
kvm->arch.lpcr = lpcr;
kvm->arch.using_mmu_notifiers = !!cpu_has_feature(CPU_FTR_ARCH_206);
spin_lock_init(&kvm->arch.slot_phys_lock);
/*
* Don't allow secondary CPU threads to come online
* while any KVM VMs exist.
*/
inhibit_secondary_onlining();
return 0;
}
void kvmppc_core_destroy_vm(struct kvm *kvm)
{
uninhibit_secondary_onlining();
if (kvm->arch.rma) {
kvm_release_rma(kvm->arch.rma);
kvm->arch.rma = NULL;
}
kvmppc_free_hpt(kvm);
WARN_ON(!list_empty(&kvm->arch.spapr_tce_tables));
}
/* These are stubs for now */
void kvmppc_mmu_pte_pflush(struct kvm_vcpu *vcpu, ulong pa_start, ulong pa_end)
{
}
/* We don't need to emulate any privileged instructions or dcbz */
int kvmppc_core_emulate_op(struct kvm_run *run, struct kvm_vcpu *vcpu,
unsigned int inst, int *advance)
{
return EMULATE_FAIL;
}
int kvmppc_core_emulate_mtspr(struct kvm_vcpu *vcpu, int sprn, ulong spr_val)
{
return EMULATE_FAIL;
}
int kvmppc_core_emulate_mfspr(struct kvm_vcpu *vcpu, int sprn, ulong *spr_val)
{
return EMULATE_FAIL;
}
static int kvmppc_book3s_hv_init(void)
{
int r;
r = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
if (r)
return r;
r = kvmppc_mmu_hv_init();
return r;
}
static void kvmppc_book3s_hv_exit(void)
{
kvm_exit();
}
module_init(kvmppc_book3s_hv_init);
module_exit(kvmppc_book3s_hv_exit);