mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-26 09:39:39 +07:00
661ea25e53
The current codebase makes use of one-element arrays in the following
form:
struct something {
int length;
u8 data[1];
};
struct something *instance;
instance = kmalloc(sizeof(*instance) + size, GFP_KERNEL);
instance->length = size;
memcpy(instance->data, source, size);
but the preferred mechanism to declare variable-length types such as
these ones is a flexible array member[1][2], introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on. So, replace
the one-element array with a flexible-array member.
Also, make use of the new struct_size() helper to properly calculate the
size of struct qe_firmware.
This issue was found with the help of Coccinelle and, audited and fixed
_manually_.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 7649773293
("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavoars@kernel.org>
Reviewed-by: Qiang Zhao <qiang.zhao@nxp.com>
Signed-off-by: Li Yang <leoyang.li@nxp.com>
682 lines
17 KiB
C
682 lines
17 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
* Copyright (C) 2006-2010 Freescale Semiconductor, Inc. All rights reserved.
|
|
*
|
|
* Authors: Shlomi Gridish <gridish@freescale.com>
|
|
* Li Yang <leoli@freescale.com>
|
|
* Based on cpm2_common.c from Dan Malek (dmalek@jlc.net)
|
|
*
|
|
* Description:
|
|
* General Purpose functions for the global management of the
|
|
* QUICC Engine (QE).
|
|
*/
|
|
#include <linux/bitmap.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/param.h>
|
|
#include <linux/string.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/module.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/ioport.h>
|
|
#include <linux/iopoll.h>
|
|
#include <linux/crc32.h>
|
|
#include <linux/mod_devicetable.h>
|
|
#include <linux/of_platform.h>
|
|
#include <soc/fsl/qe/immap_qe.h>
|
|
#include <soc/fsl/qe/qe.h>
|
|
|
|
static void qe_snums_init(void);
|
|
static int qe_sdma_init(void);
|
|
|
|
static DEFINE_SPINLOCK(qe_lock);
|
|
DEFINE_SPINLOCK(cmxgcr_lock);
|
|
EXPORT_SYMBOL(cmxgcr_lock);
|
|
|
|
/* We allocate this here because it is used almost exclusively for
|
|
* the communication processor devices.
|
|
*/
|
|
struct qe_immap __iomem *qe_immr;
|
|
EXPORT_SYMBOL(qe_immr);
|
|
|
|
static u8 snums[QE_NUM_OF_SNUM]; /* Dynamically allocated SNUMs */
|
|
static DECLARE_BITMAP(snum_state, QE_NUM_OF_SNUM);
|
|
static unsigned int qe_num_of_snum;
|
|
|
|
static phys_addr_t qebase = -1;
|
|
|
|
static struct device_node *qe_get_device_node(void)
|
|
{
|
|
struct device_node *qe;
|
|
|
|
/*
|
|
* Newer device trees have an "fsl,qe" compatible property for the QE
|
|
* node, but we still need to support older device trees.
|
|
*/
|
|
qe = of_find_compatible_node(NULL, NULL, "fsl,qe");
|
|
if (qe)
|
|
return qe;
|
|
return of_find_node_by_type(NULL, "qe");
|
|
}
|
|
|
|
static phys_addr_t get_qe_base(void)
|
|
{
|
|
struct device_node *qe;
|
|
int ret;
|
|
struct resource res;
|
|
|
|
if (qebase != -1)
|
|
return qebase;
|
|
|
|
qe = qe_get_device_node();
|
|
if (!qe)
|
|
return qebase;
|
|
|
|
ret = of_address_to_resource(qe, 0, &res);
|
|
if (!ret)
|
|
qebase = res.start;
|
|
of_node_put(qe);
|
|
|
|
return qebase;
|
|
}
|
|
|
|
void qe_reset(void)
|
|
{
|
|
if (qe_immr == NULL)
|
|
qe_immr = ioremap(get_qe_base(), QE_IMMAP_SIZE);
|
|
|
|
qe_snums_init();
|
|
|
|
qe_issue_cmd(QE_RESET, QE_CR_SUBBLOCK_INVALID,
|
|
QE_CR_PROTOCOL_UNSPECIFIED, 0);
|
|
|
|
/* Reclaim the MURAM memory for our use. */
|
|
qe_muram_init();
|
|
|
|
if (qe_sdma_init())
|
|
panic("sdma init failed!");
|
|
}
|
|
|
|
int qe_issue_cmd(u32 cmd, u32 device, u8 mcn_protocol, u32 cmd_input)
|
|
{
|
|
unsigned long flags;
|
|
u8 mcn_shift = 0, dev_shift = 0;
|
|
u32 val;
|
|
int ret;
|
|
|
|
spin_lock_irqsave(&qe_lock, flags);
|
|
if (cmd == QE_RESET) {
|
|
qe_iowrite32be((u32)(cmd | QE_CR_FLG), &qe_immr->cp.cecr);
|
|
} else {
|
|
if (cmd == QE_ASSIGN_PAGE) {
|
|
/* Here device is the SNUM, not sub-block */
|
|
dev_shift = QE_CR_SNUM_SHIFT;
|
|
} else if (cmd == QE_ASSIGN_RISC) {
|
|
/* Here device is the SNUM, and mcnProtocol is
|
|
* e_QeCmdRiscAssignment value */
|
|
dev_shift = QE_CR_SNUM_SHIFT;
|
|
mcn_shift = QE_CR_MCN_RISC_ASSIGN_SHIFT;
|
|
} else {
|
|
if (device == QE_CR_SUBBLOCK_USB)
|
|
mcn_shift = QE_CR_MCN_USB_SHIFT;
|
|
else
|
|
mcn_shift = QE_CR_MCN_NORMAL_SHIFT;
|
|
}
|
|
|
|
qe_iowrite32be(cmd_input, &qe_immr->cp.cecdr);
|
|
qe_iowrite32be((cmd | QE_CR_FLG | ((u32)device << dev_shift) | (u32)mcn_protocol << mcn_shift),
|
|
&qe_immr->cp.cecr);
|
|
}
|
|
|
|
/* wait for the QE_CR_FLG to clear */
|
|
ret = readx_poll_timeout_atomic(qe_ioread32be, &qe_immr->cp.cecr, val,
|
|
(val & QE_CR_FLG) == 0, 0, 100);
|
|
/* On timeout, ret is -ETIMEDOUT, otherwise it will be 0. */
|
|
spin_unlock_irqrestore(&qe_lock, flags);
|
|
|
|
return ret == 0;
|
|
}
|
|
EXPORT_SYMBOL(qe_issue_cmd);
|
|
|
|
/* Set a baud rate generator. This needs lots of work. There are
|
|
* 16 BRGs, which can be connected to the QE channels or output
|
|
* as clocks. The BRGs are in two different block of internal
|
|
* memory mapped space.
|
|
* The BRG clock is the QE clock divided by 2.
|
|
* It was set up long ago during the initial boot phase and is
|
|
* is given to us.
|
|
* Baud rate clocks are zero-based in the driver code (as that maps
|
|
* to port numbers). Documentation uses 1-based numbering.
|
|
*/
|
|
static unsigned int brg_clk = 0;
|
|
|
|
#define CLK_GRAN (1000)
|
|
#define CLK_GRAN_LIMIT (5)
|
|
|
|
unsigned int qe_get_brg_clk(void)
|
|
{
|
|
struct device_node *qe;
|
|
u32 brg;
|
|
unsigned int mod;
|
|
|
|
if (brg_clk)
|
|
return brg_clk;
|
|
|
|
qe = qe_get_device_node();
|
|
if (!qe)
|
|
return brg_clk;
|
|
|
|
if (!of_property_read_u32(qe, "brg-frequency", &brg))
|
|
brg_clk = brg;
|
|
|
|
of_node_put(qe);
|
|
|
|
/* round this if near to a multiple of CLK_GRAN */
|
|
mod = brg_clk % CLK_GRAN;
|
|
if (mod) {
|
|
if (mod < CLK_GRAN_LIMIT)
|
|
brg_clk -= mod;
|
|
else if (mod > (CLK_GRAN - CLK_GRAN_LIMIT))
|
|
brg_clk += CLK_GRAN - mod;
|
|
}
|
|
|
|
return brg_clk;
|
|
}
|
|
EXPORT_SYMBOL(qe_get_brg_clk);
|
|
|
|
#define PVR_VER_836x 0x8083
|
|
#define PVR_VER_832x 0x8084
|
|
|
|
static bool qe_general4_errata(void)
|
|
{
|
|
#ifdef CONFIG_PPC32
|
|
return pvr_version_is(PVR_VER_836x) || pvr_version_is(PVR_VER_832x);
|
|
#endif
|
|
return false;
|
|
}
|
|
|
|
/* Program the BRG to the given sampling rate and multiplier
|
|
*
|
|
* @brg: the BRG, QE_BRG1 - QE_BRG16
|
|
* @rate: the desired sampling rate
|
|
* @multiplier: corresponds to the value programmed in GUMR_L[RDCR] or
|
|
* GUMR_L[TDCR]. E.g., if this BRG is the RX clock, and GUMR_L[RDCR]=01,
|
|
* then 'multiplier' should be 8.
|
|
*/
|
|
int qe_setbrg(enum qe_clock brg, unsigned int rate, unsigned int multiplier)
|
|
{
|
|
u32 divisor, tempval;
|
|
u32 div16 = 0;
|
|
|
|
if ((brg < QE_BRG1) || (brg > QE_BRG16))
|
|
return -EINVAL;
|
|
|
|
divisor = qe_get_brg_clk() / (rate * multiplier);
|
|
|
|
if (divisor > QE_BRGC_DIVISOR_MAX + 1) {
|
|
div16 = QE_BRGC_DIV16;
|
|
divisor /= 16;
|
|
}
|
|
|
|
/* Errata QE_General4, which affects some MPC832x and MPC836x SOCs, says
|
|
that the BRG divisor must be even if you're not using divide-by-16
|
|
mode. */
|
|
if (qe_general4_errata())
|
|
if (!div16 && (divisor & 1) && (divisor > 3))
|
|
divisor++;
|
|
|
|
tempval = ((divisor - 1) << QE_BRGC_DIVISOR_SHIFT) |
|
|
QE_BRGC_ENABLE | div16;
|
|
|
|
qe_iowrite32be(tempval, &qe_immr->brg.brgc[brg - QE_BRG1]);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(qe_setbrg);
|
|
|
|
/* Convert a string to a QE clock source enum
|
|
*
|
|
* This function takes a string, typically from a property in the device
|
|
* tree, and returns the corresponding "enum qe_clock" value.
|
|
*/
|
|
enum qe_clock qe_clock_source(const char *source)
|
|
{
|
|
unsigned int i;
|
|
|
|
if (strcasecmp(source, "none") == 0)
|
|
return QE_CLK_NONE;
|
|
|
|
if (strcmp(source, "tsync_pin") == 0)
|
|
return QE_TSYNC_PIN;
|
|
|
|
if (strcmp(source, "rsync_pin") == 0)
|
|
return QE_RSYNC_PIN;
|
|
|
|
if (strncasecmp(source, "brg", 3) == 0) {
|
|
i = simple_strtoul(source + 3, NULL, 10);
|
|
if ((i >= 1) && (i <= 16))
|
|
return (QE_BRG1 - 1) + i;
|
|
else
|
|
return QE_CLK_DUMMY;
|
|
}
|
|
|
|
if (strncasecmp(source, "clk", 3) == 0) {
|
|
i = simple_strtoul(source + 3, NULL, 10);
|
|
if ((i >= 1) && (i <= 24))
|
|
return (QE_CLK1 - 1) + i;
|
|
else
|
|
return QE_CLK_DUMMY;
|
|
}
|
|
|
|
return QE_CLK_DUMMY;
|
|
}
|
|
EXPORT_SYMBOL(qe_clock_source);
|
|
|
|
/* Initialize SNUMs (thread serial numbers) according to
|
|
* QE Module Control chapter, SNUM table
|
|
*/
|
|
static void qe_snums_init(void)
|
|
{
|
|
static const u8 snum_init_76[] = {
|
|
0x04, 0x05, 0x0C, 0x0D, 0x14, 0x15, 0x1C, 0x1D,
|
|
0x24, 0x25, 0x2C, 0x2D, 0x34, 0x35, 0x88, 0x89,
|
|
0x98, 0x99, 0xA8, 0xA9, 0xB8, 0xB9, 0xC8, 0xC9,
|
|
0xD8, 0xD9, 0xE8, 0xE9, 0x44, 0x45, 0x4C, 0x4D,
|
|
0x54, 0x55, 0x5C, 0x5D, 0x64, 0x65, 0x6C, 0x6D,
|
|
0x74, 0x75, 0x7C, 0x7D, 0x84, 0x85, 0x8C, 0x8D,
|
|
0x94, 0x95, 0x9C, 0x9D, 0xA4, 0xA5, 0xAC, 0xAD,
|
|
0xB4, 0xB5, 0xBC, 0xBD, 0xC4, 0xC5, 0xCC, 0xCD,
|
|
0xD4, 0xD5, 0xDC, 0xDD, 0xE4, 0xE5, 0xEC, 0xED,
|
|
0xF4, 0xF5, 0xFC, 0xFD,
|
|
};
|
|
static const u8 snum_init_46[] = {
|
|
0x04, 0x05, 0x0C, 0x0D, 0x14, 0x15, 0x1C, 0x1D,
|
|
0x24, 0x25, 0x2C, 0x2D, 0x34, 0x35, 0x88, 0x89,
|
|
0x98, 0x99, 0xA8, 0xA9, 0xB8, 0xB9, 0xC8, 0xC9,
|
|
0xD8, 0xD9, 0xE8, 0xE9, 0x08, 0x09, 0x18, 0x19,
|
|
0x28, 0x29, 0x38, 0x39, 0x48, 0x49, 0x58, 0x59,
|
|
0x68, 0x69, 0x78, 0x79, 0x80, 0x81,
|
|
};
|
|
struct device_node *qe;
|
|
const u8 *snum_init;
|
|
int i;
|
|
|
|
bitmap_zero(snum_state, QE_NUM_OF_SNUM);
|
|
qe_num_of_snum = 28; /* The default number of snum for threads is 28 */
|
|
qe = qe_get_device_node();
|
|
if (qe) {
|
|
i = of_property_read_variable_u8_array(qe, "fsl,qe-snums",
|
|
snums, 1, QE_NUM_OF_SNUM);
|
|
if (i > 0) {
|
|
of_node_put(qe);
|
|
qe_num_of_snum = i;
|
|
return;
|
|
}
|
|
/*
|
|
* Fall back to legacy binding of using the value of
|
|
* fsl,qe-num-snums to choose one of the static arrays
|
|
* above.
|
|
*/
|
|
of_property_read_u32(qe, "fsl,qe-num-snums", &qe_num_of_snum);
|
|
of_node_put(qe);
|
|
}
|
|
|
|
if (qe_num_of_snum == 76) {
|
|
snum_init = snum_init_76;
|
|
} else if (qe_num_of_snum == 28 || qe_num_of_snum == 46) {
|
|
snum_init = snum_init_46;
|
|
} else {
|
|
pr_err("QE: unsupported value of fsl,qe-num-snums: %u\n", qe_num_of_snum);
|
|
return;
|
|
}
|
|
memcpy(snums, snum_init, qe_num_of_snum);
|
|
}
|
|
|
|
int qe_get_snum(void)
|
|
{
|
|
unsigned long flags;
|
|
int snum = -EBUSY;
|
|
int i;
|
|
|
|
spin_lock_irqsave(&qe_lock, flags);
|
|
i = find_first_zero_bit(snum_state, qe_num_of_snum);
|
|
if (i < qe_num_of_snum) {
|
|
set_bit(i, snum_state);
|
|
snum = snums[i];
|
|
}
|
|
spin_unlock_irqrestore(&qe_lock, flags);
|
|
|
|
return snum;
|
|
}
|
|
EXPORT_SYMBOL(qe_get_snum);
|
|
|
|
void qe_put_snum(u8 snum)
|
|
{
|
|
const u8 *p = memchr(snums, snum, qe_num_of_snum);
|
|
|
|
if (p)
|
|
clear_bit(p - snums, snum_state);
|
|
}
|
|
EXPORT_SYMBOL(qe_put_snum);
|
|
|
|
static int qe_sdma_init(void)
|
|
{
|
|
struct sdma __iomem *sdma = &qe_immr->sdma;
|
|
static s32 sdma_buf_offset = -ENOMEM;
|
|
|
|
/* allocate 2 internal temporary buffers (512 bytes size each) for
|
|
* the SDMA */
|
|
if (sdma_buf_offset < 0) {
|
|
sdma_buf_offset = qe_muram_alloc(512 * 2, 4096);
|
|
if (sdma_buf_offset < 0)
|
|
return -ENOMEM;
|
|
}
|
|
|
|
qe_iowrite32be((u32)sdma_buf_offset & QE_SDEBCR_BA_MASK,
|
|
&sdma->sdebcr);
|
|
qe_iowrite32be((QE_SDMR_GLB_1_MSK | (0x1 << QE_SDMR_CEN_SHIFT)),
|
|
&sdma->sdmr);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* The maximum number of RISCs we support */
|
|
#define MAX_QE_RISC 4
|
|
|
|
/* Firmware information stored here for qe_get_firmware_info() */
|
|
static struct qe_firmware_info qe_firmware_info;
|
|
|
|
/*
|
|
* Set to 1 if QE firmware has been uploaded, and therefore
|
|
* qe_firmware_info contains valid data.
|
|
*/
|
|
static int qe_firmware_uploaded;
|
|
|
|
/*
|
|
* Upload a QE microcode
|
|
*
|
|
* This function is a worker function for qe_upload_firmware(). It does
|
|
* the actual uploading of the microcode.
|
|
*/
|
|
static void qe_upload_microcode(const void *base,
|
|
const struct qe_microcode *ucode)
|
|
{
|
|
const __be32 *code = base + be32_to_cpu(ucode->code_offset);
|
|
unsigned int i;
|
|
|
|
if (ucode->major || ucode->minor || ucode->revision)
|
|
printk(KERN_INFO "qe-firmware: "
|
|
"uploading microcode '%s' version %u.%u.%u\n",
|
|
ucode->id, ucode->major, ucode->minor, ucode->revision);
|
|
else
|
|
printk(KERN_INFO "qe-firmware: "
|
|
"uploading microcode '%s'\n", ucode->id);
|
|
|
|
/* Use auto-increment */
|
|
qe_iowrite32be(be32_to_cpu(ucode->iram_offset) | QE_IRAM_IADD_AIE | QE_IRAM_IADD_BADDR,
|
|
&qe_immr->iram.iadd);
|
|
|
|
for (i = 0; i < be32_to_cpu(ucode->count); i++)
|
|
qe_iowrite32be(be32_to_cpu(code[i]), &qe_immr->iram.idata);
|
|
|
|
/* Set I-RAM Ready Register */
|
|
qe_iowrite32be(QE_IRAM_READY, &qe_immr->iram.iready);
|
|
}
|
|
|
|
/*
|
|
* Upload a microcode to the I-RAM at a specific address.
|
|
*
|
|
* See Documentation/powerpc/qe_firmware.rst for information on QE microcode
|
|
* uploading.
|
|
*
|
|
* Currently, only version 1 is supported, so the 'version' field must be
|
|
* set to 1.
|
|
*
|
|
* The SOC model and revision are not validated, they are only displayed for
|
|
* informational purposes.
|
|
*
|
|
* 'calc_size' is the calculated size, in bytes, of the firmware structure and
|
|
* all of the microcode structures, minus the CRC.
|
|
*
|
|
* 'length' is the size that the structure says it is, including the CRC.
|
|
*/
|
|
int qe_upload_firmware(const struct qe_firmware *firmware)
|
|
{
|
|
unsigned int i;
|
|
unsigned int j;
|
|
u32 crc;
|
|
size_t calc_size;
|
|
size_t length;
|
|
const struct qe_header *hdr;
|
|
|
|
if (!firmware) {
|
|
printk(KERN_ERR "qe-firmware: invalid pointer\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
hdr = &firmware->header;
|
|
length = be32_to_cpu(hdr->length);
|
|
|
|
/* Check the magic */
|
|
if ((hdr->magic[0] != 'Q') || (hdr->magic[1] != 'E') ||
|
|
(hdr->magic[2] != 'F')) {
|
|
printk(KERN_ERR "qe-firmware: not a microcode\n");
|
|
return -EPERM;
|
|
}
|
|
|
|
/* Check the version */
|
|
if (hdr->version != 1) {
|
|
printk(KERN_ERR "qe-firmware: unsupported version\n");
|
|
return -EPERM;
|
|
}
|
|
|
|
/* Validate some of the fields */
|
|
if ((firmware->count < 1) || (firmware->count > MAX_QE_RISC)) {
|
|
printk(KERN_ERR "qe-firmware: invalid data\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Validate the length and check if there's a CRC */
|
|
calc_size = struct_size(firmware, microcode, firmware->count);
|
|
|
|
for (i = 0; i < firmware->count; i++)
|
|
/*
|
|
* For situations where the second RISC uses the same microcode
|
|
* as the first, the 'code_offset' and 'count' fields will be
|
|
* zero, so it's okay to add those.
|
|
*/
|
|
calc_size += sizeof(__be32) *
|
|
be32_to_cpu(firmware->microcode[i].count);
|
|
|
|
/* Validate the length */
|
|
if (length != calc_size + sizeof(__be32)) {
|
|
printk(KERN_ERR "qe-firmware: invalid length\n");
|
|
return -EPERM;
|
|
}
|
|
|
|
/* Validate the CRC */
|
|
crc = be32_to_cpu(*(__be32 *)((void *)firmware + calc_size));
|
|
if (crc != crc32(0, firmware, calc_size)) {
|
|
printk(KERN_ERR "qe-firmware: firmware CRC is invalid\n");
|
|
return -EIO;
|
|
}
|
|
|
|
/*
|
|
* If the microcode calls for it, split the I-RAM.
|
|
*/
|
|
if (!firmware->split)
|
|
qe_setbits_be16(&qe_immr->cp.cercr, QE_CP_CERCR_CIR);
|
|
|
|
if (firmware->soc.model)
|
|
printk(KERN_INFO
|
|
"qe-firmware: firmware '%s' for %u V%u.%u\n",
|
|
firmware->id, be16_to_cpu(firmware->soc.model),
|
|
firmware->soc.major, firmware->soc.minor);
|
|
else
|
|
printk(KERN_INFO "qe-firmware: firmware '%s'\n",
|
|
firmware->id);
|
|
|
|
/*
|
|
* The QE only supports one microcode per RISC, so clear out all the
|
|
* saved microcode information and put in the new.
|
|
*/
|
|
memset(&qe_firmware_info, 0, sizeof(qe_firmware_info));
|
|
strlcpy(qe_firmware_info.id, firmware->id, sizeof(qe_firmware_info.id));
|
|
qe_firmware_info.extended_modes = be64_to_cpu(firmware->extended_modes);
|
|
memcpy(qe_firmware_info.vtraps, firmware->vtraps,
|
|
sizeof(firmware->vtraps));
|
|
|
|
/* Loop through each microcode. */
|
|
for (i = 0; i < firmware->count; i++) {
|
|
const struct qe_microcode *ucode = &firmware->microcode[i];
|
|
|
|
/* Upload a microcode if it's present */
|
|
if (ucode->code_offset)
|
|
qe_upload_microcode(firmware, ucode);
|
|
|
|
/* Program the traps for this processor */
|
|
for (j = 0; j < 16; j++) {
|
|
u32 trap = be32_to_cpu(ucode->traps[j]);
|
|
|
|
if (trap)
|
|
qe_iowrite32be(trap,
|
|
&qe_immr->rsp[i].tibcr[j]);
|
|
}
|
|
|
|
/* Enable traps */
|
|
qe_iowrite32be(be32_to_cpu(ucode->eccr),
|
|
&qe_immr->rsp[i].eccr);
|
|
}
|
|
|
|
qe_firmware_uploaded = 1;
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(qe_upload_firmware);
|
|
|
|
/*
|
|
* Get info on the currently-loaded firmware
|
|
*
|
|
* This function also checks the device tree to see if the boot loader has
|
|
* uploaded a firmware already.
|
|
*/
|
|
struct qe_firmware_info *qe_get_firmware_info(void)
|
|
{
|
|
static int initialized;
|
|
struct device_node *qe;
|
|
struct device_node *fw = NULL;
|
|
const char *sprop;
|
|
|
|
/*
|
|
* If we haven't checked yet, and a driver hasn't uploaded a firmware
|
|
* yet, then check the device tree for information.
|
|
*/
|
|
if (qe_firmware_uploaded)
|
|
return &qe_firmware_info;
|
|
|
|
if (initialized)
|
|
return NULL;
|
|
|
|
initialized = 1;
|
|
|
|
qe = qe_get_device_node();
|
|
if (!qe)
|
|
return NULL;
|
|
|
|
/* Find the 'firmware' child node */
|
|
fw = of_get_child_by_name(qe, "firmware");
|
|
of_node_put(qe);
|
|
|
|
/* Did we find the 'firmware' node? */
|
|
if (!fw)
|
|
return NULL;
|
|
|
|
qe_firmware_uploaded = 1;
|
|
|
|
/* Copy the data into qe_firmware_info*/
|
|
sprop = of_get_property(fw, "id", NULL);
|
|
if (sprop)
|
|
strlcpy(qe_firmware_info.id, sprop,
|
|
sizeof(qe_firmware_info.id));
|
|
|
|
of_property_read_u64(fw, "extended-modes",
|
|
&qe_firmware_info.extended_modes);
|
|
|
|
of_property_read_u32_array(fw, "virtual-traps", qe_firmware_info.vtraps,
|
|
ARRAY_SIZE(qe_firmware_info.vtraps));
|
|
|
|
of_node_put(fw);
|
|
|
|
return &qe_firmware_info;
|
|
}
|
|
EXPORT_SYMBOL(qe_get_firmware_info);
|
|
|
|
unsigned int qe_get_num_of_risc(void)
|
|
{
|
|
struct device_node *qe;
|
|
unsigned int num_of_risc = 0;
|
|
|
|
qe = qe_get_device_node();
|
|
if (!qe)
|
|
return num_of_risc;
|
|
|
|
of_property_read_u32(qe, "fsl,qe-num-riscs", &num_of_risc);
|
|
|
|
of_node_put(qe);
|
|
|
|
return num_of_risc;
|
|
}
|
|
EXPORT_SYMBOL(qe_get_num_of_risc);
|
|
|
|
unsigned int qe_get_num_of_snums(void)
|
|
{
|
|
return qe_num_of_snum;
|
|
}
|
|
EXPORT_SYMBOL(qe_get_num_of_snums);
|
|
|
|
static int __init qe_init(void)
|
|
{
|
|
struct device_node *np;
|
|
|
|
np = of_find_compatible_node(NULL, NULL, "fsl,qe");
|
|
if (!np)
|
|
return -ENODEV;
|
|
qe_reset();
|
|
of_node_put(np);
|
|
return 0;
|
|
}
|
|
subsys_initcall(qe_init);
|
|
|
|
#if defined(CONFIG_SUSPEND) && defined(CONFIG_PPC_85xx)
|
|
static int qe_resume(struct platform_device *ofdev)
|
|
{
|
|
if (!qe_alive_during_sleep())
|
|
qe_reset();
|
|
return 0;
|
|
}
|
|
|
|
static int qe_probe(struct platform_device *ofdev)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static const struct of_device_id qe_ids[] = {
|
|
{ .compatible = "fsl,qe", },
|
|
{ },
|
|
};
|
|
|
|
static struct platform_driver qe_driver = {
|
|
.driver = {
|
|
.name = "fsl-qe",
|
|
.of_match_table = qe_ids,
|
|
},
|
|
.probe = qe_probe,
|
|
.resume = qe_resume,
|
|
};
|
|
|
|
builtin_platform_driver(qe_driver);
|
|
#endif /* defined(CONFIG_SUSPEND) && defined(CONFIG_PPC_85xx) */
|