linux_dsm_epyc7002/arch/x86/kernel/cpu/perf_event_intel.c
Avi Kivity 0af3ac1fdb x86, perf: Add constraints for architectural PMU
The v1 PMU does not have any fixed counters.  Using the v2 constraints,
which do have fixed counters, causes an additional choice to be present
in the weight calculation, but not when actually scheduling the event,
leading to an event being not scheduled at all.

Signed-off-by: Avi Kivity <avi@redhat.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1309362157-6596-3-git-send-email-avi@redhat.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-07-01 11:06:39 +02:00

1643 lines
44 KiB
C

#ifdef CONFIG_CPU_SUP_INTEL
/*
* Per core/cpu state
*
* Used to coordinate shared registers between HT threads or
* among events on a single PMU.
*/
struct intel_shared_regs {
struct er_account regs[EXTRA_REG_MAX];
int refcnt; /* per-core: #HT threads */
unsigned core_id; /* per-core: core id */
};
/*
* Intel PerfMon, used on Core and later.
*/
static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
{
[PERF_COUNT_HW_CPU_CYCLES] = 0x003c,
[PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0,
[PERF_COUNT_HW_CACHE_REFERENCES] = 0x4f2e,
[PERF_COUNT_HW_CACHE_MISSES] = 0x412e,
[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c4,
[PERF_COUNT_HW_BRANCH_MISSES] = 0x00c5,
[PERF_COUNT_HW_BUS_CYCLES] = 0x013c,
};
static struct event_constraint intel_core_event_constraints[] __read_mostly =
{
INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
EVENT_CONSTRAINT_END
};
static struct event_constraint intel_core2_event_constraints[] __read_mostly =
{
FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
/*
* Core2 has Fixed Counter 2 listed as CPU_CLK_UNHALTED.REF and event
* 0x013c as CPU_CLK_UNHALTED.BUS and specifies there is a fixed
* ratio between these counters.
*/
/* FIXED_EVENT_CONSTRAINT(0x013c, 2), CPU_CLK_UNHALTED.REF */
INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
EVENT_CONSTRAINT_END
};
static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
{
FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
/* FIXED_EVENT_CONSTRAINT(0x013c, 2), CPU_CLK_UNHALTED.REF */
INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
EVENT_CONSTRAINT_END
};
static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
{
INTEL_EVENT_EXTRA_REG(0xb7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
EVENT_EXTRA_END
};
static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
{
FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
/* FIXED_EVENT_CONSTRAINT(0x013c, 2), CPU_CLK_UNHALTED.REF */
INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
EVENT_CONSTRAINT_END
};
static struct event_constraint intel_snb_event_constraints[] __read_mostly =
{
FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
/* FIXED_EVENT_CONSTRAINT(0x013c, 2), CPU_CLK_UNHALTED.REF */
INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
EVENT_CONSTRAINT_END
};
static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
{
INTEL_EVENT_EXTRA_REG(0xb7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
INTEL_EVENT_EXTRA_REG(0xbb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
EVENT_EXTRA_END
};
static struct event_constraint intel_v1_event_constraints[] __read_mostly =
{
EVENT_CONSTRAINT_END
};
static struct event_constraint intel_gen_event_constraints[] __read_mostly =
{
FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
/* FIXED_EVENT_CONSTRAINT(0x013c, 2), CPU_CLK_UNHALTED.REF */
EVENT_CONSTRAINT_END
};
static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
INTEL_EVENT_EXTRA_REG(0xb7, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0),
INTEL_EVENT_EXTRA_REG(0xbb, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1),
EVENT_EXTRA_END
};
static u64 intel_pmu_event_map(int hw_event)
{
return intel_perfmon_event_map[hw_event];
}
static __initconst const u64 snb_hw_cache_event_ids
[PERF_COUNT_HW_CACHE_MAX]
[PERF_COUNT_HW_CACHE_OP_MAX]
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
[ C(L1D) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS */
[ C(RESULT_MISS) ] = 0x0151, /* L1D.REPLACEMENT */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES */
[ C(RESULT_MISS) ] = 0x0851, /* L1D.ALL_M_REPLACEMENT */
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0x0,
[ C(RESULT_MISS) ] = 0x024e, /* HW_PRE_REQ.DL1_MISS */
},
},
[ C(L1I ) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x0,
[ C(RESULT_MISS) ] = 0x0280, /* ICACHE.MISSES */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0x0,
[ C(RESULT_MISS) ] = 0x0,
},
},
[ C(LL ) ] = {
[ C(OP_READ) ] = {
/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
[ C(RESULT_ACCESS) ] = 0x01b7,
/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
[ C(RESULT_MISS) ] = 0x01b7,
},
[ C(OP_WRITE) ] = {
/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
[ C(RESULT_ACCESS) ] = 0x01b7,
/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
[ C(RESULT_MISS) ] = 0x01b7,
},
[ C(OP_PREFETCH) ] = {
/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
[ C(RESULT_ACCESS) ] = 0x01b7,
/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
[ C(RESULT_MISS) ] = 0x01b7,
},
},
[ C(DTLB) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
[ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
[ C(RESULT_MISS) ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0x0,
[ C(RESULT_MISS) ] = 0x0,
},
},
[ C(ITLB) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT */
[ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
},
[ C(BPU ) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
[ C(RESULT_MISS) ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
},
[ C(NODE) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
},
};
static __initconst const u64 westmere_hw_cache_event_ids
[PERF_COUNT_HW_CACHE_MAX]
[PERF_COUNT_HW_CACHE_OP_MAX]
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
[ C(L1D) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
[ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
[ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
[ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
},
},
[ C(L1I ) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
[ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0x0,
[ C(RESULT_MISS) ] = 0x0,
},
},
[ C(LL ) ] = {
[ C(OP_READ) ] = {
/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
[ C(RESULT_ACCESS) ] = 0x01b7,
/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
[ C(RESULT_MISS) ] = 0x01b7,
},
/*
* Use RFO, not WRITEBACK, because a write miss would typically occur
* on RFO.
*/
[ C(OP_WRITE) ] = {
/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
[ C(RESULT_ACCESS) ] = 0x01b7,
/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
[ C(RESULT_MISS) ] = 0x01b7,
},
[ C(OP_PREFETCH) ] = {
/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
[ C(RESULT_ACCESS) ] = 0x01b7,
/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
[ C(RESULT_MISS) ] = 0x01b7,
},
},
[ C(DTLB) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
[ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
[ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0x0,
[ C(RESULT_MISS) ] = 0x0,
},
},
[ C(ITLB) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
[ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.ANY */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
},
[ C(BPU ) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
[ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
},
[ C(NODE) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x01b7,
[ C(RESULT_MISS) ] = 0x01b7,
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = 0x01b7,
[ C(RESULT_MISS) ] = 0x01b7,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0x01b7,
[ C(RESULT_MISS) ] = 0x01b7,
},
},
};
/*
* Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
* See IA32 SDM Vol 3B 30.6.1.3
*/
#define NHM_DMND_DATA_RD (1 << 0)
#define NHM_DMND_RFO (1 << 1)
#define NHM_DMND_IFETCH (1 << 2)
#define NHM_DMND_WB (1 << 3)
#define NHM_PF_DATA_RD (1 << 4)
#define NHM_PF_DATA_RFO (1 << 5)
#define NHM_PF_IFETCH (1 << 6)
#define NHM_OFFCORE_OTHER (1 << 7)
#define NHM_UNCORE_HIT (1 << 8)
#define NHM_OTHER_CORE_HIT_SNP (1 << 9)
#define NHM_OTHER_CORE_HITM (1 << 10)
/* reserved */
#define NHM_REMOTE_CACHE_FWD (1 << 12)
#define NHM_REMOTE_DRAM (1 << 13)
#define NHM_LOCAL_DRAM (1 << 14)
#define NHM_NON_DRAM (1 << 15)
#define NHM_ALL_DRAM (NHM_REMOTE_DRAM|NHM_LOCAL_DRAM)
#define NHM_DMND_READ (NHM_DMND_DATA_RD)
#define NHM_DMND_WRITE (NHM_DMND_RFO|NHM_DMND_WB)
#define NHM_DMND_PREFETCH (NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
#define NHM_L3_HIT (NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
#define NHM_L3_MISS (NHM_NON_DRAM|NHM_ALL_DRAM|NHM_REMOTE_CACHE_FWD)
#define NHM_L3_ACCESS (NHM_L3_HIT|NHM_L3_MISS)
static __initconst const u64 nehalem_hw_cache_extra_regs
[PERF_COUNT_HW_CACHE_MAX]
[PERF_COUNT_HW_CACHE_OP_MAX]
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
[ C(LL ) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
[ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_L3_MISS,
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
[ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_L3_MISS,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
[ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
},
},
[ C(NODE) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_ALL_DRAM,
[ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_REMOTE_DRAM,
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_ALL_DRAM,
[ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_REMOTE_DRAM,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_ALL_DRAM,
[ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_REMOTE_DRAM,
},
},
};
static __initconst const u64 nehalem_hw_cache_event_ids
[PERF_COUNT_HW_CACHE_MAX]
[PERF_COUNT_HW_CACHE_OP_MAX]
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
[ C(L1D) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
[ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
[ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
[ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
},
},
[ C(L1I ) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
[ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0x0,
[ C(RESULT_MISS) ] = 0x0,
},
},
[ C(LL ) ] = {
[ C(OP_READ) ] = {
/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
[ C(RESULT_ACCESS) ] = 0x01b7,
/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
[ C(RESULT_MISS) ] = 0x01b7,
},
/*
* Use RFO, not WRITEBACK, because a write miss would typically occur
* on RFO.
*/
[ C(OP_WRITE) ] = {
/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
[ C(RESULT_ACCESS) ] = 0x01b7,
/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
[ C(RESULT_MISS) ] = 0x01b7,
},
[ C(OP_PREFETCH) ] = {
/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
[ C(RESULT_ACCESS) ] = 0x01b7,
/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
[ C(RESULT_MISS) ] = 0x01b7,
},
},
[ C(DTLB) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
[ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
[ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0x0,
[ C(RESULT_MISS) ] = 0x0,
},
},
[ C(ITLB) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
[ C(RESULT_MISS) ] = 0x20c8, /* ITLB_MISS_RETIRED */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
},
[ C(BPU ) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
[ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
},
[ C(NODE) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x01b7,
[ C(RESULT_MISS) ] = 0x01b7,
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = 0x01b7,
[ C(RESULT_MISS) ] = 0x01b7,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0x01b7,
[ C(RESULT_MISS) ] = 0x01b7,
},
},
};
static __initconst const u64 core2_hw_cache_event_ids
[PERF_COUNT_HW_CACHE_MAX]
[PERF_COUNT_HW_CACHE_OP_MAX]
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
[ C(L1D) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI */
[ C(RESULT_MISS) ] = 0x0140, /* L1D_CACHE_LD.I_STATE */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI */
[ C(RESULT_MISS) ] = 0x0141, /* L1D_CACHE_ST.I_STATE */
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS */
[ C(RESULT_MISS) ] = 0,
},
},
[ C(L1I ) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS */
[ C(RESULT_MISS) ] = 0x0081, /* L1I.MISSES */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0,
[ C(RESULT_MISS) ] = 0,
},
},
[ C(LL ) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
[ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
[ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0,
[ C(RESULT_MISS) ] = 0,
},
},
[ C(DTLB) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
[ C(RESULT_MISS) ] = 0x0208, /* DTLB_MISSES.MISS_LD */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
[ C(RESULT_MISS) ] = 0x0808, /* DTLB_MISSES.MISS_ST */
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0,
[ C(RESULT_MISS) ] = 0,
},
},
[ C(ITLB) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
[ C(RESULT_MISS) ] = 0x1282, /* ITLBMISSES */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
},
[ C(BPU ) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
[ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
},
};
static __initconst const u64 atom_hw_cache_event_ids
[PERF_COUNT_HW_CACHE_MAX]
[PERF_COUNT_HW_CACHE_OP_MAX]
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
[ C(L1D) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD */
[ C(RESULT_MISS) ] = 0,
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST */
[ C(RESULT_MISS) ] = 0,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0x0,
[ C(RESULT_MISS) ] = 0,
},
},
[ C(L1I ) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
[ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0,
[ C(RESULT_MISS) ] = 0,
},
},
[ C(LL ) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
[ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
[ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0,
[ C(RESULT_MISS) ] = 0,
},
},
[ C(DTLB) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI (alias) */
[ C(RESULT_MISS) ] = 0x0508, /* DTLB_MISSES.MISS_LD */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI (alias) */
[ C(RESULT_MISS) ] = 0x0608, /* DTLB_MISSES.MISS_ST */
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0,
[ C(RESULT_MISS) ] = 0,
},
},
[ C(ITLB) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
[ C(RESULT_MISS) ] = 0x0282, /* ITLB.MISSES */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
},
[ C(BPU ) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
[ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
},
};
static void intel_pmu_disable_all(void)
{
struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
if (test_bit(X86_PMC_IDX_FIXED_BTS, cpuc->active_mask))
intel_pmu_disable_bts();
intel_pmu_pebs_disable_all();
intel_pmu_lbr_disable_all();
}
static void intel_pmu_enable_all(int added)
{
struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
intel_pmu_pebs_enable_all();
intel_pmu_lbr_enable_all();
wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, x86_pmu.intel_ctrl);
if (test_bit(X86_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
struct perf_event *event =
cpuc->events[X86_PMC_IDX_FIXED_BTS];
if (WARN_ON_ONCE(!event))
return;
intel_pmu_enable_bts(event->hw.config);
}
}
/*
* Workaround for:
* Intel Errata AAK100 (model 26)
* Intel Errata AAP53 (model 30)
* Intel Errata BD53 (model 44)
*
* The official story:
* These chips need to be 'reset' when adding counters by programming the
* magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
* in sequence on the same PMC or on different PMCs.
*
* In practise it appears some of these events do in fact count, and
* we need to programm all 4 events.
*/
static void intel_pmu_nhm_workaround(void)
{
struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
static const unsigned long nhm_magic[4] = {
0x4300B5,
0x4300D2,
0x4300B1,
0x4300B1
};
struct perf_event *event;
int i;
/*
* The Errata requires below steps:
* 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
* 2) Configure 4 PERFEVTSELx with the magic events and clear
* the corresponding PMCx;
* 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
* 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
* 5) Clear 4 pairs of ERFEVTSELx and PMCx;
*/
/*
* The real steps we choose are a little different from above.
* A) To reduce MSR operations, we don't run step 1) as they
* are already cleared before this function is called;
* B) Call x86_perf_event_update to save PMCx before configuring
* PERFEVTSELx with magic number;
* C) With step 5), we do clear only when the PERFEVTSELx is
* not used currently.
* D) Call x86_perf_event_set_period to restore PMCx;
*/
/* We always operate 4 pairs of PERF Counters */
for (i = 0; i < 4; i++) {
event = cpuc->events[i];
if (event)
x86_perf_event_update(event);
}
for (i = 0; i < 4; i++) {
wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
}
wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
for (i = 0; i < 4; i++) {
event = cpuc->events[i];
if (event) {
x86_perf_event_set_period(event);
__x86_pmu_enable_event(&event->hw,
ARCH_PERFMON_EVENTSEL_ENABLE);
} else
wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
}
}
static void intel_pmu_nhm_enable_all(int added)
{
if (added)
intel_pmu_nhm_workaround();
intel_pmu_enable_all(added);
}
static inline u64 intel_pmu_get_status(void)
{
u64 status;
rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
return status;
}
static inline void intel_pmu_ack_status(u64 ack)
{
wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
}
static void intel_pmu_disable_fixed(struct hw_perf_event *hwc)
{
int idx = hwc->idx - X86_PMC_IDX_FIXED;
u64 ctrl_val, mask;
mask = 0xfULL << (idx * 4);
rdmsrl(hwc->config_base, ctrl_val);
ctrl_val &= ~mask;
wrmsrl(hwc->config_base, ctrl_val);
}
static void intel_pmu_disable_event(struct perf_event *event)
{
struct hw_perf_event *hwc = &event->hw;
if (unlikely(hwc->idx == X86_PMC_IDX_FIXED_BTS)) {
intel_pmu_disable_bts();
intel_pmu_drain_bts_buffer();
return;
}
if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
intel_pmu_disable_fixed(hwc);
return;
}
x86_pmu_disable_event(event);
if (unlikely(event->attr.precise_ip))
intel_pmu_pebs_disable(event);
}
static void intel_pmu_enable_fixed(struct hw_perf_event *hwc)
{
int idx = hwc->idx - X86_PMC_IDX_FIXED;
u64 ctrl_val, bits, mask;
/*
* Enable IRQ generation (0x8),
* and enable ring-3 counting (0x2) and ring-0 counting (0x1)
* if requested:
*/
bits = 0x8ULL;
if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
bits |= 0x2;
if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
bits |= 0x1;
/*
* ANY bit is supported in v3 and up
*/
if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
bits |= 0x4;
bits <<= (idx * 4);
mask = 0xfULL << (idx * 4);
rdmsrl(hwc->config_base, ctrl_val);
ctrl_val &= ~mask;
ctrl_val |= bits;
wrmsrl(hwc->config_base, ctrl_val);
}
static void intel_pmu_enable_event(struct perf_event *event)
{
struct hw_perf_event *hwc = &event->hw;
if (unlikely(hwc->idx == X86_PMC_IDX_FIXED_BTS)) {
if (!__this_cpu_read(cpu_hw_events.enabled))
return;
intel_pmu_enable_bts(hwc->config);
return;
}
if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
intel_pmu_enable_fixed(hwc);
return;
}
if (unlikely(event->attr.precise_ip))
intel_pmu_pebs_enable(event);
__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
}
/*
* Save and restart an expired event. Called by NMI contexts,
* so it has to be careful about preempting normal event ops:
*/
static int intel_pmu_save_and_restart(struct perf_event *event)
{
x86_perf_event_update(event);
return x86_perf_event_set_period(event);
}
static void intel_pmu_reset(void)
{
struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
unsigned long flags;
int idx;
if (!x86_pmu.num_counters)
return;
local_irq_save(flags);
printk("clearing PMU state on CPU#%d\n", smp_processor_id());
for (idx = 0; idx < x86_pmu.num_counters; idx++) {
checking_wrmsrl(x86_pmu_config_addr(idx), 0ull);
checking_wrmsrl(x86_pmu_event_addr(idx), 0ull);
}
for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++)
checking_wrmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
if (ds)
ds->bts_index = ds->bts_buffer_base;
local_irq_restore(flags);
}
/*
* This handler is triggered by the local APIC, so the APIC IRQ handling
* rules apply:
*/
static int intel_pmu_handle_irq(struct pt_regs *regs)
{
struct perf_sample_data data;
struct cpu_hw_events *cpuc;
int bit, loops;
u64 status;
int handled;
perf_sample_data_init(&data, 0);
cpuc = &__get_cpu_var(cpu_hw_events);
/*
* Some chipsets need to unmask the LVTPC in a particular spot
* inside the nmi handler. As a result, the unmasking was pushed
* into all the nmi handlers.
*
* This handler doesn't seem to have any issues with the unmasking
* so it was left at the top.
*/
apic_write(APIC_LVTPC, APIC_DM_NMI);
intel_pmu_disable_all();
handled = intel_pmu_drain_bts_buffer();
status = intel_pmu_get_status();
if (!status) {
intel_pmu_enable_all(0);
return handled;
}
loops = 0;
again:
intel_pmu_ack_status(status);
if (++loops > 100) {
WARN_ONCE(1, "perfevents: irq loop stuck!\n");
perf_event_print_debug();
intel_pmu_reset();
goto done;
}
inc_irq_stat(apic_perf_irqs);
intel_pmu_lbr_read();
/*
* PEBS overflow sets bit 62 in the global status register
*/
if (__test_and_clear_bit(62, (unsigned long *)&status)) {
handled++;
x86_pmu.drain_pebs(regs);
}
for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
struct perf_event *event = cpuc->events[bit];
handled++;
if (!test_bit(bit, cpuc->active_mask))
continue;
if (!intel_pmu_save_and_restart(event))
continue;
data.period = event->hw.last_period;
if (perf_event_overflow(event, &data, regs))
x86_pmu_stop(event, 0);
}
/*
* Repeat if there is more work to be done:
*/
status = intel_pmu_get_status();
if (status)
goto again;
done:
intel_pmu_enable_all(0);
return handled;
}
static struct event_constraint *
intel_bts_constraints(struct perf_event *event)
{
struct hw_perf_event *hwc = &event->hw;
unsigned int hw_event, bts_event;
if (event->attr.freq)
return NULL;
hw_event = hwc->config & INTEL_ARCH_EVENT_MASK;
bts_event = x86_pmu.event_map(PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
if (unlikely(hw_event == bts_event && hwc->sample_period == 1))
return &bts_constraint;
return NULL;
}
static bool intel_try_alt_er(struct perf_event *event, int orig_idx)
{
if (!(x86_pmu.er_flags & ERF_HAS_RSP_1))
return false;
if (event->hw.extra_reg.idx == EXTRA_REG_RSP_0) {
event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
event->hw.config |= 0x01bb;
event->hw.extra_reg.idx = EXTRA_REG_RSP_1;
event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
} else if (event->hw.extra_reg.idx == EXTRA_REG_RSP_1) {
event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
event->hw.config |= 0x01b7;
event->hw.extra_reg.idx = EXTRA_REG_RSP_0;
event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
}
if (event->hw.extra_reg.idx == orig_idx)
return false;
return true;
}
/*
* manage allocation of shared extra msr for certain events
*
* sharing can be:
* per-cpu: to be shared between the various events on a single PMU
* per-core: per-cpu + shared by HT threads
*/
static struct event_constraint *
__intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
struct perf_event *event)
{
struct event_constraint *c = &emptyconstraint;
struct hw_perf_event_extra *reg = &event->hw.extra_reg;
struct er_account *era;
unsigned long flags;
int orig_idx = reg->idx;
/* already allocated shared msr */
if (reg->alloc)
return &unconstrained;
again:
era = &cpuc->shared_regs->regs[reg->idx];
/*
* we use spin_lock_irqsave() to avoid lockdep issues when
* passing a fake cpuc
*/
raw_spin_lock_irqsave(&era->lock, flags);
if (!atomic_read(&era->ref) || era->config == reg->config) {
/* lock in msr value */
era->config = reg->config;
era->reg = reg->reg;
/* one more user */
atomic_inc(&era->ref);
/* no need to reallocate during incremental event scheduling */
reg->alloc = 1;
/*
* All events using extra_reg are unconstrained.
* Avoids calling x86_get_event_constraints()
*
* Must revisit if extra_reg controlling events
* ever have constraints. Worst case we go through
* the regular event constraint table.
*/
c = &unconstrained;
} else if (intel_try_alt_er(event, orig_idx)) {
raw_spin_unlock(&era->lock);
goto again;
}
raw_spin_unlock_irqrestore(&era->lock, flags);
return c;
}
static void
__intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
struct hw_perf_event_extra *reg)
{
struct er_account *era;
/*
* only put constraint if extra reg was actually
* allocated. Also takes care of event which do
* not use an extra shared reg
*/
if (!reg->alloc)
return;
era = &cpuc->shared_regs->regs[reg->idx];
/* one fewer user */
atomic_dec(&era->ref);
/* allocate again next time */
reg->alloc = 0;
}
static struct event_constraint *
intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
struct perf_event *event)
{
struct event_constraint *c = NULL;
if (event->hw.extra_reg.idx != EXTRA_REG_NONE)
c = __intel_shared_reg_get_constraints(cpuc, event);
return c;
}
static struct event_constraint *
intel_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
{
struct event_constraint *c;
c = intel_bts_constraints(event);
if (c)
return c;
c = intel_pebs_constraints(event);
if (c)
return c;
c = intel_shared_regs_constraints(cpuc, event);
if (c)
return c;
return x86_get_event_constraints(cpuc, event);
}
static void
intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
struct perf_event *event)
{
struct hw_perf_event_extra *reg;
reg = &event->hw.extra_reg;
if (reg->idx != EXTRA_REG_NONE)
__intel_shared_reg_put_constraints(cpuc, reg);
}
static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
struct perf_event *event)
{
intel_put_shared_regs_event_constraints(cpuc, event);
}
static int intel_pmu_hw_config(struct perf_event *event)
{
int ret = x86_pmu_hw_config(event);
if (ret)
return ret;
if (event->attr.precise_ip &&
(event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
/*
* Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
* (0x003c) so that we can use it with PEBS.
*
* The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
* PEBS capable. However we can use INST_RETIRED.ANY_P
* (0x00c0), which is a PEBS capable event, to get the same
* count.
*
* INST_RETIRED.ANY_P counts the number of cycles that retires
* CNTMASK instructions. By setting CNTMASK to a value (16)
* larger than the maximum number of instructions that can be
* retired per cycle (4) and then inverting the condition, we
* count all cycles that retire 16 or less instructions, which
* is every cycle.
*
* Thereby we gain a PEBS capable cycle counter.
*/
u64 alt_config = 0x108000c0; /* INST_RETIRED.TOTAL_CYCLES */
alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
event->hw.config = alt_config;
}
if (event->attr.type != PERF_TYPE_RAW)
return 0;
if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
return 0;
if (x86_pmu.version < 3)
return -EINVAL;
if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
return -EACCES;
event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
return 0;
}
static __initconst const struct x86_pmu core_pmu = {
.name = "core",
.handle_irq = x86_pmu_handle_irq,
.disable_all = x86_pmu_disable_all,
.enable_all = x86_pmu_enable_all,
.enable = x86_pmu_enable_event,
.disable = x86_pmu_disable_event,
.hw_config = x86_pmu_hw_config,
.schedule_events = x86_schedule_events,
.eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
.perfctr = MSR_ARCH_PERFMON_PERFCTR0,
.event_map = intel_pmu_event_map,
.max_events = ARRAY_SIZE(intel_perfmon_event_map),
.apic = 1,
/*
* Intel PMCs cannot be accessed sanely above 32 bit width,
* so we install an artificial 1<<31 period regardless of
* the generic event period:
*/
.max_period = (1ULL << 31) - 1,
.get_event_constraints = intel_get_event_constraints,
.put_event_constraints = intel_put_event_constraints,
.event_constraints = intel_core_event_constraints,
};
static struct intel_shared_regs *allocate_shared_regs(int cpu)
{
struct intel_shared_regs *regs;
int i;
regs = kzalloc_node(sizeof(struct intel_shared_regs),
GFP_KERNEL, cpu_to_node(cpu));
if (regs) {
/*
* initialize the locks to keep lockdep happy
*/
for (i = 0; i < EXTRA_REG_MAX; i++)
raw_spin_lock_init(&regs->regs[i].lock);
regs->core_id = -1;
}
return regs;
}
static int intel_pmu_cpu_prepare(int cpu)
{
struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
if (!x86_pmu.extra_regs)
return NOTIFY_OK;
cpuc->shared_regs = allocate_shared_regs(cpu);
if (!cpuc->shared_regs)
return NOTIFY_BAD;
return NOTIFY_OK;
}
static void intel_pmu_cpu_starting(int cpu)
{
struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
int core_id = topology_core_id(cpu);
int i;
init_debug_store_on_cpu(cpu);
/*
* Deal with CPUs that don't clear their LBRs on power-up.
*/
intel_pmu_lbr_reset();
if (!cpuc->shared_regs || (x86_pmu.er_flags & ERF_NO_HT_SHARING))
return;
for_each_cpu(i, topology_thread_cpumask(cpu)) {
struct intel_shared_regs *pc;
pc = per_cpu(cpu_hw_events, i).shared_regs;
if (pc && pc->core_id == core_id) {
kfree(cpuc->shared_regs);
cpuc->shared_regs = pc;
break;
}
}
cpuc->shared_regs->core_id = core_id;
cpuc->shared_regs->refcnt++;
}
static void intel_pmu_cpu_dying(int cpu)
{
struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
struct intel_shared_regs *pc;
pc = cpuc->shared_regs;
if (pc) {
if (pc->core_id == -1 || --pc->refcnt == 0)
kfree(pc);
cpuc->shared_regs = NULL;
}
fini_debug_store_on_cpu(cpu);
}
static __initconst const struct x86_pmu intel_pmu = {
.name = "Intel",
.handle_irq = intel_pmu_handle_irq,
.disable_all = intel_pmu_disable_all,
.enable_all = intel_pmu_enable_all,
.enable = intel_pmu_enable_event,
.disable = intel_pmu_disable_event,
.hw_config = intel_pmu_hw_config,
.schedule_events = x86_schedule_events,
.eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
.perfctr = MSR_ARCH_PERFMON_PERFCTR0,
.event_map = intel_pmu_event_map,
.max_events = ARRAY_SIZE(intel_perfmon_event_map),
.apic = 1,
/*
* Intel PMCs cannot be accessed sanely above 32 bit width,
* so we install an artificial 1<<31 period regardless of
* the generic event period:
*/
.max_period = (1ULL << 31) - 1,
.get_event_constraints = intel_get_event_constraints,
.put_event_constraints = intel_put_event_constraints,
.cpu_prepare = intel_pmu_cpu_prepare,
.cpu_starting = intel_pmu_cpu_starting,
.cpu_dying = intel_pmu_cpu_dying,
};
static void intel_clovertown_quirks(void)
{
/*
* PEBS is unreliable due to:
*
* AJ67 - PEBS may experience CPL leaks
* AJ68 - PEBS PMI may be delayed by one event
* AJ69 - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
* AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
*
* AJ67 could be worked around by restricting the OS/USR flags.
* AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
*
* AJ106 could possibly be worked around by not allowing LBR
* usage from PEBS, including the fixup.
* AJ68 could possibly be worked around by always programming
* a pebs_event_reset[0] value and coping with the lost events.
*
* But taken together it might just make sense to not enable PEBS on
* these chips.
*/
printk(KERN_WARNING "PEBS disabled due to CPU errata.\n");
x86_pmu.pebs = 0;
x86_pmu.pebs_constraints = NULL;
}
static __init int intel_pmu_init(void)
{
union cpuid10_edx edx;
union cpuid10_eax eax;
unsigned int unused;
unsigned int ebx;
int version;
if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
switch (boot_cpu_data.x86) {
case 0x6:
return p6_pmu_init();
case 0xf:
return p4_pmu_init();
}
return -ENODEV;
}
/*
* Check whether the Architectural PerfMon supports
* Branch Misses Retired hw_event or not.
*/
cpuid(10, &eax.full, &ebx, &unused, &edx.full);
if (eax.split.mask_length <= ARCH_PERFMON_BRANCH_MISSES_RETIRED)
return -ENODEV;
version = eax.split.version_id;
if (version < 2)
x86_pmu = core_pmu;
else
x86_pmu = intel_pmu;
x86_pmu.version = version;
x86_pmu.num_counters = eax.split.num_counters;
x86_pmu.cntval_bits = eax.split.bit_width;
x86_pmu.cntval_mask = (1ULL << eax.split.bit_width) - 1;
/*
* Quirk: v2 perfmon does not report fixed-purpose events, so
* assume at least 3 events:
*/
if (version > 1)
x86_pmu.num_counters_fixed = max((int)edx.split.num_counters_fixed, 3);
/*
* v2 and above have a perf capabilities MSR
*/
if (version > 1) {
u64 capabilities;
rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
x86_pmu.intel_cap.capabilities = capabilities;
}
intel_ds_init();
/*
* Install the hw-cache-events table:
*/
switch (boot_cpu_data.x86_model) {
case 14: /* 65 nm core solo/duo, "Yonah" */
pr_cont("Core events, ");
break;
case 15: /* original 65 nm celeron/pentium/core2/xeon, "Merom"/"Conroe" */
x86_pmu.quirks = intel_clovertown_quirks;
case 22: /* single-core 65 nm celeron/core2solo "Merom-L"/"Conroe-L" */
case 23: /* current 45 nm celeron/core2/xeon "Penryn"/"Wolfdale" */
case 29: /* six-core 45 nm xeon "Dunnington" */
memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
sizeof(hw_cache_event_ids));
intel_pmu_lbr_init_core();
x86_pmu.event_constraints = intel_core2_event_constraints;
x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
pr_cont("Core2 events, ");
break;
case 26: /* 45 nm nehalem, "Bloomfield" */
case 30: /* 45 nm nehalem, "Lynnfield" */
case 46: /* 45 nm nehalem-ex, "Beckton" */
memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
sizeof(hw_cache_event_ids));
memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
sizeof(hw_cache_extra_regs));
intel_pmu_lbr_init_nhm();
x86_pmu.event_constraints = intel_nehalem_event_constraints;
x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
x86_pmu.enable_all = intel_pmu_nhm_enable_all;
x86_pmu.extra_regs = intel_nehalem_extra_regs;
/* UOPS_ISSUED.STALLED_CYCLES */
intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 0x180010e;
/* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = 0x1803fb1;
if (ebx & 0x40) {
/*
* Erratum AAJ80 detected, we work it around by using
* the BR_MISP_EXEC.ANY event. This will over-count
* branch-misses, but it's still much better than the
* architectural event which is often completely bogus:
*/
intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
pr_cont("erratum AAJ80 worked around, ");
}
pr_cont("Nehalem events, ");
break;
case 28: /* Atom */
memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
sizeof(hw_cache_event_ids));
intel_pmu_lbr_init_atom();
x86_pmu.event_constraints = intel_gen_event_constraints;
x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
pr_cont("Atom events, ");
break;
case 37: /* 32 nm nehalem, "Clarkdale" */
case 44: /* 32 nm nehalem, "Gulftown" */
case 47: /* 32 nm Xeon E7 */
memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
sizeof(hw_cache_event_ids));
memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
sizeof(hw_cache_extra_regs));
intel_pmu_lbr_init_nhm();
x86_pmu.event_constraints = intel_westmere_event_constraints;
x86_pmu.enable_all = intel_pmu_nhm_enable_all;
x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
x86_pmu.extra_regs = intel_westmere_extra_regs;
x86_pmu.er_flags |= ERF_HAS_RSP_1;
/* UOPS_ISSUED.STALLED_CYCLES */
intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 0x180010e;
/* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = 0x1803fb1;
pr_cont("Westmere events, ");
break;
case 42: /* SandyBridge */
memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
sizeof(hw_cache_event_ids));
intel_pmu_lbr_init_nhm();
x86_pmu.event_constraints = intel_snb_event_constraints;
x86_pmu.pebs_constraints = intel_snb_pebs_events;
x86_pmu.extra_regs = intel_snb_extra_regs;
/* all extra regs are per-cpu when HT is on */
x86_pmu.er_flags |= ERF_HAS_RSP_1;
x86_pmu.er_flags |= ERF_NO_HT_SHARING;
/* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 0x180010e;
/* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = 0x18001b1;
pr_cont("SandyBridge events, ");
break;
default:
switch (x86_pmu.version) {
case 1:
x86_pmu.event_constraints = intel_v1_event_constraints;
pr_cont("generic architected perfmon v1, ");
break;
default:
/*
* default constraints for v2 and up
*/
x86_pmu.event_constraints = intel_gen_event_constraints;
pr_cont("generic architected perfmon, ");
break;
}
}
return 0;
}
#else /* CONFIG_CPU_SUP_INTEL */
static int intel_pmu_init(void)
{
return 0;
}
static struct intel_shared_regs *allocate_shared_regs(int cpu)
{
return NULL;
}
#endif /* CONFIG_CPU_SUP_INTEL */