linux_dsm_epyc7002/drivers/net/dm9000.c
Tobias Klauser ec282e9225 dm9000: Use resource_size instead of private macro
The macro res_size in drivers/net/dm9000.c is a copy of resource_size in
linux/ioport.h. Remove the function and use resource_size instead.

Signed-off-by: Tobias Klauser <tklauser@distanz.ch>
Signed-off-by: David S. Miller <davem@davemloft.net>
2009-09-09 18:54:49 -07:00

1573 lines
35 KiB
C

/*
* Davicom DM9000 Fast Ethernet driver for Linux.
* Copyright (C) 1997 Sten Wang
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* (C) Copyright 1997-1998 DAVICOM Semiconductor,Inc. All Rights Reserved.
*
* Additional updates, Copyright:
* Ben Dooks <ben@simtec.co.uk>
* Sascha Hauer <s.hauer@pengutronix.de>
*/
#include <linux/module.h>
#include <linux/ioport.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/init.h>
#include <linux/skbuff.h>
#include <linux/spinlock.h>
#include <linux/crc32.h>
#include <linux/mii.h>
#include <linux/ethtool.h>
#include <linux/dm9000.h>
#include <linux/delay.h>
#include <linux/platform_device.h>
#include <linux/irq.h>
#include <asm/delay.h>
#include <asm/irq.h>
#include <asm/io.h>
#include "dm9000.h"
/* Board/System/Debug information/definition ---------------- */
#define DM9000_PHY 0x40 /* PHY address 0x01 */
#define CARDNAME "dm9000"
#define DRV_VERSION "1.31"
/*
* Transmit timeout, default 5 seconds.
*/
static int watchdog = 5000;
module_param(watchdog, int, 0400);
MODULE_PARM_DESC(watchdog, "transmit timeout in milliseconds");
/* DM9000 register address locking.
*
* The DM9000 uses an address register to control where data written
* to the data register goes. This means that the address register
* must be preserved over interrupts or similar calls.
*
* During interrupt and other critical calls, a spinlock is used to
* protect the system, but the calls themselves save the address
* in the address register in case they are interrupting another
* access to the device.
*
* For general accesses a lock is provided so that calls which are
* allowed to sleep are serialised so that the address register does
* not need to be saved. This lock also serves to serialise access
* to the EEPROM and PHY access registers which are shared between
* these two devices.
*/
/* The driver supports the original DM9000E, and now the two newer
* devices, DM9000A and DM9000B.
*/
enum dm9000_type {
TYPE_DM9000E, /* original DM9000 */
TYPE_DM9000A,
TYPE_DM9000B
};
/* Structure/enum declaration ------------------------------- */
typedef struct board_info {
void __iomem *io_addr; /* Register I/O base address */
void __iomem *io_data; /* Data I/O address */
u16 irq; /* IRQ */
u16 tx_pkt_cnt;
u16 queue_pkt_len;
u16 queue_start_addr;
u16 queue_ip_summed;
u16 dbug_cnt;
u8 io_mode; /* 0:word, 2:byte */
u8 phy_addr;
u8 imr_all;
unsigned int flags;
unsigned int in_suspend :1;
int debug_level;
enum dm9000_type type;
void (*inblk)(void __iomem *port, void *data, int length);
void (*outblk)(void __iomem *port, void *data, int length);
void (*dumpblk)(void __iomem *port, int length);
struct device *dev; /* parent device */
struct resource *addr_res; /* resources found */
struct resource *data_res;
struct resource *addr_req; /* resources requested */
struct resource *data_req;
struct resource *irq_res;
struct mutex addr_lock; /* phy and eeprom access lock */
struct delayed_work phy_poll;
struct net_device *ndev;
spinlock_t lock;
struct mii_if_info mii;
u32 msg_enable;
int rx_csum;
int can_csum;
int ip_summed;
} board_info_t;
/* debug code */
#define dm9000_dbg(db, lev, msg...) do { \
if ((lev) < CONFIG_DM9000_DEBUGLEVEL && \
(lev) < db->debug_level) { \
dev_dbg(db->dev, msg); \
} \
} while (0)
static inline board_info_t *to_dm9000_board(struct net_device *dev)
{
return netdev_priv(dev);
}
/* DM9000 network board routine ---------------------------- */
static void
dm9000_reset(board_info_t * db)
{
dev_dbg(db->dev, "resetting device\n");
/* RESET device */
writeb(DM9000_NCR, db->io_addr);
udelay(200);
writeb(NCR_RST, db->io_data);
udelay(200);
}
/*
* Read a byte from I/O port
*/
static u8
ior(board_info_t * db, int reg)
{
writeb(reg, db->io_addr);
return readb(db->io_data);
}
/*
* Write a byte to I/O port
*/
static void
iow(board_info_t * db, int reg, int value)
{
writeb(reg, db->io_addr);
writeb(value, db->io_data);
}
/* routines for sending block to chip */
static void dm9000_outblk_8bit(void __iomem *reg, void *data, int count)
{
writesb(reg, data, count);
}
static void dm9000_outblk_16bit(void __iomem *reg, void *data, int count)
{
writesw(reg, data, (count+1) >> 1);
}
static void dm9000_outblk_32bit(void __iomem *reg, void *data, int count)
{
writesl(reg, data, (count+3) >> 2);
}
/* input block from chip to memory */
static void dm9000_inblk_8bit(void __iomem *reg, void *data, int count)
{
readsb(reg, data, count);
}
static void dm9000_inblk_16bit(void __iomem *reg, void *data, int count)
{
readsw(reg, data, (count+1) >> 1);
}
static void dm9000_inblk_32bit(void __iomem *reg, void *data, int count)
{
readsl(reg, data, (count+3) >> 2);
}
/* dump block from chip to null */
static void dm9000_dumpblk_8bit(void __iomem *reg, int count)
{
int i;
int tmp;
for (i = 0; i < count; i++)
tmp = readb(reg);
}
static void dm9000_dumpblk_16bit(void __iomem *reg, int count)
{
int i;
int tmp;
count = (count + 1) >> 1;
for (i = 0; i < count; i++)
tmp = readw(reg);
}
static void dm9000_dumpblk_32bit(void __iomem *reg, int count)
{
int i;
int tmp;
count = (count + 3) >> 2;
for (i = 0; i < count; i++)
tmp = readl(reg);
}
/* dm9000_set_io
*
* select the specified set of io routines to use with the
* device
*/
static void dm9000_set_io(struct board_info *db, int byte_width)
{
/* use the size of the data resource to work out what IO
* routines we want to use
*/
switch (byte_width) {
case 1:
db->dumpblk = dm9000_dumpblk_8bit;
db->outblk = dm9000_outblk_8bit;
db->inblk = dm9000_inblk_8bit;
break;
case 3:
dev_dbg(db->dev, ": 3 byte IO, falling back to 16bit\n");
case 2:
db->dumpblk = dm9000_dumpblk_16bit;
db->outblk = dm9000_outblk_16bit;
db->inblk = dm9000_inblk_16bit;
break;
case 4:
default:
db->dumpblk = dm9000_dumpblk_32bit;
db->outblk = dm9000_outblk_32bit;
db->inblk = dm9000_inblk_32bit;
break;
}
}
static void dm9000_schedule_poll(board_info_t *db)
{
if (db->type == TYPE_DM9000E)
schedule_delayed_work(&db->phy_poll, HZ * 2);
}
static int dm9000_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
{
board_info_t *dm = to_dm9000_board(dev);
if (!netif_running(dev))
return -EINVAL;
return generic_mii_ioctl(&dm->mii, if_mii(req), cmd, NULL);
}
static unsigned int
dm9000_read_locked(board_info_t *db, int reg)
{
unsigned long flags;
unsigned int ret;
spin_lock_irqsave(&db->lock, flags);
ret = ior(db, reg);
spin_unlock_irqrestore(&db->lock, flags);
return ret;
}
static int dm9000_wait_eeprom(board_info_t *db)
{
unsigned int status;
int timeout = 8; /* wait max 8msec */
/* The DM9000 data sheets say we should be able to
* poll the ERRE bit in EPCR to wait for the EEPROM
* operation. From testing several chips, this bit
* does not seem to work.
*
* We attempt to use the bit, but fall back to the
* timeout (which is why we do not return an error
* on expiry) to say that the EEPROM operation has
* completed.
*/
while (1) {
status = dm9000_read_locked(db, DM9000_EPCR);
if ((status & EPCR_ERRE) == 0)
break;
msleep(1);
if (timeout-- < 0) {
dev_dbg(db->dev, "timeout waiting EEPROM\n");
break;
}
}
return 0;
}
/*
* Read a word data from EEPROM
*/
static void
dm9000_read_eeprom(board_info_t *db, int offset, u8 *to)
{
unsigned long flags;
if (db->flags & DM9000_PLATF_NO_EEPROM) {
to[0] = 0xff;
to[1] = 0xff;
return;
}
mutex_lock(&db->addr_lock);
spin_lock_irqsave(&db->lock, flags);
iow(db, DM9000_EPAR, offset);
iow(db, DM9000_EPCR, EPCR_ERPRR);
spin_unlock_irqrestore(&db->lock, flags);
dm9000_wait_eeprom(db);
/* delay for at-least 150uS */
msleep(1);
spin_lock_irqsave(&db->lock, flags);
iow(db, DM9000_EPCR, 0x0);
to[0] = ior(db, DM9000_EPDRL);
to[1] = ior(db, DM9000_EPDRH);
spin_unlock_irqrestore(&db->lock, flags);
mutex_unlock(&db->addr_lock);
}
/*
* Write a word data to SROM
*/
static void
dm9000_write_eeprom(board_info_t *db, int offset, u8 *data)
{
unsigned long flags;
if (db->flags & DM9000_PLATF_NO_EEPROM)
return;
mutex_lock(&db->addr_lock);
spin_lock_irqsave(&db->lock, flags);
iow(db, DM9000_EPAR, offset);
iow(db, DM9000_EPDRH, data[1]);
iow(db, DM9000_EPDRL, data[0]);
iow(db, DM9000_EPCR, EPCR_WEP | EPCR_ERPRW);
spin_unlock_irqrestore(&db->lock, flags);
dm9000_wait_eeprom(db);
mdelay(1); /* wait at least 150uS to clear */
spin_lock_irqsave(&db->lock, flags);
iow(db, DM9000_EPCR, 0);
spin_unlock_irqrestore(&db->lock, flags);
mutex_unlock(&db->addr_lock);
}
/* ethtool ops */
static void dm9000_get_drvinfo(struct net_device *dev,
struct ethtool_drvinfo *info)
{
board_info_t *dm = to_dm9000_board(dev);
strcpy(info->driver, CARDNAME);
strcpy(info->version, DRV_VERSION);
strcpy(info->bus_info, to_platform_device(dm->dev)->name);
}
static u32 dm9000_get_msglevel(struct net_device *dev)
{
board_info_t *dm = to_dm9000_board(dev);
return dm->msg_enable;
}
static void dm9000_set_msglevel(struct net_device *dev, u32 value)
{
board_info_t *dm = to_dm9000_board(dev);
dm->msg_enable = value;
}
static int dm9000_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
board_info_t *dm = to_dm9000_board(dev);
mii_ethtool_gset(&dm->mii, cmd);
return 0;
}
static int dm9000_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
board_info_t *dm = to_dm9000_board(dev);
return mii_ethtool_sset(&dm->mii, cmd);
}
static int dm9000_nway_reset(struct net_device *dev)
{
board_info_t *dm = to_dm9000_board(dev);
return mii_nway_restart(&dm->mii);
}
static uint32_t dm9000_get_rx_csum(struct net_device *dev)
{
board_info_t *dm = to_dm9000_board(dev);
return dm->rx_csum;
}
static int dm9000_set_rx_csum(struct net_device *dev, uint32_t data)
{
board_info_t *dm = to_dm9000_board(dev);
unsigned long flags;
if (dm->can_csum) {
dm->rx_csum = data;
spin_lock_irqsave(&dm->lock, flags);
iow(dm, DM9000_RCSR, dm->rx_csum ? RCSR_CSUM : 0);
spin_unlock_irqrestore(&dm->lock, flags);
return 0;
}
return -EOPNOTSUPP;
}
static int dm9000_set_tx_csum(struct net_device *dev, uint32_t data)
{
board_info_t *dm = to_dm9000_board(dev);
int ret = -EOPNOTSUPP;
if (dm->can_csum)
ret = ethtool_op_set_tx_csum(dev, data);
return ret;
}
static u32 dm9000_get_link(struct net_device *dev)
{
board_info_t *dm = to_dm9000_board(dev);
u32 ret;
if (dm->flags & DM9000_PLATF_EXT_PHY)
ret = mii_link_ok(&dm->mii);
else
ret = dm9000_read_locked(dm, DM9000_NSR) & NSR_LINKST ? 1 : 0;
return ret;
}
#define DM_EEPROM_MAGIC (0x444D394B)
static int dm9000_get_eeprom_len(struct net_device *dev)
{
return 128;
}
static int dm9000_get_eeprom(struct net_device *dev,
struct ethtool_eeprom *ee, u8 *data)
{
board_info_t *dm = to_dm9000_board(dev);
int offset = ee->offset;
int len = ee->len;
int i;
/* EEPROM access is aligned to two bytes */
if ((len & 1) != 0 || (offset & 1) != 0)
return -EINVAL;
if (dm->flags & DM9000_PLATF_NO_EEPROM)
return -ENOENT;
ee->magic = DM_EEPROM_MAGIC;
for (i = 0; i < len; i += 2)
dm9000_read_eeprom(dm, (offset + i) / 2, data + i);
return 0;
}
static int dm9000_set_eeprom(struct net_device *dev,
struct ethtool_eeprom *ee, u8 *data)
{
board_info_t *dm = to_dm9000_board(dev);
int offset = ee->offset;
int len = ee->len;
int i;
/* EEPROM access is aligned to two bytes */
if ((len & 1) != 0 || (offset & 1) != 0)
return -EINVAL;
if (dm->flags & DM9000_PLATF_NO_EEPROM)
return -ENOENT;
if (ee->magic != DM_EEPROM_MAGIC)
return -EINVAL;
for (i = 0; i < len; i += 2)
dm9000_write_eeprom(dm, (offset + i) / 2, data + i);
return 0;
}
static const struct ethtool_ops dm9000_ethtool_ops = {
.get_drvinfo = dm9000_get_drvinfo,
.get_settings = dm9000_get_settings,
.set_settings = dm9000_set_settings,
.get_msglevel = dm9000_get_msglevel,
.set_msglevel = dm9000_set_msglevel,
.nway_reset = dm9000_nway_reset,
.get_link = dm9000_get_link,
.get_eeprom_len = dm9000_get_eeprom_len,
.get_eeprom = dm9000_get_eeprom,
.set_eeprom = dm9000_set_eeprom,
.get_rx_csum = dm9000_get_rx_csum,
.set_rx_csum = dm9000_set_rx_csum,
.get_tx_csum = ethtool_op_get_tx_csum,
.set_tx_csum = dm9000_set_tx_csum,
};
static void dm9000_show_carrier(board_info_t *db,
unsigned carrier, unsigned nsr)
{
struct net_device *ndev = db->ndev;
unsigned ncr = dm9000_read_locked(db, DM9000_NCR);
if (carrier)
dev_info(db->dev, "%s: link up, %dMbps, %s-duplex, no LPA\n",
ndev->name, (nsr & NSR_SPEED) ? 10 : 100,
(ncr & NCR_FDX) ? "full" : "half");
else
dev_info(db->dev, "%s: link down\n", ndev->name);
}
static void
dm9000_poll_work(struct work_struct *w)
{
struct delayed_work *dw = to_delayed_work(w);
board_info_t *db = container_of(dw, board_info_t, phy_poll);
struct net_device *ndev = db->ndev;
if (db->flags & DM9000_PLATF_SIMPLE_PHY &&
!(db->flags & DM9000_PLATF_EXT_PHY)) {
unsigned nsr = dm9000_read_locked(db, DM9000_NSR);
unsigned old_carrier = netif_carrier_ok(ndev) ? 1 : 0;
unsigned new_carrier;
new_carrier = (nsr & NSR_LINKST) ? 1 : 0;
if (old_carrier != new_carrier) {
if (netif_msg_link(db))
dm9000_show_carrier(db, new_carrier, nsr);
if (!new_carrier)
netif_carrier_off(ndev);
else
netif_carrier_on(ndev);
}
} else
mii_check_media(&db->mii, netif_msg_link(db), 0);
if (netif_running(ndev))
dm9000_schedule_poll(db);
}
/* dm9000_release_board
*
* release a board, and any mapped resources
*/
static void
dm9000_release_board(struct platform_device *pdev, struct board_info *db)
{
/* unmap our resources */
iounmap(db->io_addr);
iounmap(db->io_data);
/* release the resources */
release_resource(db->data_req);
kfree(db->data_req);
release_resource(db->addr_req);
kfree(db->addr_req);
}
static unsigned char dm9000_type_to_char(enum dm9000_type type)
{
switch (type) {
case TYPE_DM9000E: return 'e';
case TYPE_DM9000A: return 'a';
case TYPE_DM9000B: return 'b';
}
return '?';
}
/*
* Set DM9000 multicast address
*/
static void
dm9000_hash_table(struct net_device *dev)
{
board_info_t *db = netdev_priv(dev);
struct dev_mc_list *mcptr = dev->mc_list;
int mc_cnt = dev->mc_count;
int i, oft;
u32 hash_val;
u16 hash_table[4];
u8 rcr = RCR_DIS_LONG | RCR_DIS_CRC | RCR_RXEN;
unsigned long flags;
dm9000_dbg(db, 1, "entering %s\n", __func__);
spin_lock_irqsave(&db->lock, flags);
for (i = 0, oft = DM9000_PAR; i < 6; i++, oft++)
iow(db, oft, dev->dev_addr[i]);
/* Clear Hash Table */
for (i = 0; i < 4; i++)
hash_table[i] = 0x0;
/* broadcast address */
hash_table[3] = 0x8000;
if (dev->flags & IFF_PROMISC)
rcr |= RCR_PRMSC;
if (dev->flags & IFF_ALLMULTI)
rcr |= RCR_ALL;
/* the multicast address in Hash Table : 64 bits */
for (i = 0; i < mc_cnt; i++, mcptr = mcptr->next) {
hash_val = ether_crc_le(6, mcptr->dmi_addr) & 0x3f;
hash_table[hash_val / 16] |= (u16) 1 << (hash_val % 16);
}
/* Write the hash table to MAC MD table */
for (i = 0, oft = DM9000_MAR; i < 4; i++) {
iow(db, oft++, hash_table[i]);
iow(db, oft++, hash_table[i] >> 8);
}
iow(db, DM9000_RCR, rcr);
spin_unlock_irqrestore(&db->lock, flags);
}
/*
* Initilize dm9000 board
*/
static void
dm9000_init_dm9000(struct net_device *dev)
{
board_info_t *db = netdev_priv(dev);
unsigned int imr;
dm9000_dbg(db, 1, "entering %s\n", __func__);
/* I/O mode */
db->io_mode = ior(db, DM9000_ISR) >> 6; /* ISR bit7:6 keeps I/O mode */
/* Checksum mode */
dm9000_set_rx_csum(dev, db->rx_csum);
/* GPIO0 on pre-activate PHY */
iow(db, DM9000_GPR, 0); /* REG_1F bit0 activate phyxcer */
iow(db, DM9000_GPCR, GPCR_GEP_CNTL); /* Let GPIO0 output */
iow(db, DM9000_GPR, 0); /* Enable PHY */
if (db->flags & DM9000_PLATF_EXT_PHY)
iow(db, DM9000_NCR, NCR_EXT_PHY);
/* Program operating register */
iow(db, DM9000_TCR, 0); /* TX Polling clear */
iow(db, DM9000_BPTR, 0x3f); /* Less 3Kb, 200us */
iow(db, DM9000_FCR, 0xff); /* Flow Control */
iow(db, DM9000_SMCR, 0); /* Special Mode */
/* clear TX status */
iow(db, DM9000_NSR, NSR_WAKEST | NSR_TX2END | NSR_TX1END);
iow(db, DM9000_ISR, ISR_CLR_STATUS); /* Clear interrupt status */
/* Set address filter table */
dm9000_hash_table(dev);
imr = IMR_PAR | IMR_PTM | IMR_PRM;
if (db->type != TYPE_DM9000E)
imr |= IMR_LNKCHNG;
db->imr_all = imr;
/* Enable TX/RX interrupt mask */
iow(db, DM9000_IMR, imr);
/* Init Driver variable */
db->tx_pkt_cnt = 0;
db->queue_pkt_len = 0;
dev->trans_start = 0;
}
/* Our watchdog timed out. Called by the networking layer */
static void dm9000_timeout(struct net_device *dev)
{
board_info_t *db = netdev_priv(dev);
u8 reg_save;
unsigned long flags;
/* Save previous register address */
reg_save = readb(db->io_addr);
spin_lock_irqsave(&db->lock, flags);
netif_stop_queue(dev);
dm9000_reset(db);
dm9000_init_dm9000(dev);
/* We can accept TX packets again */
dev->trans_start = jiffies;
netif_wake_queue(dev);
/* Restore previous register address */
writeb(reg_save, db->io_addr);
spin_unlock_irqrestore(&db->lock, flags);
}
static void dm9000_send_packet(struct net_device *dev,
int ip_summed,
u16 pkt_len)
{
board_info_t *dm = to_dm9000_board(dev);
/* The DM9000 is not smart enough to leave fragmented packets alone. */
if (dm->ip_summed != ip_summed) {
if (ip_summed == CHECKSUM_NONE)
iow(dm, DM9000_TCCR, 0);
else
iow(dm, DM9000_TCCR, TCCR_IP | TCCR_UDP | TCCR_TCP);
dm->ip_summed = ip_summed;
}
/* Set TX length to DM9000 */
iow(dm, DM9000_TXPLL, pkt_len);
iow(dm, DM9000_TXPLH, pkt_len >> 8);
/* Issue TX polling command */
iow(dm, DM9000_TCR, TCR_TXREQ); /* Cleared after TX complete */
}
/*
* Hardware start transmission.
* Send a packet to media from the upper layer.
*/
static int
dm9000_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
unsigned long flags;
board_info_t *db = netdev_priv(dev);
dm9000_dbg(db, 3, "%s:\n", __func__);
if (db->tx_pkt_cnt > 1)
return NETDEV_TX_BUSY;
spin_lock_irqsave(&db->lock, flags);
/* Move data to DM9000 TX RAM */
writeb(DM9000_MWCMD, db->io_addr);
(db->outblk)(db->io_data, skb->data, skb->len);
dev->stats.tx_bytes += skb->len;
db->tx_pkt_cnt++;
/* TX control: First packet immediately send, second packet queue */
if (db->tx_pkt_cnt == 1) {
dm9000_send_packet(dev, skb->ip_summed, skb->len);
} else {
/* Second packet */
db->queue_pkt_len = skb->len;
db->queue_ip_summed = skb->ip_summed;
netif_stop_queue(dev);
}
spin_unlock_irqrestore(&db->lock, flags);
/* free this SKB */
dev_kfree_skb(skb);
return NETDEV_TX_OK;
}
/*
* DM9000 interrupt handler
* receive the packet to upper layer, free the transmitted packet
*/
static void dm9000_tx_done(struct net_device *dev, board_info_t *db)
{
int tx_status = ior(db, DM9000_NSR); /* Got TX status */
if (tx_status & (NSR_TX2END | NSR_TX1END)) {
/* One packet sent complete */
db->tx_pkt_cnt--;
dev->stats.tx_packets++;
if (netif_msg_tx_done(db))
dev_dbg(db->dev, "tx done, NSR %02x\n", tx_status);
/* Queue packet check & send */
if (db->tx_pkt_cnt > 0)
dm9000_send_packet(dev, db->queue_ip_summed,
db->queue_pkt_len);
netif_wake_queue(dev);
}
}
struct dm9000_rxhdr {
u8 RxPktReady;
u8 RxStatus;
__le16 RxLen;
} __attribute__((__packed__));
/*
* Received a packet and pass to upper layer
*/
static void
dm9000_rx(struct net_device *dev)
{
board_info_t *db = netdev_priv(dev);
struct dm9000_rxhdr rxhdr;
struct sk_buff *skb;
u8 rxbyte, *rdptr;
bool GoodPacket;
int RxLen;
/* Check packet ready or not */
do {
ior(db, DM9000_MRCMDX); /* Dummy read */
/* Get most updated data */
rxbyte = readb(db->io_data);
/* Status check: this byte must be 0 or 1 */
if (rxbyte & DM9000_PKT_ERR) {
dev_warn(db->dev, "status check fail: %d\n", rxbyte);
iow(db, DM9000_RCR, 0x00); /* Stop Device */
iow(db, DM9000_ISR, IMR_PAR); /* Stop INT request */
return;
}
if (!(rxbyte & DM9000_PKT_RDY))
return;
/* A packet ready now & Get status/length */
GoodPacket = true;
writeb(DM9000_MRCMD, db->io_addr);
(db->inblk)(db->io_data, &rxhdr, sizeof(rxhdr));
RxLen = le16_to_cpu(rxhdr.RxLen);
if (netif_msg_rx_status(db))
dev_dbg(db->dev, "RX: status %02x, length %04x\n",
rxhdr.RxStatus, RxLen);
/* Packet Status check */
if (RxLen < 0x40) {
GoodPacket = false;
if (netif_msg_rx_err(db))
dev_dbg(db->dev, "RX: Bad Packet (runt)\n");
}
if (RxLen > DM9000_PKT_MAX) {
dev_dbg(db->dev, "RST: RX Len:%x\n", RxLen);
}
/* rxhdr.RxStatus is identical to RSR register. */
if (rxhdr.RxStatus & (RSR_FOE | RSR_CE | RSR_AE |
RSR_PLE | RSR_RWTO |
RSR_LCS | RSR_RF)) {
GoodPacket = false;
if (rxhdr.RxStatus & RSR_FOE) {
if (netif_msg_rx_err(db))
dev_dbg(db->dev, "fifo error\n");
dev->stats.rx_fifo_errors++;
}
if (rxhdr.RxStatus & RSR_CE) {
if (netif_msg_rx_err(db))
dev_dbg(db->dev, "crc error\n");
dev->stats.rx_crc_errors++;
}
if (rxhdr.RxStatus & RSR_RF) {
if (netif_msg_rx_err(db))
dev_dbg(db->dev, "length error\n");
dev->stats.rx_length_errors++;
}
}
/* Move data from DM9000 */
if (GoodPacket
&& ((skb = dev_alloc_skb(RxLen + 4)) != NULL)) {
skb_reserve(skb, 2);
rdptr = (u8 *) skb_put(skb, RxLen - 4);
/* Read received packet from RX SRAM */
(db->inblk)(db->io_data, rdptr, RxLen);
dev->stats.rx_bytes += RxLen;
/* Pass to upper layer */
skb->protocol = eth_type_trans(skb, dev);
if (db->rx_csum) {
if ((((rxbyte & 0x1c) << 3) & rxbyte) == 0)
skb->ip_summed = CHECKSUM_UNNECESSARY;
else
skb->ip_summed = CHECKSUM_NONE;
}
netif_rx(skb);
dev->stats.rx_packets++;
} else {
/* need to dump the packet's data */
(db->dumpblk)(db->io_data, RxLen);
}
} while (rxbyte & DM9000_PKT_RDY);
}
static irqreturn_t dm9000_interrupt(int irq, void *dev_id)
{
struct net_device *dev = dev_id;
board_info_t *db = netdev_priv(dev);
int int_status;
unsigned long flags;
u8 reg_save;
dm9000_dbg(db, 3, "entering %s\n", __func__);
/* A real interrupt coming */
/* holders of db->lock must always block IRQs */
spin_lock_irqsave(&db->lock, flags);
/* Save previous register address */
reg_save = readb(db->io_addr);
/* Disable all interrupts */
iow(db, DM9000_IMR, IMR_PAR);
/* Got DM9000 interrupt status */
int_status = ior(db, DM9000_ISR); /* Got ISR */
iow(db, DM9000_ISR, int_status); /* Clear ISR status */
if (netif_msg_intr(db))
dev_dbg(db->dev, "interrupt status %02x\n", int_status);
/* Received the coming packet */
if (int_status & ISR_PRS)
dm9000_rx(dev);
/* Trnasmit Interrupt check */
if (int_status & ISR_PTS)
dm9000_tx_done(dev, db);
if (db->type != TYPE_DM9000E) {
if (int_status & ISR_LNKCHNG) {
/* fire a link-change request */
schedule_delayed_work(&db->phy_poll, 1);
}
}
/* Re-enable interrupt mask */
iow(db, DM9000_IMR, db->imr_all);
/* Restore previous register address */
writeb(reg_save, db->io_addr);
spin_unlock_irqrestore(&db->lock, flags);
return IRQ_HANDLED;
}
#ifdef CONFIG_NET_POLL_CONTROLLER
/*
*Used by netconsole
*/
static void dm9000_poll_controller(struct net_device *dev)
{
disable_irq(dev->irq);
dm9000_interrupt(dev->irq, dev);
enable_irq(dev->irq);
}
#endif
/*
* Open the interface.
* The interface is opened whenever "ifconfig" actives it.
*/
static int
dm9000_open(struct net_device *dev)
{
board_info_t *db = netdev_priv(dev);
unsigned long irqflags = db->irq_res->flags & IRQF_TRIGGER_MASK;
if (netif_msg_ifup(db))
dev_dbg(db->dev, "enabling %s\n", dev->name);
/* If there is no IRQ type specified, default to something that
* may work, and tell the user that this is a problem */
if (irqflags == IRQF_TRIGGER_NONE)
dev_warn(db->dev, "WARNING: no IRQ resource flags set.\n");
irqflags |= IRQF_SHARED;
if (request_irq(dev->irq, &dm9000_interrupt, irqflags, dev->name, dev))
return -EAGAIN;
/* Initialize DM9000 board */
dm9000_reset(db);
dm9000_init_dm9000(dev);
/* Init driver variable */
db->dbug_cnt = 0;
mii_check_media(&db->mii, netif_msg_link(db), 1);
netif_start_queue(dev);
dm9000_schedule_poll(db);
return 0;
}
/*
* Sleep, either by using msleep() or if we are suspending, then
* use mdelay() to sleep.
*/
static void dm9000_msleep(board_info_t *db, unsigned int ms)
{
if (db->in_suspend)
mdelay(ms);
else
msleep(ms);
}
/*
* Read a word from phyxcer
*/
static int
dm9000_phy_read(struct net_device *dev, int phy_reg_unused, int reg)
{
board_info_t *db = netdev_priv(dev);
unsigned long flags;
unsigned int reg_save;
int ret;
mutex_lock(&db->addr_lock);
spin_lock_irqsave(&db->lock,flags);
/* Save previous register address */
reg_save = readb(db->io_addr);
/* Fill the phyxcer register into REG_0C */
iow(db, DM9000_EPAR, DM9000_PHY | reg);
iow(db, DM9000_EPCR, EPCR_ERPRR | EPCR_EPOS); /* Issue phyxcer read command */
writeb(reg_save, db->io_addr);
spin_unlock_irqrestore(&db->lock,flags);
dm9000_msleep(db, 1); /* Wait read complete */
spin_lock_irqsave(&db->lock,flags);
reg_save = readb(db->io_addr);
iow(db, DM9000_EPCR, 0x0); /* Clear phyxcer read command */
/* The read data keeps on REG_0D & REG_0E */
ret = (ior(db, DM9000_EPDRH) << 8) | ior(db, DM9000_EPDRL);
/* restore the previous address */
writeb(reg_save, db->io_addr);
spin_unlock_irqrestore(&db->lock,flags);
mutex_unlock(&db->addr_lock);
dm9000_dbg(db, 5, "phy_read[%02x] -> %04x\n", reg, ret);
return ret;
}
/*
* Write a word to phyxcer
*/
static void
dm9000_phy_write(struct net_device *dev,
int phyaddr_unused, int reg, int value)
{
board_info_t *db = netdev_priv(dev);
unsigned long flags;
unsigned long reg_save;
dm9000_dbg(db, 5, "phy_write[%02x] = %04x\n", reg, value);
mutex_lock(&db->addr_lock);
spin_lock_irqsave(&db->lock,flags);
/* Save previous register address */
reg_save = readb(db->io_addr);
/* Fill the phyxcer register into REG_0C */
iow(db, DM9000_EPAR, DM9000_PHY | reg);
/* Fill the written data into REG_0D & REG_0E */
iow(db, DM9000_EPDRL, value);
iow(db, DM9000_EPDRH, value >> 8);
iow(db, DM9000_EPCR, EPCR_EPOS | EPCR_ERPRW); /* Issue phyxcer write command */
writeb(reg_save, db->io_addr);
spin_unlock_irqrestore(&db->lock, flags);
dm9000_msleep(db, 1); /* Wait write complete */
spin_lock_irqsave(&db->lock,flags);
reg_save = readb(db->io_addr);
iow(db, DM9000_EPCR, 0x0); /* Clear phyxcer write command */
/* restore the previous address */
writeb(reg_save, db->io_addr);
spin_unlock_irqrestore(&db->lock, flags);
mutex_unlock(&db->addr_lock);
}
static void
dm9000_shutdown(struct net_device *dev)
{
board_info_t *db = netdev_priv(dev);
/* RESET device */
dm9000_phy_write(dev, 0, MII_BMCR, BMCR_RESET); /* PHY RESET */
iow(db, DM9000_GPR, 0x01); /* Power-Down PHY */
iow(db, DM9000_IMR, IMR_PAR); /* Disable all interrupt */
iow(db, DM9000_RCR, 0x00); /* Disable RX */
}
/*
* Stop the interface.
* The interface is stopped when it is brought.
*/
static int
dm9000_stop(struct net_device *ndev)
{
board_info_t *db = netdev_priv(ndev);
if (netif_msg_ifdown(db))
dev_dbg(db->dev, "shutting down %s\n", ndev->name);
cancel_delayed_work_sync(&db->phy_poll);
netif_stop_queue(ndev);
netif_carrier_off(ndev);
/* free interrupt */
free_irq(ndev->irq, ndev);
dm9000_shutdown(ndev);
return 0;
}
static const struct net_device_ops dm9000_netdev_ops = {
.ndo_open = dm9000_open,
.ndo_stop = dm9000_stop,
.ndo_start_xmit = dm9000_start_xmit,
.ndo_tx_timeout = dm9000_timeout,
.ndo_set_multicast_list = dm9000_hash_table,
.ndo_do_ioctl = dm9000_ioctl,
.ndo_change_mtu = eth_change_mtu,
.ndo_validate_addr = eth_validate_addr,
.ndo_set_mac_address = eth_mac_addr,
#ifdef CONFIG_NET_POLL_CONTROLLER
.ndo_poll_controller = dm9000_poll_controller,
#endif
};
/*
* Search DM9000 board, allocate space and register it
*/
static int __devinit
dm9000_probe(struct platform_device *pdev)
{
struct dm9000_plat_data *pdata = pdev->dev.platform_data;
struct board_info *db; /* Point a board information structure */
struct net_device *ndev;
const unsigned char *mac_src;
int ret = 0;
int iosize;
int i;
u32 id_val;
/* Init network device */
ndev = alloc_etherdev(sizeof(struct board_info));
if (!ndev) {
dev_err(&pdev->dev, "could not allocate device.\n");
return -ENOMEM;
}
SET_NETDEV_DEV(ndev, &pdev->dev);
dev_dbg(&pdev->dev, "dm9000_probe()\n");
/* setup board info structure */
db = netdev_priv(ndev);
db->dev = &pdev->dev;
db->ndev = ndev;
spin_lock_init(&db->lock);
mutex_init(&db->addr_lock);
INIT_DELAYED_WORK(&db->phy_poll, dm9000_poll_work);
db->addr_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
db->data_res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
db->irq_res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
if (db->addr_res == NULL || db->data_res == NULL ||
db->irq_res == NULL) {
dev_err(db->dev, "insufficient resources\n");
ret = -ENOENT;
goto out;
}
iosize = resource_size(db->addr_res);
db->addr_req = request_mem_region(db->addr_res->start, iosize,
pdev->name);
if (db->addr_req == NULL) {
dev_err(db->dev, "cannot claim address reg area\n");
ret = -EIO;
goto out;
}
db->io_addr = ioremap(db->addr_res->start, iosize);
if (db->io_addr == NULL) {
dev_err(db->dev, "failed to ioremap address reg\n");
ret = -EINVAL;
goto out;
}
iosize = resource_size(db->data_res);
db->data_req = request_mem_region(db->data_res->start, iosize,
pdev->name);
if (db->data_req == NULL) {
dev_err(db->dev, "cannot claim data reg area\n");
ret = -EIO;
goto out;
}
db->io_data = ioremap(db->data_res->start, iosize);
if (db->io_data == NULL) {
dev_err(db->dev, "failed to ioremap data reg\n");
ret = -EINVAL;
goto out;
}
/* fill in parameters for net-dev structure */
ndev->base_addr = (unsigned long)db->io_addr;
ndev->irq = db->irq_res->start;
/* ensure at least we have a default set of IO routines */
dm9000_set_io(db, iosize);
/* check to see if anything is being over-ridden */
if (pdata != NULL) {
/* check to see if the driver wants to over-ride the
* default IO width */
if (pdata->flags & DM9000_PLATF_8BITONLY)
dm9000_set_io(db, 1);
if (pdata->flags & DM9000_PLATF_16BITONLY)
dm9000_set_io(db, 2);
if (pdata->flags & DM9000_PLATF_32BITONLY)
dm9000_set_io(db, 4);
/* check to see if there are any IO routine
* over-rides */
if (pdata->inblk != NULL)
db->inblk = pdata->inblk;
if (pdata->outblk != NULL)
db->outblk = pdata->outblk;
if (pdata->dumpblk != NULL)
db->dumpblk = pdata->dumpblk;
db->flags = pdata->flags;
}
#ifdef CONFIG_DM9000_FORCE_SIMPLE_PHY_POLL
db->flags |= DM9000_PLATF_SIMPLE_PHY;
#endif
dm9000_reset(db);
/* try multiple times, DM9000 sometimes gets the read wrong */
for (i = 0; i < 8; i++) {
id_val = ior(db, DM9000_VIDL);
id_val |= (u32)ior(db, DM9000_VIDH) << 8;
id_val |= (u32)ior(db, DM9000_PIDL) << 16;
id_val |= (u32)ior(db, DM9000_PIDH) << 24;
if (id_val == DM9000_ID)
break;
dev_err(db->dev, "read wrong id 0x%08x\n", id_val);
}
if (id_val != DM9000_ID) {
dev_err(db->dev, "wrong id: 0x%08x\n", id_val);
ret = -ENODEV;
goto out;
}
/* Identify what type of DM9000 we are working on */
id_val = ior(db, DM9000_CHIPR);
dev_dbg(db->dev, "dm9000 revision 0x%02x\n", id_val);
switch (id_val) {
case CHIPR_DM9000A:
db->type = TYPE_DM9000A;
break;
case CHIPR_DM9000B:
db->type = TYPE_DM9000B;
break;
default:
dev_dbg(db->dev, "ID %02x => defaulting to DM9000E\n", id_val);
db->type = TYPE_DM9000E;
}
/* dm9000a/b are capable of hardware checksum offload */
if (db->type == TYPE_DM9000A || db->type == TYPE_DM9000B) {
db->can_csum = 1;
db->rx_csum = 1;
ndev->features |= NETIF_F_IP_CSUM;
}
/* from this point we assume that we have found a DM9000 */
/* driver system function */
ether_setup(ndev);
ndev->netdev_ops = &dm9000_netdev_ops;
ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
ndev->ethtool_ops = &dm9000_ethtool_ops;
db->msg_enable = NETIF_MSG_LINK;
db->mii.phy_id_mask = 0x1f;
db->mii.reg_num_mask = 0x1f;
db->mii.force_media = 0;
db->mii.full_duplex = 0;
db->mii.dev = ndev;
db->mii.mdio_read = dm9000_phy_read;
db->mii.mdio_write = dm9000_phy_write;
mac_src = "eeprom";
/* try reading the node address from the attached EEPROM */
for (i = 0; i < 6; i += 2)
dm9000_read_eeprom(db, i / 2, ndev->dev_addr+i);
if (!is_valid_ether_addr(ndev->dev_addr) && pdata != NULL) {
mac_src = "platform data";
memcpy(ndev->dev_addr, pdata->dev_addr, 6);
}
if (!is_valid_ether_addr(ndev->dev_addr)) {
/* try reading from mac */
mac_src = "chip";
for (i = 0; i < 6; i++)
ndev->dev_addr[i] = ior(db, i+DM9000_PAR);
}
if (!is_valid_ether_addr(ndev->dev_addr))
dev_warn(db->dev, "%s: Invalid ethernet MAC address. Please "
"set using ifconfig\n", ndev->name);
platform_set_drvdata(pdev, ndev);
ret = register_netdev(ndev);
if (ret == 0)
printk(KERN_INFO "%s: dm9000%c at %p,%p IRQ %d MAC: %pM (%s)\n",
ndev->name, dm9000_type_to_char(db->type),
db->io_addr, db->io_data, ndev->irq,
ndev->dev_addr, mac_src);
return 0;
out:
dev_err(db->dev, "not found (%d).\n", ret);
dm9000_release_board(pdev, db);
free_netdev(ndev);
return ret;
}
static int
dm9000_drv_suspend(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct net_device *ndev = platform_get_drvdata(pdev);
board_info_t *db;
if (ndev) {
db = netdev_priv(ndev);
db->in_suspend = 1;
if (netif_running(ndev)) {
netif_device_detach(ndev);
dm9000_shutdown(ndev);
}
}
return 0;
}
static int
dm9000_drv_resume(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct net_device *ndev = platform_get_drvdata(pdev);
board_info_t *db = netdev_priv(ndev);
if (ndev) {
if (netif_running(ndev)) {
dm9000_reset(db);
dm9000_init_dm9000(ndev);
netif_device_attach(ndev);
}
db->in_suspend = 0;
}
return 0;
}
static struct dev_pm_ops dm9000_drv_pm_ops = {
.suspend = dm9000_drv_suspend,
.resume = dm9000_drv_resume,
};
static int __devexit
dm9000_drv_remove(struct platform_device *pdev)
{
struct net_device *ndev = platform_get_drvdata(pdev);
platform_set_drvdata(pdev, NULL);
unregister_netdev(ndev);
dm9000_release_board(pdev, (board_info_t *) netdev_priv(ndev));
free_netdev(ndev); /* free device structure */
dev_dbg(&pdev->dev, "released and freed device\n");
return 0;
}
static struct platform_driver dm9000_driver = {
.driver = {
.name = "dm9000",
.owner = THIS_MODULE,
.pm = &dm9000_drv_pm_ops,
},
.probe = dm9000_probe,
.remove = __devexit_p(dm9000_drv_remove),
};
static int __init
dm9000_init(void)
{
printk(KERN_INFO "%s Ethernet Driver, V%s\n", CARDNAME, DRV_VERSION);
return platform_driver_register(&dm9000_driver);
}
static void __exit
dm9000_cleanup(void)
{
platform_driver_unregister(&dm9000_driver);
}
module_init(dm9000_init);
module_exit(dm9000_cleanup);
MODULE_AUTHOR("Sascha Hauer, Ben Dooks");
MODULE_DESCRIPTION("Davicom DM9000 network driver");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:dm9000");