mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-26 10:39:49 +07:00
f5e2ed022d
The 6320 family of switch chips has a second bank for statistics, but is missing three statistics in the port registers. Generalise and extend the code: * adding a field to the statistics table indicating the bank/register set where each statistics is. * add a function indicating if an individual statistics is available on this device * calculate at run time the sset_count. * return strings based on the available statistics of the device * return statistics based on the available statistics of the device * Add support for reading from the second bank. Signed-off-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2688 lines
64 KiB
C
2688 lines
64 KiB
C
/*
|
|
* net/dsa/mv88e6xxx.c - Marvell 88e6xxx switch chip support
|
|
* Copyright (c) 2008 Marvell Semiconductor
|
|
*
|
|
* Copyright (c) 2015 CMC Electronics, Inc.
|
|
* Added support for VLAN Table Unit operations
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*/
|
|
|
|
#include <linux/delay.h>
|
|
#include <linux/etherdevice.h>
|
|
#include <linux/ethtool.h>
|
|
#include <linux/if_bridge.h>
|
|
#include <linux/jiffies.h>
|
|
#include <linux/list.h>
|
|
#include <linux/module.h>
|
|
#include <linux/netdevice.h>
|
|
#include <linux/gpio/consumer.h>
|
|
#include <linux/phy.h>
|
|
#include <net/dsa.h>
|
|
#include <net/switchdev.h>
|
|
#include "mv88e6xxx.h"
|
|
|
|
static void assert_smi_lock(struct dsa_switch *ds)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
|
|
if (unlikely(!mutex_is_locked(&ps->smi_mutex))) {
|
|
dev_err(ds->master_dev, "SMI lock not held!\n");
|
|
dump_stack();
|
|
}
|
|
}
|
|
|
|
/* If the switch's ADDR[4:0] strap pins are strapped to zero, it will
|
|
* use all 32 SMI bus addresses on its SMI bus, and all switch registers
|
|
* will be directly accessible on some {device address,register address}
|
|
* pair. If the ADDR[4:0] pins are not strapped to zero, the switch
|
|
* will only respond to SMI transactions to that specific address, and
|
|
* an indirect addressing mechanism needs to be used to access its
|
|
* registers.
|
|
*/
|
|
static int mv88e6xxx_reg_wait_ready(struct mii_bus *bus, int sw_addr)
|
|
{
|
|
int ret;
|
|
int i;
|
|
|
|
for (i = 0; i < 16; i++) {
|
|
ret = mdiobus_read_nested(bus, sw_addr, SMI_CMD);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
if ((ret & SMI_CMD_BUSY) == 0)
|
|
return 0;
|
|
}
|
|
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
static int __mv88e6xxx_reg_read(struct mii_bus *bus, int sw_addr, int addr,
|
|
int reg)
|
|
{
|
|
int ret;
|
|
|
|
if (sw_addr == 0)
|
|
return mdiobus_read_nested(bus, addr, reg);
|
|
|
|
/* Wait for the bus to become free. */
|
|
ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
/* Transmit the read command. */
|
|
ret = mdiobus_write_nested(bus, sw_addr, SMI_CMD,
|
|
SMI_CMD_OP_22_READ | (addr << 5) | reg);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
/* Wait for the read command to complete. */
|
|
ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
/* Read the data. */
|
|
ret = mdiobus_read_nested(bus, sw_addr, SMI_DATA);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
return ret & 0xffff;
|
|
}
|
|
|
|
static int _mv88e6xxx_reg_read(struct dsa_switch *ds, int addr, int reg)
|
|
{
|
|
struct mii_bus *bus = dsa_host_dev_to_mii_bus(ds->master_dev);
|
|
int ret;
|
|
|
|
assert_smi_lock(ds);
|
|
|
|
if (bus == NULL)
|
|
return -EINVAL;
|
|
|
|
ret = __mv88e6xxx_reg_read(bus, ds->pd->sw_addr, addr, reg);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
dev_dbg(ds->master_dev, "<- addr: 0x%.2x reg: 0x%.2x val: 0x%.4x\n",
|
|
addr, reg, ret);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int mv88e6xxx_reg_read(struct dsa_switch *ds, int addr, int reg)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
int ret;
|
|
|
|
mutex_lock(&ps->smi_mutex);
|
|
ret = _mv88e6xxx_reg_read(ds, addr, reg);
|
|
mutex_unlock(&ps->smi_mutex);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int __mv88e6xxx_reg_write(struct mii_bus *bus, int sw_addr, int addr,
|
|
int reg, u16 val)
|
|
{
|
|
int ret;
|
|
|
|
if (sw_addr == 0)
|
|
return mdiobus_write_nested(bus, addr, reg, val);
|
|
|
|
/* Wait for the bus to become free. */
|
|
ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
/* Transmit the data to write. */
|
|
ret = mdiobus_write_nested(bus, sw_addr, SMI_DATA, val);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
/* Transmit the write command. */
|
|
ret = mdiobus_write_nested(bus, sw_addr, SMI_CMD,
|
|
SMI_CMD_OP_22_WRITE | (addr << 5) | reg);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
/* Wait for the write command to complete. */
|
|
ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int _mv88e6xxx_reg_write(struct dsa_switch *ds, int addr, int reg,
|
|
u16 val)
|
|
{
|
|
struct mii_bus *bus = dsa_host_dev_to_mii_bus(ds->master_dev);
|
|
|
|
assert_smi_lock(ds);
|
|
|
|
if (bus == NULL)
|
|
return -EINVAL;
|
|
|
|
dev_dbg(ds->master_dev, "-> addr: 0x%.2x reg: 0x%.2x val: 0x%.4x\n",
|
|
addr, reg, val);
|
|
|
|
return __mv88e6xxx_reg_write(bus, ds->pd->sw_addr, addr, reg, val);
|
|
}
|
|
|
|
int mv88e6xxx_reg_write(struct dsa_switch *ds, int addr, int reg, u16 val)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
int ret;
|
|
|
|
mutex_lock(&ps->smi_mutex);
|
|
ret = _mv88e6xxx_reg_write(ds, addr, reg, val);
|
|
mutex_unlock(&ps->smi_mutex);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int mv88e6xxx_set_addr_direct(struct dsa_switch *ds, u8 *addr)
|
|
{
|
|
REG_WRITE(REG_GLOBAL, GLOBAL_MAC_01, (addr[0] << 8) | addr[1]);
|
|
REG_WRITE(REG_GLOBAL, GLOBAL_MAC_23, (addr[2] << 8) | addr[3]);
|
|
REG_WRITE(REG_GLOBAL, GLOBAL_MAC_45, (addr[4] << 8) | addr[5]);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int mv88e6xxx_set_addr_indirect(struct dsa_switch *ds, u8 *addr)
|
|
{
|
|
int i;
|
|
int ret;
|
|
|
|
for (i = 0; i < 6; i++) {
|
|
int j;
|
|
|
|
/* Write the MAC address byte. */
|
|
REG_WRITE(REG_GLOBAL2, GLOBAL2_SWITCH_MAC,
|
|
GLOBAL2_SWITCH_MAC_BUSY | (i << 8) | addr[i]);
|
|
|
|
/* Wait for the write to complete. */
|
|
for (j = 0; j < 16; j++) {
|
|
ret = REG_READ(REG_GLOBAL2, GLOBAL2_SWITCH_MAC);
|
|
if ((ret & GLOBAL2_SWITCH_MAC_BUSY) == 0)
|
|
break;
|
|
}
|
|
if (j == 16)
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int _mv88e6xxx_phy_read(struct dsa_switch *ds, int addr, int regnum)
|
|
{
|
|
if (addr >= 0)
|
|
return _mv88e6xxx_reg_read(ds, addr, regnum);
|
|
return 0xffff;
|
|
}
|
|
|
|
static int _mv88e6xxx_phy_write(struct dsa_switch *ds, int addr, int regnum,
|
|
u16 val)
|
|
{
|
|
if (addr >= 0)
|
|
return _mv88e6xxx_reg_write(ds, addr, regnum, val);
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_NET_DSA_MV88E6XXX_NEED_PPU
|
|
static int mv88e6xxx_ppu_disable(struct dsa_switch *ds)
|
|
{
|
|
int ret;
|
|
unsigned long timeout;
|
|
|
|
ret = REG_READ(REG_GLOBAL, GLOBAL_CONTROL);
|
|
REG_WRITE(REG_GLOBAL, GLOBAL_CONTROL,
|
|
ret & ~GLOBAL_CONTROL_PPU_ENABLE);
|
|
|
|
timeout = jiffies + 1 * HZ;
|
|
while (time_before(jiffies, timeout)) {
|
|
ret = REG_READ(REG_GLOBAL, GLOBAL_STATUS);
|
|
usleep_range(1000, 2000);
|
|
if ((ret & GLOBAL_STATUS_PPU_MASK) !=
|
|
GLOBAL_STATUS_PPU_POLLING)
|
|
return 0;
|
|
}
|
|
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
static int mv88e6xxx_ppu_enable(struct dsa_switch *ds)
|
|
{
|
|
int ret;
|
|
unsigned long timeout;
|
|
|
|
ret = REG_READ(REG_GLOBAL, GLOBAL_CONTROL);
|
|
REG_WRITE(REG_GLOBAL, GLOBAL_CONTROL, ret | GLOBAL_CONTROL_PPU_ENABLE);
|
|
|
|
timeout = jiffies + 1 * HZ;
|
|
while (time_before(jiffies, timeout)) {
|
|
ret = REG_READ(REG_GLOBAL, GLOBAL_STATUS);
|
|
usleep_range(1000, 2000);
|
|
if ((ret & GLOBAL_STATUS_PPU_MASK) ==
|
|
GLOBAL_STATUS_PPU_POLLING)
|
|
return 0;
|
|
}
|
|
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
static void mv88e6xxx_ppu_reenable_work(struct work_struct *ugly)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps;
|
|
|
|
ps = container_of(ugly, struct mv88e6xxx_priv_state, ppu_work);
|
|
if (mutex_trylock(&ps->ppu_mutex)) {
|
|
struct dsa_switch *ds = ((struct dsa_switch *)ps) - 1;
|
|
|
|
if (mv88e6xxx_ppu_enable(ds) == 0)
|
|
ps->ppu_disabled = 0;
|
|
mutex_unlock(&ps->ppu_mutex);
|
|
}
|
|
}
|
|
|
|
static void mv88e6xxx_ppu_reenable_timer(unsigned long _ps)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = (void *)_ps;
|
|
|
|
schedule_work(&ps->ppu_work);
|
|
}
|
|
|
|
static int mv88e6xxx_ppu_access_get(struct dsa_switch *ds)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
int ret;
|
|
|
|
mutex_lock(&ps->ppu_mutex);
|
|
|
|
/* If the PHY polling unit is enabled, disable it so that
|
|
* we can access the PHY registers. If it was already
|
|
* disabled, cancel the timer that is going to re-enable
|
|
* it.
|
|
*/
|
|
if (!ps->ppu_disabled) {
|
|
ret = mv88e6xxx_ppu_disable(ds);
|
|
if (ret < 0) {
|
|
mutex_unlock(&ps->ppu_mutex);
|
|
return ret;
|
|
}
|
|
ps->ppu_disabled = 1;
|
|
} else {
|
|
del_timer(&ps->ppu_timer);
|
|
ret = 0;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void mv88e6xxx_ppu_access_put(struct dsa_switch *ds)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
|
|
/* Schedule a timer to re-enable the PHY polling unit. */
|
|
mod_timer(&ps->ppu_timer, jiffies + msecs_to_jiffies(10));
|
|
mutex_unlock(&ps->ppu_mutex);
|
|
}
|
|
|
|
void mv88e6xxx_ppu_state_init(struct dsa_switch *ds)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
|
|
mutex_init(&ps->ppu_mutex);
|
|
INIT_WORK(&ps->ppu_work, mv88e6xxx_ppu_reenable_work);
|
|
init_timer(&ps->ppu_timer);
|
|
ps->ppu_timer.data = (unsigned long)ps;
|
|
ps->ppu_timer.function = mv88e6xxx_ppu_reenable_timer;
|
|
}
|
|
|
|
int mv88e6xxx_phy_read_ppu(struct dsa_switch *ds, int addr, int regnum)
|
|
{
|
|
int ret;
|
|
|
|
ret = mv88e6xxx_ppu_access_get(ds);
|
|
if (ret >= 0) {
|
|
ret = mv88e6xxx_reg_read(ds, addr, regnum);
|
|
mv88e6xxx_ppu_access_put(ds);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
int mv88e6xxx_phy_write_ppu(struct dsa_switch *ds, int addr,
|
|
int regnum, u16 val)
|
|
{
|
|
int ret;
|
|
|
|
ret = mv88e6xxx_ppu_access_get(ds);
|
|
if (ret >= 0) {
|
|
ret = mv88e6xxx_reg_write(ds, addr, regnum, val);
|
|
mv88e6xxx_ppu_access_put(ds);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
#endif
|
|
|
|
static bool mv88e6xxx_6065_family(struct dsa_switch *ds)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
|
|
switch (ps->id) {
|
|
case PORT_SWITCH_ID_6031:
|
|
case PORT_SWITCH_ID_6061:
|
|
case PORT_SWITCH_ID_6035:
|
|
case PORT_SWITCH_ID_6065:
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static bool mv88e6xxx_6095_family(struct dsa_switch *ds)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
|
|
switch (ps->id) {
|
|
case PORT_SWITCH_ID_6092:
|
|
case PORT_SWITCH_ID_6095:
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static bool mv88e6xxx_6097_family(struct dsa_switch *ds)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
|
|
switch (ps->id) {
|
|
case PORT_SWITCH_ID_6046:
|
|
case PORT_SWITCH_ID_6085:
|
|
case PORT_SWITCH_ID_6096:
|
|
case PORT_SWITCH_ID_6097:
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static bool mv88e6xxx_6165_family(struct dsa_switch *ds)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
|
|
switch (ps->id) {
|
|
case PORT_SWITCH_ID_6123:
|
|
case PORT_SWITCH_ID_6161:
|
|
case PORT_SWITCH_ID_6165:
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static bool mv88e6xxx_6185_family(struct dsa_switch *ds)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
|
|
switch (ps->id) {
|
|
case PORT_SWITCH_ID_6121:
|
|
case PORT_SWITCH_ID_6122:
|
|
case PORT_SWITCH_ID_6152:
|
|
case PORT_SWITCH_ID_6155:
|
|
case PORT_SWITCH_ID_6182:
|
|
case PORT_SWITCH_ID_6185:
|
|
case PORT_SWITCH_ID_6108:
|
|
case PORT_SWITCH_ID_6131:
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static bool mv88e6xxx_6320_family(struct dsa_switch *ds)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
|
|
switch (ps->id) {
|
|
case PORT_SWITCH_ID_6320:
|
|
case PORT_SWITCH_ID_6321:
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static bool mv88e6xxx_6351_family(struct dsa_switch *ds)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
|
|
switch (ps->id) {
|
|
case PORT_SWITCH_ID_6171:
|
|
case PORT_SWITCH_ID_6175:
|
|
case PORT_SWITCH_ID_6350:
|
|
case PORT_SWITCH_ID_6351:
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static bool mv88e6xxx_6352_family(struct dsa_switch *ds)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
|
|
switch (ps->id) {
|
|
case PORT_SWITCH_ID_6172:
|
|
case PORT_SWITCH_ID_6176:
|
|
case PORT_SWITCH_ID_6240:
|
|
case PORT_SWITCH_ID_6352:
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/* We expect the switch to perform auto negotiation if there is a real
|
|
* phy. However, in the case of a fixed link phy, we force the port
|
|
* settings from the fixed link settings.
|
|
*/
|
|
void mv88e6xxx_adjust_link(struct dsa_switch *ds, int port,
|
|
struct phy_device *phydev)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
u32 reg;
|
|
int ret;
|
|
|
|
if (!phy_is_pseudo_fixed_link(phydev))
|
|
return;
|
|
|
|
mutex_lock(&ps->smi_mutex);
|
|
|
|
ret = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_PCS_CTRL);
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
reg = ret & ~(PORT_PCS_CTRL_LINK_UP |
|
|
PORT_PCS_CTRL_FORCE_LINK |
|
|
PORT_PCS_CTRL_DUPLEX_FULL |
|
|
PORT_PCS_CTRL_FORCE_DUPLEX |
|
|
PORT_PCS_CTRL_UNFORCED);
|
|
|
|
reg |= PORT_PCS_CTRL_FORCE_LINK;
|
|
if (phydev->link)
|
|
reg |= PORT_PCS_CTRL_LINK_UP;
|
|
|
|
if (mv88e6xxx_6065_family(ds) && phydev->speed > SPEED_100)
|
|
goto out;
|
|
|
|
switch (phydev->speed) {
|
|
case SPEED_1000:
|
|
reg |= PORT_PCS_CTRL_1000;
|
|
break;
|
|
case SPEED_100:
|
|
reg |= PORT_PCS_CTRL_100;
|
|
break;
|
|
case SPEED_10:
|
|
reg |= PORT_PCS_CTRL_10;
|
|
break;
|
|
default:
|
|
pr_info("Unknown speed");
|
|
goto out;
|
|
}
|
|
|
|
reg |= PORT_PCS_CTRL_FORCE_DUPLEX;
|
|
if (phydev->duplex == DUPLEX_FULL)
|
|
reg |= PORT_PCS_CTRL_DUPLEX_FULL;
|
|
|
|
if ((mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds)) &&
|
|
(port >= ps->num_ports - 2)) {
|
|
if (phydev->interface == PHY_INTERFACE_MODE_RGMII_RXID)
|
|
reg |= PORT_PCS_CTRL_RGMII_DELAY_RXCLK;
|
|
if (phydev->interface == PHY_INTERFACE_MODE_RGMII_TXID)
|
|
reg |= PORT_PCS_CTRL_RGMII_DELAY_TXCLK;
|
|
if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID)
|
|
reg |= (PORT_PCS_CTRL_RGMII_DELAY_RXCLK |
|
|
PORT_PCS_CTRL_RGMII_DELAY_TXCLK);
|
|
}
|
|
_mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_PCS_CTRL, reg);
|
|
|
|
out:
|
|
mutex_unlock(&ps->smi_mutex);
|
|
}
|
|
|
|
static int _mv88e6xxx_stats_wait(struct dsa_switch *ds)
|
|
{
|
|
int ret;
|
|
int i;
|
|
|
|
for (i = 0; i < 10; i++) {
|
|
ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_STATS_OP);
|
|
if ((ret & GLOBAL_STATS_OP_BUSY) == 0)
|
|
return 0;
|
|
}
|
|
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
static int _mv88e6xxx_stats_snapshot(struct dsa_switch *ds, int port)
|
|
{
|
|
int ret;
|
|
|
|
if (mv88e6xxx_6320_family(ds) || mv88e6xxx_6352_family(ds))
|
|
port = (port + 1) << 5;
|
|
|
|
/* Snapshot the hardware statistics counters for this port. */
|
|
ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_STATS_OP,
|
|
GLOBAL_STATS_OP_CAPTURE_PORT |
|
|
GLOBAL_STATS_OP_HIST_RX_TX | port);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
/* Wait for the snapshotting to complete. */
|
|
ret = _mv88e6xxx_stats_wait(ds);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void _mv88e6xxx_stats_read(struct dsa_switch *ds, int stat, u32 *val)
|
|
{
|
|
u32 _val;
|
|
int ret;
|
|
|
|
*val = 0;
|
|
|
|
ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_STATS_OP,
|
|
GLOBAL_STATS_OP_READ_CAPTURED |
|
|
GLOBAL_STATS_OP_HIST_RX_TX | stat);
|
|
if (ret < 0)
|
|
return;
|
|
|
|
ret = _mv88e6xxx_stats_wait(ds);
|
|
if (ret < 0)
|
|
return;
|
|
|
|
ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_STATS_COUNTER_32);
|
|
if (ret < 0)
|
|
return;
|
|
|
|
_val = ret << 16;
|
|
|
|
ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_STATS_COUNTER_01);
|
|
if (ret < 0)
|
|
return;
|
|
|
|
*val = _val | ret;
|
|
}
|
|
|
|
static struct mv88e6xxx_hw_stat mv88e6xxx_hw_stats[] = {
|
|
{ "in_good_octets", 8, 0x00, BANK0, },
|
|
{ "in_bad_octets", 4, 0x02, BANK0, },
|
|
{ "in_unicast", 4, 0x04, BANK0, },
|
|
{ "in_broadcasts", 4, 0x06, BANK0, },
|
|
{ "in_multicasts", 4, 0x07, BANK0, },
|
|
{ "in_pause", 4, 0x16, BANK0, },
|
|
{ "in_undersize", 4, 0x18, BANK0, },
|
|
{ "in_fragments", 4, 0x19, BANK0, },
|
|
{ "in_oversize", 4, 0x1a, BANK0, },
|
|
{ "in_jabber", 4, 0x1b, BANK0, },
|
|
{ "in_rx_error", 4, 0x1c, BANK0, },
|
|
{ "in_fcs_error", 4, 0x1d, BANK0, },
|
|
{ "out_octets", 8, 0x0e, BANK0, },
|
|
{ "out_unicast", 4, 0x10, BANK0, },
|
|
{ "out_broadcasts", 4, 0x13, BANK0, },
|
|
{ "out_multicasts", 4, 0x12, BANK0, },
|
|
{ "out_pause", 4, 0x15, BANK0, },
|
|
{ "excessive", 4, 0x11, BANK0, },
|
|
{ "collisions", 4, 0x1e, BANK0, },
|
|
{ "deferred", 4, 0x05, BANK0, },
|
|
{ "single", 4, 0x14, BANK0, },
|
|
{ "multiple", 4, 0x17, BANK0, },
|
|
{ "out_fcs_error", 4, 0x03, BANK0, },
|
|
{ "late", 4, 0x1f, BANK0, },
|
|
{ "hist_64bytes", 4, 0x08, BANK0, },
|
|
{ "hist_65_127bytes", 4, 0x09, BANK0, },
|
|
{ "hist_128_255bytes", 4, 0x0a, BANK0, },
|
|
{ "hist_256_511bytes", 4, 0x0b, BANK0, },
|
|
{ "hist_512_1023bytes", 4, 0x0c, BANK0, },
|
|
{ "hist_1024_max_bytes", 4, 0x0d, BANK0, },
|
|
{ "sw_in_discards", 4, 0x10, PORT, },
|
|
{ "sw_in_filtered", 2, 0x12, PORT, },
|
|
{ "sw_out_filtered", 2, 0x13, PORT, },
|
|
{ "in_discards", 4, 0x00 | GLOBAL_STATS_OP_BANK_1, BANK1, },
|
|
{ "in_filtered", 4, 0x01 | GLOBAL_STATS_OP_BANK_1, BANK1, },
|
|
{ "in_accepted", 4, 0x02 | GLOBAL_STATS_OP_BANK_1, BANK1, },
|
|
{ "in_bad_accepted", 4, 0x03 | GLOBAL_STATS_OP_BANK_1, BANK1, },
|
|
{ "in_good_avb_class_a", 4, 0x04 | GLOBAL_STATS_OP_BANK_1, BANK1, },
|
|
{ "in_good_avb_class_b", 4, 0x05 | GLOBAL_STATS_OP_BANK_1, BANK1, },
|
|
{ "in_bad_avb_class_a", 4, 0x06 | GLOBAL_STATS_OP_BANK_1, BANK1, },
|
|
{ "in_bad_avb_class_b", 4, 0x07 | GLOBAL_STATS_OP_BANK_1, BANK1, },
|
|
{ "tcam_counter_0", 4, 0x08 | GLOBAL_STATS_OP_BANK_1, BANK1, },
|
|
{ "tcam_counter_1", 4, 0x09 | GLOBAL_STATS_OP_BANK_1, BANK1, },
|
|
{ "tcam_counter_2", 4, 0x0a | GLOBAL_STATS_OP_BANK_1, BANK1, },
|
|
{ "tcam_counter_3", 4, 0x0b | GLOBAL_STATS_OP_BANK_1, BANK1, },
|
|
{ "in_da_unknown", 4, 0x0e | GLOBAL_STATS_OP_BANK_1, BANK1, },
|
|
{ "in_management", 4, 0x0f | GLOBAL_STATS_OP_BANK_1, BANK1, },
|
|
{ "out_queue_0", 4, 0x10 | GLOBAL_STATS_OP_BANK_1, BANK1, },
|
|
{ "out_queue_1", 4, 0x11 | GLOBAL_STATS_OP_BANK_1, BANK1, },
|
|
{ "out_queue_2", 4, 0x12 | GLOBAL_STATS_OP_BANK_1, BANK1, },
|
|
{ "out_queue_3", 4, 0x13 | GLOBAL_STATS_OP_BANK_1, BANK1, },
|
|
{ "out_queue_4", 4, 0x14 | GLOBAL_STATS_OP_BANK_1, BANK1, },
|
|
{ "out_queue_5", 4, 0x15 | GLOBAL_STATS_OP_BANK_1, BANK1, },
|
|
{ "out_queue_6", 4, 0x16 | GLOBAL_STATS_OP_BANK_1, BANK1, },
|
|
{ "out_queue_7", 4, 0x17 | GLOBAL_STATS_OP_BANK_1, BANK1, },
|
|
{ "out_cut_through", 4, 0x18 | GLOBAL_STATS_OP_BANK_1, BANK1, },
|
|
{ "out_octets_a", 4, 0x1a | GLOBAL_STATS_OP_BANK_1, BANK1, },
|
|
{ "out_octets_b", 4, 0x1b | GLOBAL_STATS_OP_BANK_1, BANK1, },
|
|
{ "out_management", 4, 0x1f | GLOBAL_STATS_OP_BANK_1, BANK1, },
|
|
};
|
|
|
|
static bool mv88e6xxx_has_stat(struct dsa_switch *ds,
|
|
struct mv88e6xxx_hw_stat *stat)
|
|
{
|
|
switch (stat->type) {
|
|
case BANK0:
|
|
return true;
|
|
case BANK1:
|
|
return mv88e6xxx_6320_family(ds);
|
|
case PORT:
|
|
return mv88e6xxx_6095_family(ds) ||
|
|
mv88e6xxx_6185_family(ds) ||
|
|
mv88e6xxx_6097_family(ds) ||
|
|
mv88e6xxx_6165_family(ds) ||
|
|
mv88e6xxx_6351_family(ds) ||
|
|
mv88e6xxx_6352_family(ds);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static uint64_t _mv88e6xxx_get_ethtool_stat(struct dsa_switch *ds,
|
|
struct mv88e6xxx_hw_stat *s,
|
|
int port)
|
|
{
|
|
u32 low;
|
|
u32 high = 0;
|
|
int ret;
|
|
u64 value;
|
|
|
|
switch (s->type) {
|
|
case PORT:
|
|
ret = _mv88e6xxx_reg_read(ds, REG_PORT(port), s->reg);
|
|
if (ret < 0)
|
|
return UINT64_MAX;
|
|
|
|
low = ret;
|
|
if (s->sizeof_stat == 4) {
|
|
ret = _mv88e6xxx_reg_read(ds, REG_PORT(port),
|
|
s->reg + 1);
|
|
if (ret < 0)
|
|
return UINT64_MAX;
|
|
high = ret;
|
|
}
|
|
break;
|
|
case BANK0:
|
|
case BANK1:
|
|
_mv88e6xxx_stats_read(ds, s->reg, &low);
|
|
if (s->sizeof_stat == 8)
|
|
_mv88e6xxx_stats_read(ds, s->reg + 1, &high);
|
|
}
|
|
value = (((u64)high) << 16) | low;
|
|
return value;
|
|
}
|
|
|
|
void mv88e6xxx_get_strings(struct dsa_switch *ds, int port, uint8_t *data)
|
|
{
|
|
struct mv88e6xxx_hw_stat *stat;
|
|
int i, j;
|
|
|
|
for (i = 0, j = 0; i < ARRAY_SIZE(mv88e6xxx_hw_stats); i++) {
|
|
stat = &mv88e6xxx_hw_stats[i];
|
|
if (mv88e6xxx_has_stat(ds, stat)) {
|
|
memcpy(data + j * ETH_GSTRING_LEN, stat->string,
|
|
ETH_GSTRING_LEN);
|
|
j++;
|
|
}
|
|
}
|
|
}
|
|
|
|
int mv88e6xxx_get_sset_count(struct dsa_switch *ds)
|
|
{
|
|
struct mv88e6xxx_hw_stat *stat;
|
|
int i, j;
|
|
|
|
for (i = 0, j = 0; i < ARRAY_SIZE(mv88e6xxx_hw_stats); i++) {
|
|
stat = &mv88e6xxx_hw_stats[i];
|
|
if (mv88e6xxx_has_stat(ds, stat))
|
|
j++;
|
|
}
|
|
return j;
|
|
}
|
|
|
|
void
|
|
mv88e6xxx_get_ethtool_stats(struct dsa_switch *ds,
|
|
int port, uint64_t *data)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
struct mv88e6xxx_hw_stat *stat;
|
|
int ret;
|
|
int i, j;
|
|
|
|
mutex_lock(&ps->smi_mutex);
|
|
|
|
ret = _mv88e6xxx_stats_snapshot(ds, port);
|
|
if (ret < 0) {
|
|
mutex_unlock(&ps->smi_mutex);
|
|
return;
|
|
}
|
|
for (i = 0, j = 0; i < ARRAY_SIZE(mv88e6xxx_hw_stats); i++) {
|
|
stat = &mv88e6xxx_hw_stats[i];
|
|
if (mv88e6xxx_has_stat(ds, stat)) {
|
|
data[j] = _mv88e6xxx_get_ethtool_stat(ds, stat, port);
|
|
j++;
|
|
}
|
|
}
|
|
|
|
mutex_unlock(&ps->smi_mutex);
|
|
}
|
|
|
|
int mv88e6xxx_get_regs_len(struct dsa_switch *ds, int port)
|
|
{
|
|
return 32 * sizeof(u16);
|
|
}
|
|
|
|
void mv88e6xxx_get_regs(struct dsa_switch *ds, int port,
|
|
struct ethtool_regs *regs, void *_p)
|
|
{
|
|
u16 *p = _p;
|
|
int i;
|
|
|
|
regs->version = 0;
|
|
|
|
memset(p, 0xff, 32 * sizeof(u16));
|
|
|
|
for (i = 0; i < 32; i++) {
|
|
int ret;
|
|
|
|
ret = mv88e6xxx_reg_read(ds, REG_PORT(port), i);
|
|
if (ret >= 0)
|
|
p[i] = ret;
|
|
}
|
|
}
|
|
|
|
static int _mv88e6xxx_wait(struct dsa_switch *ds, int reg, int offset,
|
|
u16 mask)
|
|
{
|
|
unsigned long timeout = jiffies + HZ / 10;
|
|
|
|
while (time_before(jiffies, timeout)) {
|
|
int ret;
|
|
|
|
ret = _mv88e6xxx_reg_read(ds, reg, offset);
|
|
if (ret < 0)
|
|
return ret;
|
|
if (!(ret & mask))
|
|
return 0;
|
|
|
|
usleep_range(1000, 2000);
|
|
}
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
static int mv88e6xxx_wait(struct dsa_switch *ds, int reg, int offset, u16 mask)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
int ret;
|
|
|
|
mutex_lock(&ps->smi_mutex);
|
|
ret = _mv88e6xxx_wait(ds, reg, offset, mask);
|
|
mutex_unlock(&ps->smi_mutex);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int _mv88e6xxx_phy_wait(struct dsa_switch *ds)
|
|
{
|
|
return _mv88e6xxx_wait(ds, REG_GLOBAL2, GLOBAL2_SMI_OP,
|
|
GLOBAL2_SMI_OP_BUSY);
|
|
}
|
|
|
|
int mv88e6xxx_eeprom_load_wait(struct dsa_switch *ds)
|
|
{
|
|
return mv88e6xxx_wait(ds, REG_GLOBAL2, GLOBAL2_EEPROM_OP,
|
|
GLOBAL2_EEPROM_OP_LOAD);
|
|
}
|
|
|
|
int mv88e6xxx_eeprom_busy_wait(struct dsa_switch *ds)
|
|
{
|
|
return mv88e6xxx_wait(ds, REG_GLOBAL2, GLOBAL2_EEPROM_OP,
|
|
GLOBAL2_EEPROM_OP_BUSY);
|
|
}
|
|
|
|
static int _mv88e6xxx_atu_wait(struct dsa_switch *ds)
|
|
{
|
|
return _mv88e6xxx_wait(ds, REG_GLOBAL, GLOBAL_ATU_OP,
|
|
GLOBAL_ATU_OP_BUSY);
|
|
}
|
|
|
|
static int _mv88e6xxx_phy_read_indirect(struct dsa_switch *ds, int addr,
|
|
int regnum)
|
|
{
|
|
int ret;
|
|
|
|
ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL2, GLOBAL2_SMI_OP,
|
|
GLOBAL2_SMI_OP_22_READ | (addr << 5) |
|
|
regnum);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
ret = _mv88e6xxx_phy_wait(ds);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
return _mv88e6xxx_reg_read(ds, REG_GLOBAL2, GLOBAL2_SMI_DATA);
|
|
}
|
|
|
|
static int _mv88e6xxx_phy_write_indirect(struct dsa_switch *ds, int addr,
|
|
int regnum, u16 val)
|
|
{
|
|
int ret;
|
|
|
|
ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL2, GLOBAL2_SMI_DATA, val);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL2, GLOBAL2_SMI_OP,
|
|
GLOBAL2_SMI_OP_22_WRITE | (addr << 5) |
|
|
regnum);
|
|
|
|
return _mv88e6xxx_phy_wait(ds);
|
|
}
|
|
|
|
int mv88e6xxx_get_eee(struct dsa_switch *ds, int port, struct ethtool_eee *e)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
int reg;
|
|
|
|
mutex_lock(&ps->smi_mutex);
|
|
|
|
reg = _mv88e6xxx_phy_read_indirect(ds, port, 16);
|
|
if (reg < 0)
|
|
goto out;
|
|
|
|
e->eee_enabled = !!(reg & 0x0200);
|
|
e->tx_lpi_enabled = !!(reg & 0x0100);
|
|
|
|
reg = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_STATUS);
|
|
if (reg < 0)
|
|
goto out;
|
|
|
|
e->eee_active = !!(reg & PORT_STATUS_EEE);
|
|
reg = 0;
|
|
|
|
out:
|
|
mutex_unlock(&ps->smi_mutex);
|
|
return reg;
|
|
}
|
|
|
|
int mv88e6xxx_set_eee(struct dsa_switch *ds, int port,
|
|
struct phy_device *phydev, struct ethtool_eee *e)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
int reg;
|
|
int ret;
|
|
|
|
mutex_lock(&ps->smi_mutex);
|
|
|
|
ret = _mv88e6xxx_phy_read_indirect(ds, port, 16);
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
reg = ret & ~0x0300;
|
|
if (e->eee_enabled)
|
|
reg |= 0x0200;
|
|
if (e->tx_lpi_enabled)
|
|
reg |= 0x0100;
|
|
|
|
ret = _mv88e6xxx_phy_write_indirect(ds, port, 16, reg);
|
|
out:
|
|
mutex_unlock(&ps->smi_mutex);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int _mv88e6xxx_atu_cmd(struct dsa_switch *ds, u16 cmd)
|
|
{
|
|
int ret;
|
|
|
|
ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_ATU_OP, cmd);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
return _mv88e6xxx_atu_wait(ds);
|
|
}
|
|
|
|
static int _mv88e6xxx_atu_data_write(struct dsa_switch *ds,
|
|
struct mv88e6xxx_atu_entry *entry)
|
|
{
|
|
u16 data = entry->state & GLOBAL_ATU_DATA_STATE_MASK;
|
|
|
|
if (entry->state != GLOBAL_ATU_DATA_STATE_UNUSED) {
|
|
unsigned int mask, shift;
|
|
|
|
if (entry->trunk) {
|
|
data |= GLOBAL_ATU_DATA_TRUNK;
|
|
mask = GLOBAL_ATU_DATA_TRUNK_ID_MASK;
|
|
shift = GLOBAL_ATU_DATA_TRUNK_ID_SHIFT;
|
|
} else {
|
|
mask = GLOBAL_ATU_DATA_PORT_VECTOR_MASK;
|
|
shift = GLOBAL_ATU_DATA_PORT_VECTOR_SHIFT;
|
|
}
|
|
|
|
data |= (entry->portv_trunkid << shift) & mask;
|
|
}
|
|
|
|
return _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_ATU_DATA, data);
|
|
}
|
|
|
|
static int _mv88e6xxx_atu_flush_move(struct dsa_switch *ds,
|
|
struct mv88e6xxx_atu_entry *entry,
|
|
bool static_too)
|
|
{
|
|
int op;
|
|
int err;
|
|
|
|
err = _mv88e6xxx_atu_wait(ds);
|
|
if (err)
|
|
return err;
|
|
|
|
err = _mv88e6xxx_atu_data_write(ds, entry);
|
|
if (err)
|
|
return err;
|
|
|
|
if (entry->fid) {
|
|
err = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_ATU_FID,
|
|
entry->fid);
|
|
if (err)
|
|
return err;
|
|
|
|
op = static_too ? GLOBAL_ATU_OP_FLUSH_MOVE_ALL_DB :
|
|
GLOBAL_ATU_OP_FLUSH_MOVE_NON_STATIC_DB;
|
|
} else {
|
|
op = static_too ? GLOBAL_ATU_OP_FLUSH_MOVE_ALL :
|
|
GLOBAL_ATU_OP_FLUSH_MOVE_NON_STATIC;
|
|
}
|
|
|
|
return _mv88e6xxx_atu_cmd(ds, op);
|
|
}
|
|
|
|
static int _mv88e6xxx_atu_flush(struct dsa_switch *ds, u16 fid, bool static_too)
|
|
{
|
|
struct mv88e6xxx_atu_entry entry = {
|
|
.fid = fid,
|
|
.state = 0, /* EntryState bits must be 0 */
|
|
};
|
|
|
|
return _mv88e6xxx_atu_flush_move(ds, &entry, static_too);
|
|
}
|
|
|
|
static int _mv88e6xxx_atu_move(struct dsa_switch *ds, u16 fid, int from_port,
|
|
int to_port, bool static_too)
|
|
{
|
|
struct mv88e6xxx_atu_entry entry = {
|
|
.trunk = false,
|
|
.fid = fid,
|
|
};
|
|
|
|
/* EntryState bits must be 0xF */
|
|
entry.state = GLOBAL_ATU_DATA_STATE_MASK;
|
|
|
|
/* ToPort and FromPort are respectively in PortVec bits 7:4 and 3:0 */
|
|
entry.portv_trunkid = (to_port & 0x0f) << 4;
|
|
entry.portv_trunkid |= from_port & 0x0f;
|
|
|
|
return _mv88e6xxx_atu_flush_move(ds, &entry, static_too);
|
|
}
|
|
|
|
static int _mv88e6xxx_atu_remove(struct dsa_switch *ds, u16 fid, int port,
|
|
bool static_too)
|
|
{
|
|
/* Destination port 0xF means remove the entries */
|
|
return _mv88e6xxx_atu_move(ds, fid, port, 0x0f, static_too);
|
|
}
|
|
|
|
static int mv88e6xxx_set_port_state(struct dsa_switch *ds, int port, u8 state)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
int reg, ret = 0;
|
|
u8 oldstate;
|
|
|
|
mutex_lock(&ps->smi_mutex);
|
|
|
|
reg = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_CONTROL);
|
|
if (reg < 0) {
|
|
ret = reg;
|
|
goto abort;
|
|
}
|
|
|
|
oldstate = reg & PORT_CONTROL_STATE_MASK;
|
|
if (oldstate != state) {
|
|
/* Flush forwarding database if we're moving a port
|
|
* from Learning or Forwarding state to Disabled or
|
|
* Blocking or Listening state.
|
|
*/
|
|
if (oldstate >= PORT_CONTROL_STATE_LEARNING &&
|
|
state <= PORT_CONTROL_STATE_BLOCKING) {
|
|
ret = _mv88e6xxx_atu_remove(ds, 0, port, false);
|
|
if (ret)
|
|
goto abort;
|
|
}
|
|
reg = (reg & ~PORT_CONTROL_STATE_MASK) | state;
|
|
ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_CONTROL,
|
|
reg);
|
|
}
|
|
|
|
abort:
|
|
mutex_unlock(&ps->smi_mutex);
|
|
return ret;
|
|
}
|
|
|
|
static int _mv88e6xxx_port_vlan_map_set(struct dsa_switch *ds, int port,
|
|
u16 output_ports)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
const u16 mask = (1 << ps->num_ports) - 1;
|
|
int reg;
|
|
|
|
reg = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_BASE_VLAN);
|
|
if (reg < 0)
|
|
return reg;
|
|
|
|
reg &= ~mask;
|
|
reg |= output_ports & mask;
|
|
|
|
return _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_BASE_VLAN, reg);
|
|
}
|
|
|
|
int mv88e6xxx_port_stp_update(struct dsa_switch *ds, int port, u8 state)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
int stp_state;
|
|
|
|
switch (state) {
|
|
case BR_STATE_DISABLED:
|
|
stp_state = PORT_CONTROL_STATE_DISABLED;
|
|
break;
|
|
case BR_STATE_BLOCKING:
|
|
case BR_STATE_LISTENING:
|
|
stp_state = PORT_CONTROL_STATE_BLOCKING;
|
|
break;
|
|
case BR_STATE_LEARNING:
|
|
stp_state = PORT_CONTROL_STATE_LEARNING;
|
|
break;
|
|
case BR_STATE_FORWARDING:
|
|
default:
|
|
stp_state = PORT_CONTROL_STATE_FORWARDING;
|
|
break;
|
|
}
|
|
|
|
netdev_dbg(ds->ports[port], "port state %d [%d]\n", state, stp_state);
|
|
|
|
/* mv88e6xxx_port_stp_update may be called with softirqs disabled,
|
|
* so we can not update the port state directly but need to schedule it.
|
|
*/
|
|
ps->port_state[port] = stp_state;
|
|
set_bit(port, &ps->port_state_update_mask);
|
|
schedule_work(&ps->bridge_work);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int _mv88e6xxx_port_pvid_get(struct dsa_switch *ds, int port, u16 *pvid)
|
|
{
|
|
int ret;
|
|
|
|
ret = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_DEFAULT_VLAN);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
*pvid = ret & PORT_DEFAULT_VLAN_MASK;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int mv88e6xxx_port_pvid_get(struct dsa_switch *ds, int port, u16 *pvid)
|
|
{
|
|
int ret;
|
|
|
|
ret = mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_DEFAULT_VLAN);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
*pvid = ret & PORT_DEFAULT_VLAN_MASK;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int _mv88e6xxx_port_pvid_set(struct dsa_switch *ds, int port, u16 pvid)
|
|
{
|
|
return _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_DEFAULT_VLAN,
|
|
pvid & PORT_DEFAULT_VLAN_MASK);
|
|
}
|
|
|
|
static int _mv88e6xxx_vtu_wait(struct dsa_switch *ds)
|
|
{
|
|
return _mv88e6xxx_wait(ds, REG_GLOBAL, GLOBAL_VTU_OP,
|
|
GLOBAL_VTU_OP_BUSY);
|
|
}
|
|
|
|
static int _mv88e6xxx_vtu_cmd(struct dsa_switch *ds, u16 op)
|
|
{
|
|
int ret;
|
|
|
|
ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_OP, op);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
return _mv88e6xxx_vtu_wait(ds);
|
|
}
|
|
|
|
static int _mv88e6xxx_vtu_stu_flush(struct dsa_switch *ds)
|
|
{
|
|
int ret;
|
|
|
|
ret = _mv88e6xxx_vtu_wait(ds);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
return _mv88e6xxx_vtu_cmd(ds, GLOBAL_VTU_OP_FLUSH_ALL);
|
|
}
|
|
|
|
static int _mv88e6xxx_vtu_stu_data_read(struct dsa_switch *ds,
|
|
struct mv88e6xxx_vtu_stu_entry *entry,
|
|
unsigned int nibble_offset)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
u16 regs[3];
|
|
int i;
|
|
int ret;
|
|
|
|
for (i = 0; i < 3; ++i) {
|
|
ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL,
|
|
GLOBAL_VTU_DATA_0_3 + i);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
regs[i] = ret;
|
|
}
|
|
|
|
for (i = 0; i < ps->num_ports; ++i) {
|
|
unsigned int shift = (i % 4) * 4 + nibble_offset;
|
|
u16 reg = regs[i / 4];
|
|
|
|
entry->data[i] = (reg >> shift) & GLOBAL_VTU_STU_DATA_MASK;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int _mv88e6xxx_vtu_stu_data_write(struct dsa_switch *ds,
|
|
struct mv88e6xxx_vtu_stu_entry *entry,
|
|
unsigned int nibble_offset)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
u16 regs[3] = { 0 };
|
|
int i;
|
|
int ret;
|
|
|
|
for (i = 0; i < ps->num_ports; ++i) {
|
|
unsigned int shift = (i % 4) * 4 + nibble_offset;
|
|
u8 data = entry->data[i];
|
|
|
|
regs[i / 4] |= (data & GLOBAL_VTU_STU_DATA_MASK) << shift;
|
|
}
|
|
|
|
for (i = 0; i < 3; ++i) {
|
|
ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL,
|
|
GLOBAL_VTU_DATA_0_3 + i, regs[i]);
|
|
if (ret < 0)
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int _mv88e6xxx_vtu_vid_write(struct dsa_switch *ds, u16 vid)
|
|
{
|
|
return _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_VID,
|
|
vid & GLOBAL_VTU_VID_MASK);
|
|
}
|
|
|
|
static int _mv88e6xxx_vtu_getnext(struct dsa_switch *ds,
|
|
struct mv88e6xxx_vtu_stu_entry *entry)
|
|
{
|
|
struct mv88e6xxx_vtu_stu_entry next = { 0 };
|
|
int ret;
|
|
|
|
ret = _mv88e6xxx_vtu_wait(ds);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
ret = _mv88e6xxx_vtu_cmd(ds, GLOBAL_VTU_OP_VTU_GET_NEXT);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_VTU_VID);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
next.vid = ret & GLOBAL_VTU_VID_MASK;
|
|
next.valid = !!(ret & GLOBAL_VTU_VID_VALID);
|
|
|
|
if (next.valid) {
|
|
ret = _mv88e6xxx_vtu_stu_data_read(ds, &next, 0);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
if (mv88e6xxx_6097_family(ds) || mv88e6xxx_6165_family(ds) ||
|
|
mv88e6xxx_6351_family(ds) || mv88e6xxx_6352_family(ds)) {
|
|
ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL,
|
|
GLOBAL_VTU_FID);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
next.fid = ret & GLOBAL_VTU_FID_MASK;
|
|
|
|
ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL,
|
|
GLOBAL_VTU_SID);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
next.sid = ret & GLOBAL_VTU_SID_MASK;
|
|
}
|
|
}
|
|
|
|
*entry = next;
|
|
return 0;
|
|
}
|
|
|
|
static int _mv88e6xxx_vtu_loadpurge(struct dsa_switch *ds,
|
|
struct mv88e6xxx_vtu_stu_entry *entry)
|
|
{
|
|
u16 reg = 0;
|
|
int ret;
|
|
|
|
ret = _mv88e6xxx_vtu_wait(ds);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
if (!entry->valid)
|
|
goto loadpurge;
|
|
|
|
/* Write port member tags */
|
|
ret = _mv88e6xxx_vtu_stu_data_write(ds, entry, 0);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
if (mv88e6xxx_6097_family(ds) || mv88e6xxx_6165_family(ds) ||
|
|
mv88e6xxx_6351_family(ds) || mv88e6xxx_6352_family(ds)) {
|
|
reg = entry->sid & GLOBAL_VTU_SID_MASK;
|
|
ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_SID, reg);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
reg = entry->fid & GLOBAL_VTU_FID_MASK;
|
|
ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_FID, reg);
|
|
if (ret < 0)
|
|
return ret;
|
|
}
|
|
|
|
reg = GLOBAL_VTU_VID_VALID;
|
|
loadpurge:
|
|
reg |= entry->vid & GLOBAL_VTU_VID_MASK;
|
|
ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_VID, reg);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
return _mv88e6xxx_vtu_cmd(ds, GLOBAL_VTU_OP_VTU_LOAD_PURGE);
|
|
}
|
|
|
|
static int _mv88e6xxx_stu_getnext(struct dsa_switch *ds, u8 sid,
|
|
struct mv88e6xxx_vtu_stu_entry *entry)
|
|
{
|
|
struct mv88e6xxx_vtu_stu_entry next = { 0 };
|
|
int ret;
|
|
|
|
ret = _mv88e6xxx_vtu_wait(ds);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_SID,
|
|
sid & GLOBAL_VTU_SID_MASK);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
ret = _mv88e6xxx_vtu_cmd(ds, GLOBAL_VTU_OP_STU_GET_NEXT);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_VTU_SID);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
next.sid = ret & GLOBAL_VTU_SID_MASK;
|
|
|
|
ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_VTU_VID);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
next.valid = !!(ret & GLOBAL_VTU_VID_VALID);
|
|
|
|
if (next.valid) {
|
|
ret = _mv88e6xxx_vtu_stu_data_read(ds, &next, 2);
|
|
if (ret < 0)
|
|
return ret;
|
|
}
|
|
|
|
*entry = next;
|
|
return 0;
|
|
}
|
|
|
|
static int _mv88e6xxx_stu_loadpurge(struct dsa_switch *ds,
|
|
struct mv88e6xxx_vtu_stu_entry *entry)
|
|
{
|
|
u16 reg = 0;
|
|
int ret;
|
|
|
|
ret = _mv88e6xxx_vtu_wait(ds);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
if (!entry->valid)
|
|
goto loadpurge;
|
|
|
|
/* Write port states */
|
|
ret = _mv88e6xxx_vtu_stu_data_write(ds, entry, 2);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
reg = GLOBAL_VTU_VID_VALID;
|
|
loadpurge:
|
|
ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_VID, reg);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
reg = entry->sid & GLOBAL_VTU_SID_MASK;
|
|
ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_SID, reg);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
return _mv88e6xxx_vtu_cmd(ds, GLOBAL_VTU_OP_STU_LOAD_PURGE);
|
|
}
|
|
|
|
static int _mv88e6xxx_vlan_init(struct dsa_switch *ds, u16 vid,
|
|
struct mv88e6xxx_vtu_stu_entry *entry)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
struct mv88e6xxx_vtu_stu_entry vlan = {
|
|
.valid = true,
|
|
.vid = vid,
|
|
.fid = vid, /* We use one FID per VLAN */
|
|
};
|
|
int i;
|
|
|
|
/* exclude all ports except the CPU and DSA ports */
|
|
for (i = 0; i < ps->num_ports; ++i)
|
|
vlan.data[i] = dsa_is_cpu_port(ds, i) || dsa_is_dsa_port(ds, i)
|
|
? GLOBAL_VTU_DATA_MEMBER_TAG_UNMODIFIED
|
|
: GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER;
|
|
|
|
if (mv88e6xxx_6097_family(ds) || mv88e6xxx_6165_family(ds) ||
|
|
mv88e6xxx_6351_family(ds) || mv88e6xxx_6352_family(ds)) {
|
|
struct mv88e6xxx_vtu_stu_entry vstp;
|
|
int err;
|
|
|
|
/* Adding a VTU entry requires a valid STU entry. As VSTP is not
|
|
* implemented, only one STU entry is needed to cover all VTU
|
|
* entries. Thus, validate the SID 0.
|
|
*/
|
|
vlan.sid = 0;
|
|
err = _mv88e6xxx_stu_getnext(ds, GLOBAL_VTU_SID_MASK, &vstp);
|
|
if (err)
|
|
return err;
|
|
|
|
if (vstp.sid != vlan.sid || !vstp.valid) {
|
|
memset(&vstp, 0, sizeof(vstp));
|
|
vstp.valid = true;
|
|
vstp.sid = vlan.sid;
|
|
|
|
err = _mv88e6xxx_stu_loadpurge(ds, &vstp);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
/* Clear all MAC addresses from the new database */
|
|
err = _mv88e6xxx_atu_flush(ds, vlan.fid, true);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
*entry = vlan;
|
|
return 0;
|
|
}
|
|
|
|
int mv88e6xxx_port_vlan_prepare(struct dsa_switch *ds, int port,
|
|
const struct switchdev_obj_port_vlan *vlan,
|
|
struct switchdev_trans *trans)
|
|
{
|
|
/* We reserve a few VLANs to isolate unbridged ports */
|
|
if (vlan->vid_end >= 4000)
|
|
return -EOPNOTSUPP;
|
|
|
|
/* We don't need any dynamic resource from the kernel (yet),
|
|
* so skip the prepare phase.
|
|
*/
|
|
return 0;
|
|
}
|
|
|
|
static int _mv88e6xxx_port_vlan_add(struct dsa_switch *ds, int port, u16 vid,
|
|
bool untagged)
|
|
{
|
|
struct mv88e6xxx_vtu_stu_entry vlan;
|
|
int err;
|
|
|
|
err = _mv88e6xxx_vtu_vid_write(ds, vid - 1);
|
|
if (err)
|
|
return err;
|
|
|
|
err = _mv88e6xxx_vtu_getnext(ds, &vlan);
|
|
if (err)
|
|
return err;
|
|
|
|
if (vlan.vid != vid || !vlan.valid) {
|
|
err = _mv88e6xxx_vlan_init(ds, vid, &vlan);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
vlan.data[port] = untagged ?
|
|
GLOBAL_VTU_DATA_MEMBER_TAG_UNTAGGED :
|
|
GLOBAL_VTU_DATA_MEMBER_TAG_TAGGED;
|
|
|
|
return _mv88e6xxx_vtu_loadpurge(ds, &vlan);
|
|
}
|
|
|
|
int mv88e6xxx_port_vlan_add(struct dsa_switch *ds, int port,
|
|
const struct switchdev_obj_port_vlan *vlan,
|
|
struct switchdev_trans *trans)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
|
|
bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
|
|
u16 vid;
|
|
int err = 0;
|
|
|
|
mutex_lock(&ps->smi_mutex);
|
|
|
|
for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) {
|
|
err = _mv88e6xxx_port_vlan_add(ds, port, vid, untagged);
|
|
if (err)
|
|
goto unlock;
|
|
}
|
|
|
|
/* no PVID with ranges, otherwise it's a bug */
|
|
if (pvid)
|
|
err = _mv88e6xxx_port_pvid_set(ds, port, vid);
|
|
unlock:
|
|
mutex_unlock(&ps->smi_mutex);
|
|
|
|
return err;
|
|
}
|
|
|
|
static int _mv88e6xxx_port_vlan_del(struct dsa_switch *ds, int port, u16 vid)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
struct mv88e6xxx_vtu_stu_entry vlan;
|
|
int i, err;
|
|
|
|
err = _mv88e6xxx_vtu_vid_write(ds, vid - 1);
|
|
if (err)
|
|
return err;
|
|
|
|
err = _mv88e6xxx_vtu_getnext(ds, &vlan);
|
|
if (err)
|
|
return err;
|
|
|
|
if (vlan.vid != vid || !vlan.valid ||
|
|
vlan.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER)
|
|
return -ENOENT;
|
|
|
|
vlan.data[port] = GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER;
|
|
|
|
/* keep the VLAN unless all ports are excluded */
|
|
vlan.valid = false;
|
|
for (i = 0; i < ps->num_ports; ++i) {
|
|
if (dsa_is_cpu_port(ds, i) || dsa_is_dsa_port(ds, i))
|
|
continue;
|
|
|
|
if (vlan.data[i] != GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER) {
|
|
vlan.valid = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
err = _mv88e6xxx_vtu_loadpurge(ds, &vlan);
|
|
if (err)
|
|
return err;
|
|
|
|
return _mv88e6xxx_atu_remove(ds, vlan.fid, port, false);
|
|
}
|
|
|
|
int mv88e6xxx_port_vlan_del(struct dsa_switch *ds, int port,
|
|
const struct switchdev_obj_port_vlan *vlan)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
u16 pvid, vid;
|
|
int err = 0;
|
|
|
|
mutex_lock(&ps->smi_mutex);
|
|
|
|
err = _mv88e6xxx_port_pvid_get(ds, port, &pvid);
|
|
if (err)
|
|
goto unlock;
|
|
|
|
for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) {
|
|
err = _mv88e6xxx_port_vlan_del(ds, port, vid);
|
|
if (err)
|
|
goto unlock;
|
|
|
|
if (vid == pvid) {
|
|
err = _mv88e6xxx_port_pvid_set(ds, port, 0);
|
|
if (err)
|
|
goto unlock;
|
|
}
|
|
}
|
|
|
|
unlock:
|
|
mutex_unlock(&ps->smi_mutex);
|
|
|
|
return err;
|
|
}
|
|
|
|
int mv88e6xxx_vlan_getnext(struct dsa_switch *ds, u16 *vid,
|
|
unsigned long *ports, unsigned long *untagged)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
struct mv88e6xxx_vtu_stu_entry next;
|
|
int port;
|
|
int err;
|
|
|
|
if (*vid == 4095)
|
|
return -ENOENT;
|
|
|
|
mutex_lock(&ps->smi_mutex);
|
|
err = _mv88e6xxx_vtu_vid_write(ds, *vid);
|
|
if (err)
|
|
goto unlock;
|
|
|
|
err = _mv88e6xxx_vtu_getnext(ds, &next);
|
|
unlock:
|
|
mutex_unlock(&ps->smi_mutex);
|
|
|
|
if (err)
|
|
return err;
|
|
|
|
if (!next.valid)
|
|
return -ENOENT;
|
|
|
|
*vid = next.vid;
|
|
|
|
for (port = 0; port < ps->num_ports; ++port) {
|
|
clear_bit(port, ports);
|
|
clear_bit(port, untagged);
|
|
|
|
if (dsa_is_cpu_port(ds, port) || dsa_is_dsa_port(ds, port))
|
|
continue;
|
|
|
|
if (next.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_TAGGED ||
|
|
next.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_UNTAGGED)
|
|
set_bit(port, ports);
|
|
|
|
if (next.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_UNTAGGED)
|
|
set_bit(port, untagged);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int _mv88e6xxx_atu_mac_write(struct dsa_switch *ds,
|
|
const unsigned char *addr)
|
|
{
|
|
int i, ret;
|
|
|
|
for (i = 0; i < 3; i++) {
|
|
ret = _mv88e6xxx_reg_write(
|
|
ds, REG_GLOBAL, GLOBAL_ATU_MAC_01 + i,
|
|
(addr[i * 2] << 8) | addr[i * 2 + 1]);
|
|
if (ret < 0)
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int _mv88e6xxx_atu_mac_read(struct dsa_switch *ds, unsigned char *addr)
|
|
{
|
|
int i, ret;
|
|
|
|
for (i = 0; i < 3; i++) {
|
|
ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL,
|
|
GLOBAL_ATU_MAC_01 + i);
|
|
if (ret < 0)
|
|
return ret;
|
|
addr[i * 2] = ret >> 8;
|
|
addr[i * 2 + 1] = ret & 0xff;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int _mv88e6xxx_atu_load(struct dsa_switch *ds,
|
|
struct mv88e6xxx_atu_entry *entry)
|
|
{
|
|
int ret;
|
|
|
|
ret = _mv88e6xxx_atu_wait(ds);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
ret = _mv88e6xxx_atu_mac_write(ds, entry->mac);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
ret = _mv88e6xxx_atu_data_write(ds, entry);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_ATU_FID, entry->fid);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
return _mv88e6xxx_atu_cmd(ds, GLOBAL_ATU_OP_LOAD_DB);
|
|
}
|
|
|
|
static int _mv88e6xxx_port_fdb_load(struct dsa_switch *ds, int port,
|
|
const unsigned char *addr, u16 vid,
|
|
u8 state)
|
|
{
|
|
struct mv88e6xxx_atu_entry entry = { 0 };
|
|
|
|
entry.fid = vid; /* We use one FID per VLAN */
|
|
entry.state = state;
|
|
ether_addr_copy(entry.mac, addr);
|
|
if (state != GLOBAL_ATU_DATA_STATE_UNUSED) {
|
|
entry.trunk = false;
|
|
entry.portv_trunkid = BIT(port);
|
|
}
|
|
|
|
return _mv88e6xxx_atu_load(ds, &entry);
|
|
}
|
|
|
|
int mv88e6xxx_port_fdb_prepare(struct dsa_switch *ds, int port,
|
|
const struct switchdev_obj_port_fdb *fdb,
|
|
struct switchdev_trans *trans)
|
|
{
|
|
/* We don't use per-port FDB */
|
|
if (fdb->vid == 0)
|
|
return -EOPNOTSUPP;
|
|
|
|
/* We don't need any dynamic resource from the kernel (yet),
|
|
* so skip the prepare phase.
|
|
*/
|
|
return 0;
|
|
}
|
|
|
|
int mv88e6xxx_port_fdb_add(struct dsa_switch *ds, int port,
|
|
const struct switchdev_obj_port_fdb *fdb,
|
|
struct switchdev_trans *trans)
|
|
{
|
|
int state = is_multicast_ether_addr(fdb->addr) ?
|
|
GLOBAL_ATU_DATA_STATE_MC_STATIC :
|
|
GLOBAL_ATU_DATA_STATE_UC_STATIC;
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
int ret;
|
|
|
|
mutex_lock(&ps->smi_mutex);
|
|
ret = _mv88e6xxx_port_fdb_load(ds, port, fdb->addr, fdb->vid, state);
|
|
mutex_unlock(&ps->smi_mutex);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int mv88e6xxx_port_fdb_del(struct dsa_switch *ds, int port,
|
|
const struct switchdev_obj_port_fdb *fdb)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
int ret;
|
|
|
|
mutex_lock(&ps->smi_mutex);
|
|
ret = _mv88e6xxx_port_fdb_load(ds, port, fdb->addr, fdb->vid,
|
|
GLOBAL_ATU_DATA_STATE_UNUSED);
|
|
mutex_unlock(&ps->smi_mutex);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int _mv88e6xxx_atu_getnext(struct dsa_switch *ds, u16 fid,
|
|
struct mv88e6xxx_atu_entry *entry)
|
|
{
|
|
struct mv88e6xxx_atu_entry next = { 0 };
|
|
int ret;
|
|
|
|
next.fid = fid;
|
|
|
|
ret = _mv88e6xxx_atu_wait(ds);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_ATU_FID, fid);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
ret = _mv88e6xxx_atu_cmd(ds, GLOBAL_ATU_OP_GET_NEXT_DB);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
ret = _mv88e6xxx_atu_mac_read(ds, next.mac);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_ATU_DATA);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
next.state = ret & GLOBAL_ATU_DATA_STATE_MASK;
|
|
if (next.state != GLOBAL_ATU_DATA_STATE_UNUSED) {
|
|
unsigned int mask, shift;
|
|
|
|
if (ret & GLOBAL_ATU_DATA_TRUNK) {
|
|
next.trunk = true;
|
|
mask = GLOBAL_ATU_DATA_TRUNK_ID_MASK;
|
|
shift = GLOBAL_ATU_DATA_TRUNK_ID_SHIFT;
|
|
} else {
|
|
next.trunk = false;
|
|
mask = GLOBAL_ATU_DATA_PORT_VECTOR_MASK;
|
|
shift = GLOBAL_ATU_DATA_PORT_VECTOR_SHIFT;
|
|
}
|
|
|
|
next.portv_trunkid = (ret & mask) >> shift;
|
|
}
|
|
|
|
*entry = next;
|
|
return 0;
|
|
}
|
|
|
|
int mv88e6xxx_port_fdb_dump(struct dsa_switch *ds, int port,
|
|
struct switchdev_obj_port_fdb *fdb,
|
|
int (*cb)(struct switchdev_obj *obj))
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
struct mv88e6xxx_vtu_stu_entry vlan = {
|
|
.vid = GLOBAL_VTU_VID_MASK, /* all ones */
|
|
};
|
|
int err;
|
|
|
|
mutex_lock(&ps->smi_mutex);
|
|
|
|
err = _mv88e6xxx_vtu_vid_write(ds, vlan.vid);
|
|
if (err)
|
|
goto unlock;
|
|
|
|
do {
|
|
struct mv88e6xxx_atu_entry addr = {
|
|
.mac = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff },
|
|
};
|
|
|
|
err = _mv88e6xxx_vtu_getnext(ds, &vlan);
|
|
if (err)
|
|
goto unlock;
|
|
|
|
if (!vlan.valid)
|
|
break;
|
|
|
|
err = _mv88e6xxx_atu_mac_write(ds, addr.mac);
|
|
if (err)
|
|
goto unlock;
|
|
|
|
do {
|
|
err = _mv88e6xxx_atu_getnext(ds, vlan.fid, &addr);
|
|
if (err)
|
|
goto unlock;
|
|
|
|
if (addr.state == GLOBAL_ATU_DATA_STATE_UNUSED)
|
|
break;
|
|
|
|
if (!addr.trunk && addr.portv_trunkid & BIT(port)) {
|
|
bool is_static = addr.state ==
|
|
(is_multicast_ether_addr(addr.mac) ?
|
|
GLOBAL_ATU_DATA_STATE_MC_STATIC :
|
|
GLOBAL_ATU_DATA_STATE_UC_STATIC);
|
|
|
|
fdb->vid = vlan.vid;
|
|
ether_addr_copy(fdb->addr, addr.mac);
|
|
fdb->ndm_state = is_static ? NUD_NOARP :
|
|
NUD_REACHABLE;
|
|
|
|
err = cb(&fdb->obj);
|
|
if (err)
|
|
goto unlock;
|
|
}
|
|
} while (!is_broadcast_ether_addr(addr.mac));
|
|
|
|
} while (vlan.vid < GLOBAL_VTU_VID_MASK);
|
|
|
|
unlock:
|
|
mutex_unlock(&ps->smi_mutex);
|
|
|
|
return err;
|
|
}
|
|
|
|
int mv88e6xxx_port_bridge_join(struct dsa_switch *ds, int port, u32 members)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
const u16 pvid = 4000 + ds->index * DSA_MAX_PORTS + port;
|
|
int err;
|
|
|
|
/* The port joined a bridge, so leave its reserved VLAN */
|
|
mutex_lock(&ps->smi_mutex);
|
|
err = _mv88e6xxx_port_vlan_del(ds, port, pvid);
|
|
if (!err)
|
|
err = _mv88e6xxx_port_pvid_set(ds, port, 0);
|
|
mutex_unlock(&ps->smi_mutex);
|
|
return err;
|
|
}
|
|
|
|
int mv88e6xxx_port_bridge_leave(struct dsa_switch *ds, int port, u32 members)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
const u16 pvid = 4000 + ds->index * DSA_MAX_PORTS + port;
|
|
int err;
|
|
|
|
/* The port left the bridge, so join its reserved VLAN */
|
|
mutex_lock(&ps->smi_mutex);
|
|
err = _mv88e6xxx_port_vlan_add(ds, port, pvid, true);
|
|
if (!err)
|
|
err = _mv88e6xxx_port_pvid_set(ds, port, pvid);
|
|
mutex_unlock(&ps->smi_mutex);
|
|
return err;
|
|
}
|
|
|
|
static void mv88e6xxx_bridge_work(struct work_struct *work)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps;
|
|
struct dsa_switch *ds;
|
|
int port;
|
|
|
|
ps = container_of(work, struct mv88e6xxx_priv_state, bridge_work);
|
|
ds = ((struct dsa_switch *)ps) - 1;
|
|
|
|
while (ps->port_state_update_mask) {
|
|
port = __ffs(ps->port_state_update_mask);
|
|
clear_bit(port, &ps->port_state_update_mask);
|
|
mv88e6xxx_set_port_state(ds, port, ps->port_state[port]);
|
|
}
|
|
}
|
|
|
|
static int mv88e6xxx_setup_port(struct dsa_switch *ds, int port)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
int ret;
|
|
u16 reg;
|
|
|
|
mutex_lock(&ps->smi_mutex);
|
|
|
|
if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
|
|
mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
|
|
mv88e6xxx_6185_family(ds) || mv88e6xxx_6095_family(ds) ||
|
|
mv88e6xxx_6065_family(ds) || mv88e6xxx_6320_family(ds)) {
|
|
/* MAC Forcing register: don't force link, speed,
|
|
* duplex or flow control state to any particular
|
|
* values on physical ports, but force the CPU port
|
|
* and all DSA ports to their maximum bandwidth and
|
|
* full duplex.
|
|
*/
|
|
reg = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_PCS_CTRL);
|
|
if (dsa_is_cpu_port(ds, port) || dsa_is_dsa_port(ds, port)) {
|
|
reg &= ~PORT_PCS_CTRL_UNFORCED;
|
|
reg |= PORT_PCS_CTRL_FORCE_LINK |
|
|
PORT_PCS_CTRL_LINK_UP |
|
|
PORT_PCS_CTRL_DUPLEX_FULL |
|
|
PORT_PCS_CTRL_FORCE_DUPLEX;
|
|
if (mv88e6xxx_6065_family(ds))
|
|
reg |= PORT_PCS_CTRL_100;
|
|
else
|
|
reg |= PORT_PCS_CTRL_1000;
|
|
} else {
|
|
reg |= PORT_PCS_CTRL_UNFORCED;
|
|
}
|
|
|
|
ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
|
|
PORT_PCS_CTRL, reg);
|
|
if (ret)
|
|
goto abort;
|
|
}
|
|
|
|
/* Port Control: disable Drop-on-Unlock, disable Drop-on-Lock,
|
|
* disable Header mode, enable IGMP/MLD snooping, disable VLAN
|
|
* tunneling, determine priority by looking at 802.1p and IP
|
|
* priority fields (IP prio has precedence), and set STP state
|
|
* to Forwarding.
|
|
*
|
|
* If this is the CPU link, use DSA or EDSA tagging depending
|
|
* on which tagging mode was configured.
|
|
*
|
|
* If this is a link to another switch, use DSA tagging mode.
|
|
*
|
|
* If this is the upstream port for this switch, enable
|
|
* forwarding of unknown unicasts and multicasts.
|
|
*/
|
|
reg = 0;
|
|
if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
|
|
mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
|
|
mv88e6xxx_6095_family(ds) || mv88e6xxx_6065_family(ds) ||
|
|
mv88e6xxx_6185_family(ds) || mv88e6xxx_6320_family(ds))
|
|
reg = PORT_CONTROL_IGMP_MLD_SNOOP |
|
|
PORT_CONTROL_USE_TAG | PORT_CONTROL_USE_IP |
|
|
PORT_CONTROL_STATE_FORWARDING;
|
|
if (dsa_is_cpu_port(ds, port)) {
|
|
if (mv88e6xxx_6095_family(ds) || mv88e6xxx_6185_family(ds))
|
|
reg |= PORT_CONTROL_DSA_TAG;
|
|
if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
|
|
mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
|
|
mv88e6xxx_6320_family(ds)) {
|
|
if (ds->dst->tag_protocol == DSA_TAG_PROTO_EDSA)
|
|
reg |= PORT_CONTROL_FRAME_ETHER_TYPE_DSA;
|
|
else
|
|
reg |= PORT_CONTROL_FRAME_MODE_DSA;
|
|
reg |= PORT_CONTROL_FORWARD_UNKNOWN |
|
|
PORT_CONTROL_FORWARD_UNKNOWN_MC;
|
|
}
|
|
|
|
if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
|
|
mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
|
|
mv88e6xxx_6095_family(ds) || mv88e6xxx_6065_family(ds) ||
|
|
mv88e6xxx_6185_family(ds) || mv88e6xxx_6320_family(ds)) {
|
|
if (ds->dst->tag_protocol == DSA_TAG_PROTO_EDSA)
|
|
reg |= PORT_CONTROL_EGRESS_ADD_TAG;
|
|
}
|
|
}
|
|
if (dsa_is_dsa_port(ds, port)) {
|
|
if (mv88e6xxx_6095_family(ds) || mv88e6xxx_6185_family(ds))
|
|
reg |= PORT_CONTROL_DSA_TAG;
|
|
if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
|
|
mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
|
|
mv88e6xxx_6320_family(ds)) {
|
|
reg |= PORT_CONTROL_FRAME_MODE_DSA;
|
|
}
|
|
|
|
if (port == dsa_upstream_port(ds))
|
|
reg |= PORT_CONTROL_FORWARD_UNKNOWN |
|
|
PORT_CONTROL_FORWARD_UNKNOWN_MC;
|
|
}
|
|
if (reg) {
|
|
ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
|
|
PORT_CONTROL, reg);
|
|
if (ret)
|
|
goto abort;
|
|
}
|
|
|
|
/* Port Control 2: don't force a good FCS, set the maximum frame size to
|
|
* 10240 bytes, enable secure 802.1q tags, don't discard tagged or
|
|
* untagged frames on this port, do a destination address lookup on all
|
|
* received packets as usual, disable ARP mirroring and don't send a
|
|
* copy of all transmitted/received frames on this port to the CPU.
|
|
*/
|
|
reg = 0;
|
|
if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
|
|
mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
|
|
mv88e6xxx_6095_family(ds) || mv88e6xxx_6320_family(ds))
|
|
reg = PORT_CONTROL_2_MAP_DA;
|
|
|
|
if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
|
|
mv88e6xxx_6165_family(ds) || mv88e6xxx_6320_family(ds))
|
|
reg |= PORT_CONTROL_2_JUMBO_10240;
|
|
|
|
if (mv88e6xxx_6095_family(ds) || mv88e6xxx_6185_family(ds)) {
|
|
/* Set the upstream port this port should use */
|
|
reg |= dsa_upstream_port(ds);
|
|
/* enable forwarding of unknown multicast addresses to
|
|
* the upstream port
|
|
*/
|
|
if (port == dsa_upstream_port(ds))
|
|
reg |= PORT_CONTROL_2_FORWARD_UNKNOWN;
|
|
}
|
|
|
|
reg |= PORT_CONTROL_2_8021Q_SECURE;
|
|
|
|
if (reg) {
|
|
ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
|
|
PORT_CONTROL_2, reg);
|
|
if (ret)
|
|
goto abort;
|
|
}
|
|
|
|
/* Port Association Vector: when learning source addresses
|
|
* of packets, add the address to the address database using
|
|
* a port bitmap that has only the bit for this port set and
|
|
* the other bits clear.
|
|
*/
|
|
reg = 1 << port;
|
|
/* Disable learning for DSA and CPU ports */
|
|
if (dsa_is_cpu_port(ds, port) || dsa_is_dsa_port(ds, port))
|
|
reg = PORT_ASSOC_VECTOR_LOCKED_PORT;
|
|
|
|
ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_ASSOC_VECTOR, reg);
|
|
if (ret)
|
|
goto abort;
|
|
|
|
/* Egress rate control 2: disable egress rate control. */
|
|
ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_RATE_CONTROL_2,
|
|
0x0000);
|
|
if (ret)
|
|
goto abort;
|
|
|
|
if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
|
|
mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
|
|
mv88e6xxx_6320_family(ds)) {
|
|
/* Do not limit the period of time that this port can
|
|
* be paused for by the remote end or the period of
|
|
* time that this port can pause the remote end.
|
|
*/
|
|
ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
|
|
PORT_PAUSE_CTRL, 0x0000);
|
|
if (ret)
|
|
goto abort;
|
|
|
|
/* Port ATU control: disable limiting the number of
|
|
* address database entries that this port is allowed
|
|
* to use.
|
|
*/
|
|
ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
|
|
PORT_ATU_CONTROL, 0x0000);
|
|
/* Priority Override: disable DA, SA and VTU priority
|
|
* override.
|
|
*/
|
|
ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
|
|
PORT_PRI_OVERRIDE, 0x0000);
|
|
if (ret)
|
|
goto abort;
|
|
|
|
/* Port Ethertype: use the Ethertype DSA Ethertype
|
|
* value.
|
|
*/
|
|
ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
|
|
PORT_ETH_TYPE, ETH_P_EDSA);
|
|
if (ret)
|
|
goto abort;
|
|
/* Tag Remap: use an identity 802.1p prio -> switch
|
|
* prio mapping.
|
|
*/
|
|
ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
|
|
PORT_TAG_REGMAP_0123, 0x3210);
|
|
if (ret)
|
|
goto abort;
|
|
|
|
/* Tag Remap 2: use an identity 802.1p prio -> switch
|
|
* prio mapping.
|
|
*/
|
|
ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
|
|
PORT_TAG_REGMAP_4567, 0x7654);
|
|
if (ret)
|
|
goto abort;
|
|
}
|
|
|
|
if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
|
|
mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
|
|
mv88e6xxx_6185_family(ds) || mv88e6xxx_6095_family(ds) ||
|
|
mv88e6xxx_6320_family(ds)) {
|
|
/* Rate Control: disable ingress rate limiting. */
|
|
ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
|
|
PORT_RATE_CONTROL, 0x0001);
|
|
if (ret)
|
|
goto abort;
|
|
}
|
|
|
|
/* Port Control 1: disable trunking, disable sending
|
|
* learning messages to this port.
|
|
*/
|
|
ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_CONTROL_1, 0x0000);
|
|
if (ret)
|
|
goto abort;
|
|
|
|
/* Port based VLAN map: do not give each port its own address
|
|
* database, and allow every port to egress frames on all other ports.
|
|
*/
|
|
reg = BIT(ps->num_ports) - 1; /* all ports */
|
|
ret = _mv88e6xxx_port_vlan_map_set(ds, port, reg & ~port);
|
|
if (ret)
|
|
goto abort;
|
|
|
|
/* Default VLAN ID and priority: don't set a default VLAN
|
|
* ID, and set the default packet priority to zero.
|
|
*/
|
|
ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_DEFAULT_VLAN,
|
|
0x0000);
|
|
abort:
|
|
mutex_unlock(&ps->smi_mutex);
|
|
return ret;
|
|
}
|
|
|
|
int mv88e6xxx_setup_ports(struct dsa_switch *ds)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
int ret;
|
|
int i;
|
|
|
|
for (i = 0; i < ps->num_ports; i++) {
|
|
ret = mv88e6xxx_setup_port(ds, i);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
if (dsa_is_cpu_port(ds, i) || dsa_is_dsa_port(ds, i))
|
|
continue;
|
|
|
|
/* setup the unbridged state */
|
|
ret = mv88e6xxx_port_bridge_leave(ds, i, 0);
|
|
if (ret < 0)
|
|
return ret;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int mv88e6xxx_setup_common(struct dsa_switch *ds)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
|
|
mutex_init(&ps->smi_mutex);
|
|
|
|
ps->id = REG_READ(REG_PORT(0), PORT_SWITCH_ID) & 0xfff0;
|
|
|
|
INIT_WORK(&ps->bridge_work, mv88e6xxx_bridge_work);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int mv88e6xxx_setup_global(struct dsa_switch *ds)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
int ret;
|
|
int i;
|
|
|
|
/* Set the default address aging time to 5 minutes, and
|
|
* enable address learn messages to be sent to all message
|
|
* ports.
|
|
*/
|
|
REG_WRITE(REG_GLOBAL, GLOBAL_ATU_CONTROL,
|
|
0x0140 | GLOBAL_ATU_CONTROL_LEARN2ALL);
|
|
|
|
/* Configure the IP ToS mapping registers. */
|
|
REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_0, 0x0000);
|
|
REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_1, 0x0000);
|
|
REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_2, 0x5555);
|
|
REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_3, 0x5555);
|
|
REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_4, 0xaaaa);
|
|
REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_5, 0xaaaa);
|
|
REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_6, 0xffff);
|
|
REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_7, 0xffff);
|
|
|
|
/* Configure the IEEE 802.1p priority mapping register. */
|
|
REG_WRITE(REG_GLOBAL, GLOBAL_IEEE_PRI, 0xfa41);
|
|
|
|
/* Send all frames with destination addresses matching
|
|
* 01:80:c2:00:00:0x to the CPU port.
|
|
*/
|
|
REG_WRITE(REG_GLOBAL2, GLOBAL2_MGMT_EN_0X, 0xffff);
|
|
|
|
/* Ignore removed tag data on doubly tagged packets, disable
|
|
* flow control messages, force flow control priority to the
|
|
* highest, and send all special multicast frames to the CPU
|
|
* port at the highest priority.
|
|
*/
|
|
REG_WRITE(REG_GLOBAL2, GLOBAL2_SWITCH_MGMT,
|
|
0x7 | GLOBAL2_SWITCH_MGMT_RSVD2CPU | 0x70 |
|
|
GLOBAL2_SWITCH_MGMT_FORCE_FLOW_CTRL_PRI);
|
|
|
|
/* Program the DSA routing table. */
|
|
for (i = 0; i < 32; i++) {
|
|
int nexthop = 0x1f;
|
|
|
|
if (ds->pd->rtable &&
|
|
i != ds->index && i < ds->dst->pd->nr_chips)
|
|
nexthop = ds->pd->rtable[i] & 0x1f;
|
|
|
|
REG_WRITE(REG_GLOBAL2, GLOBAL2_DEVICE_MAPPING,
|
|
GLOBAL2_DEVICE_MAPPING_UPDATE |
|
|
(i << GLOBAL2_DEVICE_MAPPING_TARGET_SHIFT) |
|
|
nexthop);
|
|
}
|
|
|
|
/* Clear all trunk masks. */
|
|
for (i = 0; i < 8; i++)
|
|
REG_WRITE(REG_GLOBAL2, GLOBAL2_TRUNK_MASK,
|
|
0x8000 | (i << GLOBAL2_TRUNK_MASK_NUM_SHIFT) |
|
|
((1 << ps->num_ports) - 1));
|
|
|
|
/* Clear all trunk mappings. */
|
|
for (i = 0; i < 16; i++)
|
|
REG_WRITE(REG_GLOBAL2, GLOBAL2_TRUNK_MAPPING,
|
|
GLOBAL2_TRUNK_MAPPING_UPDATE |
|
|
(i << GLOBAL2_TRUNK_MAPPING_ID_SHIFT));
|
|
|
|
if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
|
|
mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
|
|
mv88e6xxx_6320_family(ds)) {
|
|
/* Send all frames with destination addresses matching
|
|
* 01:80:c2:00:00:2x to the CPU port.
|
|
*/
|
|
REG_WRITE(REG_GLOBAL2, GLOBAL2_MGMT_EN_2X, 0xffff);
|
|
|
|
/* Initialise cross-chip port VLAN table to reset
|
|
* defaults.
|
|
*/
|
|
REG_WRITE(REG_GLOBAL2, GLOBAL2_PVT_ADDR, 0x9000);
|
|
|
|
/* Clear the priority override table. */
|
|
for (i = 0; i < 16; i++)
|
|
REG_WRITE(REG_GLOBAL2, GLOBAL2_PRIO_OVERRIDE,
|
|
0x8000 | (i << 8));
|
|
}
|
|
|
|
if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
|
|
mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
|
|
mv88e6xxx_6185_family(ds) || mv88e6xxx_6095_family(ds) ||
|
|
mv88e6xxx_6320_family(ds)) {
|
|
/* Disable ingress rate limiting by resetting all
|
|
* ingress rate limit registers to their initial
|
|
* state.
|
|
*/
|
|
for (i = 0; i < ps->num_ports; i++)
|
|
REG_WRITE(REG_GLOBAL2, GLOBAL2_INGRESS_OP,
|
|
0x9000 | (i << 8));
|
|
}
|
|
|
|
/* Clear the statistics counters for all ports */
|
|
REG_WRITE(REG_GLOBAL, GLOBAL_STATS_OP, GLOBAL_STATS_OP_FLUSH_ALL);
|
|
|
|
/* Wait for the flush to complete. */
|
|
mutex_lock(&ps->smi_mutex);
|
|
ret = _mv88e6xxx_stats_wait(ds);
|
|
if (ret < 0)
|
|
goto unlock;
|
|
|
|
/* Clear all ATU entries */
|
|
ret = _mv88e6xxx_atu_flush(ds, 0, true);
|
|
if (ret < 0)
|
|
goto unlock;
|
|
|
|
/* Clear all the VTU and STU entries */
|
|
ret = _mv88e6xxx_vtu_stu_flush(ds);
|
|
unlock:
|
|
mutex_unlock(&ps->smi_mutex);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int mv88e6xxx_switch_reset(struct dsa_switch *ds, bool ppu_active)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
u16 is_reset = (ppu_active ? 0x8800 : 0xc800);
|
|
struct gpio_desc *gpiod = ds->pd->reset;
|
|
unsigned long timeout;
|
|
int ret;
|
|
int i;
|
|
|
|
/* Set all ports to the disabled state. */
|
|
for (i = 0; i < ps->num_ports; i++) {
|
|
ret = REG_READ(REG_PORT(i), PORT_CONTROL);
|
|
REG_WRITE(REG_PORT(i), PORT_CONTROL, ret & 0xfffc);
|
|
}
|
|
|
|
/* Wait for transmit queues to drain. */
|
|
usleep_range(2000, 4000);
|
|
|
|
/* If there is a gpio connected to the reset pin, toggle it */
|
|
if (gpiod) {
|
|
gpiod_set_value_cansleep(gpiod, 1);
|
|
usleep_range(10000, 20000);
|
|
gpiod_set_value_cansleep(gpiod, 0);
|
|
usleep_range(10000, 20000);
|
|
}
|
|
|
|
/* Reset the switch. Keep the PPU active if requested. The PPU
|
|
* needs to be active to support indirect phy register access
|
|
* through global registers 0x18 and 0x19.
|
|
*/
|
|
if (ppu_active)
|
|
REG_WRITE(REG_GLOBAL, 0x04, 0xc000);
|
|
else
|
|
REG_WRITE(REG_GLOBAL, 0x04, 0xc400);
|
|
|
|
/* Wait up to one second for reset to complete. */
|
|
timeout = jiffies + 1 * HZ;
|
|
while (time_before(jiffies, timeout)) {
|
|
ret = REG_READ(REG_GLOBAL, 0x00);
|
|
if ((ret & is_reset) == is_reset)
|
|
break;
|
|
usleep_range(1000, 2000);
|
|
}
|
|
if (time_after(jiffies, timeout))
|
|
return -ETIMEDOUT;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int mv88e6xxx_phy_page_read(struct dsa_switch *ds, int port, int page, int reg)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
int ret;
|
|
|
|
mutex_lock(&ps->smi_mutex);
|
|
ret = _mv88e6xxx_phy_write_indirect(ds, port, 0x16, page);
|
|
if (ret < 0)
|
|
goto error;
|
|
ret = _mv88e6xxx_phy_read_indirect(ds, port, reg);
|
|
error:
|
|
_mv88e6xxx_phy_write_indirect(ds, port, 0x16, 0x0);
|
|
mutex_unlock(&ps->smi_mutex);
|
|
return ret;
|
|
}
|
|
|
|
int mv88e6xxx_phy_page_write(struct dsa_switch *ds, int port, int page,
|
|
int reg, int val)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
int ret;
|
|
|
|
mutex_lock(&ps->smi_mutex);
|
|
ret = _mv88e6xxx_phy_write_indirect(ds, port, 0x16, page);
|
|
if (ret < 0)
|
|
goto error;
|
|
|
|
ret = _mv88e6xxx_phy_write_indirect(ds, port, reg, val);
|
|
error:
|
|
_mv88e6xxx_phy_write_indirect(ds, port, 0x16, 0x0);
|
|
mutex_unlock(&ps->smi_mutex);
|
|
return ret;
|
|
}
|
|
|
|
static int mv88e6xxx_port_to_phy_addr(struct dsa_switch *ds, int port)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
|
|
if (port >= 0 && port < ps->num_ports)
|
|
return port;
|
|
return -EINVAL;
|
|
}
|
|
|
|
int
|
|
mv88e6xxx_phy_read(struct dsa_switch *ds, int port, int regnum)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
int addr = mv88e6xxx_port_to_phy_addr(ds, port);
|
|
int ret;
|
|
|
|
if (addr < 0)
|
|
return addr;
|
|
|
|
mutex_lock(&ps->smi_mutex);
|
|
ret = _mv88e6xxx_phy_read(ds, addr, regnum);
|
|
mutex_unlock(&ps->smi_mutex);
|
|
return ret;
|
|
}
|
|
|
|
int
|
|
mv88e6xxx_phy_write(struct dsa_switch *ds, int port, int regnum, u16 val)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
int addr = mv88e6xxx_port_to_phy_addr(ds, port);
|
|
int ret;
|
|
|
|
if (addr < 0)
|
|
return addr;
|
|
|
|
mutex_lock(&ps->smi_mutex);
|
|
ret = _mv88e6xxx_phy_write(ds, addr, regnum, val);
|
|
mutex_unlock(&ps->smi_mutex);
|
|
return ret;
|
|
}
|
|
|
|
int
|
|
mv88e6xxx_phy_read_indirect(struct dsa_switch *ds, int port, int regnum)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
int addr = mv88e6xxx_port_to_phy_addr(ds, port);
|
|
int ret;
|
|
|
|
if (addr < 0)
|
|
return addr;
|
|
|
|
mutex_lock(&ps->smi_mutex);
|
|
ret = _mv88e6xxx_phy_read_indirect(ds, addr, regnum);
|
|
mutex_unlock(&ps->smi_mutex);
|
|
return ret;
|
|
}
|
|
|
|
int
|
|
mv88e6xxx_phy_write_indirect(struct dsa_switch *ds, int port, int regnum,
|
|
u16 val)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
int addr = mv88e6xxx_port_to_phy_addr(ds, port);
|
|
int ret;
|
|
|
|
if (addr < 0)
|
|
return addr;
|
|
|
|
mutex_lock(&ps->smi_mutex);
|
|
ret = _mv88e6xxx_phy_write_indirect(ds, addr, regnum, val);
|
|
mutex_unlock(&ps->smi_mutex);
|
|
return ret;
|
|
}
|
|
|
|
#ifdef CONFIG_NET_DSA_HWMON
|
|
|
|
static int mv88e61xx_get_temp(struct dsa_switch *ds, int *temp)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
int ret;
|
|
int val;
|
|
|
|
*temp = 0;
|
|
|
|
mutex_lock(&ps->smi_mutex);
|
|
|
|
ret = _mv88e6xxx_phy_write(ds, 0x0, 0x16, 0x6);
|
|
if (ret < 0)
|
|
goto error;
|
|
|
|
/* Enable temperature sensor */
|
|
ret = _mv88e6xxx_phy_read(ds, 0x0, 0x1a);
|
|
if (ret < 0)
|
|
goto error;
|
|
|
|
ret = _mv88e6xxx_phy_write(ds, 0x0, 0x1a, ret | (1 << 5));
|
|
if (ret < 0)
|
|
goto error;
|
|
|
|
/* Wait for temperature to stabilize */
|
|
usleep_range(10000, 12000);
|
|
|
|
val = _mv88e6xxx_phy_read(ds, 0x0, 0x1a);
|
|
if (val < 0) {
|
|
ret = val;
|
|
goto error;
|
|
}
|
|
|
|
/* Disable temperature sensor */
|
|
ret = _mv88e6xxx_phy_write(ds, 0x0, 0x1a, ret & ~(1 << 5));
|
|
if (ret < 0)
|
|
goto error;
|
|
|
|
*temp = ((val & 0x1f) - 5) * 5;
|
|
|
|
error:
|
|
_mv88e6xxx_phy_write(ds, 0x0, 0x16, 0x0);
|
|
mutex_unlock(&ps->smi_mutex);
|
|
return ret;
|
|
}
|
|
|
|
static int mv88e63xx_get_temp(struct dsa_switch *ds, int *temp)
|
|
{
|
|
int phy = mv88e6xxx_6320_family(ds) ? 3 : 0;
|
|
int ret;
|
|
|
|
*temp = 0;
|
|
|
|
ret = mv88e6xxx_phy_page_read(ds, phy, 6, 27);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
*temp = (ret & 0xff) - 25;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int mv88e6xxx_get_temp(struct dsa_switch *ds, int *temp)
|
|
{
|
|
if (mv88e6xxx_6320_family(ds) || mv88e6xxx_6352_family(ds))
|
|
return mv88e63xx_get_temp(ds, temp);
|
|
|
|
return mv88e61xx_get_temp(ds, temp);
|
|
}
|
|
|
|
int mv88e6xxx_get_temp_limit(struct dsa_switch *ds, int *temp)
|
|
{
|
|
int phy = mv88e6xxx_6320_family(ds) ? 3 : 0;
|
|
int ret;
|
|
|
|
if (!mv88e6xxx_6320_family(ds) && !mv88e6xxx_6352_family(ds))
|
|
return -EOPNOTSUPP;
|
|
|
|
*temp = 0;
|
|
|
|
ret = mv88e6xxx_phy_page_read(ds, phy, 6, 26);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
*temp = (((ret >> 8) & 0x1f) * 5) - 25;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int mv88e6xxx_set_temp_limit(struct dsa_switch *ds, int temp)
|
|
{
|
|
int phy = mv88e6xxx_6320_family(ds) ? 3 : 0;
|
|
int ret;
|
|
|
|
if (!mv88e6xxx_6320_family(ds) && !mv88e6xxx_6352_family(ds))
|
|
return -EOPNOTSUPP;
|
|
|
|
ret = mv88e6xxx_phy_page_read(ds, phy, 6, 26);
|
|
if (ret < 0)
|
|
return ret;
|
|
temp = clamp_val(DIV_ROUND_CLOSEST(temp, 5) + 5, 0, 0x1f);
|
|
return mv88e6xxx_phy_page_write(ds, phy, 6, 26,
|
|
(ret & 0xe0ff) | (temp << 8));
|
|
}
|
|
|
|
int mv88e6xxx_get_temp_alarm(struct dsa_switch *ds, bool *alarm)
|
|
{
|
|
int phy = mv88e6xxx_6320_family(ds) ? 3 : 0;
|
|
int ret;
|
|
|
|
if (!mv88e6xxx_6320_family(ds) && !mv88e6xxx_6352_family(ds))
|
|
return -EOPNOTSUPP;
|
|
|
|
*alarm = false;
|
|
|
|
ret = mv88e6xxx_phy_page_read(ds, phy, 6, 26);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
*alarm = !!(ret & 0x40);
|
|
|
|
return 0;
|
|
}
|
|
#endif /* CONFIG_NET_DSA_HWMON */
|
|
|
|
char *mv88e6xxx_lookup_name(struct device *host_dev, int sw_addr,
|
|
const struct mv88e6xxx_switch_id *table,
|
|
unsigned int num)
|
|
{
|
|
struct mii_bus *bus = dsa_host_dev_to_mii_bus(host_dev);
|
|
int i, ret;
|
|
|
|
if (!bus)
|
|
return NULL;
|
|
|
|
ret = __mv88e6xxx_reg_read(bus, sw_addr, REG_PORT(0), PORT_SWITCH_ID);
|
|
if (ret < 0)
|
|
return NULL;
|
|
|
|
/* Look up the exact switch ID */
|
|
for (i = 0; i < num; ++i)
|
|
if (table[i].id == ret)
|
|
return table[i].name;
|
|
|
|
/* Look up only the product number */
|
|
for (i = 0; i < num; ++i) {
|
|
if (table[i].id == (ret & PORT_SWITCH_ID_PROD_NUM_MASK)) {
|
|
dev_warn(host_dev, "unknown revision %d, using base switch 0x%x\n",
|
|
ret & PORT_SWITCH_ID_REV_MASK,
|
|
ret & PORT_SWITCH_ID_PROD_NUM_MASK);
|
|
return table[i].name;
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static int __init mv88e6xxx_init(void)
|
|
{
|
|
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6131)
|
|
register_switch_driver(&mv88e6131_switch_driver);
|
|
#endif
|
|
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6123_61_65)
|
|
register_switch_driver(&mv88e6123_61_65_switch_driver);
|
|
#endif
|
|
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6352)
|
|
register_switch_driver(&mv88e6352_switch_driver);
|
|
#endif
|
|
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6171)
|
|
register_switch_driver(&mv88e6171_switch_driver);
|
|
#endif
|
|
return 0;
|
|
}
|
|
module_init(mv88e6xxx_init);
|
|
|
|
static void __exit mv88e6xxx_cleanup(void)
|
|
{
|
|
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6171)
|
|
unregister_switch_driver(&mv88e6171_switch_driver);
|
|
#endif
|
|
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6352)
|
|
unregister_switch_driver(&mv88e6352_switch_driver);
|
|
#endif
|
|
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6123_61_65)
|
|
unregister_switch_driver(&mv88e6123_61_65_switch_driver);
|
|
#endif
|
|
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6131)
|
|
unregister_switch_driver(&mv88e6131_switch_driver);
|
|
#endif
|
|
}
|
|
module_exit(mv88e6xxx_cleanup);
|
|
|
|
MODULE_AUTHOR("Lennert Buytenhek <buytenh@wantstofly.org>");
|
|
MODULE_DESCRIPTION("Driver for Marvell 88E6XXX ethernet switch chips");
|
|
MODULE_LICENSE("GPL");
|