linux_dsm_epyc7002/drivers/gpu/drm/i915/intel_device_info.c
Anshuman Gupta 0a7ada1966 drm/i915: Enable non-contiguous pipe fusing
As we have already enabled supported infrastructure for
non-contiguous pipe fusing in driver, we don't require non-contiguous
pipe_mask check anymore.
It is an unlike condition, it make sense to remove this condition.

changes since RFC:
- using intel_pipe_mask_is_valid() function to check integrity of
  pipe_mask. [Ville]
v2:
- simplify condition in intel_pipe_mask_is_valid(). [Ville]
v3:
- removed non-contiguous pipe fusing check. [Lucas]

Cc: Ville Syrjälä <ville.syrjala@linux.intel.com>
Cc: Lucas De Marchi <lucas.demarchi@intel.com>
Reviewed-by: Lucas De Marchi <lucas.demarchi@intel.com>
Signed-off-by: Anshuman Gupta <anshuman.gupta@intel.com>
Signed-off-by: Uma Shankar <uma.shankar@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20200318094448.26239-1-anshuman.gupta@intel.com
2020-03-18 16:13:28 +05:30

1127 lines
32 KiB
C

/*
* Copyright © 2016 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
*/
#include <drm/drm_print.h>
#include <drm/i915_pciids.h>
#include "display/intel_cdclk.h"
#include "intel_device_info.h"
#include "i915_drv.h"
#define PLATFORM_NAME(x) [INTEL_##x] = #x
static const char * const platform_names[] = {
PLATFORM_NAME(I830),
PLATFORM_NAME(I845G),
PLATFORM_NAME(I85X),
PLATFORM_NAME(I865G),
PLATFORM_NAME(I915G),
PLATFORM_NAME(I915GM),
PLATFORM_NAME(I945G),
PLATFORM_NAME(I945GM),
PLATFORM_NAME(G33),
PLATFORM_NAME(PINEVIEW),
PLATFORM_NAME(I965G),
PLATFORM_NAME(I965GM),
PLATFORM_NAME(G45),
PLATFORM_NAME(GM45),
PLATFORM_NAME(IRONLAKE),
PLATFORM_NAME(SANDYBRIDGE),
PLATFORM_NAME(IVYBRIDGE),
PLATFORM_NAME(VALLEYVIEW),
PLATFORM_NAME(HASWELL),
PLATFORM_NAME(BROADWELL),
PLATFORM_NAME(CHERRYVIEW),
PLATFORM_NAME(SKYLAKE),
PLATFORM_NAME(BROXTON),
PLATFORM_NAME(KABYLAKE),
PLATFORM_NAME(GEMINILAKE),
PLATFORM_NAME(COFFEELAKE),
PLATFORM_NAME(CANNONLAKE),
PLATFORM_NAME(ICELAKE),
PLATFORM_NAME(ELKHARTLAKE),
PLATFORM_NAME(TIGERLAKE),
};
#undef PLATFORM_NAME
const char *intel_platform_name(enum intel_platform platform)
{
BUILD_BUG_ON(ARRAY_SIZE(platform_names) != INTEL_MAX_PLATFORMS);
if (WARN_ON_ONCE(platform >= ARRAY_SIZE(platform_names) ||
platform_names[platform] == NULL))
return "<unknown>";
return platform_names[platform];
}
static const char *iommu_name(void)
{
const char *msg = "n/a";
#ifdef CONFIG_INTEL_IOMMU
msg = enableddisabled(intel_iommu_gfx_mapped);
#endif
return msg;
}
void intel_device_info_print_static(const struct intel_device_info *info,
struct drm_printer *p)
{
drm_printf(p, "engines: %x\n", info->engine_mask);
drm_printf(p, "gen: %d\n", info->gen);
drm_printf(p, "gt: %d\n", info->gt);
drm_printf(p, "iommu: %s\n", iommu_name());
drm_printf(p, "memory-regions: %x\n", info->memory_regions);
drm_printf(p, "page-sizes: %x\n", info->page_sizes);
drm_printf(p, "platform: %s\n", intel_platform_name(info->platform));
drm_printf(p, "ppgtt-size: %d\n", info->ppgtt_size);
drm_printf(p, "ppgtt-type: %d\n", info->ppgtt_type);
#define PRINT_FLAG(name) drm_printf(p, "%s: %s\n", #name, yesno(info->name));
DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG);
#undef PRINT_FLAG
#define PRINT_FLAG(name) drm_printf(p, "%s: %s\n", #name, yesno(info->display.name));
DEV_INFO_DISPLAY_FOR_EACH_FLAG(PRINT_FLAG);
#undef PRINT_FLAG
}
static void sseu_dump(const struct sseu_dev_info *sseu, struct drm_printer *p)
{
int s;
drm_printf(p, "slice total: %u, mask=%04x\n",
hweight8(sseu->slice_mask), sseu->slice_mask);
drm_printf(p, "subslice total: %u\n", intel_sseu_subslice_total(sseu));
for (s = 0; s < sseu->max_slices; s++) {
drm_printf(p, "slice%d: %u subslices, mask=%08x\n",
s, intel_sseu_subslices_per_slice(sseu, s),
intel_sseu_get_subslices(sseu, s));
}
drm_printf(p, "EU total: %u\n", sseu->eu_total);
drm_printf(p, "EU per subslice: %u\n", sseu->eu_per_subslice);
drm_printf(p, "has slice power gating: %s\n",
yesno(sseu->has_slice_pg));
drm_printf(p, "has subslice power gating: %s\n",
yesno(sseu->has_subslice_pg));
drm_printf(p, "has EU power gating: %s\n", yesno(sseu->has_eu_pg));
}
void intel_device_info_print_runtime(const struct intel_runtime_info *info,
struct drm_printer *p)
{
sseu_dump(&info->sseu, p);
drm_printf(p, "rawclk rate: %u kHz\n", info->rawclk_freq);
drm_printf(p, "CS timestamp frequency: %u kHz\n",
info->cs_timestamp_frequency_khz);
}
static int sseu_eu_idx(const struct sseu_dev_info *sseu, int slice,
int subslice)
{
int slice_stride = sseu->max_subslices * sseu->eu_stride;
return slice * slice_stride + subslice * sseu->eu_stride;
}
static u16 sseu_get_eus(const struct sseu_dev_info *sseu, int slice,
int subslice)
{
int i, offset = sseu_eu_idx(sseu, slice, subslice);
u16 eu_mask = 0;
for (i = 0; i < sseu->eu_stride; i++) {
eu_mask |= ((u16)sseu->eu_mask[offset + i]) <<
(i * BITS_PER_BYTE);
}
return eu_mask;
}
static void sseu_set_eus(struct sseu_dev_info *sseu, int slice, int subslice,
u16 eu_mask)
{
int i, offset = sseu_eu_idx(sseu, slice, subslice);
for (i = 0; i < sseu->eu_stride; i++) {
sseu->eu_mask[offset + i] =
(eu_mask >> (BITS_PER_BYTE * i)) & 0xff;
}
}
void intel_device_info_print_topology(const struct sseu_dev_info *sseu,
struct drm_printer *p)
{
int s, ss;
if (sseu->max_slices == 0) {
drm_printf(p, "Unavailable\n");
return;
}
for (s = 0; s < sseu->max_slices; s++) {
drm_printf(p, "slice%d: %u subslice(s) (0x%08x):\n",
s, intel_sseu_subslices_per_slice(sseu, s),
intel_sseu_get_subslices(sseu, s));
for (ss = 0; ss < sseu->max_subslices; ss++) {
u16 enabled_eus = sseu_get_eus(sseu, s, ss);
drm_printf(p, "\tsubslice%d: %u EUs (0x%hx)\n",
ss, hweight16(enabled_eus), enabled_eus);
}
}
}
static u16 compute_eu_total(const struct sseu_dev_info *sseu)
{
u16 i, total = 0;
for (i = 0; i < ARRAY_SIZE(sseu->eu_mask); i++)
total += hweight8(sseu->eu_mask[i]);
return total;
}
static void gen11_compute_sseu_info(struct sseu_dev_info *sseu,
u8 s_en, u32 ss_en, u16 eu_en)
{
int s, ss;
/* ss_en represents entire subslice mask across all slices */
GEM_BUG_ON(sseu->max_slices * sseu->max_subslices >
sizeof(ss_en) * BITS_PER_BYTE);
for (s = 0; s < sseu->max_slices; s++) {
if ((s_en & BIT(s)) == 0)
continue;
sseu->slice_mask |= BIT(s);
intel_sseu_set_subslices(sseu, s, ss_en);
for (ss = 0; ss < sseu->max_subslices; ss++)
if (intel_sseu_has_subslice(sseu, s, ss))
sseu_set_eus(sseu, s, ss, eu_en);
}
sseu->eu_per_subslice = hweight16(eu_en);
sseu->eu_total = compute_eu_total(sseu);
}
static void gen12_sseu_info_init(struct drm_i915_private *dev_priv)
{
struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
u8 s_en;
u32 dss_en;
u16 eu_en = 0;
u8 eu_en_fuse;
int eu;
/*
* Gen12 has Dual-Subslices, which behave similarly to 2 gen11 SS.
* Instead of splitting these, provide userspace with an array
* of DSS to more closely represent the hardware resource.
*/
intel_sseu_set_info(sseu, 1, 6, 16);
s_en = I915_READ(GEN11_GT_SLICE_ENABLE) & GEN11_GT_S_ENA_MASK;
dss_en = I915_READ(GEN12_GT_DSS_ENABLE);
/* one bit per pair of EUs */
eu_en_fuse = ~(I915_READ(GEN11_EU_DISABLE) & GEN11_EU_DIS_MASK);
for (eu = 0; eu < sseu->max_eus_per_subslice / 2; eu++)
if (eu_en_fuse & BIT(eu))
eu_en |= BIT(eu * 2) | BIT(eu * 2 + 1);
gen11_compute_sseu_info(sseu, s_en, dss_en, eu_en);
/* TGL only supports slice-level power gating */
sseu->has_slice_pg = 1;
}
static void gen11_sseu_info_init(struct drm_i915_private *dev_priv)
{
struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
u8 s_en;
u32 ss_en;
u8 eu_en;
if (IS_ELKHARTLAKE(dev_priv))
intel_sseu_set_info(sseu, 1, 4, 8);
else
intel_sseu_set_info(sseu, 1, 8, 8);
s_en = I915_READ(GEN11_GT_SLICE_ENABLE) & GEN11_GT_S_ENA_MASK;
ss_en = ~I915_READ(GEN11_GT_SUBSLICE_DISABLE);
eu_en = ~(I915_READ(GEN11_EU_DISABLE) & GEN11_EU_DIS_MASK);
gen11_compute_sseu_info(sseu, s_en, ss_en, eu_en);
/* ICL has no power gating restrictions. */
sseu->has_slice_pg = 1;
sseu->has_subslice_pg = 1;
sseu->has_eu_pg = 1;
}
static void gen10_sseu_info_init(struct drm_i915_private *dev_priv)
{
struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
const u32 fuse2 = I915_READ(GEN8_FUSE2);
int s, ss;
const int eu_mask = 0xff;
u32 subslice_mask, eu_en;
intel_sseu_set_info(sseu, 6, 4, 8);
sseu->slice_mask = (fuse2 & GEN10_F2_S_ENA_MASK) >>
GEN10_F2_S_ENA_SHIFT;
/* Slice0 */
eu_en = ~I915_READ(GEN8_EU_DISABLE0);
for (ss = 0; ss < sseu->max_subslices; ss++)
sseu_set_eus(sseu, 0, ss, (eu_en >> (8 * ss)) & eu_mask);
/* Slice1 */
sseu_set_eus(sseu, 1, 0, (eu_en >> 24) & eu_mask);
eu_en = ~I915_READ(GEN8_EU_DISABLE1);
sseu_set_eus(sseu, 1, 1, eu_en & eu_mask);
/* Slice2 */
sseu_set_eus(sseu, 2, 0, (eu_en >> 8) & eu_mask);
sseu_set_eus(sseu, 2, 1, (eu_en >> 16) & eu_mask);
/* Slice3 */
sseu_set_eus(sseu, 3, 0, (eu_en >> 24) & eu_mask);
eu_en = ~I915_READ(GEN8_EU_DISABLE2);
sseu_set_eus(sseu, 3, 1, eu_en & eu_mask);
/* Slice4 */
sseu_set_eus(sseu, 4, 0, (eu_en >> 8) & eu_mask);
sseu_set_eus(sseu, 4, 1, (eu_en >> 16) & eu_mask);
/* Slice5 */
sseu_set_eus(sseu, 5, 0, (eu_en >> 24) & eu_mask);
eu_en = ~I915_READ(GEN10_EU_DISABLE3);
sseu_set_eus(sseu, 5, 1, eu_en & eu_mask);
subslice_mask = (1 << 4) - 1;
subslice_mask &= ~((fuse2 & GEN10_F2_SS_DIS_MASK) >>
GEN10_F2_SS_DIS_SHIFT);
for (s = 0; s < sseu->max_slices; s++) {
u32 subslice_mask_with_eus = subslice_mask;
for (ss = 0; ss < sseu->max_subslices; ss++) {
if (sseu_get_eus(sseu, s, ss) == 0)
subslice_mask_with_eus &= ~BIT(ss);
}
/*
* Slice0 can have up to 3 subslices, but there are only 2 in
* slice1/2.
*/
intel_sseu_set_subslices(sseu, s, s == 0 ?
subslice_mask_with_eus :
subslice_mask_with_eus & 0x3);
}
sseu->eu_total = compute_eu_total(sseu);
/*
* CNL is expected to always have a uniform distribution
* of EU across subslices with the exception that any one
* EU in any one subslice may be fused off for die
* recovery.
*/
sseu->eu_per_subslice = intel_sseu_subslice_total(sseu) ?
DIV_ROUND_UP(sseu->eu_total,
intel_sseu_subslice_total(sseu)) :
0;
/* No restrictions on Power Gating */
sseu->has_slice_pg = 1;
sseu->has_subslice_pg = 1;
sseu->has_eu_pg = 1;
}
static void cherryview_sseu_info_init(struct drm_i915_private *dev_priv)
{
struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
u32 fuse;
u8 subslice_mask = 0;
fuse = I915_READ(CHV_FUSE_GT);
sseu->slice_mask = BIT(0);
intel_sseu_set_info(sseu, 1, 2, 8);
if (!(fuse & CHV_FGT_DISABLE_SS0)) {
u8 disabled_mask =
((fuse & CHV_FGT_EU_DIS_SS0_R0_MASK) >>
CHV_FGT_EU_DIS_SS0_R0_SHIFT) |
(((fuse & CHV_FGT_EU_DIS_SS0_R1_MASK) >>
CHV_FGT_EU_DIS_SS0_R1_SHIFT) << 4);
subslice_mask |= BIT(0);
sseu_set_eus(sseu, 0, 0, ~disabled_mask);
}
if (!(fuse & CHV_FGT_DISABLE_SS1)) {
u8 disabled_mask =
((fuse & CHV_FGT_EU_DIS_SS1_R0_MASK) >>
CHV_FGT_EU_DIS_SS1_R0_SHIFT) |
(((fuse & CHV_FGT_EU_DIS_SS1_R1_MASK) >>
CHV_FGT_EU_DIS_SS1_R1_SHIFT) << 4);
subslice_mask |= BIT(1);
sseu_set_eus(sseu, 0, 1, ~disabled_mask);
}
intel_sseu_set_subslices(sseu, 0, subslice_mask);
sseu->eu_total = compute_eu_total(sseu);
/*
* CHV expected to always have a uniform distribution of EU
* across subslices.
*/
sseu->eu_per_subslice = intel_sseu_subslice_total(sseu) ?
sseu->eu_total /
intel_sseu_subslice_total(sseu) :
0;
/*
* CHV supports subslice power gating on devices with more than
* one subslice, and supports EU power gating on devices with
* more than one EU pair per subslice.
*/
sseu->has_slice_pg = 0;
sseu->has_subslice_pg = intel_sseu_subslice_total(sseu) > 1;
sseu->has_eu_pg = (sseu->eu_per_subslice > 2);
}
static void gen9_sseu_info_init(struct drm_i915_private *dev_priv)
{
struct intel_device_info *info = mkwrite_device_info(dev_priv);
struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
int s, ss;
u32 fuse2, eu_disable, subslice_mask;
const u8 eu_mask = 0xff;
fuse2 = I915_READ(GEN8_FUSE2);
sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT;
/* BXT has a single slice and at most 3 subslices. */
intel_sseu_set_info(sseu, IS_GEN9_LP(dev_priv) ? 1 : 3,
IS_GEN9_LP(dev_priv) ? 3 : 4, 8);
/*
* The subslice disable field is global, i.e. it applies
* to each of the enabled slices.
*/
subslice_mask = (1 << sseu->max_subslices) - 1;
subslice_mask &= ~((fuse2 & GEN9_F2_SS_DIS_MASK) >>
GEN9_F2_SS_DIS_SHIFT);
/*
* Iterate through enabled slices and subslices to
* count the total enabled EU.
*/
for (s = 0; s < sseu->max_slices; s++) {
if (!(sseu->slice_mask & BIT(s)))
/* skip disabled slice */
continue;
intel_sseu_set_subslices(sseu, s, subslice_mask);
eu_disable = I915_READ(GEN9_EU_DISABLE(s));
for (ss = 0; ss < sseu->max_subslices; ss++) {
int eu_per_ss;
u8 eu_disabled_mask;
if (!intel_sseu_has_subslice(sseu, s, ss))
/* skip disabled subslice */
continue;
eu_disabled_mask = (eu_disable >> (ss * 8)) & eu_mask;
sseu_set_eus(sseu, s, ss, ~eu_disabled_mask);
eu_per_ss = sseu->max_eus_per_subslice -
hweight8(eu_disabled_mask);
/*
* Record which subslice(s) has(have) 7 EUs. we
* can tune the hash used to spread work among
* subslices if they are unbalanced.
*/
if (eu_per_ss == 7)
sseu->subslice_7eu[s] |= BIT(ss);
}
}
sseu->eu_total = compute_eu_total(sseu);
/*
* SKL is expected to always have a uniform distribution
* of EU across subslices with the exception that any one
* EU in any one subslice may be fused off for die
* recovery. BXT is expected to be perfectly uniform in EU
* distribution.
*/
sseu->eu_per_subslice = intel_sseu_subslice_total(sseu) ?
DIV_ROUND_UP(sseu->eu_total,
intel_sseu_subslice_total(sseu)) :
0;
/*
* SKL+ supports slice power gating on devices with more than
* one slice, and supports EU power gating on devices with
* more than one EU pair per subslice. BXT+ supports subslice
* power gating on devices with more than one subslice, and
* supports EU power gating on devices with more than one EU
* pair per subslice.
*/
sseu->has_slice_pg =
!IS_GEN9_LP(dev_priv) && hweight8(sseu->slice_mask) > 1;
sseu->has_subslice_pg =
IS_GEN9_LP(dev_priv) && intel_sseu_subslice_total(sseu) > 1;
sseu->has_eu_pg = sseu->eu_per_subslice > 2;
if (IS_GEN9_LP(dev_priv)) {
#define IS_SS_DISABLED(ss) (!(sseu->subslice_mask[0] & BIT(ss)))
info->has_pooled_eu = hweight8(sseu->subslice_mask[0]) == 3;
sseu->min_eu_in_pool = 0;
if (info->has_pooled_eu) {
if (IS_SS_DISABLED(2) || IS_SS_DISABLED(0))
sseu->min_eu_in_pool = 3;
else if (IS_SS_DISABLED(1))
sseu->min_eu_in_pool = 6;
else
sseu->min_eu_in_pool = 9;
}
#undef IS_SS_DISABLED
}
}
static void bdw_sseu_info_init(struct drm_i915_private *dev_priv)
{
struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
int s, ss;
u32 fuse2, subslice_mask, eu_disable[3]; /* s_max */
fuse2 = I915_READ(GEN8_FUSE2);
sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT;
intel_sseu_set_info(sseu, 3, 3, 8);
/*
* The subslice disable field is global, i.e. it applies
* to each of the enabled slices.
*/
subslice_mask = GENMASK(sseu->max_subslices - 1, 0);
subslice_mask &= ~((fuse2 & GEN8_F2_SS_DIS_MASK) >>
GEN8_F2_SS_DIS_SHIFT);
eu_disable[0] = I915_READ(GEN8_EU_DISABLE0) & GEN8_EU_DIS0_S0_MASK;
eu_disable[1] = (I915_READ(GEN8_EU_DISABLE0) >> GEN8_EU_DIS0_S1_SHIFT) |
((I915_READ(GEN8_EU_DISABLE1) & GEN8_EU_DIS1_S1_MASK) <<
(32 - GEN8_EU_DIS0_S1_SHIFT));
eu_disable[2] = (I915_READ(GEN8_EU_DISABLE1) >> GEN8_EU_DIS1_S2_SHIFT) |
((I915_READ(GEN8_EU_DISABLE2) & GEN8_EU_DIS2_S2_MASK) <<
(32 - GEN8_EU_DIS1_S2_SHIFT));
/*
* Iterate through enabled slices and subslices to
* count the total enabled EU.
*/
for (s = 0; s < sseu->max_slices; s++) {
if (!(sseu->slice_mask & BIT(s)))
/* skip disabled slice */
continue;
intel_sseu_set_subslices(sseu, s, subslice_mask);
for (ss = 0; ss < sseu->max_subslices; ss++) {
u8 eu_disabled_mask;
u32 n_disabled;
if (!intel_sseu_has_subslice(sseu, s, ss))
/* skip disabled subslice */
continue;
eu_disabled_mask =
eu_disable[s] >> (ss * sseu->max_eus_per_subslice);
sseu_set_eus(sseu, s, ss, ~eu_disabled_mask);
n_disabled = hweight8(eu_disabled_mask);
/*
* Record which subslices have 7 EUs.
*/
if (sseu->max_eus_per_subslice - n_disabled == 7)
sseu->subslice_7eu[s] |= 1 << ss;
}
}
sseu->eu_total = compute_eu_total(sseu);
/*
* BDW is expected to always have a uniform distribution of EU across
* subslices with the exception that any one EU in any one subslice may
* be fused off for die recovery.
*/
sseu->eu_per_subslice = intel_sseu_subslice_total(sseu) ?
DIV_ROUND_UP(sseu->eu_total,
intel_sseu_subslice_total(sseu)) :
0;
/*
* BDW supports slice power gating on devices with more than
* one slice.
*/
sseu->has_slice_pg = hweight8(sseu->slice_mask) > 1;
sseu->has_subslice_pg = 0;
sseu->has_eu_pg = 0;
}
static void hsw_sseu_info_init(struct drm_i915_private *dev_priv)
{
struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
u32 fuse1;
u8 subslice_mask = 0;
int s, ss;
/*
* There isn't a register to tell us how many slices/subslices. We
* work off the PCI-ids here.
*/
switch (INTEL_INFO(dev_priv)->gt) {
default:
MISSING_CASE(INTEL_INFO(dev_priv)->gt);
/* fall through */
case 1:
sseu->slice_mask = BIT(0);
subslice_mask = BIT(0);
break;
case 2:
sseu->slice_mask = BIT(0);
subslice_mask = BIT(0) | BIT(1);
break;
case 3:
sseu->slice_mask = BIT(0) | BIT(1);
subslice_mask = BIT(0) | BIT(1);
break;
}
fuse1 = I915_READ(HSW_PAVP_FUSE1);
switch ((fuse1 & HSW_F1_EU_DIS_MASK) >> HSW_F1_EU_DIS_SHIFT) {
default:
MISSING_CASE((fuse1 & HSW_F1_EU_DIS_MASK) >>
HSW_F1_EU_DIS_SHIFT);
/* fall through */
case HSW_F1_EU_DIS_10EUS:
sseu->eu_per_subslice = 10;
break;
case HSW_F1_EU_DIS_8EUS:
sseu->eu_per_subslice = 8;
break;
case HSW_F1_EU_DIS_6EUS:
sseu->eu_per_subslice = 6;
break;
}
intel_sseu_set_info(sseu, hweight8(sseu->slice_mask),
hweight8(subslice_mask),
sseu->eu_per_subslice);
for (s = 0; s < sseu->max_slices; s++) {
intel_sseu_set_subslices(sseu, s, subslice_mask);
for (ss = 0; ss < sseu->max_subslices; ss++) {
sseu_set_eus(sseu, s, ss,
(1UL << sseu->eu_per_subslice) - 1);
}
}
sseu->eu_total = compute_eu_total(sseu);
/* No powergating for you. */
sseu->has_slice_pg = 0;
sseu->has_subslice_pg = 0;
sseu->has_eu_pg = 0;
}
static u32 read_reference_ts_freq(struct drm_i915_private *dev_priv)
{
u32 ts_override = I915_READ(GEN9_TIMESTAMP_OVERRIDE);
u32 base_freq, frac_freq;
base_freq = ((ts_override & GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_MASK) >>
GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_SHIFT) + 1;
base_freq *= 1000;
frac_freq = ((ts_override &
GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_MASK) >>
GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_SHIFT);
frac_freq = 1000 / (frac_freq + 1);
return base_freq + frac_freq;
}
static u32 gen10_get_crystal_clock_freq(struct drm_i915_private *dev_priv,
u32 rpm_config_reg)
{
u32 f19_2_mhz = 19200;
u32 f24_mhz = 24000;
u32 crystal_clock = (rpm_config_reg &
GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_MASK) >>
GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_SHIFT;
switch (crystal_clock) {
case GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_19_2_MHZ:
return f19_2_mhz;
case GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_24_MHZ:
return f24_mhz;
default:
MISSING_CASE(crystal_clock);
return 0;
}
}
static u32 gen11_get_crystal_clock_freq(struct drm_i915_private *dev_priv,
u32 rpm_config_reg)
{
u32 f19_2_mhz = 19200;
u32 f24_mhz = 24000;
u32 f25_mhz = 25000;
u32 f38_4_mhz = 38400;
u32 crystal_clock = (rpm_config_reg &
GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_MASK) >>
GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_SHIFT;
switch (crystal_clock) {
case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_24_MHZ:
return f24_mhz;
case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_19_2_MHZ:
return f19_2_mhz;
case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_38_4_MHZ:
return f38_4_mhz;
case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_25_MHZ:
return f25_mhz;
default:
MISSING_CASE(crystal_clock);
return 0;
}
}
static u32 read_timestamp_frequency(struct drm_i915_private *dev_priv)
{
u32 f12_5_mhz = 12500;
u32 f19_2_mhz = 19200;
u32 f24_mhz = 24000;
if (INTEL_GEN(dev_priv) <= 4) {
/* PRMs say:
*
* "The value in this register increments once every 16
* hclks." (through the “Clocking Configuration”
* (“CLKCFG”) MCHBAR register)
*/
return RUNTIME_INFO(dev_priv)->rawclk_freq / 16;
} else if (INTEL_GEN(dev_priv) <= 8) {
/* PRMs say:
*
* "The PCU TSC counts 10ns increments; this timestamp
* reflects bits 38:3 of the TSC (i.e. 80ns granularity,
* rolling over every 1.5 hours).
*/
return f12_5_mhz;
} else if (INTEL_GEN(dev_priv) <= 9) {
u32 ctc_reg = I915_READ(CTC_MODE);
u32 freq = 0;
if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) {
freq = read_reference_ts_freq(dev_priv);
} else {
freq = IS_GEN9_LP(dev_priv) ? f19_2_mhz : f24_mhz;
/* Now figure out how the command stream's timestamp
* register increments from this frequency (it might
* increment only every few clock cycle).
*/
freq >>= 3 - ((ctc_reg & CTC_SHIFT_PARAMETER_MASK) >>
CTC_SHIFT_PARAMETER_SHIFT);
}
return freq;
} else if (INTEL_GEN(dev_priv) <= 12) {
u32 ctc_reg = I915_READ(CTC_MODE);
u32 freq = 0;
/* First figure out the reference frequency. There are 2 ways
* we can compute the frequency, either through the
* TIMESTAMP_OVERRIDE register or through RPM_CONFIG. CTC_MODE
* tells us which one we should use.
*/
if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) {
freq = read_reference_ts_freq(dev_priv);
} else {
u32 rpm_config_reg = I915_READ(RPM_CONFIG0);
if (INTEL_GEN(dev_priv) <= 10)
freq = gen10_get_crystal_clock_freq(dev_priv,
rpm_config_reg);
else
freq = gen11_get_crystal_clock_freq(dev_priv,
rpm_config_reg);
/* Now figure out how the command stream's timestamp
* register increments from this frequency (it might
* increment only every few clock cycle).
*/
freq >>= 3 - ((rpm_config_reg &
GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK) >>
GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_SHIFT);
}
return freq;
}
MISSING_CASE("Unknown gen, unable to read command streamer timestamp frequency\n");
return 0;
}
#undef INTEL_VGA_DEVICE
#define INTEL_VGA_DEVICE(id, info) (id)
static const u16 subplatform_ult_ids[] = {
INTEL_HSW_ULT_GT1_IDS(0),
INTEL_HSW_ULT_GT2_IDS(0),
INTEL_HSW_ULT_GT3_IDS(0),
INTEL_BDW_ULT_GT1_IDS(0),
INTEL_BDW_ULT_GT2_IDS(0),
INTEL_BDW_ULT_GT3_IDS(0),
INTEL_BDW_ULT_RSVD_IDS(0),
INTEL_SKL_ULT_GT1_IDS(0),
INTEL_SKL_ULT_GT2_IDS(0),
INTEL_SKL_ULT_GT3_IDS(0),
INTEL_KBL_ULT_GT1_IDS(0),
INTEL_KBL_ULT_GT2_IDS(0),
INTEL_KBL_ULT_GT3_IDS(0),
INTEL_CFL_U_GT2_IDS(0),
INTEL_CFL_U_GT3_IDS(0),
INTEL_WHL_U_GT1_IDS(0),
INTEL_WHL_U_GT2_IDS(0),
INTEL_WHL_U_GT3_IDS(0),
INTEL_CML_U_GT1_IDS(0),
INTEL_CML_U_GT2_IDS(0),
};
static const u16 subplatform_ulx_ids[] = {
INTEL_HSW_ULX_GT1_IDS(0),
INTEL_HSW_ULX_GT2_IDS(0),
INTEL_BDW_ULX_GT1_IDS(0),
INTEL_BDW_ULX_GT2_IDS(0),
INTEL_BDW_ULX_GT3_IDS(0),
INTEL_BDW_ULX_RSVD_IDS(0),
INTEL_SKL_ULX_GT1_IDS(0),
INTEL_SKL_ULX_GT2_IDS(0),
INTEL_KBL_ULX_GT1_IDS(0),
INTEL_KBL_ULX_GT2_IDS(0),
INTEL_AML_KBL_GT2_IDS(0),
INTEL_AML_CFL_GT2_IDS(0),
};
static const u16 subplatform_portf_ids[] = {
INTEL_CNL_PORT_F_IDS(0),
INTEL_ICL_PORT_F_IDS(0),
};
static bool find_devid(u16 id, const u16 *p, unsigned int num)
{
for (; num; num--, p++) {
if (*p == id)
return true;
}
return false;
}
void intel_device_info_subplatform_init(struct drm_i915_private *i915)
{
const struct intel_device_info *info = INTEL_INFO(i915);
const struct intel_runtime_info *rinfo = RUNTIME_INFO(i915);
const unsigned int pi = __platform_mask_index(rinfo, info->platform);
const unsigned int pb = __platform_mask_bit(rinfo, info->platform);
u16 devid = INTEL_DEVID(i915);
u32 mask = 0;
/* Make sure IS_<platform> checks are working. */
RUNTIME_INFO(i915)->platform_mask[pi] = BIT(pb);
/* Find and mark subplatform bits based on the PCI device id. */
if (find_devid(devid, subplatform_ult_ids,
ARRAY_SIZE(subplatform_ult_ids))) {
mask = BIT(INTEL_SUBPLATFORM_ULT);
} else if (find_devid(devid, subplatform_ulx_ids,
ARRAY_SIZE(subplatform_ulx_ids))) {
mask = BIT(INTEL_SUBPLATFORM_ULX);
if (IS_HASWELL(i915) || IS_BROADWELL(i915)) {
/* ULX machines are also considered ULT. */
mask |= BIT(INTEL_SUBPLATFORM_ULT);
}
} else if (find_devid(devid, subplatform_portf_ids,
ARRAY_SIZE(subplatform_portf_ids))) {
mask = BIT(INTEL_SUBPLATFORM_PORTF);
}
GEM_BUG_ON(mask & ~INTEL_SUBPLATFORM_BITS);
RUNTIME_INFO(i915)->platform_mask[pi] |= mask;
}
/**
* intel_device_info_runtime_init - initialize runtime info
* @dev_priv: the i915 device
*
* Determine various intel_device_info fields at runtime.
*
* Use it when either:
* - it's judged too laborious to fill n static structures with the limit
* when a simple if statement does the job,
* - run-time checks (eg read fuse/strap registers) are needed.
*
* This function needs to be called:
* - after the MMIO has been setup as we are reading registers,
* - after the PCH has been detected,
* - before the first usage of the fields it can tweak.
*/
void intel_device_info_runtime_init(struct drm_i915_private *dev_priv)
{
struct intel_device_info *info = mkwrite_device_info(dev_priv);
struct intel_runtime_info *runtime = RUNTIME_INFO(dev_priv);
enum pipe pipe;
if (INTEL_GEN(dev_priv) >= 10) {
for_each_pipe(dev_priv, pipe)
runtime->num_scalers[pipe] = 2;
} else if (IS_GEN(dev_priv, 9)) {
runtime->num_scalers[PIPE_A] = 2;
runtime->num_scalers[PIPE_B] = 2;
runtime->num_scalers[PIPE_C] = 1;
}
BUILD_BUG_ON(BITS_PER_TYPE(intel_engine_mask_t) < I915_NUM_ENGINES);
if (INTEL_GEN(dev_priv) >= 11)
for_each_pipe(dev_priv, pipe)
runtime->num_sprites[pipe] = 6;
else if (IS_GEN(dev_priv, 10) || IS_GEMINILAKE(dev_priv))
for_each_pipe(dev_priv, pipe)
runtime->num_sprites[pipe] = 3;
else if (IS_BROXTON(dev_priv)) {
/*
* Skylake and Broxton currently don't expose the topmost plane as its
* use is exclusive with the legacy cursor and we only want to expose
* one of those, not both. Until we can safely expose the topmost plane
* as a DRM_PLANE_TYPE_CURSOR with all the features exposed/supported,
* we don't expose the topmost plane at all to prevent ABI breakage
* down the line.
*/
runtime->num_sprites[PIPE_A] = 2;
runtime->num_sprites[PIPE_B] = 2;
runtime->num_sprites[PIPE_C] = 1;
} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
for_each_pipe(dev_priv, pipe)
runtime->num_sprites[pipe] = 2;
} else if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv)) {
for_each_pipe(dev_priv, pipe)
runtime->num_sprites[pipe] = 1;
}
if (HAS_DISPLAY(dev_priv) && IS_GEN_RANGE(dev_priv, 7, 8) &&
HAS_PCH_SPLIT(dev_priv)) {
u32 fuse_strap = I915_READ(FUSE_STRAP);
u32 sfuse_strap = I915_READ(SFUSE_STRAP);
/*
* SFUSE_STRAP is supposed to have a bit signalling the display
* is fused off. Unfortunately it seems that, at least in
* certain cases, fused off display means that PCH display
* reads don't land anywhere. In that case, we read 0s.
*
* On CPT/PPT, we can detect this case as SFUSE_STRAP_FUSE_LOCK
* should be set when taking over after the firmware.
*/
if (fuse_strap & ILK_INTERNAL_DISPLAY_DISABLE ||
sfuse_strap & SFUSE_STRAP_DISPLAY_DISABLED ||
(HAS_PCH_CPT(dev_priv) &&
!(sfuse_strap & SFUSE_STRAP_FUSE_LOCK))) {
drm_info(&dev_priv->drm,
"Display fused off, disabling\n");
info->pipe_mask = 0;
} else if (fuse_strap & IVB_PIPE_C_DISABLE) {
drm_info(&dev_priv->drm, "PipeC fused off\n");
info->pipe_mask &= ~BIT(PIPE_C);
}
} else if (HAS_DISPLAY(dev_priv) && INTEL_GEN(dev_priv) >= 9) {
u32 dfsm = I915_READ(SKL_DFSM);
u8 enabled_mask = info->pipe_mask;
if (dfsm & SKL_DFSM_PIPE_A_DISABLE)
enabled_mask &= ~BIT(PIPE_A);
if (dfsm & SKL_DFSM_PIPE_B_DISABLE)
enabled_mask &= ~BIT(PIPE_B);
if (dfsm & SKL_DFSM_PIPE_C_DISABLE)
enabled_mask &= ~BIT(PIPE_C);
if (INTEL_GEN(dev_priv) >= 12 &&
(dfsm & TGL_DFSM_PIPE_D_DISABLE))
enabled_mask &= ~BIT(PIPE_D);
info->pipe_mask = enabled_mask;
if (dfsm & SKL_DFSM_DISPLAY_HDCP_DISABLE)
info->display.has_hdcp = 0;
if (dfsm & SKL_DFSM_DISPLAY_PM_DISABLE)
info->display.has_fbc = 0;
if (INTEL_GEN(dev_priv) >= 11 && (dfsm & ICL_DFSM_DMC_DISABLE))
info->display.has_csr = 0;
if (INTEL_GEN(dev_priv) >= 10 &&
(dfsm & CNL_DFSM_DISPLAY_DSC_DISABLE))
info->display.has_dsc = 0;
}
/* Initialize slice/subslice/EU info */
if (IS_HASWELL(dev_priv))
hsw_sseu_info_init(dev_priv);
else if (IS_CHERRYVIEW(dev_priv))
cherryview_sseu_info_init(dev_priv);
else if (IS_BROADWELL(dev_priv))
bdw_sseu_info_init(dev_priv);
else if (IS_GEN(dev_priv, 9))
gen9_sseu_info_init(dev_priv);
else if (IS_GEN(dev_priv, 10))
gen10_sseu_info_init(dev_priv);
else if (IS_GEN(dev_priv, 11))
gen11_sseu_info_init(dev_priv);
else if (INTEL_GEN(dev_priv) >= 12)
gen12_sseu_info_init(dev_priv);
if (IS_GEN(dev_priv, 6) && intel_vtd_active()) {
drm_info(&dev_priv->drm,
"Disabling ppGTT for VT-d support\n");
info->ppgtt_type = INTEL_PPGTT_NONE;
}
runtime->rawclk_freq = intel_read_rawclk(dev_priv);
drm_dbg(&dev_priv->drm, "rawclk rate: %d kHz\n", runtime->rawclk_freq);
/* Initialize command stream timestamp frequency */
runtime->cs_timestamp_frequency_khz =
read_timestamp_frequency(dev_priv);
if (runtime->cs_timestamp_frequency_khz) {
runtime->cs_timestamp_period_ns =
div_u64(1e6, runtime->cs_timestamp_frequency_khz);
drm_dbg(&dev_priv->drm,
"CS timestamp wraparound in %lldms\n",
div_u64(mul_u32_u32(runtime->cs_timestamp_period_ns,
S32_MAX),
USEC_PER_SEC));
}
}
void intel_driver_caps_print(const struct intel_driver_caps *caps,
struct drm_printer *p)
{
drm_printf(p, "Has logical contexts? %s\n",
yesno(caps->has_logical_contexts));
drm_printf(p, "scheduler: %x\n", caps->scheduler);
}
/*
* Determine which engines are fused off in our particular hardware. Since the
* fuse register is in the blitter powerwell, we need forcewake to be ready at
* this point (but later we need to prune the forcewake domains for engines that
* are indeed fused off).
*/
void intel_device_info_init_mmio(struct drm_i915_private *dev_priv)
{
struct intel_device_info *info = mkwrite_device_info(dev_priv);
unsigned int logical_vdbox = 0;
unsigned int i;
u32 media_fuse;
u16 vdbox_mask;
u16 vebox_mask;
if (INTEL_GEN(dev_priv) < 11)
return;
media_fuse = ~I915_READ(GEN11_GT_VEBOX_VDBOX_DISABLE);
vdbox_mask = media_fuse & GEN11_GT_VDBOX_DISABLE_MASK;
vebox_mask = (media_fuse & GEN11_GT_VEBOX_DISABLE_MASK) >>
GEN11_GT_VEBOX_DISABLE_SHIFT;
for (i = 0; i < I915_MAX_VCS; i++) {
if (!HAS_ENGINE(dev_priv, _VCS(i))) {
vdbox_mask &= ~BIT(i);
continue;
}
if (!(BIT(i) & vdbox_mask)) {
info->engine_mask &= ~BIT(_VCS(i));
drm_dbg(&dev_priv->drm, "vcs%u fused off\n", i);
continue;
}
/*
* In Gen11, only even numbered logical VDBOXes are
* hooked up to an SFC (Scaler & Format Converter) unit.
* In TGL each VDBOX has access to an SFC.
*/
if (INTEL_GEN(dev_priv) >= 12 || logical_vdbox++ % 2 == 0)
RUNTIME_INFO(dev_priv)->vdbox_sfc_access |= BIT(i);
}
drm_dbg(&dev_priv->drm, "vdbox enable: %04x, instances: %04lx\n",
vdbox_mask, VDBOX_MASK(dev_priv));
GEM_BUG_ON(vdbox_mask != VDBOX_MASK(dev_priv));
for (i = 0; i < I915_MAX_VECS; i++) {
if (!HAS_ENGINE(dev_priv, _VECS(i))) {
vebox_mask &= ~BIT(i);
continue;
}
if (!(BIT(i) & vebox_mask)) {
info->engine_mask &= ~BIT(_VECS(i));
drm_dbg(&dev_priv->drm, "vecs%u fused off\n", i);
}
}
drm_dbg(&dev_priv->drm, "vebox enable: %04x, instances: %04lx\n",
vebox_mask, VEBOX_MASK(dev_priv));
GEM_BUG_ON(vebox_mask != VEBOX_MASK(dev_priv));
}