mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-16 18:46:14 +07:00
0a3f4e4f34
If firmware supports hot reset, extend ETHTOOL_RESET to support hot reset driver which does not require a driver reload after ETHTOOL_RESET. The driver will go through the same coordinated reset sequence as a firmware initiated fatal/non-fatal reset. Signed-off-by: Vasundhara Volam <vasundhara-v.volam@broadcom.com> Signed-off-by: Michael Chan <michael.chan@broadcom.com> Signed-off-by: David S. Miller <davem@davemloft.net>
12088 lines
316 KiB
C
12088 lines
316 KiB
C
/* Broadcom NetXtreme-C/E network driver.
|
|
*
|
|
* Copyright (c) 2014-2016 Broadcom Corporation
|
|
* Copyright (c) 2016-2019 Broadcom Limited
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation.
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
|
|
#include <linux/stringify.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/timer.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/ioport.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/netdevice.h>
|
|
#include <linux/etherdevice.h>
|
|
#include <linux/skbuff.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/io.h>
|
|
#include <linux/irq.h>
|
|
#include <linux/delay.h>
|
|
#include <asm/byteorder.h>
|
|
#include <asm/page.h>
|
|
#include <linux/time.h>
|
|
#include <linux/mii.h>
|
|
#include <linux/mdio.h>
|
|
#include <linux/if.h>
|
|
#include <linux/if_vlan.h>
|
|
#include <linux/if_bridge.h>
|
|
#include <linux/rtc.h>
|
|
#include <linux/bpf.h>
|
|
#include <net/ip.h>
|
|
#include <net/tcp.h>
|
|
#include <net/udp.h>
|
|
#include <net/checksum.h>
|
|
#include <net/ip6_checksum.h>
|
|
#include <net/udp_tunnel.h>
|
|
#include <linux/workqueue.h>
|
|
#include <linux/prefetch.h>
|
|
#include <linux/cache.h>
|
|
#include <linux/log2.h>
|
|
#include <linux/aer.h>
|
|
#include <linux/bitmap.h>
|
|
#include <linux/cpu_rmap.h>
|
|
#include <linux/cpumask.h>
|
|
#include <net/pkt_cls.h>
|
|
#include <linux/hwmon.h>
|
|
#include <linux/hwmon-sysfs.h>
|
|
#include <net/page_pool.h>
|
|
|
|
#include "bnxt_hsi.h"
|
|
#include "bnxt.h"
|
|
#include "bnxt_ulp.h"
|
|
#include "bnxt_sriov.h"
|
|
#include "bnxt_ethtool.h"
|
|
#include "bnxt_dcb.h"
|
|
#include "bnxt_xdp.h"
|
|
#include "bnxt_vfr.h"
|
|
#include "bnxt_tc.h"
|
|
#include "bnxt_devlink.h"
|
|
#include "bnxt_debugfs.h"
|
|
|
|
#define BNXT_TX_TIMEOUT (5 * HZ)
|
|
|
|
static const char version[] =
|
|
"Broadcom NetXtreme-C/E driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION "\n";
|
|
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_DESCRIPTION("Broadcom BCM573xx network driver");
|
|
MODULE_VERSION(DRV_MODULE_VERSION);
|
|
|
|
#define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN)
|
|
#define BNXT_RX_DMA_OFFSET NET_SKB_PAD
|
|
#define BNXT_RX_COPY_THRESH 256
|
|
|
|
#define BNXT_TX_PUSH_THRESH 164
|
|
|
|
enum board_idx {
|
|
BCM57301,
|
|
BCM57302,
|
|
BCM57304,
|
|
BCM57417_NPAR,
|
|
BCM58700,
|
|
BCM57311,
|
|
BCM57312,
|
|
BCM57402,
|
|
BCM57404,
|
|
BCM57406,
|
|
BCM57402_NPAR,
|
|
BCM57407,
|
|
BCM57412,
|
|
BCM57414,
|
|
BCM57416,
|
|
BCM57417,
|
|
BCM57412_NPAR,
|
|
BCM57314,
|
|
BCM57417_SFP,
|
|
BCM57416_SFP,
|
|
BCM57404_NPAR,
|
|
BCM57406_NPAR,
|
|
BCM57407_SFP,
|
|
BCM57407_NPAR,
|
|
BCM57414_NPAR,
|
|
BCM57416_NPAR,
|
|
BCM57452,
|
|
BCM57454,
|
|
BCM5745x_NPAR,
|
|
BCM57508,
|
|
BCM57504,
|
|
BCM57502,
|
|
BCM57508_NPAR,
|
|
BCM57504_NPAR,
|
|
BCM57502_NPAR,
|
|
BCM58802,
|
|
BCM58804,
|
|
BCM58808,
|
|
NETXTREME_E_VF,
|
|
NETXTREME_C_VF,
|
|
NETXTREME_S_VF,
|
|
NETXTREME_E_P5_VF,
|
|
};
|
|
|
|
/* indexed by enum above */
|
|
static const struct {
|
|
char *name;
|
|
} board_info[] = {
|
|
[BCM57301] = { "Broadcom BCM57301 NetXtreme-C 10Gb Ethernet" },
|
|
[BCM57302] = { "Broadcom BCM57302 NetXtreme-C 10Gb/25Gb Ethernet" },
|
|
[BCM57304] = { "Broadcom BCM57304 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
|
|
[BCM57417_NPAR] = { "Broadcom BCM57417 NetXtreme-E Ethernet Partition" },
|
|
[BCM58700] = { "Broadcom BCM58700 Nitro 1Gb/2.5Gb/10Gb Ethernet" },
|
|
[BCM57311] = { "Broadcom BCM57311 NetXtreme-C 10Gb Ethernet" },
|
|
[BCM57312] = { "Broadcom BCM57312 NetXtreme-C 10Gb/25Gb Ethernet" },
|
|
[BCM57402] = { "Broadcom BCM57402 NetXtreme-E 10Gb Ethernet" },
|
|
[BCM57404] = { "Broadcom BCM57404 NetXtreme-E 10Gb/25Gb Ethernet" },
|
|
[BCM57406] = { "Broadcom BCM57406 NetXtreme-E 10GBase-T Ethernet" },
|
|
[BCM57402_NPAR] = { "Broadcom BCM57402 NetXtreme-E Ethernet Partition" },
|
|
[BCM57407] = { "Broadcom BCM57407 NetXtreme-E 10GBase-T Ethernet" },
|
|
[BCM57412] = { "Broadcom BCM57412 NetXtreme-E 10Gb Ethernet" },
|
|
[BCM57414] = { "Broadcom BCM57414 NetXtreme-E 10Gb/25Gb Ethernet" },
|
|
[BCM57416] = { "Broadcom BCM57416 NetXtreme-E 10GBase-T Ethernet" },
|
|
[BCM57417] = { "Broadcom BCM57417 NetXtreme-E 10GBase-T Ethernet" },
|
|
[BCM57412_NPAR] = { "Broadcom BCM57412 NetXtreme-E Ethernet Partition" },
|
|
[BCM57314] = { "Broadcom BCM57314 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
|
|
[BCM57417_SFP] = { "Broadcom BCM57417 NetXtreme-E 10Gb/25Gb Ethernet" },
|
|
[BCM57416_SFP] = { "Broadcom BCM57416 NetXtreme-E 10Gb Ethernet" },
|
|
[BCM57404_NPAR] = { "Broadcom BCM57404 NetXtreme-E Ethernet Partition" },
|
|
[BCM57406_NPAR] = { "Broadcom BCM57406 NetXtreme-E Ethernet Partition" },
|
|
[BCM57407_SFP] = { "Broadcom BCM57407 NetXtreme-E 25Gb Ethernet" },
|
|
[BCM57407_NPAR] = { "Broadcom BCM57407 NetXtreme-E Ethernet Partition" },
|
|
[BCM57414_NPAR] = { "Broadcom BCM57414 NetXtreme-E Ethernet Partition" },
|
|
[BCM57416_NPAR] = { "Broadcom BCM57416 NetXtreme-E Ethernet Partition" },
|
|
[BCM57452] = { "Broadcom BCM57452 NetXtreme-E 10Gb/25Gb/40Gb/50Gb Ethernet" },
|
|
[BCM57454] = { "Broadcom BCM57454 NetXtreme-E 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
|
|
[BCM5745x_NPAR] = { "Broadcom BCM5745x NetXtreme-E Ethernet Partition" },
|
|
[BCM57508] = { "Broadcom BCM57508 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" },
|
|
[BCM57504] = { "Broadcom BCM57504 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" },
|
|
[BCM57502] = { "Broadcom BCM57502 NetXtreme-E 10Gb/25Gb/50Gb Ethernet" },
|
|
[BCM57508_NPAR] = { "Broadcom BCM57508 NetXtreme-E Ethernet Partition" },
|
|
[BCM57504_NPAR] = { "Broadcom BCM57504 NetXtreme-E Ethernet Partition" },
|
|
[BCM57502_NPAR] = { "Broadcom BCM57502 NetXtreme-E Ethernet Partition" },
|
|
[BCM58802] = { "Broadcom BCM58802 NetXtreme-S 10Gb/25Gb/40Gb/50Gb Ethernet" },
|
|
[BCM58804] = { "Broadcom BCM58804 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
|
|
[BCM58808] = { "Broadcom BCM58808 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
|
|
[NETXTREME_E_VF] = { "Broadcom NetXtreme-E Ethernet Virtual Function" },
|
|
[NETXTREME_C_VF] = { "Broadcom NetXtreme-C Ethernet Virtual Function" },
|
|
[NETXTREME_S_VF] = { "Broadcom NetXtreme-S Ethernet Virtual Function" },
|
|
[NETXTREME_E_P5_VF] = { "Broadcom BCM5750X NetXtreme-E Ethernet Virtual Function" },
|
|
};
|
|
|
|
static const struct pci_device_id bnxt_pci_tbl[] = {
|
|
{ PCI_VDEVICE(BROADCOM, 0x1604), .driver_data = BCM5745x_NPAR },
|
|
{ PCI_VDEVICE(BROADCOM, 0x1605), .driver_data = BCM5745x_NPAR },
|
|
{ PCI_VDEVICE(BROADCOM, 0x1614), .driver_data = BCM57454 },
|
|
{ PCI_VDEVICE(BROADCOM, 0x16c0), .driver_data = BCM57417_NPAR },
|
|
{ PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 },
|
|
{ PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 },
|
|
{ PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 },
|
|
{ PCI_VDEVICE(BROADCOM, 0x16cc), .driver_data = BCM57417_NPAR },
|
|
{ PCI_VDEVICE(BROADCOM, 0x16cd), .driver_data = BCM58700 },
|
|
{ PCI_VDEVICE(BROADCOM, 0x16ce), .driver_data = BCM57311 },
|
|
{ PCI_VDEVICE(BROADCOM, 0x16cf), .driver_data = BCM57312 },
|
|
{ PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 },
|
|
{ PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 },
|
|
{ PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 },
|
|
{ PCI_VDEVICE(BROADCOM, 0x16d4), .driver_data = BCM57402_NPAR },
|
|
{ PCI_VDEVICE(BROADCOM, 0x16d5), .driver_data = BCM57407 },
|
|
{ PCI_VDEVICE(BROADCOM, 0x16d6), .driver_data = BCM57412 },
|
|
{ PCI_VDEVICE(BROADCOM, 0x16d7), .driver_data = BCM57414 },
|
|
{ PCI_VDEVICE(BROADCOM, 0x16d8), .driver_data = BCM57416 },
|
|
{ PCI_VDEVICE(BROADCOM, 0x16d9), .driver_data = BCM57417 },
|
|
{ PCI_VDEVICE(BROADCOM, 0x16de), .driver_data = BCM57412_NPAR },
|
|
{ PCI_VDEVICE(BROADCOM, 0x16df), .driver_data = BCM57314 },
|
|
{ PCI_VDEVICE(BROADCOM, 0x16e2), .driver_data = BCM57417_SFP },
|
|
{ PCI_VDEVICE(BROADCOM, 0x16e3), .driver_data = BCM57416_SFP },
|
|
{ PCI_VDEVICE(BROADCOM, 0x16e7), .driver_data = BCM57404_NPAR },
|
|
{ PCI_VDEVICE(BROADCOM, 0x16e8), .driver_data = BCM57406_NPAR },
|
|
{ PCI_VDEVICE(BROADCOM, 0x16e9), .driver_data = BCM57407_SFP },
|
|
{ PCI_VDEVICE(BROADCOM, 0x16ea), .driver_data = BCM57407_NPAR },
|
|
{ PCI_VDEVICE(BROADCOM, 0x16eb), .driver_data = BCM57412_NPAR },
|
|
{ PCI_VDEVICE(BROADCOM, 0x16ec), .driver_data = BCM57414_NPAR },
|
|
{ PCI_VDEVICE(BROADCOM, 0x16ed), .driver_data = BCM57414_NPAR },
|
|
{ PCI_VDEVICE(BROADCOM, 0x16ee), .driver_data = BCM57416_NPAR },
|
|
{ PCI_VDEVICE(BROADCOM, 0x16ef), .driver_data = BCM57416_NPAR },
|
|
{ PCI_VDEVICE(BROADCOM, 0x16f0), .driver_data = BCM58808 },
|
|
{ PCI_VDEVICE(BROADCOM, 0x16f1), .driver_data = BCM57452 },
|
|
{ PCI_VDEVICE(BROADCOM, 0x1750), .driver_data = BCM57508 },
|
|
{ PCI_VDEVICE(BROADCOM, 0x1751), .driver_data = BCM57504 },
|
|
{ PCI_VDEVICE(BROADCOM, 0x1752), .driver_data = BCM57502 },
|
|
{ PCI_VDEVICE(BROADCOM, 0x1800), .driver_data = BCM57508_NPAR },
|
|
{ PCI_VDEVICE(BROADCOM, 0x1801), .driver_data = BCM57504_NPAR },
|
|
{ PCI_VDEVICE(BROADCOM, 0x1802), .driver_data = BCM57502_NPAR },
|
|
{ PCI_VDEVICE(BROADCOM, 0x1803), .driver_data = BCM57508_NPAR },
|
|
{ PCI_VDEVICE(BROADCOM, 0x1804), .driver_data = BCM57504_NPAR },
|
|
{ PCI_VDEVICE(BROADCOM, 0x1805), .driver_data = BCM57502_NPAR },
|
|
{ PCI_VDEVICE(BROADCOM, 0xd802), .driver_data = BCM58802 },
|
|
{ PCI_VDEVICE(BROADCOM, 0xd804), .driver_data = BCM58804 },
|
|
#ifdef CONFIG_BNXT_SRIOV
|
|
{ PCI_VDEVICE(BROADCOM, 0x1606), .driver_data = NETXTREME_E_VF },
|
|
{ PCI_VDEVICE(BROADCOM, 0x1609), .driver_data = NETXTREME_E_VF },
|
|
{ PCI_VDEVICE(BROADCOM, 0x16c1), .driver_data = NETXTREME_E_VF },
|
|
{ PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = NETXTREME_C_VF },
|
|
{ PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = NETXTREME_E_VF },
|
|
{ PCI_VDEVICE(BROADCOM, 0x16dc), .driver_data = NETXTREME_E_VF },
|
|
{ PCI_VDEVICE(BROADCOM, 0x16e1), .driver_data = NETXTREME_C_VF },
|
|
{ PCI_VDEVICE(BROADCOM, 0x16e5), .driver_data = NETXTREME_C_VF },
|
|
{ PCI_VDEVICE(BROADCOM, 0x1806), .driver_data = NETXTREME_E_P5_VF },
|
|
{ PCI_VDEVICE(BROADCOM, 0x1807), .driver_data = NETXTREME_E_P5_VF },
|
|
{ PCI_VDEVICE(BROADCOM, 0xd800), .driver_data = NETXTREME_S_VF },
|
|
#endif
|
|
{ 0 }
|
|
};
|
|
|
|
MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl);
|
|
|
|
static const u16 bnxt_vf_req_snif[] = {
|
|
HWRM_FUNC_CFG,
|
|
HWRM_FUNC_VF_CFG,
|
|
HWRM_PORT_PHY_QCFG,
|
|
HWRM_CFA_L2_FILTER_ALLOC,
|
|
};
|
|
|
|
static const u16 bnxt_async_events_arr[] = {
|
|
ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE,
|
|
ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD,
|
|
ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED,
|
|
ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE,
|
|
ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE,
|
|
ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY,
|
|
ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY,
|
|
};
|
|
|
|
static struct workqueue_struct *bnxt_pf_wq;
|
|
|
|
static bool bnxt_vf_pciid(enum board_idx idx)
|
|
{
|
|
return (idx == NETXTREME_C_VF || idx == NETXTREME_E_VF ||
|
|
idx == NETXTREME_S_VF || idx == NETXTREME_E_P5_VF);
|
|
}
|
|
|
|
#define DB_CP_REARM_FLAGS (DB_KEY_CP | DB_IDX_VALID)
|
|
#define DB_CP_FLAGS (DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS)
|
|
#define DB_CP_IRQ_DIS_FLAGS (DB_KEY_CP | DB_IRQ_DIS)
|
|
|
|
#define BNXT_CP_DB_IRQ_DIS(db) \
|
|
writel(DB_CP_IRQ_DIS_FLAGS, db)
|
|
|
|
#define BNXT_DB_CQ(db, idx) \
|
|
writel(DB_CP_FLAGS | RING_CMP(idx), (db)->doorbell)
|
|
|
|
#define BNXT_DB_NQ_P5(db, idx) \
|
|
writeq((db)->db_key64 | DBR_TYPE_NQ | RING_CMP(idx), (db)->doorbell)
|
|
|
|
#define BNXT_DB_CQ_ARM(db, idx) \
|
|
writel(DB_CP_REARM_FLAGS | RING_CMP(idx), (db)->doorbell)
|
|
|
|
#define BNXT_DB_NQ_ARM_P5(db, idx) \
|
|
writeq((db)->db_key64 | DBR_TYPE_NQ_ARM | RING_CMP(idx), (db)->doorbell)
|
|
|
|
static void bnxt_db_nq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
|
|
{
|
|
if (bp->flags & BNXT_FLAG_CHIP_P5)
|
|
BNXT_DB_NQ_P5(db, idx);
|
|
else
|
|
BNXT_DB_CQ(db, idx);
|
|
}
|
|
|
|
static void bnxt_db_nq_arm(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
|
|
{
|
|
if (bp->flags & BNXT_FLAG_CHIP_P5)
|
|
BNXT_DB_NQ_ARM_P5(db, idx);
|
|
else
|
|
BNXT_DB_CQ_ARM(db, idx);
|
|
}
|
|
|
|
static void bnxt_db_cq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
|
|
{
|
|
if (bp->flags & BNXT_FLAG_CHIP_P5)
|
|
writeq(db->db_key64 | DBR_TYPE_CQ_ARMALL | RING_CMP(idx),
|
|
db->doorbell);
|
|
else
|
|
BNXT_DB_CQ(db, idx);
|
|
}
|
|
|
|
const u16 bnxt_lhint_arr[] = {
|
|
TX_BD_FLAGS_LHINT_512_AND_SMALLER,
|
|
TX_BD_FLAGS_LHINT_512_TO_1023,
|
|
TX_BD_FLAGS_LHINT_1024_TO_2047,
|
|
TX_BD_FLAGS_LHINT_1024_TO_2047,
|
|
TX_BD_FLAGS_LHINT_2048_AND_LARGER,
|
|
TX_BD_FLAGS_LHINT_2048_AND_LARGER,
|
|
TX_BD_FLAGS_LHINT_2048_AND_LARGER,
|
|
TX_BD_FLAGS_LHINT_2048_AND_LARGER,
|
|
TX_BD_FLAGS_LHINT_2048_AND_LARGER,
|
|
TX_BD_FLAGS_LHINT_2048_AND_LARGER,
|
|
TX_BD_FLAGS_LHINT_2048_AND_LARGER,
|
|
TX_BD_FLAGS_LHINT_2048_AND_LARGER,
|
|
TX_BD_FLAGS_LHINT_2048_AND_LARGER,
|
|
TX_BD_FLAGS_LHINT_2048_AND_LARGER,
|
|
TX_BD_FLAGS_LHINT_2048_AND_LARGER,
|
|
TX_BD_FLAGS_LHINT_2048_AND_LARGER,
|
|
TX_BD_FLAGS_LHINT_2048_AND_LARGER,
|
|
TX_BD_FLAGS_LHINT_2048_AND_LARGER,
|
|
TX_BD_FLAGS_LHINT_2048_AND_LARGER,
|
|
};
|
|
|
|
static u16 bnxt_xmit_get_cfa_action(struct sk_buff *skb)
|
|
{
|
|
struct metadata_dst *md_dst = skb_metadata_dst(skb);
|
|
|
|
if (!md_dst || md_dst->type != METADATA_HW_PORT_MUX)
|
|
return 0;
|
|
|
|
return md_dst->u.port_info.port_id;
|
|
}
|
|
|
|
static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev)
|
|
{
|
|
struct bnxt *bp = netdev_priv(dev);
|
|
struct tx_bd *txbd;
|
|
struct tx_bd_ext *txbd1;
|
|
struct netdev_queue *txq;
|
|
int i;
|
|
dma_addr_t mapping;
|
|
unsigned int length, pad = 0;
|
|
u32 len, free_size, vlan_tag_flags, cfa_action, flags;
|
|
u16 prod, last_frag;
|
|
struct pci_dev *pdev = bp->pdev;
|
|
struct bnxt_tx_ring_info *txr;
|
|
struct bnxt_sw_tx_bd *tx_buf;
|
|
|
|
i = skb_get_queue_mapping(skb);
|
|
if (unlikely(i >= bp->tx_nr_rings)) {
|
|
dev_kfree_skb_any(skb);
|
|
return NETDEV_TX_OK;
|
|
}
|
|
|
|
txq = netdev_get_tx_queue(dev, i);
|
|
txr = &bp->tx_ring[bp->tx_ring_map[i]];
|
|
prod = txr->tx_prod;
|
|
|
|
free_size = bnxt_tx_avail(bp, txr);
|
|
if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) {
|
|
netif_tx_stop_queue(txq);
|
|
return NETDEV_TX_BUSY;
|
|
}
|
|
|
|
length = skb->len;
|
|
len = skb_headlen(skb);
|
|
last_frag = skb_shinfo(skb)->nr_frags;
|
|
|
|
txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
|
|
|
|
txbd->tx_bd_opaque = prod;
|
|
|
|
tx_buf = &txr->tx_buf_ring[prod];
|
|
tx_buf->skb = skb;
|
|
tx_buf->nr_frags = last_frag;
|
|
|
|
vlan_tag_flags = 0;
|
|
cfa_action = bnxt_xmit_get_cfa_action(skb);
|
|
if (skb_vlan_tag_present(skb)) {
|
|
vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN |
|
|
skb_vlan_tag_get(skb);
|
|
/* Currently supports 8021Q, 8021AD vlan offloads
|
|
* QINQ1, QINQ2, QINQ3 vlan headers are deprecated
|
|
*/
|
|
if (skb->vlan_proto == htons(ETH_P_8021Q))
|
|
vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT;
|
|
}
|
|
|
|
if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh) {
|
|
struct tx_push_buffer *tx_push_buf = txr->tx_push;
|
|
struct tx_push_bd *tx_push = &tx_push_buf->push_bd;
|
|
struct tx_bd_ext *tx_push1 = &tx_push->txbd2;
|
|
void __iomem *db = txr->tx_db.doorbell;
|
|
void *pdata = tx_push_buf->data;
|
|
u64 *end;
|
|
int j, push_len;
|
|
|
|
/* Set COAL_NOW to be ready quickly for the next push */
|
|
tx_push->tx_bd_len_flags_type =
|
|
cpu_to_le32((length << TX_BD_LEN_SHIFT) |
|
|
TX_BD_TYPE_LONG_TX_BD |
|
|
TX_BD_FLAGS_LHINT_512_AND_SMALLER |
|
|
TX_BD_FLAGS_COAL_NOW |
|
|
TX_BD_FLAGS_PACKET_END |
|
|
(2 << TX_BD_FLAGS_BD_CNT_SHIFT));
|
|
|
|
if (skb->ip_summed == CHECKSUM_PARTIAL)
|
|
tx_push1->tx_bd_hsize_lflags =
|
|
cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
|
|
else
|
|
tx_push1->tx_bd_hsize_lflags = 0;
|
|
|
|
tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
|
|
tx_push1->tx_bd_cfa_action =
|
|
cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
|
|
|
|
end = pdata + length;
|
|
end = PTR_ALIGN(end, 8) - 1;
|
|
*end = 0;
|
|
|
|
skb_copy_from_linear_data(skb, pdata, len);
|
|
pdata += len;
|
|
for (j = 0; j < last_frag; j++) {
|
|
skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
|
|
void *fptr;
|
|
|
|
fptr = skb_frag_address_safe(frag);
|
|
if (!fptr)
|
|
goto normal_tx;
|
|
|
|
memcpy(pdata, fptr, skb_frag_size(frag));
|
|
pdata += skb_frag_size(frag);
|
|
}
|
|
|
|
txbd->tx_bd_len_flags_type = tx_push->tx_bd_len_flags_type;
|
|
txbd->tx_bd_haddr = txr->data_mapping;
|
|
prod = NEXT_TX(prod);
|
|
txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
|
|
memcpy(txbd, tx_push1, sizeof(*txbd));
|
|
prod = NEXT_TX(prod);
|
|
tx_push->doorbell =
|
|
cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH | prod);
|
|
txr->tx_prod = prod;
|
|
|
|
tx_buf->is_push = 1;
|
|
netdev_tx_sent_queue(txq, skb->len);
|
|
wmb(); /* Sync is_push and byte queue before pushing data */
|
|
|
|
push_len = (length + sizeof(*tx_push) + 7) / 8;
|
|
if (push_len > 16) {
|
|
__iowrite64_copy(db, tx_push_buf, 16);
|
|
__iowrite32_copy(db + 4, tx_push_buf + 1,
|
|
(push_len - 16) << 1);
|
|
} else {
|
|
__iowrite64_copy(db, tx_push_buf, push_len);
|
|
}
|
|
|
|
goto tx_done;
|
|
}
|
|
|
|
normal_tx:
|
|
if (length < BNXT_MIN_PKT_SIZE) {
|
|
pad = BNXT_MIN_PKT_SIZE - length;
|
|
if (skb_pad(skb, pad)) {
|
|
/* SKB already freed. */
|
|
tx_buf->skb = NULL;
|
|
return NETDEV_TX_OK;
|
|
}
|
|
length = BNXT_MIN_PKT_SIZE;
|
|
}
|
|
|
|
mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE);
|
|
|
|
if (unlikely(dma_mapping_error(&pdev->dev, mapping))) {
|
|
dev_kfree_skb_any(skb);
|
|
tx_buf->skb = NULL;
|
|
return NETDEV_TX_OK;
|
|
}
|
|
|
|
dma_unmap_addr_set(tx_buf, mapping, mapping);
|
|
flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD |
|
|
((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT);
|
|
|
|
txbd->tx_bd_haddr = cpu_to_le64(mapping);
|
|
|
|
prod = NEXT_TX(prod);
|
|
txbd1 = (struct tx_bd_ext *)
|
|
&txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
|
|
|
|
txbd1->tx_bd_hsize_lflags = 0;
|
|
if (skb_is_gso(skb)) {
|
|
u32 hdr_len;
|
|
|
|
if (skb->encapsulation)
|
|
hdr_len = skb_inner_network_offset(skb) +
|
|
skb_inner_network_header_len(skb) +
|
|
inner_tcp_hdrlen(skb);
|
|
else
|
|
hdr_len = skb_transport_offset(skb) +
|
|
tcp_hdrlen(skb);
|
|
|
|
txbd1->tx_bd_hsize_lflags = cpu_to_le32(TX_BD_FLAGS_LSO |
|
|
TX_BD_FLAGS_T_IPID |
|
|
(hdr_len << (TX_BD_HSIZE_SHIFT - 1)));
|
|
length = skb_shinfo(skb)->gso_size;
|
|
txbd1->tx_bd_mss = cpu_to_le32(length);
|
|
length += hdr_len;
|
|
} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
|
|
txbd1->tx_bd_hsize_lflags =
|
|
cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
|
|
txbd1->tx_bd_mss = 0;
|
|
}
|
|
|
|
length >>= 9;
|
|
if (unlikely(length >= ARRAY_SIZE(bnxt_lhint_arr))) {
|
|
dev_warn_ratelimited(&pdev->dev, "Dropped oversize %d bytes TX packet.\n",
|
|
skb->len);
|
|
i = 0;
|
|
goto tx_dma_error;
|
|
}
|
|
flags |= bnxt_lhint_arr[length];
|
|
txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
|
|
|
|
txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
|
|
txbd1->tx_bd_cfa_action =
|
|
cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
|
|
for (i = 0; i < last_frag; i++) {
|
|
skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
|
|
|
|
prod = NEXT_TX(prod);
|
|
txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
|
|
|
|
len = skb_frag_size(frag);
|
|
mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len,
|
|
DMA_TO_DEVICE);
|
|
|
|
if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
|
|
goto tx_dma_error;
|
|
|
|
tx_buf = &txr->tx_buf_ring[prod];
|
|
dma_unmap_addr_set(tx_buf, mapping, mapping);
|
|
|
|
txbd->tx_bd_haddr = cpu_to_le64(mapping);
|
|
|
|
flags = len << TX_BD_LEN_SHIFT;
|
|
txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
|
|
}
|
|
|
|
flags &= ~TX_BD_LEN;
|
|
txbd->tx_bd_len_flags_type =
|
|
cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags |
|
|
TX_BD_FLAGS_PACKET_END);
|
|
|
|
netdev_tx_sent_queue(txq, skb->len);
|
|
|
|
/* Sync BD data before updating doorbell */
|
|
wmb();
|
|
|
|
prod = NEXT_TX(prod);
|
|
txr->tx_prod = prod;
|
|
|
|
if (!netdev_xmit_more() || netif_xmit_stopped(txq))
|
|
bnxt_db_write(bp, &txr->tx_db, prod);
|
|
|
|
tx_done:
|
|
|
|
if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) {
|
|
if (netdev_xmit_more() && !tx_buf->is_push)
|
|
bnxt_db_write(bp, &txr->tx_db, prod);
|
|
|
|
netif_tx_stop_queue(txq);
|
|
|
|
/* netif_tx_stop_queue() must be done before checking
|
|
* tx index in bnxt_tx_avail() below, because in
|
|
* bnxt_tx_int(), we update tx index before checking for
|
|
* netif_tx_queue_stopped().
|
|
*/
|
|
smp_mb();
|
|
if (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)
|
|
netif_tx_wake_queue(txq);
|
|
}
|
|
return NETDEV_TX_OK;
|
|
|
|
tx_dma_error:
|
|
last_frag = i;
|
|
|
|
/* start back at beginning and unmap skb */
|
|
prod = txr->tx_prod;
|
|
tx_buf = &txr->tx_buf_ring[prod];
|
|
tx_buf->skb = NULL;
|
|
dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
|
|
skb_headlen(skb), PCI_DMA_TODEVICE);
|
|
prod = NEXT_TX(prod);
|
|
|
|
/* unmap remaining mapped pages */
|
|
for (i = 0; i < last_frag; i++) {
|
|
prod = NEXT_TX(prod);
|
|
tx_buf = &txr->tx_buf_ring[prod];
|
|
dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
|
|
skb_frag_size(&skb_shinfo(skb)->frags[i]),
|
|
PCI_DMA_TODEVICE);
|
|
}
|
|
|
|
dev_kfree_skb_any(skb);
|
|
return NETDEV_TX_OK;
|
|
}
|
|
|
|
static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int nr_pkts)
|
|
{
|
|
struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
|
|
struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, txr->txq_index);
|
|
u16 cons = txr->tx_cons;
|
|
struct pci_dev *pdev = bp->pdev;
|
|
int i;
|
|
unsigned int tx_bytes = 0;
|
|
|
|
for (i = 0; i < nr_pkts; i++) {
|
|
struct bnxt_sw_tx_bd *tx_buf;
|
|
struct sk_buff *skb;
|
|
int j, last;
|
|
|
|
tx_buf = &txr->tx_buf_ring[cons];
|
|
cons = NEXT_TX(cons);
|
|
skb = tx_buf->skb;
|
|
tx_buf->skb = NULL;
|
|
|
|
if (tx_buf->is_push) {
|
|
tx_buf->is_push = 0;
|
|
goto next_tx_int;
|
|
}
|
|
|
|
dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
|
|
skb_headlen(skb), PCI_DMA_TODEVICE);
|
|
last = tx_buf->nr_frags;
|
|
|
|
for (j = 0; j < last; j++) {
|
|
cons = NEXT_TX(cons);
|
|
tx_buf = &txr->tx_buf_ring[cons];
|
|
dma_unmap_page(
|
|
&pdev->dev,
|
|
dma_unmap_addr(tx_buf, mapping),
|
|
skb_frag_size(&skb_shinfo(skb)->frags[j]),
|
|
PCI_DMA_TODEVICE);
|
|
}
|
|
|
|
next_tx_int:
|
|
cons = NEXT_TX(cons);
|
|
|
|
tx_bytes += skb->len;
|
|
dev_kfree_skb_any(skb);
|
|
}
|
|
|
|
netdev_tx_completed_queue(txq, nr_pkts, tx_bytes);
|
|
txr->tx_cons = cons;
|
|
|
|
/* Need to make the tx_cons update visible to bnxt_start_xmit()
|
|
* before checking for netif_tx_queue_stopped(). Without the
|
|
* memory barrier, there is a small possibility that bnxt_start_xmit()
|
|
* will miss it and cause the queue to be stopped forever.
|
|
*/
|
|
smp_mb();
|
|
|
|
if (unlikely(netif_tx_queue_stopped(txq)) &&
|
|
(bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)) {
|
|
__netif_tx_lock(txq, smp_processor_id());
|
|
if (netif_tx_queue_stopped(txq) &&
|
|
bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh &&
|
|
txr->dev_state != BNXT_DEV_STATE_CLOSING)
|
|
netif_tx_wake_queue(txq);
|
|
__netif_tx_unlock(txq);
|
|
}
|
|
}
|
|
|
|
static struct page *__bnxt_alloc_rx_page(struct bnxt *bp, dma_addr_t *mapping,
|
|
struct bnxt_rx_ring_info *rxr,
|
|
gfp_t gfp)
|
|
{
|
|
struct device *dev = &bp->pdev->dev;
|
|
struct page *page;
|
|
|
|
page = page_pool_dev_alloc_pages(rxr->page_pool);
|
|
if (!page)
|
|
return NULL;
|
|
|
|
*mapping = dma_map_page_attrs(dev, page, 0, PAGE_SIZE, bp->rx_dir,
|
|
DMA_ATTR_WEAK_ORDERING);
|
|
if (dma_mapping_error(dev, *mapping)) {
|
|
page_pool_recycle_direct(rxr->page_pool, page);
|
|
return NULL;
|
|
}
|
|
*mapping += bp->rx_dma_offset;
|
|
return page;
|
|
}
|
|
|
|
static inline u8 *__bnxt_alloc_rx_data(struct bnxt *bp, dma_addr_t *mapping,
|
|
gfp_t gfp)
|
|
{
|
|
u8 *data;
|
|
struct pci_dev *pdev = bp->pdev;
|
|
|
|
data = kmalloc(bp->rx_buf_size, gfp);
|
|
if (!data)
|
|
return NULL;
|
|
|
|
*mapping = dma_map_single_attrs(&pdev->dev, data + bp->rx_dma_offset,
|
|
bp->rx_buf_use_size, bp->rx_dir,
|
|
DMA_ATTR_WEAK_ORDERING);
|
|
|
|
if (dma_mapping_error(&pdev->dev, *mapping)) {
|
|
kfree(data);
|
|
data = NULL;
|
|
}
|
|
return data;
|
|
}
|
|
|
|
int bnxt_alloc_rx_data(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
|
|
u16 prod, gfp_t gfp)
|
|
{
|
|
struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
|
|
struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[prod];
|
|
dma_addr_t mapping;
|
|
|
|
if (BNXT_RX_PAGE_MODE(bp)) {
|
|
struct page *page =
|
|
__bnxt_alloc_rx_page(bp, &mapping, rxr, gfp);
|
|
|
|
if (!page)
|
|
return -ENOMEM;
|
|
|
|
rx_buf->data = page;
|
|
rx_buf->data_ptr = page_address(page) + bp->rx_offset;
|
|
} else {
|
|
u8 *data = __bnxt_alloc_rx_data(bp, &mapping, gfp);
|
|
|
|
if (!data)
|
|
return -ENOMEM;
|
|
|
|
rx_buf->data = data;
|
|
rx_buf->data_ptr = data + bp->rx_offset;
|
|
}
|
|
rx_buf->mapping = mapping;
|
|
|
|
rxbd->rx_bd_haddr = cpu_to_le64(mapping);
|
|
return 0;
|
|
}
|
|
|
|
void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons, void *data)
|
|
{
|
|
u16 prod = rxr->rx_prod;
|
|
struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
|
|
struct rx_bd *cons_bd, *prod_bd;
|
|
|
|
prod_rx_buf = &rxr->rx_buf_ring[prod];
|
|
cons_rx_buf = &rxr->rx_buf_ring[cons];
|
|
|
|
prod_rx_buf->data = data;
|
|
prod_rx_buf->data_ptr = cons_rx_buf->data_ptr;
|
|
|
|
prod_rx_buf->mapping = cons_rx_buf->mapping;
|
|
|
|
prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
|
|
cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
|
|
|
|
prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr;
|
|
}
|
|
|
|
static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
|
|
{
|
|
u16 next, max = rxr->rx_agg_bmap_size;
|
|
|
|
next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx);
|
|
if (next >= max)
|
|
next = find_first_zero_bit(rxr->rx_agg_bmap, max);
|
|
return next;
|
|
}
|
|
|
|
static inline int bnxt_alloc_rx_page(struct bnxt *bp,
|
|
struct bnxt_rx_ring_info *rxr,
|
|
u16 prod, gfp_t gfp)
|
|
{
|
|
struct rx_bd *rxbd =
|
|
&rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
|
|
struct bnxt_sw_rx_agg_bd *rx_agg_buf;
|
|
struct pci_dev *pdev = bp->pdev;
|
|
struct page *page;
|
|
dma_addr_t mapping;
|
|
u16 sw_prod = rxr->rx_sw_agg_prod;
|
|
unsigned int offset = 0;
|
|
|
|
if (PAGE_SIZE > BNXT_RX_PAGE_SIZE) {
|
|
page = rxr->rx_page;
|
|
if (!page) {
|
|
page = alloc_page(gfp);
|
|
if (!page)
|
|
return -ENOMEM;
|
|
rxr->rx_page = page;
|
|
rxr->rx_page_offset = 0;
|
|
}
|
|
offset = rxr->rx_page_offset;
|
|
rxr->rx_page_offset += BNXT_RX_PAGE_SIZE;
|
|
if (rxr->rx_page_offset == PAGE_SIZE)
|
|
rxr->rx_page = NULL;
|
|
else
|
|
get_page(page);
|
|
} else {
|
|
page = alloc_page(gfp);
|
|
if (!page)
|
|
return -ENOMEM;
|
|
}
|
|
|
|
mapping = dma_map_page_attrs(&pdev->dev, page, offset,
|
|
BNXT_RX_PAGE_SIZE, PCI_DMA_FROMDEVICE,
|
|
DMA_ATTR_WEAK_ORDERING);
|
|
if (dma_mapping_error(&pdev->dev, mapping)) {
|
|
__free_page(page);
|
|
return -EIO;
|
|
}
|
|
|
|
if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
|
|
sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
|
|
|
|
__set_bit(sw_prod, rxr->rx_agg_bmap);
|
|
rx_agg_buf = &rxr->rx_agg_ring[sw_prod];
|
|
rxr->rx_sw_agg_prod = NEXT_RX_AGG(sw_prod);
|
|
|
|
rx_agg_buf->page = page;
|
|
rx_agg_buf->offset = offset;
|
|
rx_agg_buf->mapping = mapping;
|
|
rxbd->rx_bd_haddr = cpu_to_le64(mapping);
|
|
rxbd->rx_bd_opaque = sw_prod;
|
|
return 0;
|
|
}
|
|
|
|
static struct rx_agg_cmp *bnxt_get_agg(struct bnxt *bp,
|
|
struct bnxt_cp_ring_info *cpr,
|
|
u16 cp_cons, u16 curr)
|
|
{
|
|
struct rx_agg_cmp *agg;
|
|
|
|
cp_cons = RING_CMP(ADV_RAW_CMP(cp_cons, curr));
|
|
agg = (struct rx_agg_cmp *)
|
|
&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
|
|
return agg;
|
|
}
|
|
|
|
static struct rx_agg_cmp *bnxt_get_tpa_agg_p5(struct bnxt *bp,
|
|
struct bnxt_rx_ring_info *rxr,
|
|
u16 agg_id, u16 curr)
|
|
{
|
|
struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[agg_id];
|
|
|
|
return &tpa_info->agg_arr[curr];
|
|
}
|
|
|
|
static void bnxt_reuse_rx_agg_bufs(struct bnxt_cp_ring_info *cpr, u16 idx,
|
|
u16 start, u32 agg_bufs, bool tpa)
|
|
{
|
|
struct bnxt_napi *bnapi = cpr->bnapi;
|
|
struct bnxt *bp = bnapi->bp;
|
|
struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
|
|
u16 prod = rxr->rx_agg_prod;
|
|
u16 sw_prod = rxr->rx_sw_agg_prod;
|
|
bool p5_tpa = false;
|
|
u32 i;
|
|
|
|
if ((bp->flags & BNXT_FLAG_CHIP_P5) && tpa)
|
|
p5_tpa = true;
|
|
|
|
for (i = 0; i < agg_bufs; i++) {
|
|
u16 cons;
|
|
struct rx_agg_cmp *agg;
|
|
struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf;
|
|
struct rx_bd *prod_bd;
|
|
struct page *page;
|
|
|
|
if (p5_tpa)
|
|
agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, start + i);
|
|
else
|
|
agg = bnxt_get_agg(bp, cpr, idx, start + i);
|
|
cons = agg->rx_agg_cmp_opaque;
|
|
__clear_bit(cons, rxr->rx_agg_bmap);
|
|
|
|
if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
|
|
sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
|
|
|
|
__set_bit(sw_prod, rxr->rx_agg_bmap);
|
|
prod_rx_buf = &rxr->rx_agg_ring[sw_prod];
|
|
cons_rx_buf = &rxr->rx_agg_ring[cons];
|
|
|
|
/* It is possible for sw_prod to be equal to cons, so
|
|
* set cons_rx_buf->page to NULL first.
|
|
*/
|
|
page = cons_rx_buf->page;
|
|
cons_rx_buf->page = NULL;
|
|
prod_rx_buf->page = page;
|
|
prod_rx_buf->offset = cons_rx_buf->offset;
|
|
|
|
prod_rx_buf->mapping = cons_rx_buf->mapping;
|
|
|
|
prod_bd = &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
|
|
|
|
prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping);
|
|
prod_bd->rx_bd_opaque = sw_prod;
|
|
|
|
prod = NEXT_RX_AGG(prod);
|
|
sw_prod = NEXT_RX_AGG(sw_prod);
|
|
}
|
|
rxr->rx_agg_prod = prod;
|
|
rxr->rx_sw_agg_prod = sw_prod;
|
|
}
|
|
|
|
static struct sk_buff *bnxt_rx_page_skb(struct bnxt *bp,
|
|
struct bnxt_rx_ring_info *rxr,
|
|
u16 cons, void *data, u8 *data_ptr,
|
|
dma_addr_t dma_addr,
|
|
unsigned int offset_and_len)
|
|
{
|
|
unsigned int payload = offset_and_len >> 16;
|
|
unsigned int len = offset_and_len & 0xffff;
|
|
skb_frag_t *frag;
|
|
struct page *page = data;
|
|
u16 prod = rxr->rx_prod;
|
|
struct sk_buff *skb;
|
|
int off, err;
|
|
|
|
err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
|
|
if (unlikely(err)) {
|
|
bnxt_reuse_rx_data(rxr, cons, data);
|
|
return NULL;
|
|
}
|
|
dma_addr -= bp->rx_dma_offset;
|
|
dma_unmap_page_attrs(&bp->pdev->dev, dma_addr, PAGE_SIZE, bp->rx_dir,
|
|
DMA_ATTR_WEAK_ORDERING);
|
|
|
|
if (unlikely(!payload))
|
|
payload = eth_get_headlen(bp->dev, data_ptr, len);
|
|
|
|
skb = napi_alloc_skb(&rxr->bnapi->napi, payload);
|
|
if (!skb) {
|
|
__free_page(page);
|
|
return NULL;
|
|
}
|
|
|
|
off = (void *)data_ptr - page_address(page);
|
|
skb_add_rx_frag(skb, 0, page, off, len, PAGE_SIZE);
|
|
memcpy(skb->data - NET_IP_ALIGN, data_ptr - NET_IP_ALIGN,
|
|
payload + NET_IP_ALIGN);
|
|
|
|
frag = &skb_shinfo(skb)->frags[0];
|
|
skb_frag_size_sub(frag, payload);
|
|
skb_frag_off_add(frag, payload);
|
|
skb->data_len -= payload;
|
|
skb->tail += payload;
|
|
|
|
return skb;
|
|
}
|
|
|
|
static struct sk_buff *bnxt_rx_skb(struct bnxt *bp,
|
|
struct bnxt_rx_ring_info *rxr, u16 cons,
|
|
void *data, u8 *data_ptr,
|
|
dma_addr_t dma_addr,
|
|
unsigned int offset_and_len)
|
|
{
|
|
u16 prod = rxr->rx_prod;
|
|
struct sk_buff *skb;
|
|
int err;
|
|
|
|
err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
|
|
if (unlikely(err)) {
|
|
bnxt_reuse_rx_data(rxr, cons, data);
|
|
return NULL;
|
|
}
|
|
|
|
skb = build_skb(data, 0);
|
|
dma_unmap_single_attrs(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size,
|
|
bp->rx_dir, DMA_ATTR_WEAK_ORDERING);
|
|
if (!skb) {
|
|
kfree(data);
|
|
return NULL;
|
|
}
|
|
|
|
skb_reserve(skb, bp->rx_offset);
|
|
skb_put(skb, offset_and_len & 0xffff);
|
|
return skb;
|
|
}
|
|
|
|
static struct sk_buff *bnxt_rx_pages(struct bnxt *bp,
|
|
struct bnxt_cp_ring_info *cpr,
|
|
struct sk_buff *skb, u16 idx,
|
|
u32 agg_bufs, bool tpa)
|
|
{
|
|
struct bnxt_napi *bnapi = cpr->bnapi;
|
|
struct pci_dev *pdev = bp->pdev;
|
|
struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
|
|
u16 prod = rxr->rx_agg_prod;
|
|
bool p5_tpa = false;
|
|
u32 i;
|
|
|
|
if ((bp->flags & BNXT_FLAG_CHIP_P5) && tpa)
|
|
p5_tpa = true;
|
|
|
|
for (i = 0; i < agg_bufs; i++) {
|
|
u16 cons, frag_len;
|
|
struct rx_agg_cmp *agg;
|
|
struct bnxt_sw_rx_agg_bd *cons_rx_buf;
|
|
struct page *page;
|
|
dma_addr_t mapping;
|
|
|
|
if (p5_tpa)
|
|
agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, i);
|
|
else
|
|
agg = bnxt_get_agg(bp, cpr, idx, i);
|
|
cons = agg->rx_agg_cmp_opaque;
|
|
frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) &
|
|
RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT;
|
|
|
|
cons_rx_buf = &rxr->rx_agg_ring[cons];
|
|
skb_fill_page_desc(skb, i, cons_rx_buf->page,
|
|
cons_rx_buf->offset, frag_len);
|
|
__clear_bit(cons, rxr->rx_agg_bmap);
|
|
|
|
/* It is possible for bnxt_alloc_rx_page() to allocate
|
|
* a sw_prod index that equals the cons index, so we
|
|
* need to clear the cons entry now.
|
|
*/
|
|
mapping = cons_rx_buf->mapping;
|
|
page = cons_rx_buf->page;
|
|
cons_rx_buf->page = NULL;
|
|
|
|
if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) {
|
|
struct skb_shared_info *shinfo;
|
|
unsigned int nr_frags;
|
|
|
|
shinfo = skb_shinfo(skb);
|
|
nr_frags = --shinfo->nr_frags;
|
|
__skb_frag_set_page(&shinfo->frags[nr_frags], NULL);
|
|
|
|
dev_kfree_skb(skb);
|
|
|
|
cons_rx_buf->page = page;
|
|
|
|
/* Update prod since possibly some pages have been
|
|
* allocated already.
|
|
*/
|
|
rxr->rx_agg_prod = prod;
|
|
bnxt_reuse_rx_agg_bufs(cpr, idx, i, agg_bufs - i, tpa);
|
|
return NULL;
|
|
}
|
|
|
|
dma_unmap_page_attrs(&pdev->dev, mapping, BNXT_RX_PAGE_SIZE,
|
|
PCI_DMA_FROMDEVICE,
|
|
DMA_ATTR_WEAK_ORDERING);
|
|
|
|
skb->data_len += frag_len;
|
|
skb->len += frag_len;
|
|
skb->truesize += PAGE_SIZE;
|
|
|
|
prod = NEXT_RX_AGG(prod);
|
|
}
|
|
rxr->rx_agg_prod = prod;
|
|
return skb;
|
|
}
|
|
|
|
static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
|
|
u8 agg_bufs, u32 *raw_cons)
|
|
{
|
|
u16 last;
|
|
struct rx_agg_cmp *agg;
|
|
|
|
*raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs);
|
|
last = RING_CMP(*raw_cons);
|
|
agg = (struct rx_agg_cmp *)
|
|
&cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)];
|
|
return RX_AGG_CMP_VALID(agg, *raw_cons);
|
|
}
|
|
|
|
static inline struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data,
|
|
unsigned int len,
|
|
dma_addr_t mapping)
|
|
{
|
|
struct bnxt *bp = bnapi->bp;
|
|
struct pci_dev *pdev = bp->pdev;
|
|
struct sk_buff *skb;
|
|
|
|
skb = napi_alloc_skb(&bnapi->napi, len);
|
|
if (!skb)
|
|
return NULL;
|
|
|
|
dma_sync_single_for_cpu(&pdev->dev, mapping, bp->rx_copy_thresh,
|
|
bp->rx_dir);
|
|
|
|
memcpy(skb->data - NET_IP_ALIGN, data - NET_IP_ALIGN,
|
|
len + NET_IP_ALIGN);
|
|
|
|
dma_sync_single_for_device(&pdev->dev, mapping, bp->rx_copy_thresh,
|
|
bp->rx_dir);
|
|
|
|
skb_put(skb, len);
|
|
return skb;
|
|
}
|
|
|
|
static int bnxt_discard_rx(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
|
|
u32 *raw_cons, void *cmp)
|
|
{
|
|
struct rx_cmp *rxcmp = cmp;
|
|
u32 tmp_raw_cons = *raw_cons;
|
|
u8 cmp_type, agg_bufs = 0;
|
|
|
|
cmp_type = RX_CMP_TYPE(rxcmp);
|
|
|
|
if (cmp_type == CMP_TYPE_RX_L2_CMP) {
|
|
agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) &
|
|
RX_CMP_AGG_BUFS) >>
|
|
RX_CMP_AGG_BUFS_SHIFT;
|
|
} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
|
|
struct rx_tpa_end_cmp *tpa_end = cmp;
|
|
|
|
if (bp->flags & BNXT_FLAG_CHIP_P5)
|
|
return 0;
|
|
|
|
agg_bufs = TPA_END_AGG_BUFS(tpa_end);
|
|
}
|
|
|
|
if (agg_bufs) {
|
|
if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
|
|
return -EBUSY;
|
|
}
|
|
*raw_cons = tmp_raw_cons;
|
|
return 0;
|
|
}
|
|
|
|
static void bnxt_queue_fw_reset_work(struct bnxt *bp, unsigned long delay)
|
|
{
|
|
if (BNXT_PF(bp))
|
|
queue_delayed_work(bnxt_pf_wq, &bp->fw_reset_task, delay);
|
|
else
|
|
schedule_delayed_work(&bp->fw_reset_task, delay);
|
|
}
|
|
|
|
static void bnxt_queue_sp_work(struct bnxt *bp)
|
|
{
|
|
if (BNXT_PF(bp))
|
|
queue_work(bnxt_pf_wq, &bp->sp_task);
|
|
else
|
|
schedule_work(&bp->sp_task);
|
|
}
|
|
|
|
static void bnxt_cancel_sp_work(struct bnxt *bp)
|
|
{
|
|
if (BNXT_PF(bp))
|
|
flush_workqueue(bnxt_pf_wq);
|
|
else
|
|
cancel_work_sync(&bp->sp_task);
|
|
}
|
|
|
|
static void bnxt_sched_reset(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
|
|
{
|
|
if (!rxr->bnapi->in_reset) {
|
|
rxr->bnapi->in_reset = true;
|
|
set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
|
|
bnxt_queue_sp_work(bp);
|
|
}
|
|
rxr->rx_next_cons = 0xffff;
|
|
}
|
|
|
|
static u16 bnxt_alloc_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id)
|
|
{
|
|
struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map;
|
|
u16 idx = agg_id & MAX_TPA_P5_MASK;
|
|
|
|
if (test_bit(idx, map->agg_idx_bmap))
|
|
idx = find_first_zero_bit(map->agg_idx_bmap,
|
|
BNXT_AGG_IDX_BMAP_SIZE);
|
|
__set_bit(idx, map->agg_idx_bmap);
|
|
map->agg_id_tbl[agg_id] = idx;
|
|
return idx;
|
|
}
|
|
|
|
static void bnxt_free_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
|
|
{
|
|
struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map;
|
|
|
|
__clear_bit(idx, map->agg_idx_bmap);
|
|
}
|
|
|
|
static u16 bnxt_lookup_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id)
|
|
{
|
|
struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map;
|
|
|
|
return map->agg_id_tbl[agg_id];
|
|
}
|
|
|
|
static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
|
|
struct rx_tpa_start_cmp *tpa_start,
|
|
struct rx_tpa_start_cmp_ext *tpa_start1)
|
|
{
|
|
struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
|
|
struct bnxt_tpa_info *tpa_info;
|
|
u16 cons, prod, agg_id;
|
|
struct rx_bd *prod_bd;
|
|
dma_addr_t mapping;
|
|
|
|
if (bp->flags & BNXT_FLAG_CHIP_P5) {
|
|
agg_id = TPA_START_AGG_ID_P5(tpa_start);
|
|
agg_id = bnxt_alloc_agg_idx(rxr, agg_id);
|
|
} else {
|
|
agg_id = TPA_START_AGG_ID(tpa_start);
|
|
}
|
|
cons = tpa_start->rx_tpa_start_cmp_opaque;
|
|
prod = rxr->rx_prod;
|
|
cons_rx_buf = &rxr->rx_buf_ring[cons];
|
|
prod_rx_buf = &rxr->rx_buf_ring[prod];
|
|
tpa_info = &rxr->rx_tpa[agg_id];
|
|
|
|
if (unlikely(cons != rxr->rx_next_cons ||
|
|
TPA_START_ERROR(tpa_start))) {
|
|
netdev_warn(bp->dev, "TPA cons %x, expected cons %x, error code %x\n",
|
|
cons, rxr->rx_next_cons,
|
|
TPA_START_ERROR_CODE(tpa_start1));
|
|
bnxt_sched_reset(bp, rxr);
|
|
return;
|
|
}
|
|
/* Store cfa_code in tpa_info to use in tpa_end
|
|
* completion processing.
|
|
*/
|
|
tpa_info->cfa_code = TPA_START_CFA_CODE(tpa_start1);
|
|
prod_rx_buf->data = tpa_info->data;
|
|
prod_rx_buf->data_ptr = tpa_info->data_ptr;
|
|
|
|
mapping = tpa_info->mapping;
|
|
prod_rx_buf->mapping = mapping;
|
|
|
|
prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
|
|
|
|
prod_bd->rx_bd_haddr = cpu_to_le64(mapping);
|
|
|
|
tpa_info->data = cons_rx_buf->data;
|
|
tpa_info->data_ptr = cons_rx_buf->data_ptr;
|
|
cons_rx_buf->data = NULL;
|
|
tpa_info->mapping = cons_rx_buf->mapping;
|
|
|
|
tpa_info->len =
|
|
le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >>
|
|
RX_TPA_START_CMP_LEN_SHIFT;
|
|
if (likely(TPA_START_HASH_VALID(tpa_start))) {
|
|
u32 hash_type = TPA_START_HASH_TYPE(tpa_start);
|
|
|
|
tpa_info->hash_type = PKT_HASH_TYPE_L4;
|
|
tpa_info->gso_type = SKB_GSO_TCPV4;
|
|
/* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
|
|
if (hash_type == 3 || TPA_START_IS_IPV6(tpa_start1))
|
|
tpa_info->gso_type = SKB_GSO_TCPV6;
|
|
tpa_info->rss_hash =
|
|
le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash);
|
|
} else {
|
|
tpa_info->hash_type = PKT_HASH_TYPE_NONE;
|
|
tpa_info->gso_type = 0;
|
|
if (netif_msg_rx_err(bp))
|
|
netdev_warn(bp->dev, "TPA packet without valid hash\n");
|
|
}
|
|
tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2);
|
|
tpa_info->metadata = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata);
|
|
tpa_info->hdr_info = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_hdr_info);
|
|
tpa_info->agg_count = 0;
|
|
|
|
rxr->rx_prod = NEXT_RX(prod);
|
|
cons = NEXT_RX(cons);
|
|
rxr->rx_next_cons = NEXT_RX(cons);
|
|
cons_rx_buf = &rxr->rx_buf_ring[cons];
|
|
|
|
bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data);
|
|
rxr->rx_prod = NEXT_RX(rxr->rx_prod);
|
|
cons_rx_buf->data = NULL;
|
|
}
|
|
|
|
static void bnxt_abort_tpa(struct bnxt_cp_ring_info *cpr, u16 idx, u32 agg_bufs)
|
|
{
|
|
if (agg_bufs)
|
|
bnxt_reuse_rx_agg_bufs(cpr, idx, 0, agg_bufs, true);
|
|
}
|
|
|
|
#ifdef CONFIG_INET
|
|
static void bnxt_gro_tunnel(struct sk_buff *skb, __be16 ip_proto)
|
|
{
|
|
struct udphdr *uh = NULL;
|
|
|
|
if (ip_proto == htons(ETH_P_IP)) {
|
|
struct iphdr *iph = (struct iphdr *)skb->data;
|
|
|
|
if (iph->protocol == IPPROTO_UDP)
|
|
uh = (struct udphdr *)(iph + 1);
|
|
} else {
|
|
struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
|
|
|
|
if (iph->nexthdr == IPPROTO_UDP)
|
|
uh = (struct udphdr *)(iph + 1);
|
|
}
|
|
if (uh) {
|
|
if (uh->check)
|
|
skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL_CSUM;
|
|
else
|
|
skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static struct sk_buff *bnxt_gro_func_5731x(struct bnxt_tpa_info *tpa_info,
|
|
int payload_off, int tcp_ts,
|
|
struct sk_buff *skb)
|
|
{
|
|
#ifdef CONFIG_INET
|
|
struct tcphdr *th;
|
|
int len, nw_off;
|
|
u16 outer_ip_off, inner_ip_off, inner_mac_off;
|
|
u32 hdr_info = tpa_info->hdr_info;
|
|
bool loopback = false;
|
|
|
|
inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info);
|
|
inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info);
|
|
outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info);
|
|
|
|
/* If the packet is an internal loopback packet, the offsets will
|
|
* have an extra 4 bytes.
|
|
*/
|
|
if (inner_mac_off == 4) {
|
|
loopback = true;
|
|
} else if (inner_mac_off > 4) {
|
|
__be16 proto = *((__be16 *)(skb->data + inner_ip_off -
|
|
ETH_HLEN - 2));
|
|
|
|
/* We only support inner iPv4/ipv6. If we don't see the
|
|
* correct protocol ID, it must be a loopback packet where
|
|
* the offsets are off by 4.
|
|
*/
|
|
if (proto != htons(ETH_P_IP) && proto != htons(ETH_P_IPV6))
|
|
loopback = true;
|
|
}
|
|
if (loopback) {
|
|
/* internal loopback packet, subtract all offsets by 4 */
|
|
inner_ip_off -= 4;
|
|
inner_mac_off -= 4;
|
|
outer_ip_off -= 4;
|
|
}
|
|
|
|
nw_off = inner_ip_off - ETH_HLEN;
|
|
skb_set_network_header(skb, nw_off);
|
|
if (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) {
|
|
struct ipv6hdr *iph = ipv6_hdr(skb);
|
|
|
|
skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
|
|
len = skb->len - skb_transport_offset(skb);
|
|
th = tcp_hdr(skb);
|
|
th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
|
|
} else {
|
|
struct iphdr *iph = ip_hdr(skb);
|
|
|
|
skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
|
|
len = skb->len - skb_transport_offset(skb);
|
|
th = tcp_hdr(skb);
|
|
th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
|
|
}
|
|
|
|
if (inner_mac_off) { /* tunnel */
|
|
__be16 proto = *((__be16 *)(skb->data + outer_ip_off -
|
|
ETH_HLEN - 2));
|
|
|
|
bnxt_gro_tunnel(skb, proto);
|
|
}
|
|
#endif
|
|
return skb;
|
|
}
|
|
|
|
static struct sk_buff *bnxt_gro_func_5750x(struct bnxt_tpa_info *tpa_info,
|
|
int payload_off, int tcp_ts,
|
|
struct sk_buff *skb)
|
|
{
|
|
#ifdef CONFIG_INET
|
|
u16 outer_ip_off, inner_ip_off, inner_mac_off;
|
|
u32 hdr_info = tpa_info->hdr_info;
|
|
int iphdr_len, nw_off;
|
|
|
|
inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info);
|
|
inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info);
|
|
outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info);
|
|
|
|
nw_off = inner_ip_off - ETH_HLEN;
|
|
skb_set_network_header(skb, nw_off);
|
|
iphdr_len = (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) ?
|
|
sizeof(struct ipv6hdr) : sizeof(struct iphdr);
|
|
skb_set_transport_header(skb, nw_off + iphdr_len);
|
|
|
|
if (inner_mac_off) { /* tunnel */
|
|
__be16 proto = *((__be16 *)(skb->data + outer_ip_off -
|
|
ETH_HLEN - 2));
|
|
|
|
bnxt_gro_tunnel(skb, proto);
|
|
}
|
|
#endif
|
|
return skb;
|
|
}
|
|
|
|
#define BNXT_IPV4_HDR_SIZE (sizeof(struct iphdr) + sizeof(struct tcphdr))
|
|
#define BNXT_IPV6_HDR_SIZE (sizeof(struct ipv6hdr) + sizeof(struct tcphdr))
|
|
|
|
static struct sk_buff *bnxt_gro_func_5730x(struct bnxt_tpa_info *tpa_info,
|
|
int payload_off, int tcp_ts,
|
|
struct sk_buff *skb)
|
|
{
|
|
#ifdef CONFIG_INET
|
|
struct tcphdr *th;
|
|
int len, nw_off, tcp_opt_len = 0;
|
|
|
|
if (tcp_ts)
|
|
tcp_opt_len = 12;
|
|
|
|
if (tpa_info->gso_type == SKB_GSO_TCPV4) {
|
|
struct iphdr *iph;
|
|
|
|
nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len -
|
|
ETH_HLEN;
|
|
skb_set_network_header(skb, nw_off);
|
|
iph = ip_hdr(skb);
|
|
skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
|
|
len = skb->len - skb_transport_offset(skb);
|
|
th = tcp_hdr(skb);
|
|
th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
|
|
} else if (tpa_info->gso_type == SKB_GSO_TCPV6) {
|
|
struct ipv6hdr *iph;
|
|
|
|
nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len -
|
|
ETH_HLEN;
|
|
skb_set_network_header(skb, nw_off);
|
|
iph = ipv6_hdr(skb);
|
|
skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
|
|
len = skb->len - skb_transport_offset(skb);
|
|
th = tcp_hdr(skb);
|
|
th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
|
|
} else {
|
|
dev_kfree_skb_any(skb);
|
|
return NULL;
|
|
}
|
|
|
|
if (nw_off) /* tunnel */
|
|
bnxt_gro_tunnel(skb, skb->protocol);
|
|
#endif
|
|
return skb;
|
|
}
|
|
|
|
static inline struct sk_buff *bnxt_gro_skb(struct bnxt *bp,
|
|
struct bnxt_tpa_info *tpa_info,
|
|
struct rx_tpa_end_cmp *tpa_end,
|
|
struct rx_tpa_end_cmp_ext *tpa_end1,
|
|
struct sk_buff *skb)
|
|
{
|
|
#ifdef CONFIG_INET
|
|
int payload_off;
|
|
u16 segs;
|
|
|
|
segs = TPA_END_TPA_SEGS(tpa_end);
|
|
if (segs == 1)
|
|
return skb;
|
|
|
|
NAPI_GRO_CB(skb)->count = segs;
|
|
skb_shinfo(skb)->gso_size =
|
|
le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len);
|
|
skb_shinfo(skb)->gso_type = tpa_info->gso_type;
|
|
if (bp->flags & BNXT_FLAG_CHIP_P5)
|
|
payload_off = TPA_END_PAYLOAD_OFF_P5(tpa_end1);
|
|
else
|
|
payload_off = TPA_END_PAYLOAD_OFF(tpa_end);
|
|
skb = bp->gro_func(tpa_info, payload_off, TPA_END_GRO_TS(tpa_end), skb);
|
|
if (likely(skb))
|
|
tcp_gro_complete(skb);
|
|
#endif
|
|
return skb;
|
|
}
|
|
|
|
/* Given the cfa_code of a received packet determine which
|
|
* netdev (vf-rep or PF) the packet is destined to.
|
|
*/
|
|
static struct net_device *bnxt_get_pkt_dev(struct bnxt *bp, u16 cfa_code)
|
|
{
|
|
struct net_device *dev = bnxt_get_vf_rep(bp, cfa_code);
|
|
|
|
/* if vf-rep dev is NULL, the must belongs to the PF */
|
|
return dev ? dev : bp->dev;
|
|
}
|
|
|
|
static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp,
|
|
struct bnxt_cp_ring_info *cpr,
|
|
u32 *raw_cons,
|
|
struct rx_tpa_end_cmp *tpa_end,
|
|
struct rx_tpa_end_cmp_ext *tpa_end1,
|
|
u8 *event)
|
|
{
|
|
struct bnxt_napi *bnapi = cpr->bnapi;
|
|
struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
|
|
u8 *data_ptr, agg_bufs;
|
|
unsigned int len;
|
|
struct bnxt_tpa_info *tpa_info;
|
|
dma_addr_t mapping;
|
|
struct sk_buff *skb;
|
|
u16 idx = 0, agg_id;
|
|
void *data;
|
|
bool gro;
|
|
|
|
if (unlikely(bnapi->in_reset)) {
|
|
int rc = bnxt_discard_rx(bp, cpr, raw_cons, tpa_end);
|
|
|
|
if (rc < 0)
|
|
return ERR_PTR(-EBUSY);
|
|
return NULL;
|
|
}
|
|
|
|
if (bp->flags & BNXT_FLAG_CHIP_P5) {
|
|
agg_id = TPA_END_AGG_ID_P5(tpa_end);
|
|
agg_id = bnxt_lookup_agg_idx(rxr, agg_id);
|
|
agg_bufs = TPA_END_AGG_BUFS_P5(tpa_end1);
|
|
tpa_info = &rxr->rx_tpa[agg_id];
|
|
if (unlikely(agg_bufs != tpa_info->agg_count)) {
|
|
netdev_warn(bp->dev, "TPA end agg_buf %d != expected agg_bufs %d\n",
|
|
agg_bufs, tpa_info->agg_count);
|
|
agg_bufs = tpa_info->agg_count;
|
|
}
|
|
tpa_info->agg_count = 0;
|
|
*event |= BNXT_AGG_EVENT;
|
|
bnxt_free_agg_idx(rxr, agg_id);
|
|
idx = agg_id;
|
|
gro = !!(bp->flags & BNXT_FLAG_GRO);
|
|
} else {
|
|
agg_id = TPA_END_AGG_ID(tpa_end);
|
|
agg_bufs = TPA_END_AGG_BUFS(tpa_end);
|
|
tpa_info = &rxr->rx_tpa[agg_id];
|
|
idx = RING_CMP(*raw_cons);
|
|
if (agg_bufs) {
|
|
if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons))
|
|
return ERR_PTR(-EBUSY);
|
|
|
|
*event |= BNXT_AGG_EVENT;
|
|
idx = NEXT_CMP(idx);
|
|
}
|
|
gro = !!TPA_END_GRO(tpa_end);
|
|
}
|
|
data = tpa_info->data;
|
|
data_ptr = tpa_info->data_ptr;
|
|
prefetch(data_ptr);
|
|
len = tpa_info->len;
|
|
mapping = tpa_info->mapping;
|
|
|
|
if (unlikely(agg_bufs > MAX_SKB_FRAGS || TPA_END_ERRORS(tpa_end1))) {
|
|
bnxt_abort_tpa(cpr, idx, agg_bufs);
|
|
if (agg_bufs > MAX_SKB_FRAGS)
|
|
netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n",
|
|
agg_bufs, (int)MAX_SKB_FRAGS);
|
|
return NULL;
|
|
}
|
|
|
|
if (len <= bp->rx_copy_thresh) {
|
|
skb = bnxt_copy_skb(bnapi, data_ptr, len, mapping);
|
|
if (!skb) {
|
|
bnxt_abort_tpa(cpr, idx, agg_bufs);
|
|
return NULL;
|
|
}
|
|
} else {
|
|
u8 *new_data;
|
|
dma_addr_t new_mapping;
|
|
|
|
new_data = __bnxt_alloc_rx_data(bp, &new_mapping, GFP_ATOMIC);
|
|
if (!new_data) {
|
|
bnxt_abort_tpa(cpr, idx, agg_bufs);
|
|
return NULL;
|
|
}
|
|
|
|
tpa_info->data = new_data;
|
|
tpa_info->data_ptr = new_data + bp->rx_offset;
|
|
tpa_info->mapping = new_mapping;
|
|
|
|
skb = build_skb(data, 0);
|
|
dma_unmap_single_attrs(&bp->pdev->dev, mapping,
|
|
bp->rx_buf_use_size, bp->rx_dir,
|
|
DMA_ATTR_WEAK_ORDERING);
|
|
|
|
if (!skb) {
|
|
kfree(data);
|
|
bnxt_abort_tpa(cpr, idx, agg_bufs);
|
|
return NULL;
|
|
}
|
|
skb_reserve(skb, bp->rx_offset);
|
|
skb_put(skb, len);
|
|
}
|
|
|
|
if (agg_bufs) {
|
|
skb = bnxt_rx_pages(bp, cpr, skb, idx, agg_bufs, true);
|
|
if (!skb) {
|
|
/* Page reuse already handled by bnxt_rx_pages(). */
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
skb->protocol =
|
|
eth_type_trans(skb, bnxt_get_pkt_dev(bp, tpa_info->cfa_code));
|
|
|
|
if (tpa_info->hash_type != PKT_HASH_TYPE_NONE)
|
|
skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type);
|
|
|
|
if ((tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) &&
|
|
(skb->dev->features & NETIF_F_HW_VLAN_CTAG_RX)) {
|
|
u16 vlan_proto = tpa_info->metadata >>
|
|
RX_CMP_FLAGS2_METADATA_TPID_SFT;
|
|
u16 vtag = tpa_info->metadata & RX_CMP_FLAGS2_METADATA_TCI_MASK;
|
|
|
|
__vlan_hwaccel_put_tag(skb, htons(vlan_proto), vtag);
|
|
}
|
|
|
|
skb_checksum_none_assert(skb);
|
|
if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) {
|
|
skb->ip_summed = CHECKSUM_UNNECESSARY;
|
|
skb->csum_level =
|
|
(tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3;
|
|
}
|
|
|
|
if (gro)
|
|
skb = bnxt_gro_skb(bp, tpa_info, tpa_end, tpa_end1, skb);
|
|
|
|
return skb;
|
|
}
|
|
|
|
static void bnxt_tpa_agg(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
|
|
struct rx_agg_cmp *rx_agg)
|
|
{
|
|
u16 agg_id = TPA_AGG_AGG_ID(rx_agg);
|
|
struct bnxt_tpa_info *tpa_info;
|
|
|
|
agg_id = bnxt_lookup_agg_idx(rxr, agg_id);
|
|
tpa_info = &rxr->rx_tpa[agg_id];
|
|
BUG_ON(tpa_info->agg_count >= MAX_SKB_FRAGS);
|
|
tpa_info->agg_arr[tpa_info->agg_count++] = *rx_agg;
|
|
}
|
|
|
|
static void bnxt_deliver_skb(struct bnxt *bp, struct bnxt_napi *bnapi,
|
|
struct sk_buff *skb)
|
|
{
|
|
if (skb->dev != bp->dev) {
|
|
/* this packet belongs to a vf-rep */
|
|
bnxt_vf_rep_rx(bp, skb);
|
|
return;
|
|
}
|
|
skb_record_rx_queue(skb, bnapi->index);
|
|
napi_gro_receive(&bnapi->napi, skb);
|
|
}
|
|
|
|
/* returns the following:
|
|
* 1 - 1 packet successfully received
|
|
* 0 - successful TPA_START, packet not completed yet
|
|
* -EBUSY - completion ring does not have all the agg buffers yet
|
|
* -ENOMEM - packet aborted due to out of memory
|
|
* -EIO - packet aborted due to hw error indicated in BD
|
|
*/
|
|
static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
|
|
u32 *raw_cons, u8 *event)
|
|
{
|
|
struct bnxt_napi *bnapi = cpr->bnapi;
|
|
struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
|
|
struct net_device *dev = bp->dev;
|
|
struct rx_cmp *rxcmp;
|
|
struct rx_cmp_ext *rxcmp1;
|
|
u32 tmp_raw_cons = *raw_cons;
|
|
u16 cfa_code, cons, prod, cp_cons = RING_CMP(tmp_raw_cons);
|
|
struct bnxt_sw_rx_bd *rx_buf;
|
|
unsigned int len;
|
|
u8 *data_ptr, agg_bufs, cmp_type;
|
|
dma_addr_t dma_addr;
|
|
struct sk_buff *skb;
|
|
void *data;
|
|
int rc = 0;
|
|
u32 misc;
|
|
|
|
rxcmp = (struct rx_cmp *)
|
|
&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
|
|
|
|
cmp_type = RX_CMP_TYPE(rxcmp);
|
|
|
|
if (cmp_type == CMP_TYPE_RX_TPA_AGG_CMP) {
|
|
bnxt_tpa_agg(bp, rxr, (struct rx_agg_cmp *)rxcmp);
|
|
goto next_rx_no_prod_no_len;
|
|
}
|
|
|
|
tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
|
|
cp_cons = RING_CMP(tmp_raw_cons);
|
|
rxcmp1 = (struct rx_cmp_ext *)
|
|
&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
|
|
|
|
if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
|
|
return -EBUSY;
|
|
|
|
prod = rxr->rx_prod;
|
|
|
|
if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP) {
|
|
bnxt_tpa_start(bp, rxr, (struct rx_tpa_start_cmp *)rxcmp,
|
|
(struct rx_tpa_start_cmp_ext *)rxcmp1);
|
|
|
|
*event |= BNXT_RX_EVENT;
|
|
goto next_rx_no_prod_no_len;
|
|
|
|
} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
|
|
skb = bnxt_tpa_end(bp, cpr, &tmp_raw_cons,
|
|
(struct rx_tpa_end_cmp *)rxcmp,
|
|
(struct rx_tpa_end_cmp_ext *)rxcmp1, event);
|
|
|
|
if (IS_ERR(skb))
|
|
return -EBUSY;
|
|
|
|
rc = -ENOMEM;
|
|
if (likely(skb)) {
|
|
bnxt_deliver_skb(bp, bnapi, skb);
|
|
rc = 1;
|
|
}
|
|
*event |= BNXT_RX_EVENT;
|
|
goto next_rx_no_prod_no_len;
|
|
}
|
|
|
|
cons = rxcmp->rx_cmp_opaque;
|
|
if (unlikely(cons != rxr->rx_next_cons)) {
|
|
int rc1 = bnxt_discard_rx(bp, cpr, raw_cons, rxcmp);
|
|
|
|
netdev_warn(bp->dev, "RX cons %x != expected cons %x\n",
|
|
cons, rxr->rx_next_cons);
|
|
bnxt_sched_reset(bp, rxr);
|
|
return rc1;
|
|
}
|
|
rx_buf = &rxr->rx_buf_ring[cons];
|
|
data = rx_buf->data;
|
|
data_ptr = rx_buf->data_ptr;
|
|
prefetch(data_ptr);
|
|
|
|
misc = le32_to_cpu(rxcmp->rx_cmp_misc_v1);
|
|
agg_bufs = (misc & RX_CMP_AGG_BUFS) >> RX_CMP_AGG_BUFS_SHIFT;
|
|
|
|
if (agg_bufs) {
|
|
if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
|
|
return -EBUSY;
|
|
|
|
cp_cons = NEXT_CMP(cp_cons);
|
|
*event |= BNXT_AGG_EVENT;
|
|
}
|
|
*event |= BNXT_RX_EVENT;
|
|
|
|
rx_buf->data = NULL;
|
|
if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) {
|
|
u32 rx_err = le32_to_cpu(rxcmp1->rx_cmp_cfa_code_errors_v2);
|
|
|
|
bnxt_reuse_rx_data(rxr, cons, data);
|
|
if (agg_bufs)
|
|
bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0, agg_bufs,
|
|
false);
|
|
|
|
rc = -EIO;
|
|
if (rx_err & RX_CMPL_ERRORS_BUFFER_ERROR_MASK) {
|
|
bnapi->cp_ring.rx_buf_errors++;
|
|
if (!(bp->flags & BNXT_FLAG_CHIP_P5)) {
|
|
netdev_warn(bp->dev, "RX buffer error %x\n",
|
|
rx_err);
|
|
bnxt_sched_reset(bp, rxr);
|
|
}
|
|
}
|
|
goto next_rx_no_len;
|
|
}
|
|
|
|
len = le32_to_cpu(rxcmp->rx_cmp_len_flags_type) >> RX_CMP_LEN_SHIFT;
|
|
dma_addr = rx_buf->mapping;
|
|
|
|
if (bnxt_rx_xdp(bp, rxr, cons, data, &data_ptr, &len, event)) {
|
|
rc = 1;
|
|
goto next_rx;
|
|
}
|
|
|
|
if (len <= bp->rx_copy_thresh) {
|
|
skb = bnxt_copy_skb(bnapi, data_ptr, len, dma_addr);
|
|
bnxt_reuse_rx_data(rxr, cons, data);
|
|
if (!skb) {
|
|
if (agg_bufs)
|
|
bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0,
|
|
agg_bufs, false);
|
|
rc = -ENOMEM;
|
|
goto next_rx;
|
|
}
|
|
} else {
|
|
u32 payload;
|
|
|
|
if (rx_buf->data_ptr == data_ptr)
|
|
payload = misc & RX_CMP_PAYLOAD_OFFSET;
|
|
else
|
|
payload = 0;
|
|
skb = bp->rx_skb_func(bp, rxr, cons, data, data_ptr, dma_addr,
|
|
payload | len);
|
|
if (!skb) {
|
|
rc = -ENOMEM;
|
|
goto next_rx;
|
|
}
|
|
}
|
|
|
|
if (agg_bufs) {
|
|
skb = bnxt_rx_pages(bp, cpr, skb, cp_cons, agg_bufs, false);
|
|
if (!skb) {
|
|
rc = -ENOMEM;
|
|
goto next_rx;
|
|
}
|
|
}
|
|
|
|
if (RX_CMP_HASH_VALID(rxcmp)) {
|
|
u32 hash_type = RX_CMP_HASH_TYPE(rxcmp);
|
|
enum pkt_hash_types type = PKT_HASH_TYPE_L4;
|
|
|
|
/* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
|
|
if (hash_type != 1 && hash_type != 3)
|
|
type = PKT_HASH_TYPE_L3;
|
|
skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type);
|
|
}
|
|
|
|
cfa_code = RX_CMP_CFA_CODE(rxcmp1);
|
|
skb->protocol = eth_type_trans(skb, bnxt_get_pkt_dev(bp, cfa_code));
|
|
|
|
if ((rxcmp1->rx_cmp_flags2 &
|
|
cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN)) &&
|
|
(skb->dev->features & NETIF_F_HW_VLAN_CTAG_RX)) {
|
|
u32 meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data);
|
|
u16 vtag = meta_data & RX_CMP_FLAGS2_METADATA_TCI_MASK;
|
|
u16 vlan_proto = meta_data >> RX_CMP_FLAGS2_METADATA_TPID_SFT;
|
|
|
|
__vlan_hwaccel_put_tag(skb, htons(vlan_proto), vtag);
|
|
}
|
|
|
|
skb_checksum_none_assert(skb);
|
|
if (RX_CMP_L4_CS_OK(rxcmp1)) {
|
|
if (dev->features & NETIF_F_RXCSUM) {
|
|
skb->ip_summed = CHECKSUM_UNNECESSARY;
|
|
skb->csum_level = RX_CMP_ENCAP(rxcmp1);
|
|
}
|
|
} else {
|
|
if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) {
|
|
if (dev->features & NETIF_F_RXCSUM)
|
|
bnapi->cp_ring.rx_l4_csum_errors++;
|
|
}
|
|
}
|
|
|
|
bnxt_deliver_skb(bp, bnapi, skb);
|
|
rc = 1;
|
|
|
|
next_rx:
|
|
cpr->rx_packets += 1;
|
|
cpr->rx_bytes += len;
|
|
|
|
next_rx_no_len:
|
|
rxr->rx_prod = NEXT_RX(prod);
|
|
rxr->rx_next_cons = NEXT_RX(cons);
|
|
|
|
next_rx_no_prod_no_len:
|
|
*raw_cons = tmp_raw_cons;
|
|
|
|
return rc;
|
|
}
|
|
|
|
/* In netpoll mode, if we are using a combined completion ring, we need to
|
|
* discard the rx packets and recycle the buffers.
|
|
*/
|
|
static int bnxt_force_rx_discard(struct bnxt *bp,
|
|
struct bnxt_cp_ring_info *cpr,
|
|
u32 *raw_cons, u8 *event)
|
|
{
|
|
u32 tmp_raw_cons = *raw_cons;
|
|
struct rx_cmp_ext *rxcmp1;
|
|
struct rx_cmp *rxcmp;
|
|
u16 cp_cons;
|
|
u8 cmp_type;
|
|
|
|
cp_cons = RING_CMP(tmp_raw_cons);
|
|
rxcmp = (struct rx_cmp *)
|
|
&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
|
|
|
|
tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
|
|
cp_cons = RING_CMP(tmp_raw_cons);
|
|
rxcmp1 = (struct rx_cmp_ext *)
|
|
&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
|
|
|
|
if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
|
|
return -EBUSY;
|
|
|
|
cmp_type = RX_CMP_TYPE(rxcmp);
|
|
if (cmp_type == CMP_TYPE_RX_L2_CMP) {
|
|
rxcmp1->rx_cmp_cfa_code_errors_v2 |=
|
|
cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
|
|
} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
|
|
struct rx_tpa_end_cmp_ext *tpa_end1;
|
|
|
|
tpa_end1 = (struct rx_tpa_end_cmp_ext *)rxcmp1;
|
|
tpa_end1->rx_tpa_end_cmp_errors_v2 |=
|
|
cpu_to_le32(RX_TPA_END_CMP_ERRORS);
|
|
}
|
|
return bnxt_rx_pkt(bp, cpr, raw_cons, event);
|
|
}
|
|
|
|
u32 bnxt_fw_health_readl(struct bnxt *bp, int reg_idx)
|
|
{
|
|
struct bnxt_fw_health *fw_health = bp->fw_health;
|
|
u32 reg = fw_health->regs[reg_idx];
|
|
u32 reg_type, reg_off, val = 0;
|
|
|
|
reg_type = BNXT_FW_HEALTH_REG_TYPE(reg);
|
|
reg_off = BNXT_FW_HEALTH_REG_OFF(reg);
|
|
switch (reg_type) {
|
|
case BNXT_FW_HEALTH_REG_TYPE_CFG:
|
|
pci_read_config_dword(bp->pdev, reg_off, &val);
|
|
break;
|
|
case BNXT_FW_HEALTH_REG_TYPE_GRC:
|
|
reg_off = fw_health->mapped_regs[reg_idx];
|
|
/* fall through */
|
|
case BNXT_FW_HEALTH_REG_TYPE_BAR0:
|
|
val = readl(bp->bar0 + reg_off);
|
|
break;
|
|
case BNXT_FW_HEALTH_REG_TYPE_BAR1:
|
|
val = readl(bp->bar1 + reg_off);
|
|
break;
|
|
}
|
|
if (reg_idx == BNXT_FW_RESET_INPROG_REG)
|
|
val &= fw_health->fw_reset_inprog_reg_mask;
|
|
return val;
|
|
}
|
|
|
|
#define BNXT_GET_EVENT_PORT(data) \
|
|
((data) & \
|
|
ASYNC_EVENT_CMPL_PORT_CONN_NOT_ALLOWED_EVENT_DATA1_PORT_ID_MASK)
|
|
|
|
static int bnxt_async_event_process(struct bnxt *bp,
|
|
struct hwrm_async_event_cmpl *cmpl)
|
|
{
|
|
u16 event_id = le16_to_cpu(cmpl->event_id);
|
|
|
|
/* TODO CHIMP_FW: Define event id's for link change, error etc */
|
|
switch (event_id) {
|
|
case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE: {
|
|
u32 data1 = le32_to_cpu(cmpl->event_data1);
|
|
struct bnxt_link_info *link_info = &bp->link_info;
|
|
|
|
if (BNXT_VF(bp))
|
|
goto async_event_process_exit;
|
|
|
|
/* print unsupported speed warning in forced speed mode only */
|
|
if (!(link_info->autoneg & BNXT_AUTONEG_SPEED) &&
|
|
(data1 & 0x20000)) {
|
|
u16 fw_speed = link_info->force_link_speed;
|
|
u32 speed = bnxt_fw_to_ethtool_speed(fw_speed);
|
|
|
|
if (speed != SPEED_UNKNOWN)
|
|
netdev_warn(bp->dev, "Link speed %d no longer supported\n",
|
|
speed);
|
|
}
|
|
set_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, &bp->sp_event);
|
|
}
|
|
/* fall through */
|
|
case ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE:
|
|
set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event);
|
|
break;
|
|
case ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD:
|
|
set_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event);
|
|
break;
|
|
case ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED: {
|
|
u32 data1 = le32_to_cpu(cmpl->event_data1);
|
|
u16 port_id = BNXT_GET_EVENT_PORT(data1);
|
|
|
|
if (BNXT_VF(bp))
|
|
break;
|
|
|
|
if (bp->pf.port_id != port_id)
|
|
break;
|
|
|
|
set_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event);
|
|
break;
|
|
}
|
|
case ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE:
|
|
if (BNXT_PF(bp))
|
|
goto async_event_process_exit;
|
|
set_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event);
|
|
break;
|
|
case ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY: {
|
|
u32 data1 = le32_to_cpu(cmpl->event_data1);
|
|
|
|
bp->fw_reset_timestamp = jiffies;
|
|
bp->fw_reset_min_dsecs = cmpl->timestamp_lo;
|
|
if (!bp->fw_reset_min_dsecs)
|
|
bp->fw_reset_min_dsecs = BNXT_DFLT_FW_RST_MIN_DSECS;
|
|
bp->fw_reset_max_dsecs = le16_to_cpu(cmpl->timestamp_hi);
|
|
if (!bp->fw_reset_max_dsecs)
|
|
bp->fw_reset_max_dsecs = BNXT_DFLT_FW_RST_MAX_DSECS;
|
|
if (EVENT_DATA1_RESET_NOTIFY_FATAL(data1)) {
|
|
netdev_warn(bp->dev, "Firmware fatal reset event received\n");
|
|
set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state);
|
|
} else {
|
|
netdev_warn(bp->dev, "Firmware non-fatal reset event received, max wait time %d msec\n",
|
|
bp->fw_reset_max_dsecs * 100);
|
|
}
|
|
set_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event);
|
|
break;
|
|
}
|
|
case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY: {
|
|
struct bnxt_fw_health *fw_health = bp->fw_health;
|
|
u32 data1 = le32_to_cpu(cmpl->event_data1);
|
|
|
|
if (!fw_health)
|
|
goto async_event_process_exit;
|
|
|
|
fw_health->enabled = EVENT_DATA1_RECOVERY_ENABLED(data1);
|
|
fw_health->master = EVENT_DATA1_RECOVERY_MASTER_FUNC(data1);
|
|
if (!fw_health->enabled)
|
|
break;
|
|
|
|
if (netif_msg_drv(bp))
|
|
netdev_info(bp->dev, "Error recovery info: error recovery[%d], master[%d], reset count[0x%x], health status: 0x%x\n",
|
|
fw_health->enabled, fw_health->master,
|
|
bnxt_fw_health_readl(bp,
|
|
BNXT_FW_RESET_CNT_REG),
|
|
bnxt_fw_health_readl(bp,
|
|
BNXT_FW_HEALTH_REG));
|
|
fw_health->tmr_multiplier =
|
|
DIV_ROUND_UP(fw_health->polling_dsecs * HZ,
|
|
bp->current_interval * 10);
|
|
fw_health->tmr_counter = fw_health->tmr_multiplier;
|
|
fw_health->last_fw_heartbeat =
|
|
bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG);
|
|
fw_health->last_fw_reset_cnt =
|
|
bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
|
|
goto async_event_process_exit;
|
|
}
|
|
default:
|
|
goto async_event_process_exit;
|
|
}
|
|
bnxt_queue_sp_work(bp);
|
|
async_event_process_exit:
|
|
bnxt_ulp_async_events(bp, cmpl);
|
|
return 0;
|
|
}
|
|
|
|
static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp)
|
|
{
|
|
u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id;
|
|
struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp;
|
|
struct hwrm_fwd_req_cmpl *fwd_req_cmpl =
|
|
(struct hwrm_fwd_req_cmpl *)txcmp;
|
|
|
|
switch (cmpl_type) {
|
|
case CMPL_BASE_TYPE_HWRM_DONE:
|
|
seq_id = le16_to_cpu(h_cmpl->sequence_id);
|
|
if (seq_id == bp->hwrm_intr_seq_id)
|
|
bp->hwrm_intr_seq_id = (u16)~bp->hwrm_intr_seq_id;
|
|
else
|
|
netdev_err(bp->dev, "Invalid hwrm seq id %d\n", seq_id);
|
|
break;
|
|
|
|
case CMPL_BASE_TYPE_HWRM_FWD_REQ:
|
|
vf_id = le16_to_cpu(fwd_req_cmpl->source_id);
|
|
|
|
if ((vf_id < bp->pf.first_vf_id) ||
|
|
(vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) {
|
|
netdev_err(bp->dev, "Msg contains invalid VF id %x\n",
|
|
vf_id);
|
|
return -EINVAL;
|
|
}
|
|
|
|
set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap);
|
|
set_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event);
|
|
bnxt_queue_sp_work(bp);
|
|
break;
|
|
|
|
case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT:
|
|
bnxt_async_event_process(bp,
|
|
(struct hwrm_async_event_cmpl *)txcmp);
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static irqreturn_t bnxt_msix(int irq, void *dev_instance)
|
|
{
|
|
struct bnxt_napi *bnapi = dev_instance;
|
|
struct bnxt *bp = bnapi->bp;
|
|
struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
|
|
u32 cons = RING_CMP(cpr->cp_raw_cons);
|
|
|
|
cpr->event_ctr++;
|
|
prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
|
|
napi_schedule(&bnapi->napi);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr)
|
|
{
|
|
u32 raw_cons = cpr->cp_raw_cons;
|
|
u16 cons = RING_CMP(raw_cons);
|
|
struct tx_cmp *txcmp;
|
|
|
|
txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
|
|
|
|
return TX_CMP_VALID(txcmp, raw_cons);
|
|
}
|
|
|
|
static irqreturn_t bnxt_inta(int irq, void *dev_instance)
|
|
{
|
|
struct bnxt_napi *bnapi = dev_instance;
|
|
struct bnxt *bp = bnapi->bp;
|
|
struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
|
|
u32 cons = RING_CMP(cpr->cp_raw_cons);
|
|
u32 int_status;
|
|
|
|
prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
|
|
|
|
if (!bnxt_has_work(bp, cpr)) {
|
|
int_status = readl(bp->bar0 + BNXT_CAG_REG_LEGACY_INT_STATUS);
|
|
/* return if erroneous interrupt */
|
|
if (!(int_status & (0x10000 << cpr->cp_ring_struct.fw_ring_id)))
|
|
return IRQ_NONE;
|
|
}
|
|
|
|
/* disable ring IRQ */
|
|
BNXT_CP_DB_IRQ_DIS(cpr->cp_db.doorbell);
|
|
|
|
/* Return here if interrupt is shared and is disabled. */
|
|
if (unlikely(atomic_read(&bp->intr_sem) != 0))
|
|
return IRQ_HANDLED;
|
|
|
|
napi_schedule(&bnapi->napi);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static int __bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
|
|
int budget)
|
|
{
|
|
struct bnxt_napi *bnapi = cpr->bnapi;
|
|
u32 raw_cons = cpr->cp_raw_cons;
|
|
u32 cons;
|
|
int tx_pkts = 0;
|
|
int rx_pkts = 0;
|
|
u8 event = 0;
|
|
struct tx_cmp *txcmp;
|
|
|
|
cpr->has_more_work = 0;
|
|
while (1) {
|
|
int rc;
|
|
|
|
cons = RING_CMP(raw_cons);
|
|
txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
|
|
|
|
if (!TX_CMP_VALID(txcmp, raw_cons))
|
|
break;
|
|
|
|
/* The valid test of the entry must be done first before
|
|
* reading any further.
|
|
*/
|
|
dma_rmb();
|
|
cpr->had_work_done = 1;
|
|
if (TX_CMP_TYPE(txcmp) == CMP_TYPE_TX_L2_CMP) {
|
|
tx_pkts++;
|
|
/* return full budget so NAPI will complete. */
|
|
if (unlikely(tx_pkts > bp->tx_wake_thresh)) {
|
|
rx_pkts = budget;
|
|
raw_cons = NEXT_RAW_CMP(raw_cons);
|
|
if (budget)
|
|
cpr->has_more_work = 1;
|
|
break;
|
|
}
|
|
} else if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
|
|
if (likely(budget))
|
|
rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event);
|
|
else
|
|
rc = bnxt_force_rx_discard(bp, cpr, &raw_cons,
|
|
&event);
|
|
if (likely(rc >= 0))
|
|
rx_pkts += rc;
|
|
/* Increment rx_pkts when rc is -ENOMEM to count towards
|
|
* the NAPI budget. Otherwise, we may potentially loop
|
|
* here forever if we consistently cannot allocate
|
|
* buffers.
|
|
*/
|
|
else if (rc == -ENOMEM && budget)
|
|
rx_pkts++;
|
|
else if (rc == -EBUSY) /* partial completion */
|
|
break;
|
|
} else if (unlikely((TX_CMP_TYPE(txcmp) ==
|
|
CMPL_BASE_TYPE_HWRM_DONE) ||
|
|
(TX_CMP_TYPE(txcmp) ==
|
|
CMPL_BASE_TYPE_HWRM_FWD_REQ) ||
|
|
(TX_CMP_TYPE(txcmp) ==
|
|
CMPL_BASE_TYPE_HWRM_ASYNC_EVENT))) {
|
|
bnxt_hwrm_handler(bp, txcmp);
|
|
}
|
|
raw_cons = NEXT_RAW_CMP(raw_cons);
|
|
|
|
if (rx_pkts && rx_pkts == budget) {
|
|
cpr->has_more_work = 1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (event & BNXT_REDIRECT_EVENT)
|
|
xdp_do_flush_map();
|
|
|
|
if (event & BNXT_TX_EVENT) {
|
|
struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
|
|
u16 prod = txr->tx_prod;
|
|
|
|
/* Sync BD data before updating doorbell */
|
|
wmb();
|
|
|
|
bnxt_db_write_relaxed(bp, &txr->tx_db, prod);
|
|
}
|
|
|
|
cpr->cp_raw_cons = raw_cons;
|
|
bnapi->tx_pkts += tx_pkts;
|
|
bnapi->events |= event;
|
|
return rx_pkts;
|
|
}
|
|
|
|
static void __bnxt_poll_work_done(struct bnxt *bp, struct bnxt_napi *bnapi)
|
|
{
|
|
if (bnapi->tx_pkts) {
|
|
bnapi->tx_int(bp, bnapi, bnapi->tx_pkts);
|
|
bnapi->tx_pkts = 0;
|
|
}
|
|
|
|
if (bnapi->events & BNXT_RX_EVENT) {
|
|
struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
|
|
|
|
if (bnapi->events & BNXT_AGG_EVENT)
|
|
bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
|
|
bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
|
|
}
|
|
bnapi->events = 0;
|
|
}
|
|
|
|
static int bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
|
|
int budget)
|
|
{
|
|
struct bnxt_napi *bnapi = cpr->bnapi;
|
|
int rx_pkts;
|
|
|
|
rx_pkts = __bnxt_poll_work(bp, cpr, budget);
|
|
|
|
/* ACK completion ring before freeing tx ring and producing new
|
|
* buffers in rx/agg rings to prevent overflowing the completion
|
|
* ring.
|
|
*/
|
|
bnxt_db_cq(bp, &cpr->cp_db, cpr->cp_raw_cons);
|
|
|
|
__bnxt_poll_work_done(bp, bnapi);
|
|
return rx_pkts;
|
|
}
|
|
|
|
static int bnxt_poll_nitroa0(struct napi_struct *napi, int budget)
|
|
{
|
|
struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
|
|
struct bnxt *bp = bnapi->bp;
|
|
struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
|
|
struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
|
|
struct tx_cmp *txcmp;
|
|
struct rx_cmp_ext *rxcmp1;
|
|
u32 cp_cons, tmp_raw_cons;
|
|
u32 raw_cons = cpr->cp_raw_cons;
|
|
u32 rx_pkts = 0;
|
|
u8 event = 0;
|
|
|
|
while (1) {
|
|
int rc;
|
|
|
|
cp_cons = RING_CMP(raw_cons);
|
|
txcmp = &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
|
|
|
|
if (!TX_CMP_VALID(txcmp, raw_cons))
|
|
break;
|
|
|
|
if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
|
|
tmp_raw_cons = NEXT_RAW_CMP(raw_cons);
|
|
cp_cons = RING_CMP(tmp_raw_cons);
|
|
rxcmp1 = (struct rx_cmp_ext *)
|
|
&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
|
|
|
|
if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
|
|
break;
|
|
|
|
/* force an error to recycle the buffer */
|
|
rxcmp1->rx_cmp_cfa_code_errors_v2 |=
|
|
cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
|
|
|
|
rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event);
|
|
if (likely(rc == -EIO) && budget)
|
|
rx_pkts++;
|
|
else if (rc == -EBUSY) /* partial completion */
|
|
break;
|
|
} else if (unlikely(TX_CMP_TYPE(txcmp) ==
|
|
CMPL_BASE_TYPE_HWRM_DONE)) {
|
|
bnxt_hwrm_handler(bp, txcmp);
|
|
} else {
|
|
netdev_err(bp->dev,
|
|
"Invalid completion received on special ring\n");
|
|
}
|
|
raw_cons = NEXT_RAW_CMP(raw_cons);
|
|
|
|
if (rx_pkts == budget)
|
|
break;
|
|
}
|
|
|
|
cpr->cp_raw_cons = raw_cons;
|
|
BNXT_DB_CQ(&cpr->cp_db, cpr->cp_raw_cons);
|
|
bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
|
|
|
|
if (event & BNXT_AGG_EVENT)
|
|
bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
|
|
|
|
if (!bnxt_has_work(bp, cpr) && rx_pkts < budget) {
|
|
napi_complete_done(napi, rx_pkts);
|
|
BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
|
|
}
|
|
return rx_pkts;
|
|
}
|
|
|
|
static int bnxt_poll(struct napi_struct *napi, int budget)
|
|
{
|
|
struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
|
|
struct bnxt *bp = bnapi->bp;
|
|
struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
|
|
int work_done = 0;
|
|
|
|
while (1) {
|
|
work_done += bnxt_poll_work(bp, cpr, budget - work_done);
|
|
|
|
if (work_done >= budget) {
|
|
if (!budget)
|
|
BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
|
|
break;
|
|
}
|
|
|
|
if (!bnxt_has_work(bp, cpr)) {
|
|
if (napi_complete_done(napi, work_done))
|
|
BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
|
|
break;
|
|
}
|
|
}
|
|
if (bp->flags & BNXT_FLAG_DIM) {
|
|
struct dim_sample dim_sample = {};
|
|
|
|
dim_update_sample(cpr->event_ctr,
|
|
cpr->rx_packets,
|
|
cpr->rx_bytes,
|
|
&dim_sample);
|
|
net_dim(&cpr->dim, dim_sample);
|
|
}
|
|
return work_done;
|
|
}
|
|
|
|
static int __bnxt_poll_cqs(struct bnxt *bp, struct bnxt_napi *bnapi, int budget)
|
|
{
|
|
struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
|
|
int i, work_done = 0;
|
|
|
|
for (i = 0; i < 2; i++) {
|
|
struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[i];
|
|
|
|
if (cpr2) {
|
|
work_done += __bnxt_poll_work(bp, cpr2,
|
|
budget - work_done);
|
|
cpr->has_more_work |= cpr2->has_more_work;
|
|
}
|
|
}
|
|
return work_done;
|
|
}
|
|
|
|
static void __bnxt_poll_cqs_done(struct bnxt *bp, struct bnxt_napi *bnapi,
|
|
u64 dbr_type, bool all)
|
|
{
|
|
struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
|
|
int i;
|
|
|
|
for (i = 0; i < 2; i++) {
|
|
struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[i];
|
|
struct bnxt_db_info *db;
|
|
|
|
if (cpr2 && (all || cpr2->had_work_done)) {
|
|
db = &cpr2->cp_db;
|
|
writeq(db->db_key64 | dbr_type |
|
|
RING_CMP(cpr2->cp_raw_cons), db->doorbell);
|
|
cpr2->had_work_done = 0;
|
|
}
|
|
}
|
|
__bnxt_poll_work_done(bp, bnapi);
|
|
}
|
|
|
|
static int bnxt_poll_p5(struct napi_struct *napi, int budget)
|
|
{
|
|
struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
|
|
struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
|
|
u32 raw_cons = cpr->cp_raw_cons;
|
|
struct bnxt *bp = bnapi->bp;
|
|
struct nqe_cn *nqcmp;
|
|
int work_done = 0;
|
|
u32 cons;
|
|
|
|
if (cpr->has_more_work) {
|
|
cpr->has_more_work = 0;
|
|
work_done = __bnxt_poll_cqs(bp, bnapi, budget);
|
|
if (cpr->has_more_work) {
|
|
__bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ, false);
|
|
return work_done;
|
|
}
|
|
__bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ_ARMALL, true);
|
|
if (napi_complete_done(napi, work_done))
|
|
BNXT_DB_NQ_ARM_P5(&cpr->cp_db, cpr->cp_raw_cons);
|
|
return work_done;
|
|
}
|
|
while (1) {
|
|
cons = RING_CMP(raw_cons);
|
|
nqcmp = &cpr->nq_desc_ring[CP_RING(cons)][CP_IDX(cons)];
|
|
|
|
if (!NQ_CMP_VALID(nqcmp, raw_cons)) {
|
|
__bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ_ARMALL,
|
|
false);
|
|
cpr->cp_raw_cons = raw_cons;
|
|
if (napi_complete_done(napi, work_done))
|
|
BNXT_DB_NQ_ARM_P5(&cpr->cp_db,
|
|
cpr->cp_raw_cons);
|
|
return work_done;
|
|
}
|
|
|
|
/* The valid test of the entry must be done first before
|
|
* reading any further.
|
|
*/
|
|
dma_rmb();
|
|
|
|
if (nqcmp->type == cpu_to_le16(NQ_CN_TYPE_CQ_NOTIFICATION)) {
|
|
u32 idx = le32_to_cpu(nqcmp->cq_handle_low);
|
|
struct bnxt_cp_ring_info *cpr2;
|
|
|
|
cpr2 = cpr->cp_ring_arr[idx];
|
|
work_done += __bnxt_poll_work(bp, cpr2,
|
|
budget - work_done);
|
|
cpr->has_more_work = cpr2->has_more_work;
|
|
} else {
|
|
bnxt_hwrm_handler(bp, (struct tx_cmp *)nqcmp);
|
|
}
|
|
raw_cons = NEXT_RAW_CMP(raw_cons);
|
|
if (cpr->has_more_work)
|
|
break;
|
|
}
|
|
__bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ, true);
|
|
cpr->cp_raw_cons = raw_cons;
|
|
return work_done;
|
|
}
|
|
|
|
static void bnxt_free_tx_skbs(struct bnxt *bp)
|
|
{
|
|
int i, max_idx;
|
|
struct pci_dev *pdev = bp->pdev;
|
|
|
|
if (!bp->tx_ring)
|
|
return;
|
|
|
|
max_idx = bp->tx_nr_pages * TX_DESC_CNT;
|
|
for (i = 0; i < bp->tx_nr_rings; i++) {
|
|
struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
|
|
int j;
|
|
|
|
for (j = 0; j < max_idx;) {
|
|
struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
|
|
struct sk_buff *skb;
|
|
int k, last;
|
|
|
|
if (i < bp->tx_nr_rings_xdp &&
|
|
tx_buf->action == XDP_REDIRECT) {
|
|
dma_unmap_single(&pdev->dev,
|
|
dma_unmap_addr(tx_buf, mapping),
|
|
dma_unmap_len(tx_buf, len),
|
|
PCI_DMA_TODEVICE);
|
|
xdp_return_frame(tx_buf->xdpf);
|
|
tx_buf->action = 0;
|
|
tx_buf->xdpf = NULL;
|
|
j++;
|
|
continue;
|
|
}
|
|
|
|
skb = tx_buf->skb;
|
|
if (!skb) {
|
|
j++;
|
|
continue;
|
|
}
|
|
|
|
tx_buf->skb = NULL;
|
|
|
|
if (tx_buf->is_push) {
|
|
dev_kfree_skb(skb);
|
|
j += 2;
|
|
continue;
|
|
}
|
|
|
|
dma_unmap_single(&pdev->dev,
|
|
dma_unmap_addr(tx_buf, mapping),
|
|
skb_headlen(skb),
|
|
PCI_DMA_TODEVICE);
|
|
|
|
last = tx_buf->nr_frags;
|
|
j += 2;
|
|
for (k = 0; k < last; k++, j++) {
|
|
int ring_idx = j & bp->tx_ring_mask;
|
|
skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
|
|
|
|
tx_buf = &txr->tx_buf_ring[ring_idx];
|
|
dma_unmap_page(
|
|
&pdev->dev,
|
|
dma_unmap_addr(tx_buf, mapping),
|
|
skb_frag_size(frag), PCI_DMA_TODEVICE);
|
|
}
|
|
dev_kfree_skb(skb);
|
|
}
|
|
netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i));
|
|
}
|
|
}
|
|
|
|
static void bnxt_free_rx_skbs(struct bnxt *bp)
|
|
{
|
|
int i, max_idx, max_agg_idx;
|
|
struct pci_dev *pdev = bp->pdev;
|
|
|
|
if (!bp->rx_ring)
|
|
return;
|
|
|
|
max_idx = bp->rx_nr_pages * RX_DESC_CNT;
|
|
max_agg_idx = bp->rx_agg_nr_pages * RX_DESC_CNT;
|
|
for (i = 0; i < bp->rx_nr_rings; i++) {
|
|
struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
|
|
struct bnxt_tpa_idx_map *map;
|
|
int j;
|
|
|
|
if (rxr->rx_tpa) {
|
|
for (j = 0; j < bp->max_tpa; j++) {
|
|
struct bnxt_tpa_info *tpa_info =
|
|
&rxr->rx_tpa[j];
|
|
u8 *data = tpa_info->data;
|
|
|
|
if (!data)
|
|
continue;
|
|
|
|
dma_unmap_single_attrs(&pdev->dev,
|
|
tpa_info->mapping,
|
|
bp->rx_buf_use_size,
|
|
bp->rx_dir,
|
|
DMA_ATTR_WEAK_ORDERING);
|
|
|
|
tpa_info->data = NULL;
|
|
|
|
kfree(data);
|
|
}
|
|
}
|
|
|
|
for (j = 0; j < max_idx; j++) {
|
|
struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[j];
|
|
dma_addr_t mapping = rx_buf->mapping;
|
|
void *data = rx_buf->data;
|
|
|
|
if (!data)
|
|
continue;
|
|
|
|
rx_buf->data = NULL;
|
|
|
|
if (BNXT_RX_PAGE_MODE(bp)) {
|
|
mapping -= bp->rx_dma_offset;
|
|
dma_unmap_page_attrs(&pdev->dev, mapping,
|
|
PAGE_SIZE, bp->rx_dir,
|
|
DMA_ATTR_WEAK_ORDERING);
|
|
page_pool_recycle_direct(rxr->page_pool, data);
|
|
} else {
|
|
dma_unmap_single_attrs(&pdev->dev, mapping,
|
|
bp->rx_buf_use_size,
|
|
bp->rx_dir,
|
|
DMA_ATTR_WEAK_ORDERING);
|
|
kfree(data);
|
|
}
|
|
}
|
|
|
|
for (j = 0; j < max_agg_idx; j++) {
|
|
struct bnxt_sw_rx_agg_bd *rx_agg_buf =
|
|
&rxr->rx_agg_ring[j];
|
|
struct page *page = rx_agg_buf->page;
|
|
|
|
if (!page)
|
|
continue;
|
|
|
|
dma_unmap_page_attrs(&pdev->dev, rx_agg_buf->mapping,
|
|
BNXT_RX_PAGE_SIZE,
|
|
PCI_DMA_FROMDEVICE,
|
|
DMA_ATTR_WEAK_ORDERING);
|
|
|
|
rx_agg_buf->page = NULL;
|
|
__clear_bit(j, rxr->rx_agg_bmap);
|
|
|
|
__free_page(page);
|
|
}
|
|
if (rxr->rx_page) {
|
|
__free_page(rxr->rx_page);
|
|
rxr->rx_page = NULL;
|
|
}
|
|
map = rxr->rx_tpa_idx_map;
|
|
if (map)
|
|
memset(map->agg_idx_bmap, 0, sizeof(map->agg_idx_bmap));
|
|
}
|
|
}
|
|
|
|
static void bnxt_free_skbs(struct bnxt *bp)
|
|
{
|
|
bnxt_free_tx_skbs(bp);
|
|
bnxt_free_rx_skbs(bp);
|
|
}
|
|
|
|
static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem)
|
|
{
|
|
struct pci_dev *pdev = bp->pdev;
|
|
int i;
|
|
|
|
for (i = 0; i < rmem->nr_pages; i++) {
|
|
if (!rmem->pg_arr[i])
|
|
continue;
|
|
|
|
dma_free_coherent(&pdev->dev, rmem->page_size,
|
|
rmem->pg_arr[i], rmem->dma_arr[i]);
|
|
|
|
rmem->pg_arr[i] = NULL;
|
|
}
|
|
if (rmem->pg_tbl) {
|
|
size_t pg_tbl_size = rmem->nr_pages * 8;
|
|
|
|
if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG)
|
|
pg_tbl_size = rmem->page_size;
|
|
dma_free_coherent(&pdev->dev, pg_tbl_size,
|
|
rmem->pg_tbl, rmem->pg_tbl_map);
|
|
rmem->pg_tbl = NULL;
|
|
}
|
|
if (rmem->vmem_size && *rmem->vmem) {
|
|
vfree(*rmem->vmem);
|
|
*rmem->vmem = NULL;
|
|
}
|
|
}
|
|
|
|
static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem)
|
|
{
|
|
struct pci_dev *pdev = bp->pdev;
|
|
u64 valid_bit = 0;
|
|
int i;
|
|
|
|
if (rmem->flags & (BNXT_RMEM_VALID_PTE_FLAG | BNXT_RMEM_RING_PTE_FLAG))
|
|
valid_bit = PTU_PTE_VALID;
|
|
if ((rmem->nr_pages > 1 || rmem->depth > 0) && !rmem->pg_tbl) {
|
|
size_t pg_tbl_size = rmem->nr_pages * 8;
|
|
|
|
if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG)
|
|
pg_tbl_size = rmem->page_size;
|
|
rmem->pg_tbl = dma_alloc_coherent(&pdev->dev, pg_tbl_size,
|
|
&rmem->pg_tbl_map,
|
|
GFP_KERNEL);
|
|
if (!rmem->pg_tbl)
|
|
return -ENOMEM;
|
|
}
|
|
|
|
for (i = 0; i < rmem->nr_pages; i++) {
|
|
u64 extra_bits = valid_bit;
|
|
|
|
rmem->pg_arr[i] = dma_alloc_coherent(&pdev->dev,
|
|
rmem->page_size,
|
|
&rmem->dma_arr[i],
|
|
GFP_KERNEL);
|
|
if (!rmem->pg_arr[i])
|
|
return -ENOMEM;
|
|
|
|
if (rmem->nr_pages > 1 || rmem->depth > 0) {
|
|
if (i == rmem->nr_pages - 2 &&
|
|
(rmem->flags & BNXT_RMEM_RING_PTE_FLAG))
|
|
extra_bits |= PTU_PTE_NEXT_TO_LAST;
|
|
else if (i == rmem->nr_pages - 1 &&
|
|
(rmem->flags & BNXT_RMEM_RING_PTE_FLAG))
|
|
extra_bits |= PTU_PTE_LAST;
|
|
rmem->pg_tbl[i] =
|
|
cpu_to_le64(rmem->dma_arr[i] | extra_bits);
|
|
}
|
|
}
|
|
|
|
if (rmem->vmem_size) {
|
|
*rmem->vmem = vzalloc(rmem->vmem_size);
|
|
if (!(*rmem->vmem))
|
|
return -ENOMEM;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void bnxt_free_tpa_info(struct bnxt *bp)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < bp->rx_nr_rings; i++) {
|
|
struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
|
|
|
|
kfree(rxr->rx_tpa_idx_map);
|
|
rxr->rx_tpa_idx_map = NULL;
|
|
if (rxr->rx_tpa) {
|
|
kfree(rxr->rx_tpa[0].agg_arr);
|
|
rxr->rx_tpa[0].agg_arr = NULL;
|
|
}
|
|
kfree(rxr->rx_tpa);
|
|
rxr->rx_tpa = NULL;
|
|
}
|
|
}
|
|
|
|
static int bnxt_alloc_tpa_info(struct bnxt *bp)
|
|
{
|
|
int i, j, total_aggs = 0;
|
|
|
|
bp->max_tpa = MAX_TPA;
|
|
if (bp->flags & BNXT_FLAG_CHIP_P5) {
|
|
if (!bp->max_tpa_v2)
|
|
return 0;
|
|
bp->max_tpa = max_t(u16, bp->max_tpa_v2, MAX_TPA_P5);
|
|
total_aggs = bp->max_tpa * MAX_SKB_FRAGS;
|
|
}
|
|
|
|
for (i = 0; i < bp->rx_nr_rings; i++) {
|
|
struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
|
|
struct rx_agg_cmp *agg;
|
|
|
|
rxr->rx_tpa = kcalloc(bp->max_tpa, sizeof(struct bnxt_tpa_info),
|
|
GFP_KERNEL);
|
|
if (!rxr->rx_tpa)
|
|
return -ENOMEM;
|
|
|
|
if (!(bp->flags & BNXT_FLAG_CHIP_P5))
|
|
continue;
|
|
agg = kcalloc(total_aggs, sizeof(*agg), GFP_KERNEL);
|
|
rxr->rx_tpa[0].agg_arr = agg;
|
|
if (!agg)
|
|
return -ENOMEM;
|
|
for (j = 1; j < bp->max_tpa; j++)
|
|
rxr->rx_tpa[j].agg_arr = agg + j * MAX_SKB_FRAGS;
|
|
rxr->rx_tpa_idx_map = kzalloc(sizeof(*rxr->rx_tpa_idx_map),
|
|
GFP_KERNEL);
|
|
if (!rxr->rx_tpa_idx_map)
|
|
return -ENOMEM;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void bnxt_free_rx_rings(struct bnxt *bp)
|
|
{
|
|
int i;
|
|
|
|
if (!bp->rx_ring)
|
|
return;
|
|
|
|
bnxt_free_tpa_info(bp);
|
|
for (i = 0; i < bp->rx_nr_rings; i++) {
|
|
struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
|
|
struct bnxt_ring_struct *ring;
|
|
|
|
if (rxr->xdp_prog)
|
|
bpf_prog_put(rxr->xdp_prog);
|
|
|
|
if (xdp_rxq_info_is_reg(&rxr->xdp_rxq))
|
|
xdp_rxq_info_unreg(&rxr->xdp_rxq);
|
|
|
|
page_pool_destroy(rxr->page_pool);
|
|
rxr->page_pool = NULL;
|
|
|
|
kfree(rxr->rx_agg_bmap);
|
|
rxr->rx_agg_bmap = NULL;
|
|
|
|
ring = &rxr->rx_ring_struct;
|
|
bnxt_free_ring(bp, &ring->ring_mem);
|
|
|
|
ring = &rxr->rx_agg_ring_struct;
|
|
bnxt_free_ring(bp, &ring->ring_mem);
|
|
}
|
|
}
|
|
|
|
static int bnxt_alloc_rx_page_pool(struct bnxt *bp,
|
|
struct bnxt_rx_ring_info *rxr)
|
|
{
|
|
struct page_pool_params pp = { 0 };
|
|
|
|
pp.pool_size = bp->rx_ring_size;
|
|
pp.nid = dev_to_node(&bp->pdev->dev);
|
|
pp.dev = &bp->pdev->dev;
|
|
pp.dma_dir = DMA_BIDIRECTIONAL;
|
|
|
|
rxr->page_pool = page_pool_create(&pp);
|
|
if (IS_ERR(rxr->page_pool)) {
|
|
int err = PTR_ERR(rxr->page_pool);
|
|
|
|
rxr->page_pool = NULL;
|
|
return err;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int bnxt_alloc_rx_rings(struct bnxt *bp)
|
|
{
|
|
int i, rc = 0, agg_rings = 0;
|
|
|
|
if (!bp->rx_ring)
|
|
return -ENOMEM;
|
|
|
|
if (bp->flags & BNXT_FLAG_AGG_RINGS)
|
|
agg_rings = 1;
|
|
|
|
for (i = 0; i < bp->rx_nr_rings; i++) {
|
|
struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
|
|
struct bnxt_ring_struct *ring;
|
|
|
|
ring = &rxr->rx_ring_struct;
|
|
|
|
rc = bnxt_alloc_rx_page_pool(bp, rxr);
|
|
if (rc)
|
|
return rc;
|
|
|
|
rc = xdp_rxq_info_reg(&rxr->xdp_rxq, bp->dev, i);
|
|
if (rc < 0)
|
|
return rc;
|
|
|
|
rc = xdp_rxq_info_reg_mem_model(&rxr->xdp_rxq,
|
|
MEM_TYPE_PAGE_POOL,
|
|
rxr->page_pool);
|
|
if (rc) {
|
|
xdp_rxq_info_unreg(&rxr->xdp_rxq);
|
|
return rc;
|
|
}
|
|
|
|
rc = bnxt_alloc_ring(bp, &ring->ring_mem);
|
|
if (rc)
|
|
return rc;
|
|
|
|
ring->grp_idx = i;
|
|
if (agg_rings) {
|
|
u16 mem_size;
|
|
|
|
ring = &rxr->rx_agg_ring_struct;
|
|
rc = bnxt_alloc_ring(bp, &ring->ring_mem);
|
|
if (rc)
|
|
return rc;
|
|
|
|
ring->grp_idx = i;
|
|
rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1;
|
|
mem_size = rxr->rx_agg_bmap_size / 8;
|
|
rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL);
|
|
if (!rxr->rx_agg_bmap)
|
|
return -ENOMEM;
|
|
}
|
|
}
|
|
if (bp->flags & BNXT_FLAG_TPA)
|
|
rc = bnxt_alloc_tpa_info(bp);
|
|
return rc;
|
|
}
|
|
|
|
static void bnxt_free_tx_rings(struct bnxt *bp)
|
|
{
|
|
int i;
|
|
struct pci_dev *pdev = bp->pdev;
|
|
|
|
if (!bp->tx_ring)
|
|
return;
|
|
|
|
for (i = 0; i < bp->tx_nr_rings; i++) {
|
|
struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
|
|
struct bnxt_ring_struct *ring;
|
|
|
|
if (txr->tx_push) {
|
|
dma_free_coherent(&pdev->dev, bp->tx_push_size,
|
|
txr->tx_push, txr->tx_push_mapping);
|
|
txr->tx_push = NULL;
|
|
}
|
|
|
|
ring = &txr->tx_ring_struct;
|
|
|
|
bnxt_free_ring(bp, &ring->ring_mem);
|
|
}
|
|
}
|
|
|
|
static int bnxt_alloc_tx_rings(struct bnxt *bp)
|
|
{
|
|
int i, j, rc;
|
|
struct pci_dev *pdev = bp->pdev;
|
|
|
|
bp->tx_push_size = 0;
|
|
if (bp->tx_push_thresh) {
|
|
int push_size;
|
|
|
|
push_size = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) +
|
|
bp->tx_push_thresh);
|
|
|
|
if (push_size > 256) {
|
|
push_size = 0;
|
|
bp->tx_push_thresh = 0;
|
|
}
|
|
|
|
bp->tx_push_size = push_size;
|
|
}
|
|
|
|
for (i = 0, j = 0; i < bp->tx_nr_rings; i++) {
|
|
struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
|
|
struct bnxt_ring_struct *ring;
|
|
u8 qidx;
|
|
|
|
ring = &txr->tx_ring_struct;
|
|
|
|
rc = bnxt_alloc_ring(bp, &ring->ring_mem);
|
|
if (rc)
|
|
return rc;
|
|
|
|
ring->grp_idx = txr->bnapi->index;
|
|
if (bp->tx_push_size) {
|
|
dma_addr_t mapping;
|
|
|
|
/* One pre-allocated DMA buffer to backup
|
|
* TX push operation
|
|
*/
|
|
txr->tx_push = dma_alloc_coherent(&pdev->dev,
|
|
bp->tx_push_size,
|
|
&txr->tx_push_mapping,
|
|
GFP_KERNEL);
|
|
|
|
if (!txr->tx_push)
|
|
return -ENOMEM;
|
|
|
|
mapping = txr->tx_push_mapping +
|
|
sizeof(struct tx_push_bd);
|
|
txr->data_mapping = cpu_to_le64(mapping);
|
|
}
|
|
qidx = bp->tc_to_qidx[j];
|
|
ring->queue_id = bp->q_info[qidx].queue_id;
|
|
if (i < bp->tx_nr_rings_xdp)
|
|
continue;
|
|
if (i % bp->tx_nr_rings_per_tc == (bp->tx_nr_rings_per_tc - 1))
|
|
j++;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void bnxt_free_cp_rings(struct bnxt *bp)
|
|
{
|
|
int i;
|
|
|
|
if (!bp->bnapi)
|
|
return;
|
|
|
|
for (i = 0; i < bp->cp_nr_rings; i++) {
|
|
struct bnxt_napi *bnapi = bp->bnapi[i];
|
|
struct bnxt_cp_ring_info *cpr;
|
|
struct bnxt_ring_struct *ring;
|
|
int j;
|
|
|
|
if (!bnapi)
|
|
continue;
|
|
|
|
cpr = &bnapi->cp_ring;
|
|
ring = &cpr->cp_ring_struct;
|
|
|
|
bnxt_free_ring(bp, &ring->ring_mem);
|
|
|
|
for (j = 0; j < 2; j++) {
|
|
struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
|
|
|
|
if (cpr2) {
|
|
ring = &cpr2->cp_ring_struct;
|
|
bnxt_free_ring(bp, &ring->ring_mem);
|
|
kfree(cpr2);
|
|
cpr->cp_ring_arr[j] = NULL;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static struct bnxt_cp_ring_info *bnxt_alloc_cp_sub_ring(struct bnxt *bp)
|
|
{
|
|
struct bnxt_ring_mem_info *rmem;
|
|
struct bnxt_ring_struct *ring;
|
|
struct bnxt_cp_ring_info *cpr;
|
|
int rc;
|
|
|
|
cpr = kzalloc(sizeof(*cpr), GFP_KERNEL);
|
|
if (!cpr)
|
|
return NULL;
|
|
|
|
ring = &cpr->cp_ring_struct;
|
|
rmem = &ring->ring_mem;
|
|
rmem->nr_pages = bp->cp_nr_pages;
|
|
rmem->page_size = HW_CMPD_RING_SIZE;
|
|
rmem->pg_arr = (void **)cpr->cp_desc_ring;
|
|
rmem->dma_arr = cpr->cp_desc_mapping;
|
|
rmem->flags = BNXT_RMEM_RING_PTE_FLAG;
|
|
rc = bnxt_alloc_ring(bp, rmem);
|
|
if (rc) {
|
|
bnxt_free_ring(bp, rmem);
|
|
kfree(cpr);
|
|
cpr = NULL;
|
|
}
|
|
return cpr;
|
|
}
|
|
|
|
static int bnxt_alloc_cp_rings(struct bnxt *bp)
|
|
{
|
|
bool sh = !!(bp->flags & BNXT_FLAG_SHARED_RINGS);
|
|
int i, rc, ulp_base_vec, ulp_msix;
|
|
|
|
ulp_msix = bnxt_get_ulp_msix_num(bp);
|
|
ulp_base_vec = bnxt_get_ulp_msix_base(bp);
|
|
for (i = 0; i < bp->cp_nr_rings; i++) {
|
|
struct bnxt_napi *bnapi = bp->bnapi[i];
|
|
struct bnxt_cp_ring_info *cpr;
|
|
struct bnxt_ring_struct *ring;
|
|
|
|
if (!bnapi)
|
|
continue;
|
|
|
|
cpr = &bnapi->cp_ring;
|
|
cpr->bnapi = bnapi;
|
|
ring = &cpr->cp_ring_struct;
|
|
|
|
rc = bnxt_alloc_ring(bp, &ring->ring_mem);
|
|
if (rc)
|
|
return rc;
|
|
|
|
if (ulp_msix && i >= ulp_base_vec)
|
|
ring->map_idx = i + ulp_msix;
|
|
else
|
|
ring->map_idx = i;
|
|
|
|
if (!(bp->flags & BNXT_FLAG_CHIP_P5))
|
|
continue;
|
|
|
|
if (i < bp->rx_nr_rings) {
|
|
struct bnxt_cp_ring_info *cpr2 =
|
|
bnxt_alloc_cp_sub_ring(bp);
|
|
|
|
cpr->cp_ring_arr[BNXT_RX_HDL] = cpr2;
|
|
if (!cpr2)
|
|
return -ENOMEM;
|
|
cpr2->bnapi = bnapi;
|
|
}
|
|
if ((sh && i < bp->tx_nr_rings) ||
|
|
(!sh && i >= bp->rx_nr_rings)) {
|
|
struct bnxt_cp_ring_info *cpr2 =
|
|
bnxt_alloc_cp_sub_ring(bp);
|
|
|
|
cpr->cp_ring_arr[BNXT_TX_HDL] = cpr2;
|
|
if (!cpr2)
|
|
return -ENOMEM;
|
|
cpr2->bnapi = bnapi;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void bnxt_init_ring_struct(struct bnxt *bp)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < bp->cp_nr_rings; i++) {
|
|
struct bnxt_napi *bnapi = bp->bnapi[i];
|
|
struct bnxt_ring_mem_info *rmem;
|
|
struct bnxt_cp_ring_info *cpr;
|
|
struct bnxt_rx_ring_info *rxr;
|
|
struct bnxt_tx_ring_info *txr;
|
|
struct bnxt_ring_struct *ring;
|
|
|
|
if (!bnapi)
|
|
continue;
|
|
|
|
cpr = &bnapi->cp_ring;
|
|
ring = &cpr->cp_ring_struct;
|
|
rmem = &ring->ring_mem;
|
|
rmem->nr_pages = bp->cp_nr_pages;
|
|
rmem->page_size = HW_CMPD_RING_SIZE;
|
|
rmem->pg_arr = (void **)cpr->cp_desc_ring;
|
|
rmem->dma_arr = cpr->cp_desc_mapping;
|
|
rmem->vmem_size = 0;
|
|
|
|
rxr = bnapi->rx_ring;
|
|
if (!rxr)
|
|
goto skip_rx;
|
|
|
|
ring = &rxr->rx_ring_struct;
|
|
rmem = &ring->ring_mem;
|
|
rmem->nr_pages = bp->rx_nr_pages;
|
|
rmem->page_size = HW_RXBD_RING_SIZE;
|
|
rmem->pg_arr = (void **)rxr->rx_desc_ring;
|
|
rmem->dma_arr = rxr->rx_desc_mapping;
|
|
rmem->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages;
|
|
rmem->vmem = (void **)&rxr->rx_buf_ring;
|
|
|
|
ring = &rxr->rx_agg_ring_struct;
|
|
rmem = &ring->ring_mem;
|
|
rmem->nr_pages = bp->rx_agg_nr_pages;
|
|
rmem->page_size = HW_RXBD_RING_SIZE;
|
|
rmem->pg_arr = (void **)rxr->rx_agg_desc_ring;
|
|
rmem->dma_arr = rxr->rx_agg_desc_mapping;
|
|
rmem->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages;
|
|
rmem->vmem = (void **)&rxr->rx_agg_ring;
|
|
|
|
skip_rx:
|
|
txr = bnapi->tx_ring;
|
|
if (!txr)
|
|
continue;
|
|
|
|
ring = &txr->tx_ring_struct;
|
|
rmem = &ring->ring_mem;
|
|
rmem->nr_pages = bp->tx_nr_pages;
|
|
rmem->page_size = HW_RXBD_RING_SIZE;
|
|
rmem->pg_arr = (void **)txr->tx_desc_ring;
|
|
rmem->dma_arr = txr->tx_desc_mapping;
|
|
rmem->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages;
|
|
rmem->vmem = (void **)&txr->tx_buf_ring;
|
|
}
|
|
}
|
|
|
|
static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type)
|
|
{
|
|
int i;
|
|
u32 prod;
|
|
struct rx_bd **rx_buf_ring;
|
|
|
|
rx_buf_ring = (struct rx_bd **)ring->ring_mem.pg_arr;
|
|
for (i = 0, prod = 0; i < ring->ring_mem.nr_pages; i++) {
|
|
int j;
|
|
struct rx_bd *rxbd;
|
|
|
|
rxbd = rx_buf_ring[i];
|
|
if (!rxbd)
|
|
continue;
|
|
|
|
for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) {
|
|
rxbd->rx_bd_len_flags_type = cpu_to_le32(type);
|
|
rxbd->rx_bd_opaque = prod;
|
|
}
|
|
}
|
|
}
|
|
|
|
static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr)
|
|
{
|
|
struct net_device *dev = bp->dev;
|
|
struct bnxt_rx_ring_info *rxr;
|
|
struct bnxt_ring_struct *ring;
|
|
u32 prod, type;
|
|
int i;
|
|
|
|
type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) |
|
|
RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP;
|
|
|
|
if (NET_IP_ALIGN == 2)
|
|
type |= RX_BD_FLAGS_SOP;
|
|
|
|
rxr = &bp->rx_ring[ring_nr];
|
|
ring = &rxr->rx_ring_struct;
|
|
bnxt_init_rxbd_pages(ring, type);
|
|
|
|
if (BNXT_RX_PAGE_MODE(bp) && bp->xdp_prog) {
|
|
rxr->xdp_prog = bpf_prog_add(bp->xdp_prog, 1);
|
|
if (IS_ERR(rxr->xdp_prog)) {
|
|
int rc = PTR_ERR(rxr->xdp_prog);
|
|
|
|
rxr->xdp_prog = NULL;
|
|
return rc;
|
|
}
|
|
}
|
|
prod = rxr->rx_prod;
|
|
for (i = 0; i < bp->rx_ring_size; i++) {
|
|
if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL) != 0) {
|
|
netdev_warn(dev, "init'ed rx ring %d with %d/%d skbs only\n",
|
|
ring_nr, i, bp->rx_ring_size);
|
|
break;
|
|
}
|
|
prod = NEXT_RX(prod);
|
|
}
|
|
rxr->rx_prod = prod;
|
|
ring->fw_ring_id = INVALID_HW_RING_ID;
|
|
|
|
ring = &rxr->rx_agg_ring_struct;
|
|
ring->fw_ring_id = INVALID_HW_RING_ID;
|
|
|
|
if (!(bp->flags & BNXT_FLAG_AGG_RINGS))
|
|
return 0;
|
|
|
|
type = ((u32)BNXT_RX_PAGE_SIZE << RX_BD_LEN_SHIFT) |
|
|
RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP;
|
|
|
|
bnxt_init_rxbd_pages(ring, type);
|
|
|
|
prod = rxr->rx_agg_prod;
|
|
for (i = 0; i < bp->rx_agg_ring_size; i++) {
|
|
if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL) != 0) {
|
|
netdev_warn(dev, "init'ed rx ring %d with %d/%d pages only\n",
|
|
ring_nr, i, bp->rx_ring_size);
|
|
break;
|
|
}
|
|
prod = NEXT_RX_AGG(prod);
|
|
}
|
|
rxr->rx_agg_prod = prod;
|
|
|
|
if (bp->flags & BNXT_FLAG_TPA) {
|
|
if (rxr->rx_tpa) {
|
|
u8 *data;
|
|
dma_addr_t mapping;
|
|
|
|
for (i = 0; i < bp->max_tpa; i++) {
|
|
data = __bnxt_alloc_rx_data(bp, &mapping,
|
|
GFP_KERNEL);
|
|
if (!data)
|
|
return -ENOMEM;
|
|
|
|
rxr->rx_tpa[i].data = data;
|
|
rxr->rx_tpa[i].data_ptr = data + bp->rx_offset;
|
|
rxr->rx_tpa[i].mapping = mapping;
|
|
}
|
|
} else {
|
|
netdev_err(bp->dev, "No resource allocated for LRO/GRO\n");
|
|
return -ENOMEM;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void bnxt_init_cp_rings(struct bnxt *bp)
|
|
{
|
|
int i, j;
|
|
|
|
for (i = 0; i < bp->cp_nr_rings; i++) {
|
|
struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
|
|
struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
|
|
|
|
ring->fw_ring_id = INVALID_HW_RING_ID;
|
|
cpr->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks;
|
|
cpr->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs;
|
|
for (j = 0; j < 2; j++) {
|
|
struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
|
|
|
|
if (!cpr2)
|
|
continue;
|
|
|
|
ring = &cpr2->cp_ring_struct;
|
|
ring->fw_ring_id = INVALID_HW_RING_ID;
|
|
cpr2->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks;
|
|
cpr2->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs;
|
|
}
|
|
}
|
|
}
|
|
|
|
static int bnxt_init_rx_rings(struct bnxt *bp)
|
|
{
|
|
int i, rc = 0;
|
|
|
|
if (BNXT_RX_PAGE_MODE(bp)) {
|
|
bp->rx_offset = NET_IP_ALIGN + XDP_PACKET_HEADROOM;
|
|
bp->rx_dma_offset = XDP_PACKET_HEADROOM;
|
|
} else {
|
|
bp->rx_offset = BNXT_RX_OFFSET;
|
|
bp->rx_dma_offset = BNXT_RX_DMA_OFFSET;
|
|
}
|
|
|
|
for (i = 0; i < bp->rx_nr_rings; i++) {
|
|
rc = bnxt_init_one_rx_ring(bp, i);
|
|
if (rc)
|
|
break;
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int bnxt_init_tx_rings(struct bnxt *bp)
|
|
{
|
|
u16 i;
|
|
|
|
bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2,
|
|
MAX_SKB_FRAGS + 1);
|
|
|
|
for (i = 0; i < bp->tx_nr_rings; i++) {
|
|
struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
|
|
struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
|
|
|
|
ring->fw_ring_id = INVALID_HW_RING_ID;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void bnxt_free_ring_grps(struct bnxt *bp)
|
|
{
|
|
kfree(bp->grp_info);
|
|
bp->grp_info = NULL;
|
|
}
|
|
|
|
static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init)
|
|
{
|
|
int i;
|
|
|
|
if (irq_re_init) {
|
|
bp->grp_info = kcalloc(bp->cp_nr_rings,
|
|
sizeof(struct bnxt_ring_grp_info),
|
|
GFP_KERNEL);
|
|
if (!bp->grp_info)
|
|
return -ENOMEM;
|
|
}
|
|
for (i = 0; i < bp->cp_nr_rings; i++) {
|
|
if (irq_re_init)
|
|
bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID;
|
|
bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
|
|
bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID;
|
|
bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID;
|
|
bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void bnxt_free_vnics(struct bnxt *bp)
|
|
{
|
|
kfree(bp->vnic_info);
|
|
bp->vnic_info = NULL;
|
|
bp->nr_vnics = 0;
|
|
}
|
|
|
|
static int bnxt_alloc_vnics(struct bnxt *bp)
|
|
{
|
|
int num_vnics = 1;
|
|
|
|
#ifdef CONFIG_RFS_ACCEL
|
|
if ((bp->flags & (BNXT_FLAG_RFS | BNXT_FLAG_CHIP_P5)) == BNXT_FLAG_RFS)
|
|
num_vnics += bp->rx_nr_rings;
|
|
#endif
|
|
|
|
if (BNXT_CHIP_TYPE_NITRO_A0(bp))
|
|
num_vnics++;
|
|
|
|
bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info),
|
|
GFP_KERNEL);
|
|
if (!bp->vnic_info)
|
|
return -ENOMEM;
|
|
|
|
bp->nr_vnics = num_vnics;
|
|
return 0;
|
|
}
|
|
|
|
static void bnxt_init_vnics(struct bnxt *bp)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < bp->nr_vnics; i++) {
|
|
struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
|
|
int j;
|
|
|
|
vnic->fw_vnic_id = INVALID_HW_RING_ID;
|
|
for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++)
|
|
vnic->fw_rss_cos_lb_ctx[j] = INVALID_HW_RING_ID;
|
|
|
|
vnic->fw_l2_ctx_id = INVALID_HW_RING_ID;
|
|
|
|
if (bp->vnic_info[i].rss_hash_key) {
|
|
if (i == 0)
|
|
prandom_bytes(vnic->rss_hash_key,
|
|
HW_HASH_KEY_SIZE);
|
|
else
|
|
memcpy(vnic->rss_hash_key,
|
|
bp->vnic_info[0].rss_hash_key,
|
|
HW_HASH_KEY_SIZE);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg)
|
|
{
|
|
int pages;
|
|
|
|
pages = ring_size / desc_per_pg;
|
|
|
|
if (!pages)
|
|
return 1;
|
|
|
|
pages++;
|
|
|
|
while (pages & (pages - 1))
|
|
pages++;
|
|
|
|
return pages;
|
|
}
|
|
|
|
void bnxt_set_tpa_flags(struct bnxt *bp)
|
|
{
|
|
bp->flags &= ~BNXT_FLAG_TPA;
|
|
if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
|
|
return;
|
|
if (bp->dev->features & NETIF_F_LRO)
|
|
bp->flags |= BNXT_FLAG_LRO;
|
|
else if (bp->dev->features & NETIF_F_GRO_HW)
|
|
bp->flags |= BNXT_FLAG_GRO;
|
|
}
|
|
|
|
/* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must
|
|
* be set on entry.
|
|
*/
|
|
void bnxt_set_ring_params(struct bnxt *bp)
|
|
{
|
|
u32 ring_size, rx_size, rx_space;
|
|
u32 agg_factor = 0, agg_ring_size = 0;
|
|
|
|
/* 8 for CRC and VLAN */
|
|
rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8);
|
|
|
|
rx_space = rx_size + NET_SKB_PAD +
|
|
SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
|
|
|
|
bp->rx_copy_thresh = BNXT_RX_COPY_THRESH;
|
|
ring_size = bp->rx_ring_size;
|
|
bp->rx_agg_ring_size = 0;
|
|
bp->rx_agg_nr_pages = 0;
|
|
|
|
if (bp->flags & BNXT_FLAG_TPA)
|
|
agg_factor = min_t(u32, 4, 65536 / BNXT_RX_PAGE_SIZE);
|
|
|
|
bp->flags &= ~BNXT_FLAG_JUMBO;
|
|
if (rx_space > PAGE_SIZE && !(bp->flags & BNXT_FLAG_NO_AGG_RINGS)) {
|
|
u32 jumbo_factor;
|
|
|
|
bp->flags |= BNXT_FLAG_JUMBO;
|
|
jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
|
|
if (jumbo_factor > agg_factor)
|
|
agg_factor = jumbo_factor;
|
|
}
|
|
agg_ring_size = ring_size * agg_factor;
|
|
|
|
if (agg_ring_size) {
|
|
bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size,
|
|
RX_DESC_CNT);
|
|
if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) {
|
|
u32 tmp = agg_ring_size;
|
|
|
|
bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES;
|
|
agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1;
|
|
netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n",
|
|
tmp, agg_ring_size);
|
|
}
|
|
bp->rx_agg_ring_size = agg_ring_size;
|
|
bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1;
|
|
rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN);
|
|
rx_space = rx_size + NET_SKB_PAD +
|
|
SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
|
|
}
|
|
|
|
bp->rx_buf_use_size = rx_size;
|
|
bp->rx_buf_size = rx_space;
|
|
|
|
bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT);
|
|
bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1;
|
|
|
|
ring_size = bp->tx_ring_size;
|
|
bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT);
|
|
bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1;
|
|
|
|
ring_size = bp->rx_ring_size * (2 + agg_factor) + bp->tx_ring_size;
|
|
bp->cp_ring_size = ring_size;
|
|
|
|
bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT);
|
|
if (bp->cp_nr_pages > MAX_CP_PAGES) {
|
|
bp->cp_nr_pages = MAX_CP_PAGES;
|
|
bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1;
|
|
netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n",
|
|
ring_size, bp->cp_ring_size);
|
|
}
|
|
bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT;
|
|
bp->cp_ring_mask = bp->cp_bit - 1;
|
|
}
|
|
|
|
/* Changing allocation mode of RX rings.
|
|
* TODO: Update when extending xdp_rxq_info to support allocation modes.
|
|
*/
|
|
int bnxt_set_rx_skb_mode(struct bnxt *bp, bool page_mode)
|
|
{
|
|
if (page_mode) {
|
|
if (bp->dev->mtu > BNXT_MAX_PAGE_MODE_MTU)
|
|
return -EOPNOTSUPP;
|
|
bp->dev->max_mtu =
|
|
min_t(u16, bp->max_mtu, BNXT_MAX_PAGE_MODE_MTU);
|
|
bp->flags &= ~BNXT_FLAG_AGG_RINGS;
|
|
bp->flags |= BNXT_FLAG_NO_AGG_RINGS | BNXT_FLAG_RX_PAGE_MODE;
|
|
bp->rx_dir = DMA_BIDIRECTIONAL;
|
|
bp->rx_skb_func = bnxt_rx_page_skb;
|
|
/* Disable LRO or GRO_HW */
|
|
netdev_update_features(bp->dev);
|
|
} else {
|
|
bp->dev->max_mtu = bp->max_mtu;
|
|
bp->flags &= ~BNXT_FLAG_RX_PAGE_MODE;
|
|
bp->rx_dir = DMA_FROM_DEVICE;
|
|
bp->rx_skb_func = bnxt_rx_skb;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void bnxt_free_vnic_attributes(struct bnxt *bp)
|
|
{
|
|
int i;
|
|
struct bnxt_vnic_info *vnic;
|
|
struct pci_dev *pdev = bp->pdev;
|
|
|
|
if (!bp->vnic_info)
|
|
return;
|
|
|
|
for (i = 0; i < bp->nr_vnics; i++) {
|
|
vnic = &bp->vnic_info[i];
|
|
|
|
kfree(vnic->fw_grp_ids);
|
|
vnic->fw_grp_ids = NULL;
|
|
|
|
kfree(vnic->uc_list);
|
|
vnic->uc_list = NULL;
|
|
|
|
if (vnic->mc_list) {
|
|
dma_free_coherent(&pdev->dev, vnic->mc_list_size,
|
|
vnic->mc_list, vnic->mc_list_mapping);
|
|
vnic->mc_list = NULL;
|
|
}
|
|
|
|
if (vnic->rss_table) {
|
|
dma_free_coherent(&pdev->dev, PAGE_SIZE,
|
|
vnic->rss_table,
|
|
vnic->rss_table_dma_addr);
|
|
vnic->rss_table = NULL;
|
|
}
|
|
|
|
vnic->rss_hash_key = NULL;
|
|
vnic->flags = 0;
|
|
}
|
|
}
|
|
|
|
static int bnxt_alloc_vnic_attributes(struct bnxt *bp)
|
|
{
|
|
int i, rc = 0, size;
|
|
struct bnxt_vnic_info *vnic;
|
|
struct pci_dev *pdev = bp->pdev;
|
|
int max_rings;
|
|
|
|
for (i = 0; i < bp->nr_vnics; i++) {
|
|
vnic = &bp->vnic_info[i];
|
|
|
|
if (vnic->flags & BNXT_VNIC_UCAST_FLAG) {
|
|
int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN;
|
|
|
|
if (mem_size > 0) {
|
|
vnic->uc_list = kmalloc(mem_size, GFP_KERNEL);
|
|
if (!vnic->uc_list) {
|
|
rc = -ENOMEM;
|
|
goto out;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (vnic->flags & BNXT_VNIC_MCAST_FLAG) {
|
|
vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN;
|
|
vnic->mc_list =
|
|
dma_alloc_coherent(&pdev->dev,
|
|
vnic->mc_list_size,
|
|
&vnic->mc_list_mapping,
|
|
GFP_KERNEL);
|
|
if (!vnic->mc_list) {
|
|
rc = -ENOMEM;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
if (bp->flags & BNXT_FLAG_CHIP_P5)
|
|
goto vnic_skip_grps;
|
|
|
|
if (vnic->flags & BNXT_VNIC_RSS_FLAG)
|
|
max_rings = bp->rx_nr_rings;
|
|
else
|
|
max_rings = 1;
|
|
|
|
vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL);
|
|
if (!vnic->fw_grp_ids) {
|
|
rc = -ENOMEM;
|
|
goto out;
|
|
}
|
|
vnic_skip_grps:
|
|
if ((bp->flags & BNXT_FLAG_NEW_RSS_CAP) &&
|
|
!(vnic->flags & BNXT_VNIC_RSS_FLAG))
|
|
continue;
|
|
|
|
/* Allocate rss table and hash key */
|
|
vnic->rss_table = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
|
|
&vnic->rss_table_dma_addr,
|
|
GFP_KERNEL);
|
|
if (!vnic->rss_table) {
|
|
rc = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16));
|
|
|
|
vnic->rss_hash_key = ((void *)vnic->rss_table) + size;
|
|
vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size;
|
|
}
|
|
return 0;
|
|
|
|
out:
|
|
return rc;
|
|
}
|
|
|
|
static void bnxt_free_hwrm_resources(struct bnxt *bp)
|
|
{
|
|
struct pci_dev *pdev = bp->pdev;
|
|
|
|
if (bp->hwrm_cmd_resp_addr) {
|
|
dma_free_coherent(&pdev->dev, PAGE_SIZE, bp->hwrm_cmd_resp_addr,
|
|
bp->hwrm_cmd_resp_dma_addr);
|
|
bp->hwrm_cmd_resp_addr = NULL;
|
|
}
|
|
|
|
if (bp->hwrm_cmd_kong_resp_addr) {
|
|
dma_free_coherent(&pdev->dev, PAGE_SIZE,
|
|
bp->hwrm_cmd_kong_resp_addr,
|
|
bp->hwrm_cmd_kong_resp_dma_addr);
|
|
bp->hwrm_cmd_kong_resp_addr = NULL;
|
|
}
|
|
}
|
|
|
|
static int bnxt_alloc_kong_hwrm_resources(struct bnxt *bp)
|
|
{
|
|
struct pci_dev *pdev = bp->pdev;
|
|
|
|
if (bp->hwrm_cmd_kong_resp_addr)
|
|
return 0;
|
|
|
|
bp->hwrm_cmd_kong_resp_addr =
|
|
dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
|
|
&bp->hwrm_cmd_kong_resp_dma_addr,
|
|
GFP_KERNEL);
|
|
if (!bp->hwrm_cmd_kong_resp_addr)
|
|
return -ENOMEM;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int bnxt_alloc_hwrm_resources(struct bnxt *bp)
|
|
{
|
|
struct pci_dev *pdev = bp->pdev;
|
|
|
|
bp->hwrm_cmd_resp_addr = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
|
|
&bp->hwrm_cmd_resp_dma_addr,
|
|
GFP_KERNEL);
|
|
if (!bp->hwrm_cmd_resp_addr)
|
|
return -ENOMEM;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void bnxt_free_hwrm_short_cmd_req(struct bnxt *bp)
|
|
{
|
|
if (bp->hwrm_short_cmd_req_addr) {
|
|
struct pci_dev *pdev = bp->pdev;
|
|
|
|
dma_free_coherent(&pdev->dev, bp->hwrm_max_ext_req_len,
|
|
bp->hwrm_short_cmd_req_addr,
|
|
bp->hwrm_short_cmd_req_dma_addr);
|
|
bp->hwrm_short_cmd_req_addr = NULL;
|
|
}
|
|
}
|
|
|
|
static int bnxt_alloc_hwrm_short_cmd_req(struct bnxt *bp)
|
|
{
|
|
struct pci_dev *pdev = bp->pdev;
|
|
|
|
if (bp->hwrm_short_cmd_req_addr)
|
|
return 0;
|
|
|
|
bp->hwrm_short_cmd_req_addr =
|
|
dma_alloc_coherent(&pdev->dev, bp->hwrm_max_ext_req_len,
|
|
&bp->hwrm_short_cmd_req_dma_addr,
|
|
GFP_KERNEL);
|
|
if (!bp->hwrm_short_cmd_req_addr)
|
|
return -ENOMEM;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void bnxt_free_port_stats(struct bnxt *bp)
|
|
{
|
|
struct pci_dev *pdev = bp->pdev;
|
|
|
|
bp->flags &= ~BNXT_FLAG_PORT_STATS;
|
|
bp->flags &= ~BNXT_FLAG_PORT_STATS_EXT;
|
|
|
|
if (bp->hw_rx_port_stats) {
|
|
dma_free_coherent(&pdev->dev, bp->hw_port_stats_size,
|
|
bp->hw_rx_port_stats,
|
|
bp->hw_rx_port_stats_map);
|
|
bp->hw_rx_port_stats = NULL;
|
|
}
|
|
|
|
if (bp->hw_tx_port_stats_ext) {
|
|
dma_free_coherent(&pdev->dev, sizeof(struct tx_port_stats_ext),
|
|
bp->hw_tx_port_stats_ext,
|
|
bp->hw_tx_port_stats_ext_map);
|
|
bp->hw_tx_port_stats_ext = NULL;
|
|
}
|
|
|
|
if (bp->hw_rx_port_stats_ext) {
|
|
dma_free_coherent(&pdev->dev, sizeof(struct rx_port_stats_ext),
|
|
bp->hw_rx_port_stats_ext,
|
|
bp->hw_rx_port_stats_ext_map);
|
|
bp->hw_rx_port_stats_ext = NULL;
|
|
}
|
|
|
|
if (bp->hw_pcie_stats) {
|
|
dma_free_coherent(&pdev->dev, sizeof(struct pcie_ctx_hw_stats),
|
|
bp->hw_pcie_stats, bp->hw_pcie_stats_map);
|
|
bp->hw_pcie_stats = NULL;
|
|
}
|
|
}
|
|
|
|
static void bnxt_free_ring_stats(struct bnxt *bp)
|
|
{
|
|
struct pci_dev *pdev = bp->pdev;
|
|
int size, i;
|
|
|
|
if (!bp->bnapi)
|
|
return;
|
|
|
|
size = bp->hw_ring_stats_size;
|
|
|
|
for (i = 0; i < bp->cp_nr_rings; i++) {
|
|
struct bnxt_napi *bnapi = bp->bnapi[i];
|
|
struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
|
|
|
|
if (cpr->hw_stats) {
|
|
dma_free_coherent(&pdev->dev, size, cpr->hw_stats,
|
|
cpr->hw_stats_map);
|
|
cpr->hw_stats = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
static int bnxt_alloc_stats(struct bnxt *bp)
|
|
{
|
|
u32 size, i;
|
|
struct pci_dev *pdev = bp->pdev;
|
|
|
|
size = bp->hw_ring_stats_size;
|
|
|
|
for (i = 0; i < bp->cp_nr_rings; i++) {
|
|
struct bnxt_napi *bnapi = bp->bnapi[i];
|
|
struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
|
|
|
|
cpr->hw_stats = dma_alloc_coherent(&pdev->dev, size,
|
|
&cpr->hw_stats_map,
|
|
GFP_KERNEL);
|
|
if (!cpr->hw_stats)
|
|
return -ENOMEM;
|
|
|
|
cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
|
|
}
|
|
|
|
if (BNXT_VF(bp) || bp->chip_num == CHIP_NUM_58700)
|
|
return 0;
|
|
|
|
if (bp->hw_rx_port_stats)
|
|
goto alloc_ext_stats;
|
|
|
|
bp->hw_port_stats_size = sizeof(struct rx_port_stats) +
|
|
sizeof(struct tx_port_stats) + 1024;
|
|
|
|
bp->hw_rx_port_stats =
|
|
dma_alloc_coherent(&pdev->dev, bp->hw_port_stats_size,
|
|
&bp->hw_rx_port_stats_map,
|
|
GFP_KERNEL);
|
|
if (!bp->hw_rx_port_stats)
|
|
return -ENOMEM;
|
|
|
|
bp->hw_tx_port_stats = (void *)(bp->hw_rx_port_stats + 1) + 512;
|
|
bp->hw_tx_port_stats_map = bp->hw_rx_port_stats_map +
|
|
sizeof(struct rx_port_stats) + 512;
|
|
bp->flags |= BNXT_FLAG_PORT_STATS;
|
|
|
|
alloc_ext_stats:
|
|
/* Display extended statistics only if FW supports it */
|
|
if (bp->hwrm_spec_code < 0x10804 || bp->hwrm_spec_code == 0x10900)
|
|
if (!(bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED))
|
|
return 0;
|
|
|
|
if (bp->hw_rx_port_stats_ext)
|
|
goto alloc_tx_ext_stats;
|
|
|
|
bp->hw_rx_port_stats_ext =
|
|
dma_alloc_coherent(&pdev->dev, sizeof(struct rx_port_stats_ext),
|
|
&bp->hw_rx_port_stats_ext_map, GFP_KERNEL);
|
|
if (!bp->hw_rx_port_stats_ext)
|
|
return 0;
|
|
|
|
alloc_tx_ext_stats:
|
|
if (bp->hw_tx_port_stats_ext)
|
|
goto alloc_pcie_stats;
|
|
|
|
if (bp->hwrm_spec_code >= 0x10902 ||
|
|
(bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED)) {
|
|
bp->hw_tx_port_stats_ext =
|
|
dma_alloc_coherent(&pdev->dev,
|
|
sizeof(struct tx_port_stats_ext),
|
|
&bp->hw_tx_port_stats_ext_map,
|
|
GFP_KERNEL);
|
|
}
|
|
bp->flags |= BNXT_FLAG_PORT_STATS_EXT;
|
|
|
|
alloc_pcie_stats:
|
|
if (bp->hw_pcie_stats ||
|
|
!(bp->fw_cap & BNXT_FW_CAP_PCIE_STATS_SUPPORTED))
|
|
return 0;
|
|
|
|
bp->hw_pcie_stats =
|
|
dma_alloc_coherent(&pdev->dev, sizeof(struct pcie_ctx_hw_stats),
|
|
&bp->hw_pcie_stats_map, GFP_KERNEL);
|
|
if (!bp->hw_pcie_stats)
|
|
return 0;
|
|
|
|
bp->flags |= BNXT_FLAG_PCIE_STATS;
|
|
return 0;
|
|
}
|
|
|
|
static void bnxt_clear_ring_indices(struct bnxt *bp)
|
|
{
|
|
int i;
|
|
|
|
if (!bp->bnapi)
|
|
return;
|
|
|
|
for (i = 0; i < bp->cp_nr_rings; i++) {
|
|
struct bnxt_napi *bnapi = bp->bnapi[i];
|
|
struct bnxt_cp_ring_info *cpr;
|
|
struct bnxt_rx_ring_info *rxr;
|
|
struct bnxt_tx_ring_info *txr;
|
|
|
|
if (!bnapi)
|
|
continue;
|
|
|
|
cpr = &bnapi->cp_ring;
|
|
cpr->cp_raw_cons = 0;
|
|
|
|
txr = bnapi->tx_ring;
|
|
if (txr) {
|
|
txr->tx_prod = 0;
|
|
txr->tx_cons = 0;
|
|
}
|
|
|
|
rxr = bnapi->rx_ring;
|
|
if (rxr) {
|
|
rxr->rx_prod = 0;
|
|
rxr->rx_agg_prod = 0;
|
|
rxr->rx_sw_agg_prod = 0;
|
|
rxr->rx_next_cons = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool irq_reinit)
|
|
{
|
|
#ifdef CONFIG_RFS_ACCEL
|
|
int i;
|
|
|
|
/* Under rtnl_lock and all our NAPIs have been disabled. It's
|
|
* safe to delete the hash table.
|
|
*/
|
|
for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
|
|
struct hlist_head *head;
|
|
struct hlist_node *tmp;
|
|
struct bnxt_ntuple_filter *fltr;
|
|
|
|
head = &bp->ntp_fltr_hash_tbl[i];
|
|
hlist_for_each_entry_safe(fltr, tmp, head, hash) {
|
|
hlist_del(&fltr->hash);
|
|
kfree(fltr);
|
|
}
|
|
}
|
|
if (irq_reinit) {
|
|
kfree(bp->ntp_fltr_bmap);
|
|
bp->ntp_fltr_bmap = NULL;
|
|
}
|
|
bp->ntp_fltr_count = 0;
|
|
#endif
|
|
}
|
|
|
|
static int bnxt_alloc_ntp_fltrs(struct bnxt *bp)
|
|
{
|
|
#ifdef CONFIG_RFS_ACCEL
|
|
int i, rc = 0;
|
|
|
|
if (!(bp->flags & BNXT_FLAG_RFS))
|
|
return 0;
|
|
|
|
for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++)
|
|
INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]);
|
|
|
|
bp->ntp_fltr_count = 0;
|
|
bp->ntp_fltr_bmap = kcalloc(BITS_TO_LONGS(BNXT_NTP_FLTR_MAX_FLTR),
|
|
sizeof(long),
|
|
GFP_KERNEL);
|
|
|
|
if (!bp->ntp_fltr_bmap)
|
|
rc = -ENOMEM;
|
|
|
|
return rc;
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init)
|
|
{
|
|
bnxt_free_vnic_attributes(bp);
|
|
bnxt_free_tx_rings(bp);
|
|
bnxt_free_rx_rings(bp);
|
|
bnxt_free_cp_rings(bp);
|
|
bnxt_free_ntp_fltrs(bp, irq_re_init);
|
|
if (irq_re_init) {
|
|
bnxt_free_ring_stats(bp);
|
|
bnxt_free_ring_grps(bp);
|
|
bnxt_free_vnics(bp);
|
|
kfree(bp->tx_ring_map);
|
|
bp->tx_ring_map = NULL;
|
|
kfree(bp->tx_ring);
|
|
bp->tx_ring = NULL;
|
|
kfree(bp->rx_ring);
|
|
bp->rx_ring = NULL;
|
|
kfree(bp->bnapi);
|
|
bp->bnapi = NULL;
|
|
} else {
|
|
bnxt_clear_ring_indices(bp);
|
|
}
|
|
}
|
|
|
|
static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init)
|
|
{
|
|
int i, j, rc, size, arr_size;
|
|
void *bnapi;
|
|
|
|
if (irq_re_init) {
|
|
/* Allocate bnapi mem pointer array and mem block for
|
|
* all queues
|
|
*/
|
|
arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) *
|
|
bp->cp_nr_rings);
|
|
size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi));
|
|
bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL);
|
|
if (!bnapi)
|
|
return -ENOMEM;
|
|
|
|
bp->bnapi = bnapi;
|
|
bnapi += arr_size;
|
|
for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) {
|
|
bp->bnapi[i] = bnapi;
|
|
bp->bnapi[i]->index = i;
|
|
bp->bnapi[i]->bp = bp;
|
|
if (bp->flags & BNXT_FLAG_CHIP_P5) {
|
|
struct bnxt_cp_ring_info *cpr =
|
|
&bp->bnapi[i]->cp_ring;
|
|
|
|
cpr->cp_ring_struct.ring_mem.flags =
|
|
BNXT_RMEM_RING_PTE_FLAG;
|
|
}
|
|
}
|
|
|
|
bp->rx_ring = kcalloc(bp->rx_nr_rings,
|
|
sizeof(struct bnxt_rx_ring_info),
|
|
GFP_KERNEL);
|
|
if (!bp->rx_ring)
|
|
return -ENOMEM;
|
|
|
|
for (i = 0; i < bp->rx_nr_rings; i++) {
|
|
struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
|
|
|
|
if (bp->flags & BNXT_FLAG_CHIP_P5) {
|
|
rxr->rx_ring_struct.ring_mem.flags =
|
|
BNXT_RMEM_RING_PTE_FLAG;
|
|
rxr->rx_agg_ring_struct.ring_mem.flags =
|
|
BNXT_RMEM_RING_PTE_FLAG;
|
|
}
|
|
rxr->bnapi = bp->bnapi[i];
|
|
bp->bnapi[i]->rx_ring = &bp->rx_ring[i];
|
|
}
|
|
|
|
bp->tx_ring = kcalloc(bp->tx_nr_rings,
|
|
sizeof(struct bnxt_tx_ring_info),
|
|
GFP_KERNEL);
|
|
if (!bp->tx_ring)
|
|
return -ENOMEM;
|
|
|
|
bp->tx_ring_map = kcalloc(bp->tx_nr_rings, sizeof(u16),
|
|
GFP_KERNEL);
|
|
|
|
if (!bp->tx_ring_map)
|
|
return -ENOMEM;
|
|
|
|
if (bp->flags & BNXT_FLAG_SHARED_RINGS)
|
|
j = 0;
|
|
else
|
|
j = bp->rx_nr_rings;
|
|
|
|
for (i = 0; i < bp->tx_nr_rings; i++, j++) {
|
|
struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
|
|
|
|
if (bp->flags & BNXT_FLAG_CHIP_P5)
|
|
txr->tx_ring_struct.ring_mem.flags =
|
|
BNXT_RMEM_RING_PTE_FLAG;
|
|
txr->bnapi = bp->bnapi[j];
|
|
bp->bnapi[j]->tx_ring = txr;
|
|
bp->tx_ring_map[i] = bp->tx_nr_rings_xdp + i;
|
|
if (i >= bp->tx_nr_rings_xdp) {
|
|
txr->txq_index = i - bp->tx_nr_rings_xdp;
|
|
bp->bnapi[j]->tx_int = bnxt_tx_int;
|
|
} else {
|
|
bp->bnapi[j]->flags |= BNXT_NAPI_FLAG_XDP;
|
|
bp->bnapi[j]->tx_int = bnxt_tx_int_xdp;
|
|
}
|
|
}
|
|
|
|
rc = bnxt_alloc_stats(bp);
|
|
if (rc)
|
|
goto alloc_mem_err;
|
|
|
|
rc = bnxt_alloc_ntp_fltrs(bp);
|
|
if (rc)
|
|
goto alloc_mem_err;
|
|
|
|
rc = bnxt_alloc_vnics(bp);
|
|
if (rc)
|
|
goto alloc_mem_err;
|
|
}
|
|
|
|
bnxt_init_ring_struct(bp);
|
|
|
|
rc = bnxt_alloc_rx_rings(bp);
|
|
if (rc)
|
|
goto alloc_mem_err;
|
|
|
|
rc = bnxt_alloc_tx_rings(bp);
|
|
if (rc)
|
|
goto alloc_mem_err;
|
|
|
|
rc = bnxt_alloc_cp_rings(bp);
|
|
if (rc)
|
|
goto alloc_mem_err;
|
|
|
|
bp->vnic_info[0].flags |= BNXT_VNIC_RSS_FLAG | BNXT_VNIC_MCAST_FLAG |
|
|
BNXT_VNIC_UCAST_FLAG;
|
|
rc = bnxt_alloc_vnic_attributes(bp);
|
|
if (rc)
|
|
goto alloc_mem_err;
|
|
return 0;
|
|
|
|
alloc_mem_err:
|
|
bnxt_free_mem(bp, true);
|
|
return rc;
|
|
}
|
|
|
|
static void bnxt_disable_int(struct bnxt *bp)
|
|
{
|
|
int i;
|
|
|
|
if (!bp->bnapi)
|
|
return;
|
|
|
|
for (i = 0; i < bp->cp_nr_rings; i++) {
|
|
struct bnxt_napi *bnapi = bp->bnapi[i];
|
|
struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
|
|
struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
|
|
|
|
if (ring->fw_ring_id != INVALID_HW_RING_ID)
|
|
bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons);
|
|
}
|
|
}
|
|
|
|
static int bnxt_cp_num_to_irq_num(struct bnxt *bp, int n)
|
|
{
|
|
struct bnxt_napi *bnapi = bp->bnapi[n];
|
|
struct bnxt_cp_ring_info *cpr;
|
|
|
|
cpr = &bnapi->cp_ring;
|
|
return cpr->cp_ring_struct.map_idx;
|
|
}
|
|
|
|
static void bnxt_disable_int_sync(struct bnxt *bp)
|
|
{
|
|
int i;
|
|
|
|
atomic_inc(&bp->intr_sem);
|
|
|
|
bnxt_disable_int(bp);
|
|
for (i = 0; i < bp->cp_nr_rings; i++) {
|
|
int map_idx = bnxt_cp_num_to_irq_num(bp, i);
|
|
|
|
synchronize_irq(bp->irq_tbl[map_idx].vector);
|
|
}
|
|
}
|
|
|
|
static void bnxt_enable_int(struct bnxt *bp)
|
|
{
|
|
int i;
|
|
|
|
atomic_set(&bp->intr_sem, 0);
|
|
for (i = 0; i < bp->cp_nr_rings; i++) {
|
|
struct bnxt_napi *bnapi = bp->bnapi[i];
|
|
struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
|
|
|
|
bnxt_db_nq_arm(bp, &cpr->cp_db, cpr->cp_raw_cons);
|
|
}
|
|
}
|
|
|
|
void bnxt_hwrm_cmd_hdr_init(struct bnxt *bp, void *request, u16 req_type,
|
|
u16 cmpl_ring, u16 target_id)
|
|
{
|
|
struct input *req = request;
|
|
|
|
req->req_type = cpu_to_le16(req_type);
|
|
req->cmpl_ring = cpu_to_le16(cmpl_ring);
|
|
req->target_id = cpu_to_le16(target_id);
|
|
if (bnxt_kong_hwrm_message(bp, req))
|
|
req->resp_addr = cpu_to_le64(bp->hwrm_cmd_kong_resp_dma_addr);
|
|
else
|
|
req->resp_addr = cpu_to_le64(bp->hwrm_cmd_resp_dma_addr);
|
|
}
|
|
|
|
static int bnxt_hwrm_to_stderr(u32 hwrm_err)
|
|
{
|
|
switch (hwrm_err) {
|
|
case HWRM_ERR_CODE_SUCCESS:
|
|
return 0;
|
|
case HWRM_ERR_CODE_RESOURCE_ACCESS_DENIED:
|
|
return -EACCES;
|
|
case HWRM_ERR_CODE_RESOURCE_ALLOC_ERROR:
|
|
return -ENOSPC;
|
|
case HWRM_ERR_CODE_INVALID_PARAMS:
|
|
case HWRM_ERR_CODE_INVALID_FLAGS:
|
|
case HWRM_ERR_CODE_INVALID_ENABLES:
|
|
case HWRM_ERR_CODE_UNSUPPORTED_TLV:
|
|
case HWRM_ERR_CODE_UNSUPPORTED_OPTION_ERR:
|
|
return -EINVAL;
|
|
case HWRM_ERR_CODE_NO_BUFFER:
|
|
return -ENOMEM;
|
|
case HWRM_ERR_CODE_HOT_RESET_PROGRESS:
|
|
return -EAGAIN;
|
|
case HWRM_ERR_CODE_CMD_NOT_SUPPORTED:
|
|
return -EOPNOTSUPP;
|
|
default:
|
|
return -EIO;
|
|
}
|
|
}
|
|
|
|
static int bnxt_hwrm_do_send_msg(struct bnxt *bp, void *msg, u32 msg_len,
|
|
int timeout, bool silent)
|
|
{
|
|
int i, intr_process, rc, tmo_count;
|
|
struct input *req = msg;
|
|
u32 *data = msg;
|
|
__le32 *resp_len;
|
|
u8 *valid;
|
|
u16 cp_ring_id, len = 0;
|
|
struct hwrm_err_output *resp = bp->hwrm_cmd_resp_addr;
|
|
u16 max_req_len = BNXT_HWRM_MAX_REQ_LEN;
|
|
struct hwrm_short_input short_input = {0};
|
|
u32 doorbell_offset = BNXT_GRCPF_REG_CHIMP_COMM_TRIGGER;
|
|
u8 *resp_addr = (u8 *)bp->hwrm_cmd_resp_addr;
|
|
u32 bar_offset = BNXT_GRCPF_REG_CHIMP_COMM;
|
|
u16 dst = BNXT_HWRM_CHNL_CHIMP;
|
|
|
|
if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))
|
|
return -EBUSY;
|
|
|
|
if (msg_len > BNXT_HWRM_MAX_REQ_LEN) {
|
|
if (msg_len > bp->hwrm_max_ext_req_len ||
|
|
!bp->hwrm_short_cmd_req_addr)
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (bnxt_hwrm_kong_chnl(bp, req)) {
|
|
dst = BNXT_HWRM_CHNL_KONG;
|
|
bar_offset = BNXT_GRCPF_REG_KONG_COMM;
|
|
doorbell_offset = BNXT_GRCPF_REG_KONG_COMM_TRIGGER;
|
|
resp = bp->hwrm_cmd_kong_resp_addr;
|
|
resp_addr = (u8 *)bp->hwrm_cmd_kong_resp_addr;
|
|
}
|
|
|
|
memset(resp, 0, PAGE_SIZE);
|
|
cp_ring_id = le16_to_cpu(req->cmpl_ring);
|
|
intr_process = (cp_ring_id == INVALID_HW_RING_ID) ? 0 : 1;
|
|
|
|
req->seq_id = cpu_to_le16(bnxt_get_hwrm_seq_id(bp, dst));
|
|
/* currently supports only one outstanding message */
|
|
if (intr_process)
|
|
bp->hwrm_intr_seq_id = le16_to_cpu(req->seq_id);
|
|
|
|
if ((bp->fw_cap & BNXT_FW_CAP_SHORT_CMD) ||
|
|
msg_len > BNXT_HWRM_MAX_REQ_LEN) {
|
|
void *short_cmd_req = bp->hwrm_short_cmd_req_addr;
|
|
u16 max_msg_len;
|
|
|
|
/* Set boundary for maximum extended request length for short
|
|
* cmd format. If passed up from device use the max supported
|
|
* internal req length.
|
|
*/
|
|
max_msg_len = bp->hwrm_max_ext_req_len;
|
|
|
|
memcpy(short_cmd_req, req, msg_len);
|
|
if (msg_len < max_msg_len)
|
|
memset(short_cmd_req + msg_len, 0,
|
|
max_msg_len - msg_len);
|
|
|
|
short_input.req_type = req->req_type;
|
|
short_input.signature =
|
|
cpu_to_le16(SHORT_REQ_SIGNATURE_SHORT_CMD);
|
|
short_input.size = cpu_to_le16(msg_len);
|
|
short_input.req_addr =
|
|
cpu_to_le64(bp->hwrm_short_cmd_req_dma_addr);
|
|
|
|
data = (u32 *)&short_input;
|
|
msg_len = sizeof(short_input);
|
|
|
|
/* Sync memory write before updating doorbell */
|
|
wmb();
|
|
|
|
max_req_len = BNXT_HWRM_SHORT_REQ_LEN;
|
|
}
|
|
|
|
/* Write request msg to hwrm channel */
|
|
__iowrite32_copy(bp->bar0 + bar_offset, data, msg_len / 4);
|
|
|
|
for (i = msg_len; i < max_req_len; i += 4)
|
|
writel(0, bp->bar0 + bar_offset + i);
|
|
|
|
/* Ring channel doorbell */
|
|
writel(1, bp->bar0 + doorbell_offset);
|
|
|
|
if (!pci_is_enabled(bp->pdev))
|
|
return 0;
|
|
|
|
if (!timeout)
|
|
timeout = DFLT_HWRM_CMD_TIMEOUT;
|
|
/* convert timeout to usec */
|
|
timeout *= 1000;
|
|
|
|
i = 0;
|
|
/* Short timeout for the first few iterations:
|
|
* number of loops = number of loops for short timeout +
|
|
* number of loops for standard timeout.
|
|
*/
|
|
tmo_count = HWRM_SHORT_TIMEOUT_COUNTER;
|
|
timeout = timeout - HWRM_SHORT_MIN_TIMEOUT * HWRM_SHORT_TIMEOUT_COUNTER;
|
|
tmo_count += DIV_ROUND_UP(timeout, HWRM_MIN_TIMEOUT);
|
|
resp_len = (__le32 *)(resp_addr + HWRM_RESP_LEN_OFFSET);
|
|
|
|
if (intr_process) {
|
|
u16 seq_id = bp->hwrm_intr_seq_id;
|
|
|
|
/* Wait until hwrm response cmpl interrupt is processed */
|
|
while (bp->hwrm_intr_seq_id != (u16)~seq_id &&
|
|
i++ < tmo_count) {
|
|
/* on first few passes, just barely sleep */
|
|
if (i < HWRM_SHORT_TIMEOUT_COUNTER)
|
|
usleep_range(HWRM_SHORT_MIN_TIMEOUT,
|
|
HWRM_SHORT_MAX_TIMEOUT);
|
|
else
|
|
usleep_range(HWRM_MIN_TIMEOUT,
|
|
HWRM_MAX_TIMEOUT);
|
|
}
|
|
|
|
if (bp->hwrm_intr_seq_id != (u16)~seq_id) {
|
|
if (!silent)
|
|
netdev_err(bp->dev, "Resp cmpl intr err msg: 0x%x\n",
|
|
le16_to_cpu(req->req_type));
|
|
return -EBUSY;
|
|
}
|
|
len = (le32_to_cpu(*resp_len) & HWRM_RESP_LEN_MASK) >>
|
|
HWRM_RESP_LEN_SFT;
|
|
valid = resp_addr + len - 1;
|
|
} else {
|
|
int j;
|
|
|
|
/* Check if response len is updated */
|
|
for (i = 0; i < tmo_count; i++) {
|
|
len = (le32_to_cpu(*resp_len) & HWRM_RESP_LEN_MASK) >>
|
|
HWRM_RESP_LEN_SFT;
|
|
if (len)
|
|
break;
|
|
/* on first few passes, just barely sleep */
|
|
if (i < HWRM_SHORT_TIMEOUT_COUNTER)
|
|
usleep_range(HWRM_SHORT_MIN_TIMEOUT,
|
|
HWRM_SHORT_MAX_TIMEOUT);
|
|
else
|
|
usleep_range(HWRM_MIN_TIMEOUT,
|
|
HWRM_MAX_TIMEOUT);
|
|
}
|
|
|
|
if (i >= tmo_count) {
|
|
if (!silent)
|
|
netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d\n",
|
|
HWRM_TOTAL_TIMEOUT(i),
|
|
le16_to_cpu(req->req_type),
|
|
le16_to_cpu(req->seq_id), len);
|
|
return -EBUSY;
|
|
}
|
|
|
|
/* Last byte of resp contains valid bit */
|
|
valid = resp_addr + len - 1;
|
|
for (j = 0; j < HWRM_VALID_BIT_DELAY_USEC; j++) {
|
|
/* make sure we read from updated DMA memory */
|
|
dma_rmb();
|
|
if (*valid)
|
|
break;
|
|
usleep_range(1, 5);
|
|
}
|
|
|
|
if (j >= HWRM_VALID_BIT_DELAY_USEC) {
|
|
if (!silent)
|
|
netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d v:%d\n",
|
|
HWRM_TOTAL_TIMEOUT(i),
|
|
le16_to_cpu(req->req_type),
|
|
le16_to_cpu(req->seq_id), len,
|
|
*valid);
|
|
return -EBUSY;
|
|
}
|
|
}
|
|
|
|
/* Zero valid bit for compatibility. Valid bit in an older spec
|
|
* may become a new field in a newer spec. We must make sure that
|
|
* a new field not implemented by old spec will read zero.
|
|
*/
|
|
*valid = 0;
|
|
rc = le16_to_cpu(resp->error_code);
|
|
if (rc && !silent)
|
|
netdev_err(bp->dev, "hwrm req_type 0x%x seq id 0x%x error 0x%x\n",
|
|
le16_to_cpu(resp->req_type),
|
|
le16_to_cpu(resp->seq_id), rc);
|
|
return bnxt_hwrm_to_stderr(rc);
|
|
}
|
|
|
|
int _hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
|
|
{
|
|
return bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, false);
|
|
}
|
|
|
|
int _hwrm_send_message_silent(struct bnxt *bp, void *msg, u32 msg_len,
|
|
int timeout)
|
|
{
|
|
return bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, true);
|
|
}
|
|
|
|
int hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
|
|
{
|
|
int rc;
|
|
|
|
mutex_lock(&bp->hwrm_cmd_lock);
|
|
rc = _hwrm_send_message(bp, msg, msg_len, timeout);
|
|
mutex_unlock(&bp->hwrm_cmd_lock);
|
|
return rc;
|
|
}
|
|
|
|
int hwrm_send_message_silent(struct bnxt *bp, void *msg, u32 msg_len,
|
|
int timeout)
|
|
{
|
|
int rc;
|
|
|
|
mutex_lock(&bp->hwrm_cmd_lock);
|
|
rc = bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, true);
|
|
mutex_unlock(&bp->hwrm_cmd_lock);
|
|
return rc;
|
|
}
|
|
|
|
int bnxt_hwrm_func_rgtr_async_events(struct bnxt *bp, unsigned long *bmap,
|
|
int bmap_size)
|
|
{
|
|
struct hwrm_func_drv_rgtr_input req = {0};
|
|
DECLARE_BITMAP(async_events_bmap, 256);
|
|
u32 *events = (u32 *)async_events_bmap;
|
|
int i;
|
|
|
|
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_RGTR, -1, -1);
|
|
|
|
req.enables =
|
|
cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
|
|
|
|
memset(async_events_bmap, 0, sizeof(async_events_bmap));
|
|
for (i = 0; i < ARRAY_SIZE(bnxt_async_events_arr); i++) {
|
|
u16 event_id = bnxt_async_events_arr[i];
|
|
|
|
if (event_id == ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY &&
|
|
!(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
|
|
continue;
|
|
__set_bit(bnxt_async_events_arr[i], async_events_bmap);
|
|
}
|
|
if (bmap && bmap_size) {
|
|
for (i = 0; i < bmap_size; i++) {
|
|
if (test_bit(i, bmap))
|
|
__set_bit(i, async_events_bmap);
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < 8; i++)
|
|
req.async_event_fwd[i] |= cpu_to_le32(events[i]);
|
|
|
|
return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
|
|
}
|
|
|
|
static int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp)
|
|
{
|
|
struct hwrm_func_drv_rgtr_output *resp = bp->hwrm_cmd_resp_addr;
|
|
struct hwrm_func_drv_rgtr_input req = {0};
|
|
u32 flags;
|
|
int rc;
|
|
|
|
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_RGTR, -1, -1);
|
|
|
|
req.enables =
|
|
cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE |
|
|
FUNC_DRV_RGTR_REQ_ENABLES_VER);
|
|
|
|
req.os_type = cpu_to_le16(FUNC_DRV_RGTR_REQ_OS_TYPE_LINUX);
|
|
flags = FUNC_DRV_RGTR_REQ_FLAGS_16BIT_VER_MODE |
|
|
FUNC_DRV_RGTR_REQ_FLAGS_HOT_RESET_SUPPORT;
|
|
if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)
|
|
flags |= FUNC_DRV_RGTR_REQ_FLAGS_ERROR_RECOVERY_SUPPORT;
|
|
req.flags = cpu_to_le32(flags);
|
|
req.ver_maj_8b = DRV_VER_MAJ;
|
|
req.ver_min_8b = DRV_VER_MIN;
|
|
req.ver_upd_8b = DRV_VER_UPD;
|
|
req.ver_maj = cpu_to_le16(DRV_VER_MAJ);
|
|
req.ver_min = cpu_to_le16(DRV_VER_MIN);
|
|
req.ver_upd = cpu_to_le16(DRV_VER_UPD);
|
|
|
|
if (BNXT_PF(bp)) {
|
|
u32 data[8];
|
|
int i;
|
|
|
|
memset(data, 0, sizeof(data));
|
|
for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++) {
|
|
u16 cmd = bnxt_vf_req_snif[i];
|
|
unsigned int bit, idx;
|
|
|
|
idx = cmd / 32;
|
|
bit = cmd % 32;
|
|
data[idx] |= 1 << bit;
|
|
}
|
|
|
|
for (i = 0; i < 8; i++)
|
|
req.vf_req_fwd[i] = cpu_to_le32(data[i]);
|
|
|
|
req.enables |=
|
|
cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD);
|
|
}
|
|
|
|
if (bp->fw_cap & BNXT_FW_CAP_OVS_64BIT_HANDLE)
|
|
req.flags |= cpu_to_le32(
|
|
FUNC_DRV_RGTR_REQ_FLAGS_FLOW_HANDLE_64BIT_MODE);
|
|
|
|
mutex_lock(&bp->hwrm_cmd_lock);
|
|
rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
|
|
if (!rc && (resp->flags &
|
|
cpu_to_le32(FUNC_DRV_RGTR_RESP_FLAGS_IF_CHANGE_SUPPORTED)))
|
|
bp->fw_cap |= BNXT_FW_CAP_IF_CHANGE;
|
|
mutex_unlock(&bp->hwrm_cmd_lock);
|
|
return rc;
|
|
}
|
|
|
|
static int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp)
|
|
{
|
|
struct hwrm_func_drv_unrgtr_input req = {0};
|
|
|
|
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_UNRGTR, -1, -1);
|
|
return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
|
|
}
|
|
|
|
static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type)
|
|
{
|
|
u32 rc = 0;
|
|
struct hwrm_tunnel_dst_port_free_input req = {0};
|
|
|
|
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_FREE, -1, -1);
|
|
req.tunnel_type = tunnel_type;
|
|
|
|
switch (tunnel_type) {
|
|
case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN:
|
|
req.tunnel_dst_port_id = bp->vxlan_fw_dst_port_id;
|
|
break;
|
|
case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE:
|
|
req.tunnel_dst_port_id = bp->nge_fw_dst_port_id;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
|
|
if (rc)
|
|
netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n",
|
|
rc);
|
|
return rc;
|
|
}
|
|
|
|
static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port,
|
|
u8 tunnel_type)
|
|
{
|
|
u32 rc = 0;
|
|
struct hwrm_tunnel_dst_port_alloc_input req = {0};
|
|
struct hwrm_tunnel_dst_port_alloc_output *resp = bp->hwrm_cmd_resp_addr;
|
|
|
|
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_ALLOC, -1, -1);
|
|
|
|
req.tunnel_type = tunnel_type;
|
|
req.tunnel_dst_port_val = port;
|
|
|
|
mutex_lock(&bp->hwrm_cmd_lock);
|
|
rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
|
|
if (rc) {
|
|
netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n",
|
|
rc);
|
|
goto err_out;
|
|
}
|
|
|
|
switch (tunnel_type) {
|
|
case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN:
|
|
bp->vxlan_fw_dst_port_id = resp->tunnel_dst_port_id;
|
|
break;
|
|
case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE:
|
|
bp->nge_fw_dst_port_id = resp->tunnel_dst_port_id;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
err_out:
|
|
mutex_unlock(&bp->hwrm_cmd_lock);
|
|
return rc;
|
|
}
|
|
|
|
static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id)
|
|
{
|
|
struct hwrm_cfa_l2_set_rx_mask_input req = {0};
|
|
struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
|
|
|
|
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_SET_RX_MASK, -1, -1);
|
|
req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
|
|
|
|
req.num_mc_entries = cpu_to_le32(vnic->mc_list_count);
|
|
req.mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping);
|
|
req.mask = cpu_to_le32(vnic->rx_mask);
|
|
return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
|
|
}
|
|
|
|
#ifdef CONFIG_RFS_ACCEL
|
|
static int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp,
|
|
struct bnxt_ntuple_filter *fltr)
|
|
{
|
|
struct hwrm_cfa_ntuple_filter_free_input req = {0};
|
|
|
|
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_FREE, -1, -1);
|
|
req.ntuple_filter_id = fltr->filter_id;
|
|
return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
|
|
}
|
|
|
|
#define BNXT_NTP_FLTR_FLAGS \
|
|
(CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID | \
|
|
CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE | \
|
|
CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_MACADDR | \
|
|
CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE | \
|
|
CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR | \
|
|
CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK | \
|
|
CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR | \
|
|
CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK | \
|
|
CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL | \
|
|
CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT | \
|
|
CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK | \
|
|
CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT | \
|
|
CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK | \
|
|
CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID)
|
|
|
|
#define BNXT_NTP_TUNNEL_FLTR_FLAG \
|
|
CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_TUNNEL_TYPE
|
|
|
|
static int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp,
|
|
struct bnxt_ntuple_filter *fltr)
|
|
{
|
|
struct hwrm_cfa_ntuple_filter_alloc_input req = {0};
|
|
struct hwrm_cfa_ntuple_filter_alloc_output *resp;
|
|
struct flow_keys *keys = &fltr->fkeys;
|
|
struct bnxt_vnic_info *vnic;
|
|
u32 flags = 0;
|
|
int rc = 0;
|
|
|
|
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_ALLOC, -1, -1);
|
|
req.l2_filter_id = bp->vnic_info[0].fw_l2_filter_id[fltr->l2_fltr_idx];
|
|
|
|
if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2) {
|
|
flags = CFA_NTUPLE_FILTER_ALLOC_REQ_FLAGS_DEST_RFS_RING_IDX;
|
|
req.dst_id = cpu_to_le16(fltr->rxq);
|
|
} else {
|
|
vnic = &bp->vnic_info[fltr->rxq + 1];
|
|
req.dst_id = cpu_to_le16(vnic->fw_vnic_id);
|
|
}
|
|
req.flags = cpu_to_le32(flags);
|
|
req.enables = cpu_to_le32(BNXT_NTP_FLTR_FLAGS);
|
|
|
|
req.ethertype = htons(ETH_P_IP);
|
|
memcpy(req.src_macaddr, fltr->src_mac_addr, ETH_ALEN);
|
|
req.ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4;
|
|
req.ip_protocol = keys->basic.ip_proto;
|
|
|
|
if (keys->basic.n_proto == htons(ETH_P_IPV6)) {
|
|
int i;
|
|
|
|
req.ethertype = htons(ETH_P_IPV6);
|
|
req.ip_addr_type =
|
|
CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV6;
|
|
*(struct in6_addr *)&req.src_ipaddr[0] =
|
|
keys->addrs.v6addrs.src;
|
|
*(struct in6_addr *)&req.dst_ipaddr[0] =
|
|
keys->addrs.v6addrs.dst;
|
|
for (i = 0; i < 4; i++) {
|
|
req.src_ipaddr_mask[i] = cpu_to_be32(0xffffffff);
|
|
req.dst_ipaddr_mask[i] = cpu_to_be32(0xffffffff);
|
|
}
|
|
} else {
|
|
req.src_ipaddr[0] = keys->addrs.v4addrs.src;
|
|
req.src_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
|
|
req.dst_ipaddr[0] = keys->addrs.v4addrs.dst;
|
|
req.dst_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
|
|
}
|
|
if (keys->control.flags & FLOW_DIS_ENCAPSULATION) {
|
|
req.enables |= cpu_to_le32(BNXT_NTP_TUNNEL_FLTR_FLAG);
|
|
req.tunnel_type =
|
|
CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_ANYTUNNEL;
|
|
}
|
|
|
|
req.src_port = keys->ports.src;
|
|
req.src_port_mask = cpu_to_be16(0xffff);
|
|
req.dst_port = keys->ports.dst;
|
|
req.dst_port_mask = cpu_to_be16(0xffff);
|
|
|
|
mutex_lock(&bp->hwrm_cmd_lock);
|
|
rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
|
|
if (!rc) {
|
|
resp = bnxt_get_hwrm_resp_addr(bp, &req);
|
|
fltr->filter_id = resp->ntuple_filter_id;
|
|
}
|
|
mutex_unlock(&bp->hwrm_cmd_lock);
|
|
return rc;
|
|
}
|
|
#endif
|
|
|
|
static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx,
|
|
u8 *mac_addr)
|
|
{
|
|
u32 rc = 0;
|
|
struct hwrm_cfa_l2_filter_alloc_input req = {0};
|
|
struct hwrm_cfa_l2_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr;
|
|
|
|
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_ALLOC, -1, -1);
|
|
req.flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX);
|
|
if (!BNXT_CHIP_TYPE_NITRO_A0(bp))
|
|
req.flags |=
|
|
cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST);
|
|
req.dst_id = cpu_to_le16(bp->vnic_info[vnic_id].fw_vnic_id);
|
|
req.enables =
|
|
cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR |
|
|
CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID |
|
|
CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK);
|
|
memcpy(req.l2_addr, mac_addr, ETH_ALEN);
|
|
req.l2_addr_mask[0] = 0xff;
|
|
req.l2_addr_mask[1] = 0xff;
|
|
req.l2_addr_mask[2] = 0xff;
|
|
req.l2_addr_mask[3] = 0xff;
|
|
req.l2_addr_mask[4] = 0xff;
|
|
req.l2_addr_mask[5] = 0xff;
|
|
|
|
mutex_lock(&bp->hwrm_cmd_lock);
|
|
rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
|
|
if (!rc)
|
|
bp->vnic_info[vnic_id].fw_l2_filter_id[idx] =
|
|
resp->l2_filter_id;
|
|
mutex_unlock(&bp->hwrm_cmd_lock);
|
|
return rc;
|
|
}
|
|
|
|
static int bnxt_hwrm_clear_vnic_filter(struct bnxt *bp)
|
|
{
|
|
u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */
|
|
int rc = 0;
|
|
|
|
/* Any associated ntuple filters will also be cleared by firmware. */
|
|
mutex_lock(&bp->hwrm_cmd_lock);
|
|
for (i = 0; i < num_of_vnics; i++) {
|
|
struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
|
|
|
|
for (j = 0; j < vnic->uc_filter_count; j++) {
|
|
struct hwrm_cfa_l2_filter_free_input req = {0};
|
|
|
|
bnxt_hwrm_cmd_hdr_init(bp, &req,
|
|
HWRM_CFA_L2_FILTER_FREE, -1, -1);
|
|
|
|
req.l2_filter_id = vnic->fw_l2_filter_id[j];
|
|
|
|
rc = _hwrm_send_message(bp, &req, sizeof(req),
|
|
HWRM_CMD_TIMEOUT);
|
|
}
|
|
vnic->uc_filter_count = 0;
|
|
}
|
|
mutex_unlock(&bp->hwrm_cmd_lock);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, u16 vnic_id, u32 tpa_flags)
|
|
{
|
|
struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
|
|
u16 max_aggs = VNIC_TPA_CFG_REQ_MAX_AGGS_MAX;
|
|
struct hwrm_vnic_tpa_cfg_input req = {0};
|
|
|
|
if (vnic->fw_vnic_id == INVALID_HW_RING_ID)
|
|
return 0;
|
|
|
|
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_TPA_CFG, -1, -1);
|
|
|
|
if (tpa_flags) {
|
|
u16 mss = bp->dev->mtu - 40;
|
|
u32 nsegs, n, segs = 0, flags;
|
|
|
|
flags = VNIC_TPA_CFG_REQ_FLAGS_TPA |
|
|
VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA |
|
|
VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE |
|
|
VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN |
|
|
VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ;
|
|
if (tpa_flags & BNXT_FLAG_GRO)
|
|
flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO;
|
|
|
|
req.flags = cpu_to_le32(flags);
|
|
|
|
req.enables =
|
|
cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS |
|
|
VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS |
|
|
VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN);
|
|
|
|
/* Number of segs are log2 units, and first packet is not
|
|
* included as part of this units.
|
|
*/
|
|
if (mss <= BNXT_RX_PAGE_SIZE) {
|
|
n = BNXT_RX_PAGE_SIZE / mss;
|
|
nsegs = (MAX_SKB_FRAGS - 1) * n;
|
|
} else {
|
|
n = mss / BNXT_RX_PAGE_SIZE;
|
|
if (mss & (BNXT_RX_PAGE_SIZE - 1))
|
|
n++;
|
|
nsegs = (MAX_SKB_FRAGS - n) / n;
|
|
}
|
|
|
|
if (bp->flags & BNXT_FLAG_CHIP_P5) {
|
|
segs = MAX_TPA_SEGS_P5;
|
|
max_aggs = bp->max_tpa;
|
|
} else {
|
|
segs = ilog2(nsegs);
|
|
}
|
|
req.max_agg_segs = cpu_to_le16(segs);
|
|
req.max_aggs = cpu_to_le16(max_aggs);
|
|
|
|
req.min_agg_len = cpu_to_le32(512);
|
|
}
|
|
req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
|
|
|
|
return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
|
|
}
|
|
|
|
static u16 bnxt_cp_ring_from_grp(struct bnxt *bp, struct bnxt_ring_struct *ring)
|
|
{
|
|
struct bnxt_ring_grp_info *grp_info;
|
|
|
|
grp_info = &bp->grp_info[ring->grp_idx];
|
|
return grp_info->cp_fw_ring_id;
|
|
}
|
|
|
|
static u16 bnxt_cp_ring_for_rx(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
|
|
{
|
|
if (bp->flags & BNXT_FLAG_CHIP_P5) {
|
|
struct bnxt_napi *bnapi = rxr->bnapi;
|
|
struct bnxt_cp_ring_info *cpr;
|
|
|
|
cpr = bnapi->cp_ring.cp_ring_arr[BNXT_RX_HDL];
|
|
return cpr->cp_ring_struct.fw_ring_id;
|
|
} else {
|
|
return bnxt_cp_ring_from_grp(bp, &rxr->rx_ring_struct);
|
|
}
|
|
}
|
|
|
|
static u16 bnxt_cp_ring_for_tx(struct bnxt *bp, struct bnxt_tx_ring_info *txr)
|
|
{
|
|
if (bp->flags & BNXT_FLAG_CHIP_P5) {
|
|
struct bnxt_napi *bnapi = txr->bnapi;
|
|
struct bnxt_cp_ring_info *cpr;
|
|
|
|
cpr = bnapi->cp_ring.cp_ring_arr[BNXT_TX_HDL];
|
|
return cpr->cp_ring_struct.fw_ring_id;
|
|
} else {
|
|
return bnxt_cp_ring_from_grp(bp, &txr->tx_ring_struct);
|
|
}
|
|
}
|
|
|
|
static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, u16 vnic_id, bool set_rss)
|
|
{
|
|
u32 i, j, max_rings;
|
|
struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
|
|
struct hwrm_vnic_rss_cfg_input req = {0};
|
|
|
|
if ((bp->flags & BNXT_FLAG_CHIP_P5) ||
|
|
vnic->fw_rss_cos_lb_ctx[0] == INVALID_HW_RING_ID)
|
|
return 0;
|
|
|
|
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_CFG, -1, -1);
|
|
if (set_rss) {
|
|
req.hash_type = cpu_to_le32(bp->rss_hash_cfg);
|
|
req.hash_mode_flags = VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT;
|
|
if (vnic->flags & BNXT_VNIC_RSS_FLAG) {
|
|
if (BNXT_CHIP_TYPE_NITRO_A0(bp))
|
|
max_rings = bp->rx_nr_rings - 1;
|
|
else
|
|
max_rings = bp->rx_nr_rings;
|
|
} else {
|
|
max_rings = 1;
|
|
}
|
|
|
|
/* Fill the RSS indirection table with ring group ids */
|
|
for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++, j++) {
|
|
if (j == max_rings)
|
|
j = 0;
|
|
vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]);
|
|
}
|
|
|
|
req.ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr);
|
|
req.hash_key_tbl_addr =
|
|
cpu_to_le64(vnic->rss_hash_key_dma_addr);
|
|
}
|
|
req.rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
|
|
return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
|
|
}
|
|
|
|
static int bnxt_hwrm_vnic_set_rss_p5(struct bnxt *bp, u16 vnic_id, bool set_rss)
|
|
{
|
|
struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
|
|
u32 i, j, k, nr_ctxs, max_rings = bp->rx_nr_rings;
|
|
struct bnxt_rx_ring_info *rxr = &bp->rx_ring[0];
|
|
struct hwrm_vnic_rss_cfg_input req = {0};
|
|
|
|
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_CFG, -1, -1);
|
|
req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
|
|
if (!set_rss) {
|
|
hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
|
|
return 0;
|
|
}
|
|
req.hash_type = cpu_to_le32(bp->rss_hash_cfg);
|
|
req.hash_mode_flags = VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT;
|
|
req.ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr);
|
|
req.hash_key_tbl_addr = cpu_to_le64(vnic->rss_hash_key_dma_addr);
|
|
nr_ctxs = DIV_ROUND_UP(bp->rx_nr_rings, 64);
|
|
for (i = 0, k = 0; i < nr_ctxs; i++) {
|
|
__le16 *ring_tbl = vnic->rss_table;
|
|
int rc;
|
|
|
|
req.ring_table_pair_index = i;
|
|
req.rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[i]);
|
|
for (j = 0; j < 64; j++) {
|
|
u16 ring_id;
|
|
|
|
ring_id = rxr->rx_ring_struct.fw_ring_id;
|
|
*ring_tbl++ = cpu_to_le16(ring_id);
|
|
ring_id = bnxt_cp_ring_for_rx(bp, rxr);
|
|
*ring_tbl++ = cpu_to_le16(ring_id);
|
|
rxr++;
|
|
k++;
|
|
if (k == max_rings) {
|
|
k = 0;
|
|
rxr = &bp->rx_ring[0];
|
|
}
|
|
}
|
|
rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
|
|
if (rc)
|
|
return rc;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, u16 vnic_id)
|
|
{
|
|
struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
|
|
struct hwrm_vnic_plcmodes_cfg_input req = {0};
|
|
|
|
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_PLCMODES_CFG, -1, -1);
|
|
req.flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT |
|
|
VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 |
|
|
VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6);
|
|
req.enables =
|
|
cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID |
|
|
VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID);
|
|
/* thresholds not implemented in firmware yet */
|
|
req.jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh);
|
|
req.hds_threshold = cpu_to_le16(bp->rx_copy_thresh);
|
|
req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
|
|
return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
|
|
}
|
|
|
|
static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, u16 vnic_id,
|
|
u16 ctx_idx)
|
|
{
|
|
struct hwrm_vnic_rss_cos_lb_ctx_free_input req = {0};
|
|
|
|
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_FREE, -1, -1);
|
|
req.rss_cos_lb_ctx_id =
|
|
cpu_to_le16(bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx]);
|
|
|
|
hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
|
|
bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] = INVALID_HW_RING_ID;
|
|
}
|
|
|
|
static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp)
|
|
{
|
|
int i, j;
|
|
|
|
for (i = 0; i < bp->nr_vnics; i++) {
|
|
struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
|
|
|
|
for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) {
|
|
if (vnic->fw_rss_cos_lb_ctx[j] != INVALID_HW_RING_ID)
|
|
bnxt_hwrm_vnic_ctx_free_one(bp, i, j);
|
|
}
|
|
}
|
|
bp->rsscos_nr_ctxs = 0;
|
|
}
|
|
|
|
static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, u16 vnic_id, u16 ctx_idx)
|
|
{
|
|
int rc;
|
|
struct hwrm_vnic_rss_cos_lb_ctx_alloc_input req = {0};
|
|
struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp =
|
|
bp->hwrm_cmd_resp_addr;
|
|
|
|
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC, -1,
|
|
-1);
|
|
|
|
mutex_lock(&bp->hwrm_cmd_lock);
|
|
rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
|
|
if (!rc)
|
|
bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] =
|
|
le16_to_cpu(resp->rss_cos_lb_ctx_id);
|
|
mutex_unlock(&bp->hwrm_cmd_lock);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static u32 bnxt_get_roce_vnic_mode(struct bnxt *bp)
|
|
{
|
|
if (bp->flags & BNXT_FLAG_ROCE_MIRROR_CAP)
|
|
return VNIC_CFG_REQ_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_MODE;
|
|
return VNIC_CFG_REQ_FLAGS_ROCE_DUAL_VNIC_MODE;
|
|
}
|
|
|
|
int bnxt_hwrm_vnic_cfg(struct bnxt *bp, u16 vnic_id)
|
|
{
|
|
unsigned int ring = 0, grp_idx;
|
|
struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
|
|
struct hwrm_vnic_cfg_input req = {0};
|
|
u16 def_vlan = 0;
|
|
|
|
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_CFG, -1, -1);
|
|
|
|
if (bp->flags & BNXT_FLAG_CHIP_P5) {
|
|
struct bnxt_rx_ring_info *rxr = &bp->rx_ring[0];
|
|
|
|
req.default_rx_ring_id =
|
|
cpu_to_le16(rxr->rx_ring_struct.fw_ring_id);
|
|
req.default_cmpl_ring_id =
|
|
cpu_to_le16(bnxt_cp_ring_for_rx(bp, rxr));
|
|
req.enables =
|
|
cpu_to_le32(VNIC_CFG_REQ_ENABLES_DEFAULT_RX_RING_ID |
|
|
VNIC_CFG_REQ_ENABLES_DEFAULT_CMPL_RING_ID);
|
|
goto vnic_mru;
|
|
}
|
|
req.enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP);
|
|
/* Only RSS support for now TBD: COS & LB */
|
|
if (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID) {
|
|
req.rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
|
|
req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
|
|
VNIC_CFG_REQ_ENABLES_MRU);
|
|
} else if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) {
|
|
req.rss_rule =
|
|
cpu_to_le16(bp->vnic_info[0].fw_rss_cos_lb_ctx[0]);
|
|
req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
|
|
VNIC_CFG_REQ_ENABLES_MRU);
|
|
req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_RSS_DFLT_CR_MODE);
|
|
} else {
|
|
req.rss_rule = cpu_to_le16(0xffff);
|
|
}
|
|
|
|
if (BNXT_CHIP_TYPE_NITRO_A0(bp) &&
|
|
(vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID)) {
|
|
req.cos_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[1]);
|
|
req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_COS_RULE);
|
|
} else {
|
|
req.cos_rule = cpu_to_le16(0xffff);
|
|
}
|
|
|
|
if (vnic->flags & BNXT_VNIC_RSS_FLAG)
|
|
ring = 0;
|
|
else if (vnic->flags & BNXT_VNIC_RFS_FLAG)
|
|
ring = vnic_id - 1;
|
|
else if ((vnic_id == 1) && BNXT_CHIP_TYPE_NITRO_A0(bp))
|
|
ring = bp->rx_nr_rings - 1;
|
|
|
|
grp_idx = bp->rx_ring[ring].bnapi->index;
|
|
req.dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id);
|
|
req.lb_rule = cpu_to_le16(0xffff);
|
|
vnic_mru:
|
|
req.mru = cpu_to_le16(bp->dev->mtu + ETH_HLEN + ETH_FCS_LEN +
|
|
VLAN_HLEN);
|
|
|
|
req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
|
|
#ifdef CONFIG_BNXT_SRIOV
|
|
if (BNXT_VF(bp))
|
|
def_vlan = bp->vf.vlan;
|
|
#endif
|
|
if ((bp->flags & BNXT_FLAG_STRIP_VLAN) || def_vlan)
|
|
req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE);
|
|
if (!vnic_id && bnxt_ulp_registered(bp->edev, BNXT_ROCE_ULP))
|
|
req.flags |= cpu_to_le32(bnxt_get_roce_vnic_mode(bp));
|
|
|
|
return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
|
|
}
|
|
|
|
static int bnxt_hwrm_vnic_free_one(struct bnxt *bp, u16 vnic_id)
|
|
{
|
|
u32 rc = 0;
|
|
|
|
if (bp->vnic_info[vnic_id].fw_vnic_id != INVALID_HW_RING_ID) {
|
|
struct hwrm_vnic_free_input req = {0};
|
|
|
|
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_FREE, -1, -1);
|
|
req.vnic_id =
|
|
cpu_to_le32(bp->vnic_info[vnic_id].fw_vnic_id);
|
|
|
|
rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
|
|
bp->vnic_info[vnic_id].fw_vnic_id = INVALID_HW_RING_ID;
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
static void bnxt_hwrm_vnic_free(struct bnxt *bp)
|
|
{
|
|
u16 i;
|
|
|
|
for (i = 0; i < bp->nr_vnics; i++)
|
|
bnxt_hwrm_vnic_free_one(bp, i);
|
|
}
|
|
|
|
static int bnxt_hwrm_vnic_alloc(struct bnxt *bp, u16 vnic_id,
|
|
unsigned int start_rx_ring_idx,
|
|
unsigned int nr_rings)
|
|
{
|
|
int rc = 0;
|
|
unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings;
|
|
struct hwrm_vnic_alloc_input req = {0};
|
|
struct hwrm_vnic_alloc_output *resp = bp->hwrm_cmd_resp_addr;
|
|
struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
|
|
|
|
if (bp->flags & BNXT_FLAG_CHIP_P5)
|
|
goto vnic_no_ring_grps;
|
|
|
|
/* map ring groups to this vnic */
|
|
for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) {
|
|
grp_idx = bp->rx_ring[i].bnapi->index;
|
|
if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) {
|
|
netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n",
|
|
j, nr_rings);
|
|
break;
|
|
}
|
|
vnic->fw_grp_ids[j] = bp->grp_info[grp_idx].fw_grp_id;
|
|
}
|
|
|
|
vnic_no_ring_grps:
|
|
for (i = 0; i < BNXT_MAX_CTX_PER_VNIC; i++)
|
|
vnic->fw_rss_cos_lb_ctx[i] = INVALID_HW_RING_ID;
|
|
if (vnic_id == 0)
|
|
req.flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT);
|
|
|
|
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_ALLOC, -1, -1);
|
|
|
|
mutex_lock(&bp->hwrm_cmd_lock);
|
|
rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
|
|
if (!rc)
|
|
vnic->fw_vnic_id = le32_to_cpu(resp->vnic_id);
|
|
mutex_unlock(&bp->hwrm_cmd_lock);
|
|
return rc;
|
|
}
|
|
|
|
static int bnxt_hwrm_vnic_qcaps(struct bnxt *bp)
|
|
{
|
|
struct hwrm_vnic_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
|
|
struct hwrm_vnic_qcaps_input req = {0};
|
|
int rc;
|
|
|
|
bp->hw_ring_stats_size = sizeof(struct ctx_hw_stats);
|
|
bp->flags &= ~(BNXT_FLAG_NEW_RSS_CAP | BNXT_FLAG_ROCE_MIRROR_CAP);
|
|
if (bp->hwrm_spec_code < 0x10600)
|
|
return 0;
|
|
|
|
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_QCAPS, -1, -1);
|
|
mutex_lock(&bp->hwrm_cmd_lock);
|
|
rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
|
|
if (!rc) {
|
|
u32 flags = le32_to_cpu(resp->flags);
|
|
|
|
if (!(bp->flags & BNXT_FLAG_CHIP_P5) &&
|
|
(flags & VNIC_QCAPS_RESP_FLAGS_RSS_DFLT_CR_CAP))
|
|
bp->flags |= BNXT_FLAG_NEW_RSS_CAP;
|
|
if (flags &
|
|
VNIC_QCAPS_RESP_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_CAP)
|
|
bp->flags |= BNXT_FLAG_ROCE_MIRROR_CAP;
|
|
bp->max_tpa_v2 = le16_to_cpu(resp->max_aggs_supported);
|
|
if (bp->max_tpa_v2)
|
|
bp->hw_ring_stats_size =
|
|
sizeof(struct ctx_hw_stats_ext);
|
|
}
|
|
mutex_unlock(&bp->hwrm_cmd_lock);
|
|
return rc;
|
|
}
|
|
|
|
static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp)
|
|
{
|
|
u16 i;
|
|
u32 rc = 0;
|
|
|
|
if (bp->flags & BNXT_FLAG_CHIP_P5)
|
|
return 0;
|
|
|
|
mutex_lock(&bp->hwrm_cmd_lock);
|
|
for (i = 0; i < bp->rx_nr_rings; i++) {
|
|
struct hwrm_ring_grp_alloc_input req = {0};
|
|
struct hwrm_ring_grp_alloc_output *resp =
|
|
bp->hwrm_cmd_resp_addr;
|
|
unsigned int grp_idx = bp->rx_ring[i].bnapi->index;
|
|
|
|
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_ALLOC, -1, -1);
|
|
|
|
req.cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id);
|
|
req.rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id);
|
|
req.ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id);
|
|
req.sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx);
|
|
|
|
rc = _hwrm_send_message(bp, &req, sizeof(req),
|
|
HWRM_CMD_TIMEOUT);
|
|
if (rc)
|
|
break;
|
|
|
|
bp->grp_info[grp_idx].fw_grp_id =
|
|
le32_to_cpu(resp->ring_group_id);
|
|
}
|
|
mutex_unlock(&bp->hwrm_cmd_lock);
|
|
return rc;
|
|
}
|
|
|
|
static int bnxt_hwrm_ring_grp_free(struct bnxt *bp)
|
|
{
|
|
u16 i;
|
|
u32 rc = 0;
|
|
struct hwrm_ring_grp_free_input req = {0};
|
|
|
|
if (!bp->grp_info || (bp->flags & BNXT_FLAG_CHIP_P5))
|
|
return 0;
|
|
|
|
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_FREE, -1, -1);
|
|
|
|
mutex_lock(&bp->hwrm_cmd_lock);
|
|
for (i = 0; i < bp->cp_nr_rings; i++) {
|
|
if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID)
|
|
continue;
|
|
req.ring_group_id =
|
|
cpu_to_le32(bp->grp_info[i].fw_grp_id);
|
|
|
|
rc = _hwrm_send_message(bp, &req, sizeof(req),
|
|
HWRM_CMD_TIMEOUT);
|
|
bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
|
|
}
|
|
mutex_unlock(&bp->hwrm_cmd_lock);
|
|
return rc;
|
|
}
|
|
|
|
static int hwrm_ring_alloc_send_msg(struct bnxt *bp,
|
|
struct bnxt_ring_struct *ring,
|
|
u32 ring_type, u32 map_index)
|
|
{
|
|
int rc = 0, err = 0;
|
|
struct hwrm_ring_alloc_input req = {0};
|
|
struct hwrm_ring_alloc_output *resp = bp->hwrm_cmd_resp_addr;
|
|
struct bnxt_ring_mem_info *rmem = &ring->ring_mem;
|
|
struct bnxt_ring_grp_info *grp_info;
|
|
u16 ring_id;
|
|
|
|
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_ALLOC, -1, -1);
|
|
|
|
req.enables = 0;
|
|
if (rmem->nr_pages > 1) {
|
|
req.page_tbl_addr = cpu_to_le64(rmem->pg_tbl_map);
|
|
/* Page size is in log2 units */
|
|
req.page_size = BNXT_PAGE_SHIFT;
|
|
req.page_tbl_depth = 1;
|
|
} else {
|
|
req.page_tbl_addr = cpu_to_le64(rmem->dma_arr[0]);
|
|
}
|
|
req.fbo = 0;
|
|
/* Association of ring index with doorbell index and MSIX number */
|
|
req.logical_id = cpu_to_le16(map_index);
|
|
|
|
switch (ring_type) {
|
|
case HWRM_RING_ALLOC_TX: {
|
|
struct bnxt_tx_ring_info *txr;
|
|
|
|
txr = container_of(ring, struct bnxt_tx_ring_info,
|
|
tx_ring_struct);
|
|
req.ring_type = RING_ALLOC_REQ_RING_TYPE_TX;
|
|
/* Association of transmit ring with completion ring */
|
|
grp_info = &bp->grp_info[ring->grp_idx];
|
|
req.cmpl_ring_id = cpu_to_le16(bnxt_cp_ring_for_tx(bp, txr));
|
|
req.length = cpu_to_le32(bp->tx_ring_mask + 1);
|
|
req.stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
|
|
req.queue_id = cpu_to_le16(ring->queue_id);
|
|
break;
|
|
}
|
|
case HWRM_RING_ALLOC_RX:
|
|
req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
|
|
req.length = cpu_to_le32(bp->rx_ring_mask + 1);
|
|
if (bp->flags & BNXT_FLAG_CHIP_P5) {
|
|
u16 flags = 0;
|
|
|
|
/* Association of rx ring with stats context */
|
|
grp_info = &bp->grp_info[ring->grp_idx];
|
|
req.rx_buf_size = cpu_to_le16(bp->rx_buf_use_size);
|
|
req.stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
|
|
req.enables |= cpu_to_le32(
|
|
RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID);
|
|
if (NET_IP_ALIGN == 2)
|
|
flags = RING_ALLOC_REQ_FLAGS_RX_SOP_PAD;
|
|
req.flags = cpu_to_le16(flags);
|
|
}
|
|
break;
|
|
case HWRM_RING_ALLOC_AGG:
|
|
if (bp->flags & BNXT_FLAG_CHIP_P5) {
|
|
req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX_AGG;
|
|
/* Association of agg ring with rx ring */
|
|
grp_info = &bp->grp_info[ring->grp_idx];
|
|
req.rx_ring_id = cpu_to_le16(grp_info->rx_fw_ring_id);
|
|
req.rx_buf_size = cpu_to_le16(BNXT_RX_PAGE_SIZE);
|
|
req.stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
|
|
req.enables |= cpu_to_le32(
|
|
RING_ALLOC_REQ_ENABLES_RX_RING_ID_VALID |
|
|
RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID);
|
|
} else {
|
|
req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
|
|
}
|
|
req.length = cpu_to_le32(bp->rx_agg_ring_mask + 1);
|
|
break;
|
|
case HWRM_RING_ALLOC_CMPL:
|
|
req.ring_type = RING_ALLOC_REQ_RING_TYPE_L2_CMPL;
|
|
req.length = cpu_to_le32(bp->cp_ring_mask + 1);
|
|
if (bp->flags & BNXT_FLAG_CHIP_P5) {
|
|
/* Association of cp ring with nq */
|
|
grp_info = &bp->grp_info[map_index];
|
|
req.nq_ring_id = cpu_to_le16(grp_info->cp_fw_ring_id);
|
|
req.cq_handle = cpu_to_le64(ring->handle);
|
|
req.enables |= cpu_to_le32(
|
|
RING_ALLOC_REQ_ENABLES_NQ_RING_ID_VALID);
|
|
} else if (bp->flags & BNXT_FLAG_USING_MSIX) {
|
|
req.int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
|
|
}
|
|
break;
|
|
case HWRM_RING_ALLOC_NQ:
|
|
req.ring_type = RING_ALLOC_REQ_RING_TYPE_NQ;
|
|
req.length = cpu_to_le32(bp->cp_ring_mask + 1);
|
|
if (bp->flags & BNXT_FLAG_USING_MSIX)
|
|
req.int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
|
|
break;
|
|
default:
|
|
netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n",
|
|
ring_type);
|
|
return -1;
|
|
}
|
|
|
|
mutex_lock(&bp->hwrm_cmd_lock);
|
|
rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
|
|
err = le16_to_cpu(resp->error_code);
|
|
ring_id = le16_to_cpu(resp->ring_id);
|
|
mutex_unlock(&bp->hwrm_cmd_lock);
|
|
|
|
if (rc || err) {
|
|
netdev_err(bp->dev, "hwrm_ring_alloc type %d failed. rc:%x err:%x\n",
|
|
ring_type, rc, err);
|
|
return -EIO;
|
|
}
|
|
ring->fw_ring_id = ring_id;
|
|
return rc;
|
|
}
|
|
|
|
static int bnxt_hwrm_set_async_event_cr(struct bnxt *bp, int idx)
|
|
{
|
|
int rc;
|
|
|
|
if (BNXT_PF(bp)) {
|
|
struct hwrm_func_cfg_input req = {0};
|
|
|
|
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
|
|
req.fid = cpu_to_le16(0xffff);
|
|
req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
|
|
req.async_event_cr = cpu_to_le16(idx);
|
|
rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
|
|
} else {
|
|
struct hwrm_func_vf_cfg_input req = {0};
|
|
|
|
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_VF_CFG, -1, -1);
|
|
req.enables =
|
|
cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
|
|
req.async_event_cr = cpu_to_le16(idx);
|
|
rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
static void bnxt_set_db(struct bnxt *bp, struct bnxt_db_info *db, u32 ring_type,
|
|
u32 map_idx, u32 xid)
|
|
{
|
|
if (bp->flags & BNXT_FLAG_CHIP_P5) {
|
|
if (BNXT_PF(bp))
|
|
db->doorbell = bp->bar1 + 0x10000;
|
|
else
|
|
db->doorbell = bp->bar1 + 0x4000;
|
|
switch (ring_type) {
|
|
case HWRM_RING_ALLOC_TX:
|
|
db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SQ;
|
|
break;
|
|
case HWRM_RING_ALLOC_RX:
|
|
case HWRM_RING_ALLOC_AGG:
|
|
db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SRQ;
|
|
break;
|
|
case HWRM_RING_ALLOC_CMPL:
|
|
db->db_key64 = DBR_PATH_L2;
|
|
break;
|
|
case HWRM_RING_ALLOC_NQ:
|
|
db->db_key64 = DBR_PATH_L2;
|
|
break;
|
|
}
|
|
db->db_key64 |= (u64)xid << DBR_XID_SFT;
|
|
} else {
|
|
db->doorbell = bp->bar1 + map_idx * 0x80;
|
|
switch (ring_type) {
|
|
case HWRM_RING_ALLOC_TX:
|
|
db->db_key32 = DB_KEY_TX;
|
|
break;
|
|
case HWRM_RING_ALLOC_RX:
|
|
case HWRM_RING_ALLOC_AGG:
|
|
db->db_key32 = DB_KEY_RX;
|
|
break;
|
|
case HWRM_RING_ALLOC_CMPL:
|
|
db->db_key32 = DB_KEY_CP;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
static int bnxt_hwrm_ring_alloc(struct bnxt *bp)
|
|
{
|
|
bool agg_rings = !!(bp->flags & BNXT_FLAG_AGG_RINGS);
|
|
int i, rc = 0;
|
|
u32 type;
|
|
|
|
if (bp->flags & BNXT_FLAG_CHIP_P5)
|
|
type = HWRM_RING_ALLOC_NQ;
|
|
else
|
|
type = HWRM_RING_ALLOC_CMPL;
|
|
for (i = 0; i < bp->cp_nr_rings; i++) {
|
|
struct bnxt_napi *bnapi = bp->bnapi[i];
|
|
struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
|
|
struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
|
|
u32 map_idx = ring->map_idx;
|
|
unsigned int vector;
|
|
|
|
vector = bp->irq_tbl[map_idx].vector;
|
|
disable_irq_nosync(vector);
|
|
rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
|
|
if (rc) {
|
|
enable_irq(vector);
|
|
goto err_out;
|
|
}
|
|
bnxt_set_db(bp, &cpr->cp_db, type, map_idx, ring->fw_ring_id);
|
|
bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons);
|
|
enable_irq(vector);
|
|
bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id;
|
|
|
|
if (!i) {
|
|
rc = bnxt_hwrm_set_async_event_cr(bp, ring->fw_ring_id);
|
|
if (rc)
|
|
netdev_warn(bp->dev, "Failed to set async event completion ring.\n");
|
|
}
|
|
}
|
|
|
|
type = HWRM_RING_ALLOC_TX;
|
|
for (i = 0; i < bp->tx_nr_rings; i++) {
|
|
struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
|
|
struct bnxt_ring_struct *ring;
|
|
u32 map_idx;
|
|
|
|
if (bp->flags & BNXT_FLAG_CHIP_P5) {
|
|
struct bnxt_napi *bnapi = txr->bnapi;
|
|
struct bnxt_cp_ring_info *cpr, *cpr2;
|
|
u32 type2 = HWRM_RING_ALLOC_CMPL;
|
|
|
|
cpr = &bnapi->cp_ring;
|
|
cpr2 = cpr->cp_ring_arr[BNXT_TX_HDL];
|
|
ring = &cpr2->cp_ring_struct;
|
|
ring->handle = BNXT_TX_HDL;
|
|
map_idx = bnapi->index;
|
|
rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx);
|
|
if (rc)
|
|
goto err_out;
|
|
bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx,
|
|
ring->fw_ring_id);
|
|
bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons);
|
|
}
|
|
ring = &txr->tx_ring_struct;
|
|
map_idx = i;
|
|
rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
|
|
if (rc)
|
|
goto err_out;
|
|
bnxt_set_db(bp, &txr->tx_db, type, map_idx, ring->fw_ring_id);
|
|
}
|
|
|
|
type = HWRM_RING_ALLOC_RX;
|
|
for (i = 0; i < bp->rx_nr_rings; i++) {
|
|
struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
|
|
struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
|
|
struct bnxt_napi *bnapi = rxr->bnapi;
|
|
u32 map_idx = bnapi->index;
|
|
|
|
rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
|
|
if (rc)
|
|
goto err_out;
|
|
bnxt_set_db(bp, &rxr->rx_db, type, map_idx, ring->fw_ring_id);
|
|
/* If we have agg rings, post agg buffers first. */
|
|
if (!agg_rings)
|
|
bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
|
|
bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id;
|
|
if (bp->flags & BNXT_FLAG_CHIP_P5) {
|
|
struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
|
|
u32 type2 = HWRM_RING_ALLOC_CMPL;
|
|
struct bnxt_cp_ring_info *cpr2;
|
|
|
|
cpr2 = cpr->cp_ring_arr[BNXT_RX_HDL];
|
|
ring = &cpr2->cp_ring_struct;
|
|
ring->handle = BNXT_RX_HDL;
|
|
rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx);
|
|
if (rc)
|
|
goto err_out;
|
|
bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx,
|
|
ring->fw_ring_id);
|
|
bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons);
|
|
}
|
|
}
|
|
|
|
if (agg_rings) {
|
|
type = HWRM_RING_ALLOC_AGG;
|
|
for (i = 0; i < bp->rx_nr_rings; i++) {
|
|
struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
|
|
struct bnxt_ring_struct *ring =
|
|
&rxr->rx_agg_ring_struct;
|
|
u32 grp_idx = ring->grp_idx;
|
|
u32 map_idx = grp_idx + bp->rx_nr_rings;
|
|
|
|
rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
|
|
if (rc)
|
|
goto err_out;
|
|
|
|
bnxt_set_db(bp, &rxr->rx_agg_db, type, map_idx,
|
|
ring->fw_ring_id);
|
|
bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
|
|
bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
|
|
bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id;
|
|
}
|
|
}
|
|
err_out:
|
|
return rc;
|
|
}
|
|
|
|
static int hwrm_ring_free_send_msg(struct bnxt *bp,
|
|
struct bnxt_ring_struct *ring,
|
|
u32 ring_type, int cmpl_ring_id)
|
|
{
|
|
int rc;
|
|
struct hwrm_ring_free_input req = {0};
|
|
struct hwrm_ring_free_output *resp = bp->hwrm_cmd_resp_addr;
|
|
u16 error_code;
|
|
|
|
if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))
|
|
return 0;
|
|
|
|
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_FREE, cmpl_ring_id, -1);
|
|
req.ring_type = ring_type;
|
|
req.ring_id = cpu_to_le16(ring->fw_ring_id);
|
|
|
|
mutex_lock(&bp->hwrm_cmd_lock);
|
|
rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
|
|
error_code = le16_to_cpu(resp->error_code);
|
|
mutex_unlock(&bp->hwrm_cmd_lock);
|
|
|
|
if (rc || error_code) {
|
|
netdev_err(bp->dev, "hwrm_ring_free type %d failed. rc:%x err:%x\n",
|
|
ring_type, rc, error_code);
|
|
return -EIO;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path)
|
|
{
|
|
u32 type;
|
|
int i;
|
|
|
|
if (!bp->bnapi)
|
|
return;
|
|
|
|
for (i = 0; i < bp->tx_nr_rings; i++) {
|
|
struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
|
|
struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
|
|
|
|
if (ring->fw_ring_id != INVALID_HW_RING_ID) {
|
|
u32 cmpl_ring_id = bnxt_cp_ring_for_tx(bp, txr);
|
|
|
|
hwrm_ring_free_send_msg(bp, ring,
|
|
RING_FREE_REQ_RING_TYPE_TX,
|
|
close_path ? cmpl_ring_id :
|
|
INVALID_HW_RING_ID);
|
|
ring->fw_ring_id = INVALID_HW_RING_ID;
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < bp->rx_nr_rings; i++) {
|
|
struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
|
|
struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
|
|
u32 grp_idx = rxr->bnapi->index;
|
|
|
|
if (ring->fw_ring_id != INVALID_HW_RING_ID) {
|
|
u32 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr);
|
|
|
|
hwrm_ring_free_send_msg(bp, ring,
|
|
RING_FREE_REQ_RING_TYPE_RX,
|
|
close_path ? cmpl_ring_id :
|
|
INVALID_HW_RING_ID);
|
|
ring->fw_ring_id = INVALID_HW_RING_ID;
|
|
bp->grp_info[grp_idx].rx_fw_ring_id =
|
|
INVALID_HW_RING_ID;
|
|
}
|
|
}
|
|
|
|
if (bp->flags & BNXT_FLAG_CHIP_P5)
|
|
type = RING_FREE_REQ_RING_TYPE_RX_AGG;
|
|
else
|
|
type = RING_FREE_REQ_RING_TYPE_RX;
|
|
for (i = 0; i < bp->rx_nr_rings; i++) {
|
|
struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
|
|
struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct;
|
|
u32 grp_idx = rxr->bnapi->index;
|
|
|
|
if (ring->fw_ring_id != INVALID_HW_RING_ID) {
|
|
u32 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr);
|
|
|
|
hwrm_ring_free_send_msg(bp, ring, type,
|
|
close_path ? cmpl_ring_id :
|
|
INVALID_HW_RING_ID);
|
|
ring->fw_ring_id = INVALID_HW_RING_ID;
|
|
bp->grp_info[grp_idx].agg_fw_ring_id =
|
|
INVALID_HW_RING_ID;
|
|
}
|
|
}
|
|
|
|
/* The completion rings are about to be freed. After that the
|
|
* IRQ doorbell will not work anymore. So we need to disable
|
|
* IRQ here.
|
|
*/
|
|
bnxt_disable_int_sync(bp);
|
|
|
|
if (bp->flags & BNXT_FLAG_CHIP_P5)
|
|
type = RING_FREE_REQ_RING_TYPE_NQ;
|
|
else
|
|
type = RING_FREE_REQ_RING_TYPE_L2_CMPL;
|
|
for (i = 0; i < bp->cp_nr_rings; i++) {
|
|
struct bnxt_napi *bnapi = bp->bnapi[i];
|
|
struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
|
|
struct bnxt_ring_struct *ring;
|
|
int j;
|
|
|
|
for (j = 0; j < 2; j++) {
|
|
struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
|
|
|
|
if (cpr2) {
|
|
ring = &cpr2->cp_ring_struct;
|
|
if (ring->fw_ring_id == INVALID_HW_RING_ID)
|
|
continue;
|
|
hwrm_ring_free_send_msg(bp, ring,
|
|
RING_FREE_REQ_RING_TYPE_L2_CMPL,
|
|
INVALID_HW_RING_ID);
|
|
ring->fw_ring_id = INVALID_HW_RING_ID;
|
|
}
|
|
}
|
|
ring = &cpr->cp_ring_struct;
|
|
if (ring->fw_ring_id != INVALID_HW_RING_ID) {
|
|
hwrm_ring_free_send_msg(bp, ring, type,
|
|
INVALID_HW_RING_ID);
|
|
ring->fw_ring_id = INVALID_HW_RING_ID;
|
|
bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
|
|
}
|
|
}
|
|
}
|
|
|
|
static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
|
|
bool shared);
|
|
|
|
static int bnxt_hwrm_get_rings(struct bnxt *bp)
|
|
{
|
|
struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
|
|
struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
|
|
struct hwrm_func_qcfg_input req = {0};
|
|
int rc;
|
|
|
|
if (bp->hwrm_spec_code < 0x10601)
|
|
return 0;
|
|
|
|
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1);
|
|
req.fid = cpu_to_le16(0xffff);
|
|
mutex_lock(&bp->hwrm_cmd_lock);
|
|
rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
|
|
if (rc) {
|
|
mutex_unlock(&bp->hwrm_cmd_lock);
|
|
return rc;
|
|
}
|
|
|
|
hw_resc->resv_tx_rings = le16_to_cpu(resp->alloc_tx_rings);
|
|
if (BNXT_NEW_RM(bp)) {
|
|
u16 cp, stats;
|
|
|
|
hw_resc->resv_rx_rings = le16_to_cpu(resp->alloc_rx_rings);
|
|
hw_resc->resv_hw_ring_grps =
|
|
le32_to_cpu(resp->alloc_hw_ring_grps);
|
|
hw_resc->resv_vnics = le16_to_cpu(resp->alloc_vnics);
|
|
cp = le16_to_cpu(resp->alloc_cmpl_rings);
|
|
stats = le16_to_cpu(resp->alloc_stat_ctx);
|
|
hw_resc->resv_irqs = cp;
|
|
if (bp->flags & BNXT_FLAG_CHIP_P5) {
|
|
int rx = hw_resc->resv_rx_rings;
|
|
int tx = hw_resc->resv_tx_rings;
|
|
|
|
if (bp->flags & BNXT_FLAG_AGG_RINGS)
|
|
rx >>= 1;
|
|
if (cp < (rx + tx)) {
|
|
bnxt_trim_rings(bp, &rx, &tx, cp, false);
|
|
if (bp->flags & BNXT_FLAG_AGG_RINGS)
|
|
rx <<= 1;
|
|
hw_resc->resv_rx_rings = rx;
|
|
hw_resc->resv_tx_rings = tx;
|
|
}
|
|
hw_resc->resv_irqs = le16_to_cpu(resp->alloc_msix);
|
|
hw_resc->resv_hw_ring_grps = rx;
|
|
}
|
|
hw_resc->resv_cp_rings = cp;
|
|
hw_resc->resv_stat_ctxs = stats;
|
|
}
|
|
mutex_unlock(&bp->hwrm_cmd_lock);
|
|
return 0;
|
|
}
|
|
|
|
/* Caller must hold bp->hwrm_cmd_lock */
|
|
int __bnxt_hwrm_get_tx_rings(struct bnxt *bp, u16 fid, int *tx_rings)
|
|
{
|
|
struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
|
|
struct hwrm_func_qcfg_input req = {0};
|
|
int rc;
|
|
|
|
if (bp->hwrm_spec_code < 0x10601)
|
|
return 0;
|
|
|
|
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1);
|
|
req.fid = cpu_to_le16(fid);
|
|
rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
|
|
if (!rc)
|
|
*tx_rings = le16_to_cpu(resp->alloc_tx_rings);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static bool bnxt_rfs_supported(struct bnxt *bp);
|
|
|
|
static void
|
|
__bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, struct hwrm_func_cfg_input *req,
|
|
int tx_rings, int rx_rings, int ring_grps,
|
|
int cp_rings, int stats, int vnics)
|
|
{
|
|
u32 enables = 0;
|
|
|
|
bnxt_hwrm_cmd_hdr_init(bp, req, HWRM_FUNC_CFG, -1, -1);
|
|
req->fid = cpu_to_le16(0xffff);
|
|
enables |= tx_rings ? FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS : 0;
|
|
req->num_tx_rings = cpu_to_le16(tx_rings);
|
|
if (BNXT_NEW_RM(bp)) {
|
|
enables |= rx_rings ? FUNC_CFG_REQ_ENABLES_NUM_RX_RINGS : 0;
|
|
enables |= stats ? FUNC_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0;
|
|
if (bp->flags & BNXT_FLAG_CHIP_P5) {
|
|
enables |= cp_rings ? FUNC_CFG_REQ_ENABLES_NUM_MSIX : 0;
|
|
enables |= tx_rings + ring_grps ?
|
|
FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
|
|
enables |= rx_rings ?
|
|
FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
|
|
} else {
|
|
enables |= cp_rings ?
|
|
FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
|
|
enables |= ring_grps ?
|
|
FUNC_CFG_REQ_ENABLES_NUM_HW_RING_GRPS |
|
|
FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
|
|
}
|
|
enables |= vnics ? FUNC_CFG_REQ_ENABLES_NUM_VNICS : 0;
|
|
|
|
req->num_rx_rings = cpu_to_le16(rx_rings);
|
|
if (bp->flags & BNXT_FLAG_CHIP_P5) {
|
|
req->num_cmpl_rings = cpu_to_le16(tx_rings + ring_grps);
|
|
req->num_msix = cpu_to_le16(cp_rings);
|
|
req->num_rsscos_ctxs =
|
|
cpu_to_le16(DIV_ROUND_UP(ring_grps, 64));
|
|
} else {
|
|
req->num_cmpl_rings = cpu_to_le16(cp_rings);
|
|
req->num_hw_ring_grps = cpu_to_le16(ring_grps);
|
|
req->num_rsscos_ctxs = cpu_to_le16(1);
|
|
if (!(bp->flags & BNXT_FLAG_NEW_RSS_CAP) &&
|
|
bnxt_rfs_supported(bp))
|
|
req->num_rsscos_ctxs =
|
|
cpu_to_le16(ring_grps + 1);
|
|
}
|
|
req->num_stat_ctxs = cpu_to_le16(stats);
|
|
req->num_vnics = cpu_to_le16(vnics);
|
|
}
|
|
req->enables = cpu_to_le32(enables);
|
|
}
|
|
|
|
static void
|
|
__bnxt_hwrm_reserve_vf_rings(struct bnxt *bp,
|
|
struct hwrm_func_vf_cfg_input *req, int tx_rings,
|
|
int rx_rings, int ring_grps, int cp_rings,
|
|
int stats, int vnics)
|
|
{
|
|
u32 enables = 0;
|
|
|
|
bnxt_hwrm_cmd_hdr_init(bp, req, HWRM_FUNC_VF_CFG, -1, -1);
|
|
enables |= tx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_TX_RINGS : 0;
|
|
enables |= rx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_RX_RINGS |
|
|
FUNC_VF_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
|
|
enables |= stats ? FUNC_VF_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0;
|
|
if (bp->flags & BNXT_FLAG_CHIP_P5) {
|
|
enables |= tx_rings + ring_grps ?
|
|
FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
|
|
} else {
|
|
enables |= cp_rings ?
|
|
FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
|
|
enables |= ring_grps ?
|
|
FUNC_VF_CFG_REQ_ENABLES_NUM_HW_RING_GRPS : 0;
|
|
}
|
|
enables |= vnics ? FUNC_VF_CFG_REQ_ENABLES_NUM_VNICS : 0;
|
|
enables |= FUNC_VF_CFG_REQ_ENABLES_NUM_L2_CTXS;
|
|
|
|
req->num_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX);
|
|
req->num_tx_rings = cpu_to_le16(tx_rings);
|
|
req->num_rx_rings = cpu_to_le16(rx_rings);
|
|
if (bp->flags & BNXT_FLAG_CHIP_P5) {
|
|
req->num_cmpl_rings = cpu_to_le16(tx_rings + ring_grps);
|
|
req->num_rsscos_ctxs = cpu_to_le16(DIV_ROUND_UP(ring_grps, 64));
|
|
} else {
|
|
req->num_cmpl_rings = cpu_to_le16(cp_rings);
|
|
req->num_hw_ring_grps = cpu_to_le16(ring_grps);
|
|
req->num_rsscos_ctxs = cpu_to_le16(BNXT_VF_MAX_RSS_CTX);
|
|
}
|
|
req->num_stat_ctxs = cpu_to_le16(stats);
|
|
req->num_vnics = cpu_to_le16(vnics);
|
|
|
|
req->enables = cpu_to_le32(enables);
|
|
}
|
|
|
|
static int
|
|
bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
|
|
int ring_grps, int cp_rings, int stats, int vnics)
|
|
{
|
|
struct hwrm_func_cfg_input req = {0};
|
|
int rc;
|
|
|
|
__bnxt_hwrm_reserve_pf_rings(bp, &req, tx_rings, rx_rings, ring_grps,
|
|
cp_rings, stats, vnics);
|
|
if (!req.enables)
|
|
return 0;
|
|
|
|
rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
|
|
if (rc)
|
|
return rc;
|
|
|
|
if (bp->hwrm_spec_code < 0x10601)
|
|
bp->hw_resc.resv_tx_rings = tx_rings;
|
|
|
|
rc = bnxt_hwrm_get_rings(bp);
|
|
return rc;
|
|
}
|
|
|
|
static int
|
|
bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
|
|
int ring_grps, int cp_rings, int stats, int vnics)
|
|
{
|
|
struct hwrm_func_vf_cfg_input req = {0};
|
|
int rc;
|
|
|
|
if (!BNXT_NEW_RM(bp)) {
|
|
bp->hw_resc.resv_tx_rings = tx_rings;
|
|
return 0;
|
|
}
|
|
|
|
__bnxt_hwrm_reserve_vf_rings(bp, &req, tx_rings, rx_rings, ring_grps,
|
|
cp_rings, stats, vnics);
|
|
rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
|
|
if (rc)
|
|
return rc;
|
|
|
|
rc = bnxt_hwrm_get_rings(bp);
|
|
return rc;
|
|
}
|
|
|
|
static int bnxt_hwrm_reserve_rings(struct bnxt *bp, int tx, int rx, int grp,
|
|
int cp, int stat, int vnic)
|
|
{
|
|
if (BNXT_PF(bp))
|
|
return bnxt_hwrm_reserve_pf_rings(bp, tx, rx, grp, cp, stat,
|
|
vnic);
|
|
else
|
|
return bnxt_hwrm_reserve_vf_rings(bp, tx, rx, grp, cp, stat,
|
|
vnic);
|
|
}
|
|
|
|
int bnxt_nq_rings_in_use(struct bnxt *bp)
|
|
{
|
|
int cp = bp->cp_nr_rings;
|
|
int ulp_msix, ulp_base;
|
|
|
|
ulp_msix = bnxt_get_ulp_msix_num(bp);
|
|
if (ulp_msix) {
|
|
ulp_base = bnxt_get_ulp_msix_base(bp);
|
|
cp += ulp_msix;
|
|
if ((ulp_base + ulp_msix) > cp)
|
|
cp = ulp_base + ulp_msix;
|
|
}
|
|
return cp;
|
|
}
|
|
|
|
static int bnxt_cp_rings_in_use(struct bnxt *bp)
|
|
{
|
|
int cp;
|
|
|
|
if (!(bp->flags & BNXT_FLAG_CHIP_P5))
|
|
return bnxt_nq_rings_in_use(bp);
|
|
|
|
cp = bp->tx_nr_rings + bp->rx_nr_rings;
|
|
return cp;
|
|
}
|
|
|
|
static int bnxt_get_func_stat_ctxs(struct bnxt *bp)
|
|
{
|
|
int ulp_stat = bnxt_get_ulp_stat_ctxs(bp);
|
|
int cp = bp->cp_nr_rings;
|
|
|
|
if (!ulp_stat)
|
|
return cp;
|
|
|
|
if (bnxt_nq_rings_in_use(bp) > cp + bnxt_get_ulp_msix_num(bp))
|
|
return bnxt_get_ulp_msix_base(bp) + ulp_stat;
|
|
|
|
return cp + ulp_stat;
|
|
}
|
|
|
|
static bool bnxt_need_reserve_rings(struct bnxt *bp)
|
|
{
|
|
struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
|
|
int cp = bnxt_cp_rings_in_use(bp);
|
|
int nq = bnxt_nq_rings_in_use(bp);
|
|
int rx = bp->rx_nr_rings, stat;
|
|
int vnic = 1, grp = rx;
|
|
|
|
if (bp->hwrm_spec_code < 0x10601)
|
|
return false;
|
|
|
|
if (hw_resc->resv_tx_rings != bp->tx_nr_rings)
|
|
return true;
|
|
|
|
if ((bp->flags & BNXT_FLAG_RFS) && !(bp->flags & BNXT_FLAG_CHIP_P5))
|
|
vnic = rx + 1;
|
|
if (bp->flags & BNXT_FLAG_AGG_RINGS)
|
|
rx <<= 1;
|
|
stat = bnxt_get_func_stat_ctxs(bp);
|
|
if (BNXT_NEW_RM(bp) &&
|
|
(hw_resc->resv_rx_rings != rx || hw_resc->resv_cp_rings != cp ||
|
|
hw_resc->resv_vnics != vnic || hw_resc->resv_stat_ctxs != stat ||
|
|
(hw_resc->resv_hw_ring_grps != grp &&
|
|
!(bp->flags & BNXT_FLAG_CHIP_P5))))
|
|
return true;
|
|
if ((bp->flags & BNXT_FLAG_CHIP_P5) && BNXT_PF(bp) &&
|
|
hw_resc->resv_irqs != nq)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
static int __bnxt_reserve_rings(struct bnxt *bp)
|
|
{
|
|
struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
|
|
int cp = bnxt_nq_rings_in_use(bp);
|
|
int tx = bp->tx_nr_rings;
|
|
int rx = bp->rx_nr_rings;
|
|
int grp, rx_rings, rc;
|
|
int vnic = 1, stat;
|
|
bool sh = false;
|
|
|
|
if (!bnxt_need_reserve_rings(bp))
|
|
return 0;
|
|
|
|
if (bp->flags & BNXT_FLAG_SHARED_RINGS)
|
|
sh = true;
|
|
if ((bp->flags & BNXT_FLAG_RFS) && !(bp->flags & BNXT_FLAG_CHIP_P5))
|
|
vnic = rx + 1;
|
|
if (bp->flags & BNXT_FLAG_AGG_RINGS)
|
|
rx <<= 1;
|
|
grp = bp->rx_nr_rings;
|
|
stat = bnxt_get_func_stat_ctxs(bp);
|
|
|
|
rc = bnxt_hwrm_reserve_rings(bp, tx, rx, grp, cp, stat, vnic);
|
|
if (rc)
|
|
return rc;
|
|
|
|
tx = hw_resc->resv_tx_rings;
|
|
if (BNXT_NEW_RM(bp)) {
|
|
rx = hw_resc->resv_rx_rings;
|
|
cp = hw_resc->resv_irqs;
|
|
grp = hw_resc->resv_hw_ring_grps;
|
|
vnic = hw_resc->resv_vnics;
|
|
stat = hw_resc->resv_stat_ctxs;
|
|
}
|
|
|
|
rx_rings = rx;
|
|
if (bp->flags & BNXT_FLAG_AGG_RINGS) {
|
|
if (rx >= 2) {
|
|
rx_rings = rx >> 1;
|
|
} else {
|
|
if (netif_running(bp->dev))
|
|
return -ENOMEM;
|
|
|
|
bp->flags &= ~BNXT_FLAG_AGG_RINGS;
|
|
bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
|
|
bp->dev->hw_features &= ~NETIF_F_LRO;
|
|
bp->dev->features &= ~NETIF_F_LRO;
|
|
bnxt_set_ring_params(bp);
|
|
}
|
|
}
|
|
rx_rings = min_t(int, rx_rings, grp);
|
|
cp = min_t(int, cp, bp->cp_nr_rings);
|
|
if (stat > bnxt_get_ulp_stat_ctxs(bp))
|
|
stat -= bnxt_get_ulp_stat_ctxs(bp);
|
|
cp = min_t(int, cp, stat);
|
|
rc = bnxt_trim_rings(bp, &rx_rings, &tx, cp, sh);
|
|
if (bp->flags & BNXT_FLAG_AGG_RINGS)
|
|
rx = rx_rings << 1;
|
|
cp = sh ? max_t(int, tx, rx_rings) : tx + rx_rings;
|
|
bp->tx_nr_rings = tx;
|
|
bp->rx_nr_rings = rx_rings;
|
|
bp->cp_nr_rings = cp;
|
|
|
|
if (!tx || !rx || !cp || !grp || !vnic || !stat)
|
|
return -ENOMEM;
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int bnxt_hwrm_check_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
|
|
int ring_grps, int cp_rings, int stats,
|
|
int vnics)
|
|
{
|
|
struct hwrm_func_vf_cfg_input req = {0};
|
|
u32 flags;
|
|
int rc;
|
|
|
|
if (!BNXT_NEW_RM(bp))
|
|
return 0;
|
|
|
|
__bnxt_hwrm_reserve_vf_rings(bp, &req, tx_rings, rx_rings, ring_grps,
|
|
cp_rings, stats, vnics);
|
|
flags = FUNC_VF_CFG_REQ_FLAGS_TX_ASSETS_TEST |
|
|
FUNC_VF_CFG_REQ_FLAGS_RX_ASSETS_TEST |
|
|
FUNC_VF_CFG_REQ_FLAGS_CMPL_ASSETS_TEST |
|
|
FUNC_VF_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST |
|
|
FUNC_VF_CFG_REQ_FLAGS_VNIC_ASSETS_TEST |
|
|
FUNC_VF_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST;
|
|
if (!(bp->flags & BNXT_FLAG_CHIP_P5))
|
|
flags |= FUNC_VF_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST;
|
|
|
|
req.flags = cpu_to_le32(flags);
|
|
rc = hwrm_send_message_silent(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
|
|
return rc;
|
|
}
|
|
|
|
static int bnxt_hwrm_check_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
|
|
int ring_grps, int cp_rings, int stats,
|
|
int vnics)
|
|
{
|
|
struct hwrm_func_cfg_input req = {0};
|
|
u32 flags;
|
|
int rc;
|
|
|
|
__bnxt_hwrm_reserve_pf_rings(bp, &req, tx_rings, rx_rings, ring_grps,
|
|
cp_rings, stats, vnics);
|
|
flags = FUNC_CFG_REQ_FLAGS_TX_ASSETS_TEST;
|
|
if (BNXT_NEW_RM(bp)) {
|
|
flags |= FUNC_CFG_REQ_FLAGS_RX_ASSETS_TEST |
|
|
FUNC_CFG_REQ_FLAGS_CMPL_ASSETS_TEST |
|
|
FUNC_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST |
|
|
FUNC_CFG_REQ_FLAGS_VNIC_ASSETS_TEST;
|
|
if (bp->flags & BNXT_FLAG_CHIP_P5)
|
|
flags |= FUNC_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST |
|
|
FUNC_CFG_REQ_FLAGS_NQ_ASSETS_TEST;
|
|
else
|
|
flags |= FUNC_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST;
|
|
}
|
|
|
|
req.flags = cpu_to_le32(flags);
|
|
rc = hwrm_send_message_silent(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
|
|
return rc;
|
|
}
|
|
|
|
static int bnxt_hwrm_check_rings(struct bnxt *bp, int tx_rings, int rx_rings,
|
|
int ring_grps, int cp_rings, int stats,
|
|
int vnics)
|
|
{
|
|
if (bp->hwrm_spec_code < 0x10801)
|
|
return 0;
|
|
|
|
if (BNXT_PF(bp))
|
|
return bnxt_hwrm_check_pf_rings(bp, tx_rings, rx_rings,
|
|
ring_grps, cp_rings, stats,
|
|
vnics);
|
|
|
|
return bnxt_hwrm_check_vf_rings(bp, tx_rings, rx_rings, ring_grps,
|
|
cp_rings, stats, vnics);
|
|
}
|
|
|
|
static void bnxt_hwrm_coal_params_qcaps(struct bnxt *bp)
|
|
{
|
|
struct hwrm_ring_aggint_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
|
|
struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
|
|
struct hwrm_ring_aggint_qcaps_input req = {0};
|
|
int rc;
|
|
|
|
coal_cap->cmpl_params = BNXT_LEGACY_COAL_CMPL_PARAMS;
|
|
coal_cap->num_cmpl_dma_aggr_max = 63;
|
|
coal_cap->num_cmpl_dma_aggr_during_int_max = 63;
|
|
coal_cap->cmpl_aggr_dma_tmr_max = 65535;
|
|
coal_cap->cmpl_aggr_dma_tmr_during_int_max = 65535;
|
|
coal_cap->int_lat_tmr_min_max = 65535;
|
|
coal_cap->int_lat_tmr_max_max = 65535;
|
|
coal_cap->num_cmpl_aggr_int_max = 65535;
|
|
coal_cap->timer_units = 80;
|
|
|
|
if (bp->hwrm_spec_code < 0x10902)
|
|
return;
|
|
|
|
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_AGGINT_QCAPS, -1, -1);
|
|
mutex_lock(&bp->hwrm_cmd_lock);
|
|
rc = _hwrm_send_message_silent(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
|
|
if (!rc) {
|
|
coal_cap->cmpl_params = le32_to_cpu(resp->cmpl_params);
|
|
coal_cap->nq_params = le32_to_cpu(resp->nq_params);
|
|
coal_cap->num_cmpl_dma_aggr_max =
|
|
le16_to_cpu(resp->num_cmpl_dma_aggr_max);
|
|
coal_cap->num_cmpl_dma_aggr_during_int_max =
|
|
le16_to_cpu(resp->num_cmpl_dma_aggr_during_int_max);
|
|
coal_cap->cmpl_aggr_dma_tmr_max =
|
|
le16_to_cpu(resp->cmpl_aggr_dma_tmr_max);
|
|
coal_cap->cmpl_aggr_dma_tmr_during_int_max =
|
|
le16_to_cpu(resp->cmpl_aggr_dma_tmr_during_int_max);
|
|
coal_cap->int_lat_tmr_min_max =
|
|
le16_to_cpu(resp->int_lat_tmr_min_max);
|
|
coal_cap->int_lat_tmr_max_max =
|
|
le16_to_cpu(resp->int_lat_tmr_max_max);
|
|
coal_cap->num_cmpl_aggr_int_max =
|
|
le16_to_cpu(resp->num_cmpl_aggr_int_max);
|
|
coal_cap->timer_units = le16_to_cpu(resp->timer_units);
|
|
}
|
|
mutex_unlock(&bp->hwrm_cmd_lock);
|
|
}
|
|
|
|
static u16 bnxt_usec_to_coal_tmr(struct bnxt *bp, u16 usec)
|
|
{
|
|
struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
|
|
|
|
return usec * 1000 / coal_cap->timer_units;
|
|
}
|
|
|
|
static void bnxt_hwrm_set_coal_params(struct bnxt *bp,
|
|
struct bnxt_coal *hw_coal,
|
|
struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req)
|
|
{
|
|
struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
|
|
u32 cmpl_params = coal_cap->cmpl_params;
|
|
u16 val, tmr, max, flags = 0;
|
|
|
|
max = hw_coal->bufs_per_record * 128;
|
|
if (hw_coal->budget)
|
|
max = hw_coal->bufs_per_record * hw_coal->budget;
|
|
max = min_t(u16, max, coal_cap->num_cmpl_aggr_int_max);
|
|
|
|
val = clamp_t(u16, hw_coal->coal_bufs, 1, max);
|
|
req->num_cmpl_aggr_int = cpu_to_le16(val);
|
|
|
|
val = min_t(u16, val, coal_cap->num_cmpl_dma_aggr_max);
|
|
req->num_cmpl_dma_aggr = cpu_to_le16(val);
|
|
|
|
val = clamp_t(u16, hw_coal->coal_bufs_irq, 1,
|
|
coal_cap->num_cmpl_dma_aggr_during_int_max);
|
|
req->num_cmpl_dma_aggr_during_int = cpu_to_le16(val);
|
|
|
|
tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks);
|
|
tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_max_max);
|
|
req->int_lat_tmr_max = cpu_to_le16(tmr);
|
|
|
|
/* min timer set to 1/2 of interrupt timer */
|
|
if (cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_INT_LAT_TMR_MIN) {
|
|
val = tmr / 2;
|
|
val = clamp_t(u16, val, 1, coal_cap->int_lat_tmr_min_max);
|
|
req->int_lat_tmr_min = cpu_to_le16(val);
|
|
req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE);
|
|
}
|
|
|
|
/* buf timer set to 1/4 of interrupt timer */
|
|
val = clamp_t(u16, tmr / 4, 1, coal_cap->cmpl_aggr_dma_tmr_max);
|
|
req->cmpl_aggr_dma_tmr = cpu_to_le16(val);
|
|
|
|
if (cmpl_params &
|
|
RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_NUM_CMPL_DMA_AGGR_DURING_INT) {
|
|
tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks_irq);
|
|
val = clamp_t(u16, tmr, 1,
|
|
coal_cap->cmpl_aggr_dma_tmr_during_int_max);
|
|
req->cmpl_aggr_dma_tmr_during_int = cpu_to_le16(tmr);
|
|
req->enables |=
|
|
cpu_to_le16(BNXT_COAL_CMPL_AGGR_TMR_DURING_INT_ENABLE);
|
|
}
|
|
|
|
if (cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_TIMER_RESET)
|
|
flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET;
|
|
if ((cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_RING_IDLE) &&
|
|
hw_coal->idle_thresh && hw_coal->coal_ticks < hw_coal->idle_thresh)
|
|
flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE;
|
|
req->flags = cpu_to_le16(flags);
|
|
req->enables |= cpu_to_le16(BNXT_COAL_CMPL_ENABLES);
|
|
}
|
|
|
|
/* Caller holds bp->hwrm_cmd_lock */
|
|
static int __bnxt_hwrm_set_coal_nq(struct bnxt *bp, struct bnxt_napi *bnapi,
|
|
struct bnxt_coal *hw_coal)
|
|
{
|
|
struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req = {0};
|
|
struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
|
|
struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
|
|
u32 nq_params = coal_cap->nq_params;
|
|
u16 tmr;
|
|
|
|
if (!(nq_params & RING_AGGINT_QCAPS_RESP_NQ_PARAMS_INT_LAT_TMR_MIN))
|
|
return 0;
|
|
|
|
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS,
|
|
-1, -1);
|
|
req.ring_id = cpu_to_le16(cpr->cp_ring_struct.fw_ring_id);
|
|
req.flags =
|
|
cpu_to_le16(RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_IS_NQ);
|
|
|
|
tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks) / 2;
|
|
tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_min_max);
|
|
req.int_lat_tmr_min = cpu_to_le16(tmr);
|
|
req.enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE);
|
|
return _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
|
|
}
|
|
|
|
int bnxt_hwrm_set_ring_coal(struct bnxt *bp, struct bnxt_napi *bnapi)
|
|
{
|
|
struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req_rx = {0};
|
|
struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
|
|
struct bnxt_coal coal;
|
|
|
|
/* Tick values in micro seconds.
|
|
* 1 coal_buf x bufs_per_record = 1 completion record.
|
|
*/
|
|
memcpy(&coal, &bp->rx_coal, sizeof(struct bnxt_coal));
|
|
|
|
coal.coal_ticks = cpr->rx_ring_coal.coal_ticks;
|
|
coal.coal_bufs = cpr->rx_ring_coal.coal_bufs;
|
|
|
|
if (!bnapi->rx_ring)
|
|
return -ENODEV;
|
|
|
|
bnxt_hwrm_cmd_hdr_init(bp, &req_rx,
|
|
HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
|
|
|
|
bnxt_hwrm_set_coal_params(bp, &coal, &req_rx);
|
|
|
|
req_rx.ring_id = cpu_to_le16(bnxt_cp_ring_for_rx(bp, bnapi->rx_ring));
|
|
|
|
return hwrm_send_message(bp, &req_rx, sizeof(req_rx),
|
|
HWRM_CMD_TIMEOUT);
|
|
}
|
|
|
|
int bnxt_hwrm_set_coal(struct bnxt *bp)
|
|
{
|
|
int i, rc = 0;
|
|
struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req_rx = {0},
|
|
req_tx = {0}, *req;
|
|
|
|
bnxt_hwrm_cmd_hdr_init(bp, &req_rx,
|
|
HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
|
|
bnxt_hwrm_cmd_hdr_init(bp, &req_tx,
|
|
HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
|
|
|
|
bnxt_hwrm_set_coal_params(bp, &bp->rx_coal, &req_rx);
|
|
bnxt_hwrm_set_coal_params(bp, &bp->tx_coal, &req_tx);
|
|
|
|
mutex_lock(&bp->hwrm_cmd_lock);
|
|
for (i = 0; i < bp->cp_nr_rings; i++) {
|
|
struct bnxt_napi *bnapi = bp->bnapi[i];
|
|
struct bnxt_coal *hw_coal;
|
|
u16 ring_id;
|
|
|
|
req = &req_rx;
|
|
if (!bnapi->rx_ring) {
|
|
ring_id = bnxt_cp_ring_for_tx(bp, bnapi->tx_ring);
|
|
req = &req_tx;
|
|
} else {
|
|
ring_id = bnxt_cp_ring_for_rx(bp, bnapi->rx_ring);
|
|
}
|
|
req->ring_id = cpu_to_le16(ring_id);
|
|
|
|
rc = _hwrm_send_message(bp, req, sizeof(*req),
|
|
HWRM_CMD_TIMEOUT);
|
|
if (rc)
|
|
break;
|
|
|
|
if (!(bp->flags & BNXT_FLAG_CHIP_P5))
|
|
continue;
|
|
|
|
if (bnapi->rx_ring && bnapi->tx_ring) {
|
|
req = &req_tx;
|
|
ring_id = bnxt_cp_ring_for_tx(bp, bnapi->tx_ring);
|
|
req->ring_id = cpu_to_le16(ring_id);
|
|
rc = _hwrm_send_message(bp, req, sizeof(*req),
|
|
HWRM_CMD_TIMEOUT);
|
|
if (rc)
|
|
break;
|
|
}
|
|
if (bnapi->rx_ring)
|
|
hw_coal = &bp->rx_coal;
|
|
else
|
|
hw_coal = &bp->tx_coal;
|
|
__bnxt_hwrm_set_coal_nq(bp, bnapi, hw_coal);
|
|
}
|
|
mutex_unlock(&bp->hwrm_cmd_lock);
|
|
return rc;
|
|
}
|
|
|
|
static int bnxt_hwrm_stat_ctx_free(struct bnxt *bp)
|
|
{
|
|
int rc = 0, i;
|
|
struct hwrm_stat_ctx_free_input req = {0};
|
|
|
|
if (!bp->bnapi)
|
|
return 0;
|
|
|
|
if (BNXT_CHIP_TYPE_NITRO_A0(bp))
|
|
return 0;
|
|
|
|
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_FREE, -1, -1);
|
|
|
|
mutex_lock(&bp->hwrm_cmd_lock);
|
|
for (i = 0; i < bp->cp_nr_rings; i++) {
|
|
struct bnxt_napi *bnapi = bp->bnapi[i];
|
|
struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
|
|
|
|
if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) {
|
|
req.stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id);
|
|
|
|
rc = _hwrm_send_message(bp, &req, sizeof(req),
|
|
HWRM_CMD_TIMEOUT);
|
|
|
|
cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
|
|
}
|
|
}
|
|
mutex_unlock(&bp->hwrm_cmd_lock);
|
|
return rc;
|
|
}
|
|
|
|
static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp)
|
|
{
|
|
int rc = 0, i;
|
|
struct hwrm_stat_ctx_alloc_input req = {0};
|
|
struct hwrm_stat_ctx_alloc_output *resp = bp->hwrm_cmd_resp_addr;
|
|
|
|
if (BNXT_CHIP_TYPE_NITRO_A0(bp))
|
|
return 0;
|
|
|
|
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_ALLOC, -1, -1);
|
|
|
|
req.stats_dma_length = cpu_to_le16(bp->hw_ring_stats_size);
|
|
req.update_period_ms = cpu_to_le32(bp->stats_coal_ticks / 1000);
|
|
|
|
mutex_lock(&bp->hwrm_cmd_lock);
|
|
for (i = 0; i < bp->cp_nr_rings; i++) {
|
|
struct bnxt_napi *bnapi = bp->bnapi[i];
|
|
struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
|
|
|
|
req.stats_dma_addr = cpu_to_le64(cpr->hw_stats_map);
|
|
|
|
rc = _hwrm_send_message(bp, &req, sizeof(req),
|
|
HWRM_CMD_TIMEOUT);
|
|
if (rc)
|
|
break;
|
|
|
|
cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id);
|
|
|
|
bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id;
|
|
}
|
|
mutex_unlock(&bp->hwrm_cmd_lock);
|
|
return rc;
|
|
}
|
|
|
|
static int bnxt_hwrm_func_qcfg(struct bnxt *bp)
|
|
{
|
|
struct hwrm_func_qcfg_input req = {0};
|
|
struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
|
|
u16 flags;
|
|
int rc;
|
|
|
|
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1);
|
|
req.fid = cpu_to_le16(0xffff);
|
|
mutex_lock(&bp->hwrm_cmd_lock);
|
|
rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
|
|
if (rc)
|
|
goto func_qcfg_exit;
|
|
|
|
#ifdef CONFIG_BNXT_SRIOV
|
|
if (BNXT_VF(bp)) {
|
|
struct bnxt_vf_info *vf = &bp->vf;
|
|
|
|
vf->vlan = le16_to_cpu(resp->vlan) & VLAN_VID_MASK;
|
|
} else {
|
|
bp->pf.registered_vfs = le16_to_cpu(resp->registered_vfs);
|
|
}
|
|
#endif
|
|
flags = le16_to_cpu(resp->flags);
|
|
if (flags & (FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED |
|
|
FUNC_QCFG_RESP_FLAGS_FW_LLDP_AGENT_ENABLED)) {
|
|
bp->fw_cap |= BNXT_FW_CAP_LLDP_AGENT;
|
|
if (flags & FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED)
|
|
bp->fw_cap |= BNXT_FW_CAP_DCBX_AGENT;
|
|
}
|
|
if (BNXT_PF(bp) && (flags & FUNC_QCFG_RESP_FLAGS_MULTI_HOST))
|
|
bp->flags |= BNXT_FLAG_MULTI_HOST;
|
|
|
|
switch (resp->port_partition_type) {
|
|
case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_0:
|
|
case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_5:
|
|
case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR2_0:
|
|
bp->port_partition_type = resp->port_partition_type;
|
|
break;
|
|
}
|
|
if (bp->hwrm_spec_code < 0x10707 ||
|
|
resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEB)
|
|
bp->br_mode = BRIDGE_MODE_VEB;
|
|
else if (resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEPA)
|
|
bp->br_mode = BRIDGE_MODE_VEPA;
|
|
else
|
|
bp->br_mode = BRIDGE_MODE_UNDEF;
|
|
|
|
bp->max_mtu = le16_to_cpu(resp->max_mtu_configured);
|
|
if (!bp->max_mtu)
|
|
bp->max_mtu = BNXT_MAX_MTU;
|
|
|
|
func_qcfg_exit:
|
|
mutex_unlock(&bp->hwrm_cmd_lock);
|
|
return rc;
|
|
}
|
|
|
|
static int bnxt_hwrm_func_backing_store_qcaps(struct bnxt *bp)
|
|
{
|
|
struct hwrm_func_backing_store_qcaps_input req = {0};
|
|
struct hwrm_func_backing_store_qcaps_output *resp =
|
|
bp->hwrm_cmd_resp_addr;
|
|
int rc;
|
|
|
|
if (bp->hwrm_spec_code < 0x10902 || BNXT_VF(bp) || bp->ctx)
|
|
return 0;
|
|
|
|
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_BACKING_STORE_QCAPS, -1, -1);
|
|
mutex_lock(&bp->hwrm_cmd_lock);
|
|
rc = _hwrm_send_message_silent(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
|
|
if (!rc) {
|
|
struct bnxt_ctx_pg_info *ctx_pg;
|
|
struct bnxt_ctx_mem_info *ctx;
|
|
int i;
|
|
|
|
ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
|
|
if (!ctx) {
|
|
rc = -ENOMEM;
|
|
goto ctx_err;
|
|
}
|
|
ctx_pg = kzalloc(sizeof(*ctx_pg) * (bp->max_q + 1), GFP_KERNEL);
|
|
if (!ctx_pg) {
|
|
kfree(ctx);
|
|
rc = -ENOMEM;
|
|
goto ctx_err;
|
|
}
|
|
for (i = 0; i < bp->max_q + 1; i++, ctx_pg++)
|
|
ctx->tqm_mem[i] = ctx_pg;
|
|
|
|
bp->ctx = ctx;
|
|
ctx->qp_max_entries = le32_to_cpu(resp->qp_max_entries);
|
|
ctx->qp_min_qp1_entries = le16_to_cpu(resp->qp_min_qp1_entries);
|
|
ctx->qp_max_l2_entries = le16_to_cpu(resp->qp_max_l2_entries);
|
|
ctx->qp_entry_size = le16_to_cpu(resp->qp_entry_size);
|
|
ctx->srq_max_l2_entries = le16_to_cpu(resp->srq_max_l2_entries);
|
|
ctx->srq_max_entries = le32_to_cpu(resp->srq_max_entries);
|
|
ctx->srq_entry_size = le16_to_cpu(resp->srq_entry_size);
|
|
ctx->cq_max_l2_entries = le16_to_cpu(resp->cq_max_l2_entries);
|
|
ctx->cq_max_entries = le32_to_cpu(resp->cq_max_entries);
|
|
ctx->cq_entry_size = le16_to_cpu(resp->cq_entry_size);
|
|
ctx->vnic_max_vnic_entries =
|
|
le16_to_cpu(resp->vnic_max_vnic_entries);
|
|
ctx->vnic_max_ring_table_entries =
|
|
le16_to_cpu(resp->vnic_max_ring_table_entries);
|
|
ctx->vnic_entry_size = le16_to_cpu(resp->vnic_entry_size);
|
|
ctx->stat_max_entries = le32_to_cpu(resp->stat_max_entries);
|
|
ctx->stat_entry_size = le16_to_cpu(resp->stat_entry_size);
|
|
ctx->tqm_entry_size = le16_to_cpu(resp->tqm_entry_size);
|
|
ctx->tqm_min_entries_per_ring =
|
|
le32_to_cpu(resp->tqm_min_entries_per_ring);
|
|
ctx->tqm_max_entries_per_ring =
|
|
le32_to_cpu(resp->tqm_max_entries_per_ring);
|
|
ctx->tqm_entries_multiple = resp->tqm_entries_multiple;
|
|
if (!ctx->tqm_entries_multiple)
|
|
ctx->tqm_entries_multiple = 1;
|
|
ctx->mrav_max_entries = le32_to_cpu(resp->mrav_max_entries);
|
|
ctx->mrav_entry_size = le16_to_cpu(resp->mrav_entry_size);
|
|
ctx->mrav_num_entries_units =
|
|
le16_to_cpu(resp->mrav_num_entries_units);
|
|
ctx->tim_entry_size = le16_to_cpu(resp->tim_entry_size);
|
|
ctx->tim_max_entries = le32_to_cpu(resp->tim_max_entries);
|
|
} else {
|
|
rc = 0;
|
|
}
|
|
ctx_err:
|
|
mutex_unlock(&bp->hwrm_cmd_lock);
|
|
return rc;
|
|
}
|
|
|
|
static void bnxt_hwrm_set_pg_attr(struct bnxt_ring_mem_info *rmem, u8 *pg_attr,
|
|
__le64 *pg_dir)
|
|
{
|
|
u8 pg_size = 0;
|
|
|
|
if (BNXT_PAGE_SHIFT == 13)
|
|
pg_size = 1 << 4;
|
|
else if (BNXT_PAGE_SIZE == 16)
|
|
pg_size = 2 << 4;
|
|
|
|
*pg_attr = pg_size;
|
|
if (rmem->depth >= 1) {
|
|
if (rmem->depth == 2)
|
|
*pg_attr |= 2;
|
|
else
|
|
*pg_attr |= 1;
|
|
*pg_dir = cpu_to_le64(rmem->pg_tbl_map);
|
|
} else {
|
|
*pg_dir = cpu_to_le64(rmem->dma_arr[0]);
|
|
}
|
|
}
|
|
|
|
#define FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES \
|
|
(FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP | \
|
|
FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ | \
|
|
FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ | \
|
|
FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC | \
|
|
FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT)
|
|
|
|
static int bnxt_hwrm_func_backing_store_cfg(struct bnxt *bp, u32 enables)
|
|
{
|
|
struct hwrm_func_backing_store_cfg_input req = {0};
|
|
struct bnxt_ctx_mem_info *ctx = bp->ctx;
|
|
struct bnxt_ctx_pg_info *ctx_pg;
|
|
__le32 *num_entries;
|
|
__le64 *pg_dir;
|
|
u32 flags = 0;
|
|
u8 *pg_attr;
|
|
int i, rc;
|
|
u32 ena;
|
|
|
|
if (!ctx)
|
|
return 0;
|
|
|
|
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_BACKING_STORE_CFG, -1, -1);
|
|
req.enables = cpu_to_le32(enables);
|
|
|
|
if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP) {
|
|
ctx_pg = &ctx->qp_mem;
|
|
req.qp_num_entries = cpu_to_le32(ctx_pg->entries);
|
|
req.qp_num_qp1_entries = cpu_to_le16(ctx->qp_min_qp1_entries);
|
|
req.qp_num_l2_entries = cpu_to_le16(ctx->qp_max_l2_entries);
|
|
req.qp_entry_size = cpu_to_le16(ctx->qp_entry_size);
|
|
bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
|
|
&req.qpc_pg_size_qpc_lvl,
|
|
&req.qpc_page_dir);
|
|
}
|
|
if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ) {
|
|
ctx_pg = &ctx->srq_mem;
|
|
req.srq_num_entries = cpu_to_le32(ctx_pg->entries);
|
|
req.srq_num_l2_entries = cpu_to_le16(ctx->srq_max_l2_entries);
|
|
req.srq_entry_size = cpu_to_le16(ctx->srq_entry_size);
|
|
bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
|
|
&req.srq_pg_size_srq_lvl,
|
|
&req.srq_page_dir);
|
|
}
|
|
if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ) {
|
|
ctx_pg = &ctx->cq_mem;
|
|
req.cq_num_entries = cpu_to_le32(ctx_pg->entries);
|
|
req.cq_num_l2_entries = cpu_to_le16(ctx->cq_max_l2_entries);
|
|
req.cq_entry_size = cpu_to_le16(ctx->cq_entry_size);
|
|
bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, &req.cq_pg_size_cq_lvl,
|
|
&req.cq_page_dir);
|
|
}
|
|
if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC) {
|
|
ctx_pg = &ctx->vnic_mem;
|
|
req.vnic_num_vnic_entries =
|
|
cpu_to_le16(ctx->vnic_max_vnic_entries);
|
|
req.vnic_num_ring_table_entries =
|
|
cpu_to_le16(ctx->vnic_max_ring_table_entries);
|
|
req.vnic_entry_size = cpu_to_le16(ctx->vnic_entry_size);
|
|
bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
|
|
&req.vnic_pg_size_vnic_lvl,
|
|
&req.vnic_page_dir);
|
|
}
|
|
if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT) {
|
|
ctx_pg = &ctx->stat_mem;
|
|
req.stat_num_entries = cpu_to_le32(ctx->stat_max_entries);
|
|
req.stat_entry_size = cpu_to_le16(ctx->stat_entry_size);
|
|
bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
|
|
&req.stat_pg_size_stat_lvl,
|
|
&req.stat_page_dir);
|
|
}
|
|
if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV) {
|
|
ctx_pg = &ctx->mrav_mem;
|
|
req.mrav_num_entries = cpu_to_le32(ctx_pg->entries);
|
|
if (ctx->mrav_num_entries_units)
|
|
flags |=
|
|
FUNC_BACKING_STORE_CFG_REQ_FLAGS_MRAV_RESERVATION_SPLIT;
|
|
req.mrav_entry_size = cpu_to_le16(ctx->mrav_entry_size);
|
|
bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
|
|
&req.mrav_pg_size_mrav_lvl,
|
|
&req.mrav_page_dir);
|
|
}
|
|
if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM) {
|
|
ctx_pg = &ctx->tim_mem;
|
|
req.tim_num_entries = cpu_to_le32(ctx_pg->entries);
|
|
req.tim_entry_size = cpu_to_le16(ctx->tim_entry_size);
|
|
bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
|
|
&req.tim_pg_size_tim_lvl,
|
|
&req.tim_page_dir);
|
|
}
|
|
for (i = 0, num_entries = &req.tqm_sp_num_entries,
|
|
pg_attr = &req.tqm_sp_pg_size_tqm_sp_lvl,
|
|
pg_dir = &req.tqm_sp_page_dir,
|
|
ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP;
|
|
i < 9; i++, num_entries++, pg_attr++, pg_dir++, ena <<= 1) {
|
|
if (!(enables & ena))
|
|
continue;
|
|
|
|
req.tqm_entry_size = cpu_to_le16(ctx->tqm_entry_size);
|
|
ctx_pg = ctx->tqm_mem[i];
|
|
*num_entries = cpu_to_le32(ctx_pg->entries);
|
|
bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, pg_attr, pg_dir);
|
|
}
|
|
req.flags = cpu_to_le32(flags);
|
|
rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
|
|
return rc;
|
|
}
|
|
|
|
static int bnxt_alloc_ctx_mem_blk(struct bnxt *bp,
|
|
struct bnxt_ctx_pg_info *ctx_pg)
|
|
{
|
|
struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
|
|
|
|
rmem->page_size = BNXT_PAGE_SIZE;
|
|
rmem->pg_arr = ctx_pg->ctx_pg_arr;
|
|
rmem->dma_arr = ctx_pg->ctx_dma_arr;
|
|
rmem->flags = BNXT_RMEM_VALID_PTE_FLAG;
|
|
if (rmem->depth >= 1)
|
|
rmem->flags |= BNXT_RMEM_USE_FULL_PAGE_FLAG;
|
|
return bnxt_alloc_ring(bp, rmem);
|
|
}
|
|
|
|
static int bnxt_alloc_ctx_pg_tbls(struct bnxt *bp,
|
|
struct bnxt_ctx_pg_info *ctx_pg, u32 mem_size,
|
|
u8 depth)
|
|
{
|
|
struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
|
|
int rc;
|
|
|
|
if (!mem_size)
|
|
return 0;
|
|
|
|
ctx_pg->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE);
|
|
if (ctx_pg->nr_pages > MAX_CTX_TOTAL_PAGES) {
|
|
ctx_pg->nr_pages = 0;
|
|
return -EINVAL;
|
|
}
|
|
if (ctx_pg->nr_pages > MAX_CTX_PAGES || depth > 1) {
|
|
int nr_tbls, i;
|
|
|
|
rmem->depth = 2;
|
|
ctx_pg->ctx_pg_tbl = kcalloc(MAX_CTX_PAGES, sizeof(ctx_pg),
|
|
GFP_KERNEL);
|
|
if (!ctx_pg->ctx_pg_tbl)
|
|
return -ENOMEM;
|
|
nr_tbls = DIV_ROUND_UP(ctx_pg->nr_pages, MAX_CTX_PAGES);
|
|
rmem->nr_pages = nr_tbls;
|
|
rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg);
|
|
if (rc)
|
|
return rc;
|
|
for (i = 0; i < nr_tbls; i++) {
|
|
struct bnxt_ctx_pg_info *pg_tbl;
|
|
|
|
pg_tbl = kzalloc(sizeof(*pg_tbl), GFP_KERNEL);
|
|
if (!pg_tbl)
|
|
return -ENOMEM;
|
|
ctx_pg->ctx_pg_tbl[i] = pg_tbl;
|
|
rmem = &pg_tbl->ring_mem;
|
|
rmem->pg_tbl = ctx_pg->ctx_pg_arr[i];
|
|
rmem->pg_tbl_map = ctx_pg->ctx_dma_arr[i];
|
|
rmem->depth = 1;
|
|
rmem->nr_pages = MAX_CTX_PAGES;
|
|
if (i == (nr_tbls - 1)) {
|
|
int rem = ctx_pg->nr_pages % MAX_CTX_PAGES;
|
|
|
|
if (rem)
|
|
rmem->nr_pages = rem;
|
|
}
|
|
rc = bnxt_alloc_ctx_mem_blk(bp, pg_tbl);
|
|
if (rc)
|
|
break;
|
|
}
|
|
} else {
|
|
rmem->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE);
|
|
if (rmem->nr_pages > 1 || depth)
|
|
rmem->depth = 1;
|
|
rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
static void bnxt_free_ctx_pg_tbls(struct bnxt *bp,
|
|
struct bnxt_ctx_pg_info *ctx_pg)
|
|
{
|
|
struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
|
|
|
|
if (rmem->depth > 1 || ctx_pg->nr_pages > MAX_CTX_PAGES ||
|
|
ctx_pg->ctx_pg_tbl) {
|
|
int i, nr_tbls = rmem->nr_pages;
|
|
|
|
for (i = 0; i < nr_tbls; i++) {
|
|
struct bnxt_ctx_pg_info *pg_tbl;
|
|
struct bnxt_ring_mem_info *rmem2;
|
|
|
|
pg_tbl = ctx_pg->ctx_pg_tbl[i];
|
|
if (!pg_tbl)
|
|
continue;
|
|
rmem2 = &pg_tbl->ring_mem;
|
|
bnxt_free_ring(bp, rmem2);
|
|
ctx_pg->ctx_pg_arr[i] = NULL;
|
|
kfree(pg_tbl);
|
|
ctx_pg->ctx_pg_tbl[i] = NULL;
|
|
}
|
|
kfree(ctx_pg->ctx_pg_tbl);
|
|
ctx_pg->ctx_pg_tbl = NULL;
|
|
}
|
|
bnxt_free_ring(bp, rmem);
|
|
ctx_pg->nr_pages = 0;
|
|
}
|
|
|
|
static void bnxt_free_ctx_mem(struct bnxt *bp)
|
|
{
|
|
struct bnxt_ctx_mem_info *ctx = bp->ctx;
|
|
int i;
|
|
|
|
if (!ctx)
|
|
return;
|
|
|
|
if (ctx->tqm_mem[0]) {
|
|
for (i = 0; i < bp->max_q + 1; i++)
|
|
bnxt_free_ctx_pg_tbls(bp, ctx->tqm_mem[i]);
|
|
kfree(ctx->tqm_mem[0]);
|
|
ctx->tqm_mem[0] = NULL;
|
|
}
|
|
|
|
bnxt_free_ctx_pg_tbls(bp, &ctx->tim_mem);
|
|
bnxt_free_ctx_pg_tbls(bp, &ctx->mrav_mem);
|
|
bnxt_free_ctx_pg_tbls(bp, &ctx->stat_mem);
|
|
bnxt_free_ctx_pg_tbls(bp, &ctx->vnic_mem);
|
|
bnxt_free_ctx_pg_tbls(bp, &ctx->cq_mem);
|
|
bnxt_free_ctx_pg_tbls(bp, &ctx->srq_mem);
|
|
bnxt_free_ctx_pg_tbls(bp, &ctx->qp_mem);
|
|
ctx->flags &= ~BNXT_CTX_FLAG_INITED;
|
|
}
|
|
|
|
static int bnxt_alloc_ctx_mem(struct bnxt *bp)
|
|
{
|
|
struct bnxt_ctx_pg_info *ctx_pg;
|
|
struct bnxt_ctx_mem_info *ctx;
|
|
u32 mem_size, ena, entries;
|
|
u32 num_mr, num_ah;
|
|
u32 extra_srqs = 0;
|
|
u32 extra_qps = 0;
|
|
u8 pg_lvl = 1;
|
|
int i, rc;
|
|
|
|
rc = bnxt_hwrm_func_backing_store_qcaps(bp);
|
|
if (rc) {
|
|
netdev_err(bp->dev, "Failed querying context mem capability, rc = %d.\n",
|
|
rc);
|
|
return rc;
|
|
}
|
|
ctx = bp->ctx;
|
|
if (!ctx || (ctx->flags & BNXT_CTX_FLAG_INITED))
|
|
return 0;
|
|
|
|
if ((bp->flags & BNXT_FLAG_ROCE_CAP) && !is_kdump_kernel()) {
|
|
pg_lvl = 2;
|
|
extra_qps = 65536;
|
|
extra_srqs = 8192;
|
|
}
|
|
|
|
ctx_pg = &ctx->qp_mem;
|
|
ctx_pg->entries = ctx->qp_min_qp1_entries + ctx->qp_max_l2_entries +
|
|
extra_qps;
|
|
mem_size = ctx->qp_entry_size * ctx_pg->entries;
|
|
rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl);
|
|
if (rc)
|
|
return rc;
|
|
|
|
ctx_pg = &ctx->srq_mem;
|
|
ctx_pg->entries = ctx->srq_max_l2_entries + extra_srqs;
|
|
mem_size = ctx->srq_entry_size * ctx_pg->entries;
|
|
rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl);
|
|
if (rc)
|
|
return rc;
|
|
|
|
ctx_pg = &ctx->cq_mem;
|
|
ctx_pg->entries = ctx->cq_max_l2_entries + extra_qps * 2;
|
|
mem_size = ctx->cq_entry_size * ctx_pg->entries;
|
|
rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl);
|
|
if (rc)
|
|
return rc;
|
|
|
|
ctx_pg = &ctx->vnic_mem;
|
|
ctx_pg->entries = ctx->vnic_max_vnic_entries +
|
|
ctx->vnic_max_ring_table_entries;
|
|
mem_size = ctx->vnic_entry_size * ctx_pg->entries;
|
|
rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1);
|
|
if (rc)
|
|
return rc;
|
|
|
|
ctx_pg = &ctx->stat_mem;
|
|
ctx_pg->entries = ctx->stat_max_entries;
|
|
mem_size = ctx->stat_entry_size * ctx_pg->entries;
|
|
rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1);
|
|
if (rc)
|
|
return rc;
|
|
|
|
ena = 0;
|
|
if (!(bp->flags & BNXT_FLAG_ROCE_CAP))
|
|
goto skip_rdma;
|
|
|
|
ctx_pg = &ctx->mrav_mem;
|
|
/* 128K extra is needed to accommodate static AH context
|
|
* allocation by f/w.
|
|
*/
|
|
num_mr = 1024 * 256;
|
|
num_ah = 1024 * 128;
|
|
ctx_pg->entries = num_mr + num_ah;
|
|
mem_size = ctx->mrav_entry_size * ctx_pg->entries;
|
|
rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 2);
|
|
if (rc)
|
|
return rc;
|
|
ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV;
|
|
if (ctx->mrav_num_entries_units)
|
|
ctx_pg->entries =
|
|
((num_mr / ctx->mrav_num_entries_units) << 16) |
|
|
(num_ah / ctx->mrav_num_entries_units);
|
|
|
|
ctx_pg = &ctx->tim_mem;
|
|
ctx_pg->entries = ctx->qp_mem.entries;
|
|
mem_size = ctx->tim_entry_size * ctx_pg->entries;
|
|
rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1);
|
|
if (rc)
|
|
return rc;
|
|
ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM;
|
|
|
|
skip_rdma:
|
|
entries = ctx->qp_max_l2_entries + extra_qps;
|
|
entries = roundup(entries, ctx->tqm_entries_multiple);
|
|
entries = clamp_t(u32, entries, ctx->tqm_min_entries_per_ring,
|
|
ctx->tqm_max_entries_per_ring);
|
|
for (i = 0; i < bp->max_q + 1; i++) {
|
|
ctx_pg = ctx->tqm_mem[i];
|
|
ctx_pg->entries = entries;
|
|
mem_size = ctx->tqm_entry_size * entries;
|
|
rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1);
|
|
if (rc)
|
|
return rc;
|
|
ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP << i;
|
|
}
|
|
ena |= FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES;
|
|
rc = bnxt_hwrm_func_backing_store_cfg(bp, ena);
|
|
if (rc)
|
|
netdev_err(bp->dev, "Failed configuring context mem, rc = %d.\n",
|
|
rc);
|
|
else
|
|
ctx->flags |= BNXT_CTX_FLAG_INITED;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int bnxt_hwrm_func_resc_qcaps(struct bnxt *bp, bool all)
|
|
{
|
|
struct hwrm_func_resource_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
|
|
struct hwrm_func_resource_qcaps_input req = {0};
|
|
struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
|
|
int rc;
|
|
|
|
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_RESOURCE_QCAPS, -1, -1);
|
|
req.fid = cpu_to_le16(0xffff);
|
|
|
|
mutex_lock(&bp->hwrm_cmd_lock);
|
|
rc = _hwrm_send_message_silent(bp, &req, sizeof(req),
|
|
HWRM_CMD_TIMEOUT);
|
|
if (rc)
|
|
goto hwrm_func_resc_qcaps_exit;
|
|
|
|
hw_resc->max_tx_sch_inputs = le16_to_cpu(resp->max_tx_scheduler_inputs);
|
|
if (!all)
|
|
goto hwrm_func_resc_qcaps_exit;
|
|
|
|
hw_resc->min_rsscos_ctxs = le16_to_cpu(resp->min_rsscos_ctx);
|
|
hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
|
|
hw_resc->min_cp_rings = le16_to_cpu(resp->min_cmpl_rings);
|
|
hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
|
|
hw_resc->min_tx_rings = le16_to_cpu(resp->min_tx_rings);
|
|
hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
|
|
hw_resc->min_rx_rings = le16_to_cpu(resp->min_rx_rings);
|
|
hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
|
|
hw_resc->min_hw_ring_grps = le16_to_cpu(resp->min_hw_ring_grps);
|
|
hw_resc->max_hw_ring_grps = le16_to_cpu(resp->max_hw_ring_grps);
|
|
hw_resc->min_l2_ctxs = le16_to_cpu(resp->min_l2_ctxs);
|
|
hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
|
|
hw_resc->min_vnics = le16_to_cpu(resp->min_vnics);
|
|
hw_resc->max_vnics = le16_to_cpu(resp->max_vnics);
|
|
hw_resc->min_stat_ctxs = le16_to_cpu(resp->min_stat_ctx);
|
|
hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
|
|
|
|
if (bp->flags & BNXT_FLAG_CHIP_P5) {
|
|
u16 max_msix = le16_to_cpu(resp->max_msix);
|
|
|
|
hw_resc->max_nqs = max_msix;
|
|
hw_resc->max_hw_ring_grps = hw_resc->max_rx_rings;
|
|
}
|
|
|
|
if (BNXT_PF(bp)) {
|
|
struct bnxt_pf_info *pf = &bp->pf;
|
|
|
|
pf->vf_resv_strategy =
|
|
le16_to_cpu(resp->vf_reservation_strategy);
|
|
if (pf->vf_resv_strategy > BNXT_VF_RESV_STRATEGY_MINIMAL_STATIC)
|
|
pf->vf_resv_strategy = BNXT_VF_RESV_STRATEGY_MAXIMAL;
|
|
}
|
|
hwrm_func_resc_qcaps_exit:
|
|
mutex_unlock(&bp->hwrm_cmd_lock);
|
|
return rc;
|
|
}
|
|
|
|
static int __bnxt_hwrm_func_qcaps(struct bnxt *bp)
|
|
{
|
|
int rc = 0;
|
|
struct hwrm_func_qcaps_input req = {0};
|
|
struct hwrm_func_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
|
|
struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
|
|
u32 flags;
|
|
|
|
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCAPS, -1, -1);
|
|
req.fid = cpu_to_le16(0xffff);
|
|
|
|
mutex_lock(&bp->hwrm_cmd_lock);
|
|
rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
|
|
if (rc)
|
|
goto hwrm_func_qcaps_exit;
|
|
|
|
flags = le32_to_cpu(resp->flags);
|
|
if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V1_SUPPORTED)
|
|
bp->flags |= BNXT_FLAG_ROCEV1_CAP;
|
|
if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V2_SUPPORTED)
|
|
bp->flags |= BNXT_FLAG_ROCEV2_CAP;
|
|
if (flags & FUNC_QCAPS_RESP_FLAGS_PCIE_STATS_SUPPORTED)
|
|
bp->fw_cap |= BNXT_FW_CAP_PCIE_STATS_SUPPORTED;
|
|
if (flags & FUNC_QCAPS_RESP_FLAGS_HOT_RESET_CAPABLE)
|
|
bp->fw_cap |= BNXT_FW_CAP_HOT_RESET;
|
|
if (flags & FUNC_QCAPS_RESP_FLAGS_EXT_STATS_SUPPORTED)
|
|
bp->fw_cap |= BNXT_FW_CAP_EXT_STATS_SUPPORTED;
|
|
if (flags & FUNC_QCAPS_RESP_FLAGS_ERROR_RECOVERY_CAPABLE)
|
|
bp->fw_cap |= BNXT_FW_CAP_ERROR_RECOVERY;
|
|
if (flags & FUNC_QCAPS_RESP_FLAGS_ERR_RECOVER_RELOAD)
|
|
bp->fw_cap |= BNXT_FW_CAP_ERR_RECOVER_RELOAD;
|
|
|
|
bp->tx_push_thresh = 0;
|
|
if (flags & FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED)
|
|
bp->tx_push_thresh = BNXT_TX_PUSH_THRESH;
|
|
|
|
hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
|
|
hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
|
|
hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
|
|
hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
|
|
hw_resc->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps);
|
|
if (!hw_resc->max_hw_ring_grps)
|
|
hw_resc->max_hw_ring_grps = hw_resc->max_tx_rings;
|
|
hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
|
|
hw_resc->max_vnics = le16_to_cpu(resp->max_vnics);
|
|
hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
|
|
|
|
if (BNXT_PF(bp)) {
|
|
struct bnxt_pf_info *pf = &bp->pf;
|
|
|
|
pf->fw_fid = le16_to_cpu(resp->fid);
|
|
pf->port_id = le16_to_cpu(resp->port_id);
|
|
bp->dev->dev_port = pf->port_id;
|
|
memcpy(pf->mac_addr, resp->mac_address, ETH_ALEN);
|
|
pf->first_vf_id = le16_to_cpu(resp->first_vf_id);
|
|
pf->max_vfs = le16_to_cpu(resp->max_vfs);
|
|
pf->max_encap_records = le32_to_cpu(resp->max_encap_records);
|
|
pf->max_decap_records = le32_to_cpu(resp->max_decap_records);
|
|
pf->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows);
|
|
pf->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows);
|
|
pf->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows);
|
|
pf->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows);
|
|
bp->flags &= ~BNXT_FLAG_WOL_CAP;
|
|
if (flags & FUNC_QCAPS_RESP_FLAGS_WOL_MAGICPKT_SUPPORTED)
|
|
bp->flags |= BNXT_FLAG_WOL_CAP;
|
|
} else {
|
|
#ifdef CONFIG_BNXT_SRIOV
|
|
struct bnxt_vf_info *vf = &bp->vf;
|
|
|
|
vf->fw_fid = le16_to_cpu(resp->fid);
|
|
memcpy(vf->mac_addr, resp->mac_address, ETH_ALEN);
|
|
#endif
|
|
}
|
|
|
|
hwrm_func_qcaps_exit:
|
|
mutex_unlock(&bp->hwrm_cmd_lock);
|
|
return rc;
|
|
}
|
|
|
|
static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp);
|
|
|
|
static int bnxt_hwrm_func_qcaps(struct bnxt *bp)
|
|
{
|
|
int rc;
|
|
|
|
rc = __bnxt_hwrm_func_qcaps(bp);
|
|
if (rc)
|
|
return rc;
|
|
rc = bnxt_hwrm_queue_qportcfg(bp);
|
|
if (rc) {
|
|
netdev_err(bp->dev, "hwrm query qportcfg failure rc: %d\n", rc);
|
|
return rc;
|
|
}
|
|
if (bp->hwrm_spec_code >= 0x10803) {
|
|
rc = bnxt_alloc_ctx_mem(bp);
|
|
if (rc)
|
|
return rc;
|
|
rc = bnxt_hwrm_func_resc_qcaps(bp, true);
|
|
if (!rc)
|
|
bp->fw_cap |= BNXT_FW_CAP_NEW_RM;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(struct bnxt *bp)
|
|
{
|
|
struct hwrm_cfa_adv_flow_mgnt_qcaps_input req = {0};
|
|
struct hwrm_cfa_adv_flow_mgnt_qcaps_output *resp;
|
|
int rc = 0;
|
|
u32 flags;
|
|
|
|
if (!(bp->fw_cap & BNXT_FW_CAP_CFA_ADV_FLOW))
|
|
return 0;
|
|
|
|
resp = bp->hwrm_cmd_resp_addr;
|
|
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_ADV_FLOW_MGNT_QCAPS, -1, -1);
|
|
|
|
mutex_lock(&bp->hwrm_cmd_lock);
|
|
rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
|
|
if (rc)
|
|
goto hwrm_cfa_adv_qcaps_exit;
|
|
|
|
flags = le32_to_cpu(resp->flags);
|
|
if (flags &
|
|
CFA_ADV_FLOW_MGNT_QCAPS_RESP_FLAGS_RFS_RING_TBL_IDX_V2_SUPPORTED)
|
|
bp->fw_cap |= BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2;
|
|
|
|
hwrm_cfa_adv_qcaps_exit:
|
|
mutex_unlock(&bp->hwrm_cmd_lock);
|
|
return rc;
|
|
}
|
|
|
|
static int bnxt_map_fw_health_regs(struct bnxt *bp)
|
|
{
|
|
struct bnxt_fw_health *fw_health = bp->fw_health;
|
|
u32 reg_base = 0xffffffff;
|
|
int i;
|
|
|
|
/* Only pre-map the monitoring GRC registers using window 3 */
|
|
for (i = 0; i < 4; i++) {
|
|
u32 reg = fw_health->regs[i];
|
|
|
|
if (BNXT_FW_HEALTH_REG_TYPE(reg) != BNXT_FW_HEALTH_REG_TYPE_GRC)
|
|
continue;
|
|
if (reg_base == 0xffffffff)
|
|
reg_base = reg & BNXT_GRC_BASE_MASK;
|
|
if ((reg & BNXT_GRC_BASE_MASK) != reg_base)
|
|
return -ERANGE;
|
|
fw_health->mapped_regs[i] = BNXT_FW_HEALTH_WIN_BASE +
|
|
(reg & BNXT_GRC_OFFSET_MASK);
|
|
}
|
|
if (reg_base == 0xffffffff)
|
|
return 0;
|
|
|
|
writel(reg_base, bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT +
|
|
BNXT_FW_HEALTH_WIN_MAP_OFF);
|
|
return 0;
|
|
}
|
|
|
|
static int bnxt_hwrm_error_recovery_qcfg(struct bnxt *bp)
|
|
{
|
|
struct hwrm_error_recovery_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
|
|
struct bnxt_fw_health *fw_health = bp->fw_health;
|
|
struct hwrm_error_recovery_qcfg_input req = {0};
|
|
int rc, i;
|
|
|
|
if (!(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
|
|
return 0;
|
|
|
|
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_ERROR_RECOVERY_QCFG, -1, -1);
|
|
mutex_lock(&bp->hwrm_cmd_lock);
|
|
rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
|
|
if (rc)
|
|
goto err_recovery_out;
|
|
if (!fw_health) {
|
|
fw_health = kzalloc(sizeof(*fw_health), GFP_KERNEL);
|
|
bp->fw_health = fw_health;
|
|
if (!fw_health) {
|
|
rc = -ENOMEM;
|
|
goto err_recovery_out;
|
|
}
|
|
}
|
|
fw_health->flags = le32_to_cpu(resp->flags);
|
|
if ((fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) &&
|
|
!(bp->fw_cap & BNXT_FW_CAP_KONG_MB_CHNL)) {
|
|
rc = -EINVAL;
|
|
goto err_recovery_out;
|
|
}
|
|
fw_health->polling_dsecs = le32_to_cpu(resp->driver_polling_freq);
|
|
fw_health->master_func_wait_dsecs =
|
|
le32_to_cpu(resp->master_func_wait_period);
|
|
fw_health->normal_func_wait_dsecs =
|
|
le32_to_cpu(resp->normal_func_wait_period);
|
|
fw_health->post_reset_wait_dsecs =
|
|
le32_to_cpu(resp->master_func_wait_period_after_reset);
|
|
fw_health->post_reset_max_wait_dsecs =
|
|
le32_to_cpu(resp->max_bailout_time_after_reset);
|
|
fw_health->regs[BNXT_FW_HEALTH_REG] =
|
|
le32_to_cpu(resp->fw_health_status_reg);
|
|
fw_health->regs[BNXT_FW_HEARTBEAT_REG] =
|
|
le32_to_cpu(resp->fw_heartbeat_reg);
|
|
fw_health->regs[BNXT_FW_RESET_CNT_REG] =
|
|
le32_to_cpu(resp->fw_reset_cnt_reg);
|
|
fw_health->regs[BNXT_FW_RESET_INPROG_REG] =
|
|
le32_to_cpu(resp->reset_inprogress_reg);
|
|
fw_health->fw_reset_inprog_reg_mask =
|
|
le32_to_cpu(resp->reset_inprogress_reg_mask);
|
|
fw_health->fw_reset_seq_cnt = resp->reg_array_cnt;
|
|
if (fw_health->fw_reset_seq_cnt >= 16) {
|
|
rc = -EINVAL;
|
|
goto err_recovery_out;
|
|
}
|
|
for (i = 0; i < fw_health->fw_reset_seq_cnt; i++) {
|
|
fw_health->fw_reset_seq_regs[i] =
|
|
le32_to_cpu(resp->reset_reg[i]);
|
|
fw_health->fw_reset_seq_vals[i] =
|
|
le32_to_cpu(resp->reset_reg_val[i]);
|
|
fw_health->fw_reset_seq_delay_msec[i] =
|
|
resp->delay_after_reset[i];
|
|
}
|
|
err_recovery_out:
|
|
mutex_unlock(&bp->hwrm_cmd_lock);
|
|
if (!rc)
|
|
rc = bnxt_map_fw_health_regs(bp);
|
|
if (rc)
|
|
bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY;
|
|
return rc;
|
|
}
|
|
|
|
static int bnxt_hwrm_func_reset(struct bnxt *bp)
|
|
{
|
|
struct hwrm_func_reset_input req = {0};
|
|
|
|
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_RESET, -1, -1);
|
|
req.enables = 0;
|
|
|
|
return hwrm_send_message(bp, &req, sizeof(req), HWRM_RESET_TIMEOUT);
|
|
}
|
|
|
|
static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp)
|
|
{
|
|
int rc = 0;
|
|
struct hwrm_queue_qportcfg_input req = {0};
|
|
struct hwrm_queue_qportcfg_output *resp = bp->hwrm_cmd_resp_addr;
|
|
u8 i, j, *qptr;
|
|
bool no_rdma;
|
|
|
|
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_QUEUE_QPORTCFG, -1, -1);
|
|
|
|
mutex_lock(&bp->hwrm_cmd_lock);
|
|
rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
|
|
if (rc)
|
|
goto qportcfg_exit;
|
|
|
|
if (!resp->max_configurable_queues) {
|
|
rc = -EINVAL;
|
|
goto qportcfg_exit;
|
|
}
|
|
bp->max_tc = resp->max_configurable_queues;
|
|
bp->max_lltc = resp->max_configurable_lossless_queues;
|
|
if (bp->max_tc > BNXT_MAX_QUEUE)
|
|
bp->max_tc = BNXT_MAX_QUEUE;
|
|
|
|
no_rdma = !(bp->flags & BNXT_FLAG_ROCE_CAP);
|
|
qptr = &resp->queue_id0;
|
|
for (i = 0, j = 0; i < bp->max_tc; i++) {
|
|
bp->q_info[j].queue_id = *qptr;
|
|
bp->q_ids[i] = *qptr++;
|
|
bp->q_info[j].queue_profile = *qptr++;
|
|
bp->tc_to_qidx[j] = j;
|
|
if (!BNXT_CNPQ(bp->q_info[j].queue_profile) ||
|
|
(no_rdma && BNXT_PF(bp)))
|
|
j++;
|
|
}
|
|
bp->max_q = bp->max_tc;
|
|
bp->max_tc = max_t(u8, j, 1);
|
|
|
|
if (resp->queue_cfg_info & QUEUE_QPORTCFG_RESP_QUEUE_CFG_INFO_ASYM_CFG)
|
|
bp->max_tc = 1;
|
|
|
|
if (bp->max_lltc > bp->max_tc)
|
|
bp->max_lltc = bp->max_tc;
|
|
|
|
qportcfg_exit:
|
|
mutex_unlock(&bp->hwrm_cmd_lock);
|
|
return rc;
|
|
}
|
|
|
|
static int __bnxt_hwrm_ver_get(struct bnxt *bp, bool silent)
|
|
{
|
|
struct hwrm_ver_get_input req = {0};
|
|
int rc;
|
|
|
|
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VER_GET, -1, -1);
|
|
req.hwrm_intf_maj = HWRM_VERSION_MAJOR;
|
|
req.hwrm_intf_min = HWRM_VERSION_MINOR;
|
|
req.hwrm_intf_upd = HWRM_VERSION_UPDATE;
|
|
|
|
rc = bnxt_hwrm_do_send_msg(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT,
|
|
silent);
|
|
return rc;
|
|
}
|
|
|
|
static int bnxt_hwrm_ver_get(struct bnxt *bp)
|
|
{
|
|
struct hwrm_ver_get_output *resp = bp->hwrm_cmd_resp_addr;
|
|
u32 dev_caps_cfg;
|
|
int rc;
|
|
|
|
bp->hwrm_max_req_len = HWRM_MAX_REQ_LEN;
|
|
mutex_lock(&bp->hwrm_cmd_lock);
|
|
rc = __bnxt_hwrm_ver_get(bp, false);
|
|
if (rc)
|
|
goto hwrm_ver_get_exit;
|
|
|
|
memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output));
|
|
|
|
bp->hwrm_spec_code = resp->hwrm_intf_maj_8b << 16 |
|
|
resp->hwrm_intf_min_8b << 8 |
|
|
resp->hwrm_intf_upd_8b;
|
|
if (resp->hwrm_intf_maj_8b < 1) {
|
|
netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n",
|
|
resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b,
|
|
resp->hwrm_intf_upd_8b);
|
|
netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n");
|
|
}
|
|
snprintf(bp->fw_ver_str, BC_HWRM_STR_LEN, "%d.%d.%d.%d",
|
|
resp->hwrm_fw_maj_8b, resp->hwrm_fw_min_8b,
|
|
resp->hwrm_fw_bld_8b, resp->hwrm_fw_rsvd_8b);
|
|
|
|
if (strlen(resp->active_pkg_name)) {
|
|
int fw_ver_len = strlen(bp->fw_ver_str);
|
|
|
|
snprintf(bp->fw_ver_str + fw_ver_len,
|
|
FW_VER_STR_LEN - fw_ver_len - 1, "/pkg %s",
|
|
resp->active_pkg_name);
|
|
bp->fw_cap |= BNXT_FW_CAP_PKG_VER;
|
|
}
|
|
|
|
bp->hwrm_cmd_timeout = le16_to_cpu(resp->def_req_timeout);
|
|
if (!bp->hwrm_cmd_timeout)
|
|
bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT;
|
|
|
|
if (resp->hwrm_intf_maj_8b >= 1) {
|
|
bp->hwrm_max_req_len = le16_to_cpu(resp->max_req_win_len);
|
|
bp->hwrm_max_ext_req_len = le16_to_cpu(resp->max_ext_req_len);
|
|
}
|
|
if (bp->hwrm_max_ext_req_len < HWRM_MAX_REQ_LEN)
|
|
bp->hwrm_max_ext_req_len = HWRM_MAX_REQ_LEN;
|
|
|
|
bp->chip_num = le16_to_cpu(resp->chip_num);
|
|
if (bp->chip_num == CHIP_NUM_58700 && !resp->chip_rev &&
|
|
!resp->chip_metal)
|
|
bp->flags |= BNXT_FLAG_CHIP_NITRO_A0;
|
|
|
|
dev_caps_cfg = le32_to_cpu(resp->dev_caps_cfg);
|
|
if ((dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_SUPPORTED) &&
|
|
(dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_REQUIRED))
|
|
bp->fw_cap |= BNXT_FW_CAP_SHORT_CMD;
|
|
|
|
if (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_KONG_MB_CHNL_SUPPORTED)
|
|
bp->fw_cap |= BNXT_FW_CAP_KONG_MB_CHNL;
|
|
|
|
if (dev_caps_cfg &
|
|
VER_GET_RESP_DEV_CAPS_CFG_FLOW_HANDLE_64BIT_SUPPORTED)
|
|
bp->fw_cap |= BNXT_FW_CAP_OVS_64BIT_HANDLE;
|
|
|
|
if (dev_caps_cfg &
|
|
VER_GET_RESP_DEV_CAPS_CFG_TRUSTED_VF_SUPPORTED)
|
|
bp->fw_cap |= BNXT_FW_CAP_TRUSTED_VF;
|
|
|
|
if (dev_caps_cfg &
|
|
VER_GET_RESP_DEV_CAPS_CFG_CFA_ADV_FLOW_MGNT_SUPPORTED)
|
|
bp->fw_cap |= BNXT_FW_CAP_CFA_ADV_FLOW;
|
|
|
|
hwrm_ver_get_exit:
|
|
mutex_unlock(&bp->hwrm_cmd_lock);
|
|
return rc;
|
|
}
|
|
|
|
int bnxt_hwrm_fw_set_time(struct bnxt *bp)
|
|
{
|
|
struct hwrm_fw_set_time_input req = {0};
|
|
struct tm tm;
|
|
time64_t now = ktime_get_real_seconds();
|
|
|
|
if ((BNXT_VF(bp) && bp->hwrm_spec_code < 0x10901) ||
|
|
bp->hwrm_spec_code < 0x10400)
|
|
return -EOPNOTSUPP;
|
|
|
|
time64_to_tm(now, 0, &tm);
|
|
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FW_SET_TIME, -1, -1);
|
|
req.year = cpu_to_le16(1900 + tm.tm_year);
|
|
req.month = 1 + tm.tm_mon;
|
|
req.day = tm.tm_mday;
|
|
req.hour = tm.tm_hour;
|
|
req.minute = tm.tm_min;
|
|
req.second = tm.tm_sec;
|
|
return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
|
|
}
|
|
|
|
static int bnxt_hwrm_port_qstats(struct bnxt *bp)
|
|
{
|
|
int rc;
|
|
struct bnxt_pf_info *pf = &bp->pf;
|
|
struct hwrm_port_qstats_input req = {0};
|
|
|
|
if (!(bp->flags & BNXT_FLAG_PORT_STATS))
|
|
return 0;
|
|
|
|
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_QSTATS, -1, -1);
|
|
req.port_id = cpu_to_le16(pf->port_id);
|
|
req.tx_stat_host_addr = cpu_to_le64(bp->hw_tx_port_stats_map);
|
|
req.rx_stat_host_addr = cpu_to_le64(bp->hw_rx_port_stats_map);
|
|
rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
|
|
return rc;
|
|
}
|
|
|
|
static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp)
|
|
{
|
|
struct hwrm_port_qstats_ext_output *resp = bp->hwrm_cmd_resp_addr;
|
|
struct hwrm_queue_pri2cos_qcfg_input req2 = {0};
|
|
struct hwrm_port_qstats_ext_input req = {0};
|
|
struct bnxt_pf_info *pf = &bp->pf;
|
|
u32 tx_stat_size;
|
|
int rc;
|
|
|
|
if (!(bp->flags & BNXT_FLAG_PORT_STATS_EXT))
|
|
return 0;
|
|
|
|
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_QSTATS_EXT, -1, -1);
|
|
req.port_id = cpu_to_le16(pf->port_id);
|
|
req.rx_stat_size = cpu_to_le16(sizeof(struct rx_port_stats_ext));
|
|
req.rx_stat_host_addr = cpu_to_le64(bp->hw_rx_port_stats_ext_map);
|
|
tx_stat_size = bp->hw_tx_port_stats_ext ?
|
|
sizeof(*bp->hw_tx_port_stats_ext) : 0;
|
|
req.tx_stat_size = cpu_to_le16(tx_stat_size);
|
|
req.tx_stat_host_addr = cpu_to_le64(bp->hw_tx_port_stats_ext_map);
|
|
mutex_lock(&bp->hwrm_cmd_lock);
|
|
rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
|
|
if (!rc) {
|
|
bp->fw_rx_stats_ext_size = le16_to_cpu(resp->rx_stat_size) / 8;
|
|
bp->fw_tx_stats_ext_size = tx_stat_size ?
|
|
le16_to_cpu(resp->tx_stat_size) / 8 : 0;
|
|
} else {
|
|
bp->fw_rx_stats_ext_size = 0;
|
|
bp->fw_tx_stats_ext_size = 0;
|
|
}
|
|
if (bp->fw_tx_stats_ext_size <=
|
|
offsetof(struct tx_port_stats_ext, pfc_pri0_tx_duration_us) / 8) {
|
|
mutex_unlock(&bp->hwrm_cmd_lock);
|
|
bp->pri2cos_valid = 0;
|
|
return rc;
|
|
}
|
|
|
|
bnxt_hwrm_cmd_hdr_init(bp, &req2, HWRM_QUEUE_PRI2COS_QCFG, -1, -1);
|
|
req2.flags = cpu_to_le32(QUEUE_PRI2COS_QCFG_REQ_FLAGS_IVLAN);
|
|
|
|
rc = _hwrm_send_message(bp, &req2, sizeof(req2), HWRM_CMD_TIMEOUT);
|
|
if (!rc) {
|
|
struct hwrm_queue_pri2cos_qcfg_output *resp2;
|
|
u8 *pri2cos;
|
|
int i, j;
|
|
|
|
resp2 = bp->hwrm_cmd_resp_addr;
|
|
pri2cos = &resp2->pri0_cos_queue_id;
|
|
for (i = 0; i < 8; i++) {
|
|
u8 queue_id = pri2cos[i];
|
|
|
|
for (j = 0; j < bp->max_q; j++) {
|
|
if (bp->q_ids[j] == queue_id)
|
|
bp->pri2cos[i] = j;
|
|
}
|
|
}
|
|
bp->pri2cos_valid = 1;
|
|
}
|
|
mutex_unlock(&bp->hwrm_cmd_lock);
|
|
return rc;
|
|
}
|
|
|
|
static int bnxt_hwrm_pcie_qstats(struct bnxt *bp)
|
|
{
|
|
struct hwrm_pcie_qstats_input req = {0};
|
|
|
|
if (!(bp->flags & BNXT_FLAG_PCIE_STATS))
|
|
return 0;
|
|
|
|
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PCIE_QSTATS, -1, -1);
|
|
req.pcie_stat_size = cpu_to_le16(sizeof(struct pcie_ctx_hw_stats));
|
|
req.pcie_stat_host_addr = cpu_to_le64(bp->hw_pcie_stats_map);
|
|
return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
|
|
}
|
|
|
|
static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp)
|
|
{
|
|
if (bp->vxlan_port_cnt) {
|
|
bnxt_hwrm_tunnel_dst_port_free(
|
|
bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
|
|
}
|
|
bp->vxlan_port_cnt = 0;
|
|
if (bp->nge_port_cnt) {
|
|
bnxt_hwrm_tunnel_dst_port_free(
|
|
bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
|
|
}
|
|
bp->nge_port_cnt = 0;
|
|
}
|
|
|
|
static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa)
|
|
{
|
|
int rc, i;
|
|
u32 tpa_flags = 0;
|
|
|
|
if (set_tpa)
|
|
tpa_flags = bp->flags & BNXT_FLAG_TPA;
|
|
else if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))
|
|
return 0;
|
|
for (i = 0; i < bp->nr_vnics; i++) {
|
|
rc = bnxt_hwrm_vnic_set_tpa(bp, i, tpa_flags);
|
|
if (rc) {
|
|
netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n",
|
|
i, rc);
|
|
return rc;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < bp->nr_vnics; i++)
|
|
bnxt_hwrm_vnic_set_rss(bp, i, false);
|
|
}
|
|
|
|
static void bnxt_clear_vnic(struct bnxt *bp)
|
|
{
|
|
if (!bp->vnic_info)
|
|
return;
|
|
|
|
bnxt_hwrm_clear_vnic_filter(bp);
|
|
if (!(bp->flags & BNXT_FLAG_CHIP_P5)) {
|
|
/* clear all RSS setting before free vnic ctx */
|
|
bnxt_hwrm_clear_vnic_rss(bp);
|
|
bnxt_hwrm_vnic_ctx_free(bp);
|
|
}
|
|
/* before free the vnic, undo the vnic tpa settings */
|
|
if (bp->flags & BNXT_FLAG_TPA)
|
|
bnxt_set_tpa(bp, false);
|
|
bnxt_hwrm_vnic_free(bp);
|
|
if (bp->flags & BNXT_FLAG_CHIP_P5)
|
|
bnxt_hwrm_vnic_ctx_free(bp);
|
|
}
|
|
|
|
static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path,
|
|
bool irq_re_init)
|
|
{
|
|
bnxt_clear_vnic(bp);
|
|
bnxt_hwrm_ring_free(bp, close_path);
|
|
bnxt_hwrm_ring_grp_free(bp);
|
|
if (irq_re_init) {
|
|
bnxt_hwrm_stat_ctx_free(bp);
|
|
bnxt_hwrm_free_tunnel_ports(bp);
|
|
}
|
|
}
|
|
|
|
static int bnxt_hwrm_set_br_mode(struct bnxt *bp, u16 br_mode)
|
|
{
|
|
struct hwrm_func_cfg_input req = {0};
|
|
int rc;
|
|
|
|
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
|
|
req.fid = cpu_to_le16(0xffff);
|
|
req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_EVB_MODE);
|
|
if (br_mode == BRIDGE_MODE_VEB)
|
|
req.evb_mode = FUNC_CFG_REQ_EVB_MODE_VEB;
|
|
else if (br_mode == BRIDGE_MODE_VEPA)
|
|
req.evb_mode = FUNC_CFG_REQ_EVB_MODE_VEPA;
|
|
else
|
|
return -EINVAL;
|
|
rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
|
|
return rc;
|
|
}
|
|
|
|
static int bnxt_hwrm_set_cache_line_size(struct bnxt *bp, int size)
|
|
{
|
|
struct hwrm_func_cfg_input req = {0};
|
|
int rc;
|
|
|
|
if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10803)
|
|
return 0;
|
|
|
|
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
|
|
req.fid = cpu_to_le16(0xffff);
|
|
req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_CACHE_LINESIZE);
|
|
req.options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_64;
|
|
if (size == 128)
|
|
req.options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_128;
|
|
|
|
rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
|
|
return rc;
|
|
}
|
|
|
|
static int __bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
|
|
{
|
|
struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
|
|
int rc;
|
|
|
|
if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG)
|
|
goto skip_rss_ctx;
|
|
|
|
/* allocate context for vnic */
|
|
rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 0);
|
|
if (rc) {
|
|
netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
|
|
vnic_id, rc);
|
|
goto vnic_setup_err;
|
|
}
|
|
bp->rsscos_nr_ctxs++;
|
|
|
|
if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
|
|
rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 1);
|
|
if (rc) {
|
|
netdev_err(bp->dev, "hwrm vnic %d cos ctx alloc failure rc: %x\n",
|
|
vnic_id, rc);
|
|
goto vnic_setup_err;
|
|
}
|
|
bp->rsscos_nr_ctxs++;
|
|
}
|
|
|
|
skip_rss_ctx:
|
|
/* configure default vnic, ring grp */
|
|
rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
|
|
if (rc) {
|
|
netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
|
|
vnic_id, rc);
|
|
goto vnic_setup_err;
|
|
}
|
|
|
|
/* Enable RSS hashing on vnic */
|
|
rc = bnxt_hwrm_vnic_set_rss(bp, vnic_id, true);
|
|
if (rc) {
|
|
netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n",
|
|
vnic_id, rc);
|
|
goto vnic_setup_err;
|
|
}
|
|
|
|
if (bp->flags & BNXT_FLAG_AGG_RINGS) {
|
|
rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
|
|
if (rc) {
|
|
netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
|
|
vnic_id, rc);
|
|
}
|
|
}
|
|
|
|
vnic_setup_err:
|
|
return rc;
|
|
}
|
|
|
|
static int __bnxt_setup_vnic_p5(struct bnxt *bp, u16 vnic_id)
|
|
{
|
|
int rc, i, nr_ctxs;
|
|
|
|
nr_ctxs = DIV_ROUND_UP(bp->rx_nr_rings, 64);
|
|
for (i = 0; i < nr_ctxs; i++) {
|
|
rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, i);
|
|
if (rc) {
|
|
netdev_err(bp->dev, "hwrm vnic %d ctx %d alloc failure rc: %x\n",
|
|
vnic_id, i, rc);
|
|
break;
|
|
}
|
|
bp->rsscos_nr_ctxs++;
|
|
}
|
|
if (i < nr_ctxs)
|
|
return -ENOMEM;
|
|
|
|
rc = bnxt_hwrm_vnic_set_rss_p5(bp, vnic_id, true);
|
|
if (rc) {
|
|
netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %d\n",
|
|
vnic_id, rc);
|
|
return rc;
|
|
}
|
|
rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
|
|
if (rc) {
|
|
netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
|
|
vnic_id, rc);
|
|
return rc;
|
|
}
|
|
if (bp->flags & BNXT_FLAG_AGG_RINGS) {
|
|
rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
|
|
if (rc) {
|
|
netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
|
|
vnic_id, rc);
|
|
}
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
static int bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
|
|
{
|
|
if (bp->flags & BNXT_FLAG_CHIP_P5)
|
|
return __bnxt_setup_vnic_p5(bp, vnic_id);
|
|
else
|
|
return __bnxt_setup_vnic(bp, vnic_id);
|
|
}
|
|
|
|
static int bnxt_alloc_rfs_vnics(struct bnxt *bp)
|
|
{
|
|
#ifdef CONFIG_RFS_ACCEL
|
|
int i, rc = 0;
|
|
|
|
if (bp->flags & BNXT_FLAG_CHIP_P5)
|
|
return 0;
|
|
|
|
for (i = 0; i < bp->rx_nr_rings; i++) {
|
|
struct bnxt_vnic_info *vnic;
|
|
u16 vnic_id = i + 1;
|
|
u16 ring_id = i;
|
|
|
|
if (vnic_id >= bp->nr_vnics)
|
|
break;
|
|
|
|
vnic = &bp->vnic_info[vnic_id];
|
|
vnic->flags |= BNXT_VNIC_RFS_FLAG;
|
|
if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
|
|
vnic->flags |= BNXT_VNIC_RFS_NEW_RSS_FLAG;
|
|
rc = bnxt_hwrm_vnic_alloc(bp, vnic_id, ring_id, 1);
|
|
if (rc) {
|
|
netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
|
|
vnic_id, rc);
|
|
break;
|
|
}
|
|
rc = bnxt_setup_vnic(bp, vnic_id);
|
|
if (rc)
|
|
break;
|
|
}
|
|
return rc;
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
/* Allow PF and VF with default VLAN to be in promiscuous mode */
|
|
static bool bnxt_promisc_ok(struct bnxt *bp)
|
|
{
|
|
#ifdef CONFIG_BNXT_SRIOV
|
|
if (BNXT_VF(bp) && !bp->vf.vlan)
|
|
return false;
|
|
#endif
|
|
return true;
|
|
}
|
|
|
|
static int bnxt_setup_nitroa0_vnic(struct bnxt *bp)
|
|
{
|
|
unsigned int rc = 0;
|
|
|
|
rc = bnxt_hwrm_vnic_alloc(bp, 1, bp->rx_nr_rings - 1, 1);
|
|
if (rc) {
|
|
netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
|
|
rc);
|
|
return rc;
|
|
}
|
|
|
|
rc = bnxt_hwrm_vnic_cfg(bp, 1);
|
|
if (rc) {
|
|
netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
|
|
rc);
|
|
return rc;
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
static int bnxt_cfg_rx_mode(struct bnxt *);
|
|
static bool bnxt_mc_list_updated(struct bnxt *, u32 *);
|
|
|
|
static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init)
|
|
{
|
|
struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
|
|
int rc = 0;
|
|
unsigned int rx_nr_rings = bp->rx_nr_rings;
|
|
|
|
if (irq_re_init) {
|
|
rc = bnxt_hwrm_stat_ctx_alloc(bp);
|
|
if (rc) {
|
|
netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n",
|
|
rc);
|
|
goto err_out;
|
|
}
|
|
}
|
|
|
|
rc = bnxt_hwrm_ring_alloc(bp);
|
|
if (rc) {
|
|
netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc);
|
|
goto err_out;
|
|
}
|
|
|
|
rc = bnxt_hwrm_ring_grp_alloc(bp);
|
|
if (rc) {
|
|
netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc);
|
|
goto err_out;
|
|
}
|
|
|
|
if (BNXT_CHIP_TYPE_NITRO_A0(bp))
|
|
rx_nr_rings--;
|
|
|
|
/* default vnic 0 */
|
|
rc = bnxt_hwrm_vnic_alloc(bp, 0, 0, rx_nr_rings);
|
|
if (rc) {
|
|
netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc);
|
|
goto err_out;
|
|
}
|
|
|
|
rc = bnxt_setup_vnic(bp, 0);
|
|
if (rc)
|
|
goto err_out;
|
|
|
|
if (bp->flags & BNXT_FLAG_RFS) {
|
|
rc = bnxt_alloc_rfs_vnics(bp);
|
|
if (rc)
|
|
goto err_out;
|
|
}
|
|
|
|
if (bp->flags & BNXT_FLAG_TPA) {
|
|
rc = bnxt_set_tpa(bp, true);
|
|
if (rc)
|
|
goto err_out;
|
|
}
|
|
|
|
if (BNXT_VF(bp))
|
|
bnxt_update_vf_mac(bp);
|
|
|
|
/* Filter for default vnic 0 */
|
|
rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr);
|
|
if (rc) {
|
|
netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc);
|
|
goto err_out;
|
|
}
|
|
vnic->uc_filter_count = 1;
|
|
|
|
vnic->rx_mask = 0;
|
|
if (bp->dev->flags & IFF_BROADCAST)
|
|
vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
|
|
|
|
if ((bp->dev->flags & IFF_PROMISC) && bnxt_promisc_ok(bp))
|
|
vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
|
|
|
|
if (bp->dev->flags & IFF_ALLMULTI) {
|
|
vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
|
|
vnic->mc_list_count = 0;
|
|
} else {
|
|
u32 mask = 0;
|
|
|
|
bnxt_mc_list_updated(bp, &mask);
|
|
vnic->rx_mask |= mask;
|
|
}
|
|
|
|
rc = bnxt_cfg_rx_mode(bp);
|
|
if (rc)
|
|
goto err_out;
|
|
|
|
rc = bnxt_hwrm_set_coal(bp);
|
|
if (rc)
|
|
netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n",
|
|
rc);
|
|
|
|
if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
|
|
rc = bnxt_setup_nitroa0_vnic(bp);
|
|
if (rc)
|
|
netdev_err(bp->dev, "Special vnic setup failure for NS2 A0 rc: %x\n",
|
|
rc);
|
|
}
|
|
|
|
if (BNXT_VF(bp)) {
|
|
bnxt_hwrm_func_qcfg(bp);
|
|
netdev_update_features(bp->dev);
|
|
}
|
|
|
|
return 0;
|
|
|
|
err_out:
|
|
bnxt_hwrm_resource_free(bp, 0, true);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init)
|
|
{
|
|
bnxt_hwrm_resource_free(bp, 1, irq_re_init);
|
|
return 0;
|
|
}
|
|
|
|
static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init)
|
|
{
|
|
bnxt_init_cp_rings(bp);
|
|
bnxt_init_rx_rings(bp);
|
|
bnxt_init_tx_rings(bp);
|
|
bnxt_init_ring_grps(bp, irq_re_init);
|
|
bnxt_init_vnics(bp);
|
|
|
|
return bnxt_init_chip(bp, irq_re_init);
|
|
}
|
|
|
|
static int bnxt_set_real_num_queues(struct bnxt *bp)
|
|
{
|
|
int rc;
|
|
struct net_device *dev = bp->dev;
|
|
|
|
rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings -
|
|
bp->tx_nr_rings_xdp);
|
|
if (rc)
|
|
return rc;
|
|
|
|
rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings);
|
|
if (rc)
|
|
return rc;
|
|
|
|
#ifdef CONFIG_RFS_ACCEL
|
|
if (bp->flags & BNXT_FLAG_RFS)
|
|
dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings);
|
|
#endif
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
|
|
bool shared)
|
|
{
|
|
int _rx = *rx, _tx = *tx;
|
|
|
|
if (shared) {
|
|
*rx = min_t(int, _rx, max);
|
|
*tx = min_t(int, _tx, max);
|
|
} else {
|
|
if (max < 2)
|
|
return -ENOMEM;
|
|
|
|
while (_rx + _tx > max) {
|
|
if (_rx > _tx && _rx > 1)
|
|
_rx--;
|
|
else if (_tx > 1)
|
|
_tx--;
|
|
}
|
|
*rx = _rx;
|
|
*tx = _tx;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void bnxt_setup_msix(struct bnxt *bp)
|
|
{
|
|
const int len = sizeof(bp->irq_tbl[0].name);
|
|
struct net_device *dev = bp->dev;
|
|
int tcs, i;
|
|
|
|
tcs = netdev_get_num_tc(dev);
|
|
if (tcs > 1) {
|
|
int i, off, count;
|
|
|
|
for (i = 0; i < tcs; i++) {
|
|
count = bp->tx_nr_rings_per_tc;
|
|
off = i * count;
|
|
netdev_set_tc_queue(dev, i, count, off);
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < bp->cp_nr_rings; i++) {
|
|
int map_idx = bnxt_cp_num_to_irq_num(bp, i);
|
|
char *attr;
|
|
|
|
if (bp->flags & BNXT_FLAG_SHARED_RINGS)
|
|
attr = "TxRx";
|
|
else if (i < bp->rx_nr_rings)
|
|
attr = "rx";
|
|
else
|
|
attr = "tx";
|
|
|
|
snprintf(bp->irq_tbl[map_idx].name, len, "%s-%s-%d", dev->name,
|
|
attr, i);
|
|
bp->irq_tbl[map_idx].handler = bnxt_msix;
|
|
}
|
|
}
|
|
|
|
static void bnxt_setup_inta(struct bnxt *bp)
|
|
{
|
|
const int len = sizeof(bp->irq_tbl[0].name);
|
|
|
|
if (netdev_get_num_tc(bp->dev))
|
|
netdev_reset_tc(bp->dev);
|
|
|
|
snprintf(bp->irq_tbl[0].name, len, "%s-%s-%d", bp->dev->name, "TxRx",
|
|
0);
|
|
bp->irq_tbl[0].handler = bnxt_inta;
|
|
}
|
|
|
|
static int bnxt_setup_int_mode(struct bnxt *bp)
|
|
{
|
|
int rc;
|
|
|
|
if (bp->flags & BNXT_FLAG_USING_MSIX)
|
|
bnxt_setup_msix(bp);
|
|
else
|
|
bnxt_setup_inta(bp);
|
|
|
|
rc = bnxt_set_real_num_queues(bp);
|
|
return rc;
|
|
}
|
|
|
|
#ifdef CONFIG_RFS_ACCEL
|
|
static unsigned int bnxt_get_max_func_rss_ctxs(struct bnxt *bp)
|
|
{
|
|
return bp->hw_resc.max_rsscos_ctxs;
|
|
}
|
|
|
|
static unsigned int bnxt_get_max_func_vnics(struct bnxt *bp)
|
|
{
|
|
return bp->hw_resc.max_vnics;
|
|
}
|
|
#endif
|
|
|
|
unsigned int bnxt_get_max_func_stat_ctxs(struct bnxt *bp)
|
|
{
|
|
return bp->hw_resc.max_stat_ctxs;
|
|
}
|
|
|
|
unsigned int bnxt_get_max_func_cp_rings(struct bnxt *bp)
|
|
{
|
|
return bp->hw_resc.max_cp_rings;
|
|
}
|
|
|
|
static unsigned int bnxt_get_max_func_cp_rings_for_en(struct bnxt *bp)
|
|
{
|
|
unsigned int cp = bp->hw_resc.max_cp_rings;
|
|
|
|
if (!(bp->flags & BNXT_FLAG_CHIP_P5))
|
|
cp -= bnxt_get_ulp_msix_num(bp);
|
|
|
|
return cp;
|
|
}
|
|
|
|
static unsigned int bnxt_get_max_func_irqs(struct bnxt *bp)
|
|
{
|
|
struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
|
|
|
|
if (bp->flags & BNXT_FLAG_CHIP_P5)
|
|
return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_nqs);
|
|
|
|
return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_cp_rings);
|
|
}
|
|
|
|
static void bnxt_set_max_func_irqs(struct bnxt *bp, unsigned int max_irqs)
|
|
{
|
|
bp->hw_resc.max_irqs = max_irqs;
|
|
}
|
|
|
|
unsigned int bnxt_get_avail_cp_rings_for_en(struct bnxt *bp)
|
|
{
|
|
unsigned int cp;
|
|
|
|
cp = bnxt_get_max_func_cp_rings_for_en(bp);
|
|
if (bp->flags & BNXT_FLAG_CHIP_P5)
|
|
return cp - bp->rx_nr_rings - bp->tx_nr_rings;
|
|
else
|
|
return cp - bp->cp_nr_rings;
|
|
}
|
|
|
|
unsigned int bnxt_get_avail_stat_ctxs_for_en(struct bnxt *bp)
|
|
{
|
|
return bnxt_get_max_func_stat_ctxs(bp) - bnxt_get_func_stat_ctxs(bp);
|
|
}
|
|
|
|
int bnxt_get_avail_msix(struct bnxt *bp, int num)
|
|
{
|
|
int max_cp = bnxt_get_max_func_cp_rings(bp);
|
|
int max_irq = bnxt_get_max_func_irqs(bp);
|
|
int total_req = bp->cp_nr_rings + num;
|
|
int max_idx, avail_msix;
|
|
|
|
max_idx = bp->total_irqs;
|
|
if (!(bp->flags & BNXT_FLAG_CHIP_P5))
|
|
max_idx = min_t(int, bp->total_irqs, max_cp);
|
|
avail_msix = max_idx - bp->cp_nr_rings;
|
|
if (!BNXT_NEW_RM(bp) || avail_msix >= num)
|
|
return avail_msix;
|
|
|
|
if (max_irq < total_req) {
|
|
num = max_irq - bp->cp_nr_rings;
|
|
if (num <= 0)
|
|
return 0;
|
|
}
|
|
return num;
|
|
}
|
|
|
|
static int bnxt_get_num_msix(struct bnxt *bp)
|
|
{
|
|
if (!BNXT_NEW_RM(bp))
|
|
return bnxt_get_max_func_irqs(bp);
|
|
|
|
return bnxt_nq_rings_in_use(bp);
|
|
}
|
|
|
|
static int bnxt_init_msix(struct bnxt *bp)
|
|
{
|
|
int i, total_vecs, max, rc = 0, min = 1, ulp_msix;
|
|
struct msix_entry *msix_ent;
|
|
|
|
total_vecs = bnxt_get_num_msix(bp);
|
|
max = bnxt_get_max_func_irqs(bp);
|
|
if (total_vecs > max)
|
|
total_vecs = max;
|
|
|
|
if (!total_vecs)
|
|
return 0;
|
|
|
|
msix_ent = kcalloc(total_vecs, sizeof(struct msix_entry), GFP_KERNEL);
|
|
if (!msix_ent)
|
|
return -ENOMEM;
|
|
|
|
for (i = 0; i < total_vecs; i++) {
|
|
msix_ent[i].entry = i;
|
|
msix_ent[i].vector = 0;
|
|
}
|
|
|
|
if (!(bp->flags & BNXT_FLAG_SHARED_RINGS))
|
|
min = 2;
|
|
|
|
total_vecs = pci_enable_msix_range(bp->pdev, msix_ent, min, total_vecs);
|
|
ulp_msix = bnxt_get_ulp_msix_num(bp);
|
|
if (total_vecs < 0 || total_vecs < ulp_msix) {
|
|
rc = -ENODEV;
|
|
goto msix_setup_exit;
|
|
}
|
|
|
|
bp->irq_tbl = kcalloc(total_vecs, sizeof(struct bnxt_irq), GFP_KERNEL);
|
|
if (bp->irq_tbl) {
|
|
for (i = 0; i < total_vecs; i++)
|
|
bp->irq_tbl[i].vector = msix_ent[i].vector;
|
|
|
|
bp->total_irqs = total_vecs;
|
|
/* Trim rings based upon num of vectors allocated */
|
|
rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings,
|
|
total_vecs - ulp_msix, min == 1);
|
|
if (rc)
|
|
goto msix_setup_exit;
|
|
|
|
bp->cp_nr_rings = (min == 1) ?
|
|
max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
|
|
bp->tx_nr_rings + bp->rx_nr_rings;
|
|
|
|
} else {
|
|
rc = -ENOMEM;
|
|
goto msix_setup_exit;
|
|
}
|
|
bp->flags |= BNXT_FLAG_USING_MSIX;
|
|
kfree(msix_ent);
|
|
return 0;
|
|
|
|
msix_setup_exit:
|
|
netdev_err(bp->dev, "bnxt_init_msix err: %x\n", rc);
|
|
kfree(bp->irq_tbl);
|
|
bp->irq_tbl = NULL;
|
|
pci_disable_msix(bp->pdev);
|
|
kfree(msix_ent);
|
|
return rc;
|
|
}
|
|
|
|
static int bnxt_init_inta(struct bnxt *bp)
|
|
{
|
|
bp->irq_tbl = kcalloc(1, sizeof(struct bnxt_irq), GFP_KERNEL);
|
|
if (!bp->irq_tbl)
|
|
return -ENOMEM;
|
|
|
|
bp->total_irqs = 1;
|
|
bp->rx_nr_rings = 1;
|
|
bp->tx_nr_rings = 1;
|
|
bp->cp_nr_rings = 1;
|
|
bp->flags |= BNXT_FLAG_SHARED_RINGS;
|
|
bp->irq_tbl[0].vector = bp->pdev->irq;
|
|
return 0;
|
|
}
|
|
|
|
static int bnxt_init_int_mode(struct bnxt *bp)
|
|
{
|
|
int rc = 0;
|
|
|
|
if (bp->flags & BNXT_FLAG_MSIX_CAP)
|
|
rc = bnxt_init_msix(bp);
|
|
|
|
if (!(bp->flags & BNXT_FLAG_USING_MSIX) && BNXT_PF(bp)) {
|
|
/* fallback to INTA */
|
|
rc = bnxt_init_inta(bp);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
static void bnxt_clear_int_mode(struct bnxt *bp)
|
|
{
|
|
if (bp->flags & BNXT_FLAG_USING_MSIX)
|
|
pci_disable_msix(bp->pdev);
|
|
|
|
kfree(bp->irq_tbl);
|
|
bp->irq_tbl = NULL;
|
|
bp->flags &= ~BNXT_FLAG_USING_MSIX;
|
|
}
|
|
|
|
int bnxt_reserve_rings(struct bnxt *bp, bool irq_re_init)
|
|
{
|
|
int tcs = netdev_get_num_tc(bp->dev);
|
|
bool irq_cleared = false;
|
|
int rc;
|
|
|
|
if (!bnxt_need_reserve_rings(bp))
|
|
return 0;
|
|
|
|
if (irq_re_init && BNXT_NEW_RM(bp) &&
|
|
bnxt_get_num_msix(bp) != bp->total_irqs) {
|
|
bnxt_ulp_irq_stop(bp);
|
|
bnxt_clear_int_mode(bp);
|
|
irq_cleared = true;
|
|
}
|
|
rc = __bnxt_reserve_rings(bp);
|
|
if (irq_cleared) {
|
|
if (!rc)
|
|
rc = bnxt_init_int_mode(bp);
|
|
bnxt_ulp_irq_restart(bp, rc);
|
|
}
|
|
if (rc) {
|
|
netdev_err(bp->dev, "ring reservation/IRQ init failure rc: %d\n", rc);
|
|
return rc;
|
|
}
|
|
if (tcs && (bp->tx_nr_rings_per_tc * tcs != bp->tx_nr_rings)) {
|
|
netdev_err(bp->dev, "tx ring reservation failure\n");
|
|
netdev_reset_tc(bp->dev);
|
|
bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
|
|
return -ENOMEM;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void bnxt_free_irq(struct bnxt *bp)
|
|
{
|
|
struct bnxt_irq *irq;
|
|
int i;
|
|
|
|
#ifdef CONFIG_RFS_ACCEL
|
|
free_irq_cpu_rmap(bp->dev->rx_cpu_rmap);
|
|
bp->dev->rx_cpu_rmap = NULL;
|
|
#endif
|
|
if (!bp->irq_tbl || !bp->bnapi)
|
|
return;
|
|
|
|
for (i = 0; i < bp->cp_nr_rings; i++) {
|
|
int map_idx = bnxt_cp_num_to_irq_num(bp, i);
|
|
|
|
irq = &bp->irq_tbl[map_idx];
|
|
if (irq->requested) {
|
|
if (irq->have_cpumask) {
|
|
irq_set_affinity_hint(irq->vector, NULL);
|
|
free_cpumask_var(irq->cpu_mask);
|
|
irq->have_cpumask = 0;
|
|
}
|
|
free_irq(irq->vector, bp->bnapi[i]);
|
|
}
|
|
|
|
irq->requested = 0;
|
|
}
|
|
}
|
|
|
|
static int bnxt_request_irq(struct bnxt *bp)
|
|
{
|
|
int i, j, rc = 0;
|
|
unsigned long flags = 0;
|
|
#ifdef CONFIG_RFS_ACCEL
|
|
struct cpu_rmap *rmap;
|
|
#endif
|
|
|
|
rc = bnxt_setup_int_mode(bp);
|
|
if (rc) {
|
|
netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n",
|
|
rc);
|
|
return rc;
|
|
}
|
|
#ifdef CONFIG_RFS_ACCEL
|
|
rmap = bp->dev->rx_cpu_rmap;
|
|
#endif
|
|
if (!(bp->flags & BNXT_FLAG_USING_MSIX))
|
|
flags = IRQF_SHARED;
|
|
|
|
for (i = 0, j = 0; i < bp->cp_nr_rings; i++) {
|
|
int map_idx = bnxt_cp_num_to_irq_num(bp, i);
|
|
struct bnxt_irq *irq = &bp->irq_tbl[map_idx];
|
|
|
|
#ifdef CONFIG_RFS_ACCEL
|
|
if (rmap && bp->bnapi[i]->rx_ring) {
|
|
rc = irq_cpu_rmap_add(rmap, irq->vector);
|
|
if (rc)
|
|
netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n",
|
|
j);
|
|
j++;
|
|
}
|
|
#endif
|
|
rc = request_irq(irq->vector, irq->handler, flags, irq->name,
|
|
bp->bnapi[i]);
|
|
if (rc)
|
|
break;
|
|
|
|
irq->requested = 1;
|
|
|
|
if (zalloc_cpumask_var(&irq->cpu_mask, GFP_KERNEL)) {
|
|
int numa_node = dev_to_node(&bp->pdev->dev);
|
|
|
|
irq->have_cpumask = 1;
|
|
cpumask_set_cpu(cpumask_local_spread(i, numa_node),
|
|
irq->cpu_mask);
|
|
rc = irq_set_affinity_hint(irq->vector, irq->cpu_mask);
|
|
if (rc) {
|
|
netdev_warn(bp->dev,
|
|
"Set affinity failed, IRQ = %d\n",
|
|
irq->vector);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
static void bnxt_del_napi(struct bnxt *bp)
|
|
{
|
|
int i;
|
|
|
|
if (!bp->bnapi)
|
|
return;
|
|
|
|
for (i = 0; i < bp->cp_nr_rings; i++) {
|
|
struct bnxt_napi *bnapi = bp->bnapi[i];
|
|
|
|
napi_hash_del(&bnapi->napi);
|
|
netif_napi_del(&bnapi->napi);
|
|
}
|
|
/* We called napi_hash_del() before netif_napi_del(), we need
|
|
* to respect an RCU grace period before freeing napi structures.
|
|
*/
|
|
synchronize_net();
|
|
}
|
|
|
|
static void bnxt_init_napi(struct bnxt *bp)
|
|
{
|
|
int i;
|
|
unsigned int cp_nr_rings = bp->cp_nr_rings;
|
|
struct bnxt_napi *bnapi;
|
|
|
|
if (bp->flags & BNXT_FLAG_USING_MSIX) {
|
|
int (*poll_fn)(struct napi_struct *, int) = bnxt_poll;
|
|
|
|
if (bp->flags & BNXT_FLAG_CHIP_P5)
|
|
poll_fn = bnxt_poll_p5;
|
|
else if (BNXT_CHIP_TYPE_NITRO_A0(bp))
|
|
cp_nr_rings--;
|
|
for (i = 0; i < cp_nr_rings; i++) {
|
|
bnapi = bp->bnapi[i];
|
|
netif_napi_add(bp->dev, &bnapi->napi, poll_fn, 64);
|
|
}
|
|
if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
|
|
bnapi = bp->bnapi[cp_nr_rings];
|
|
netif_napi_add(bp->dev, &bnapi->napi,
|
|
bnxt_poll_nitroa0, 64);
|
|
}
|
|
} else {
|
|
bnapi = bp->bnapi[0];
|
|
netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll, 64);
|
|
}
|
|
}
|
|
|
|
static void bnxt_disable_napi(struct bnxt *bp)
|
|
{
|
|
int i;
|
|
|
|
if (!bp->bnapi)
|
|
return;
|
|
|
|
for (i = 0; i < bp->cp_nr_rings; i++) {
|
|
struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
|
|
|
|
if (bp->bnapi[i]->rx_ring)
|
|
cancel_work_sync(&cpr->dim.work);
|
|
|
|
napi_disable(&bp->bnapi[i]->napi);
|
|
}
|
|
}
|
|
|
|
static void bnxt_enable_napi(struct bnxt *bp)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < bp->cp_nr_rings; i++) {
|
|
struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
|
|
bp->bnapi[i]->in_reset = false;
|
|
|
|
if (bp->bnapi[i]->rx_ring) {
|
|
INIT_WORK(&cpr->dim.work, bnxt_dim_work);
|
|
cpr->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
|
|
}
|
|
napi_enable(&bp->bnapi[i]->napi);
|
|
}
|
|
}
|
|
|
|
void bnxt_tx_disable(struct bnxt *bp)
|
|
{
|
|
int i;
|
|
struct bnxt_tx_ring_info *txr;
|
|
|
|
if (bp->tx_ring) {
|
|
for (i = 0; i < bp->tx_nr_rings; i++) {
|
|
txr = &bp->tx_ring[i];
|
|
txr->dev_state = BNXT_DEV_STATE_CLOSING;
|
|
}
|
|
}
|
|
/* Stop all TX queues */
|
|
netif_tx_disable(bp->dev);
|
|
netif_carrier_off(bp->dev);
|
|
}
|
|
|
|
void bnxt_tx_enable(struct bnxt *bp)
|
|
{
|
|
int i;
|
|
struct bnxt_tx_ring_info *txr;
|
|
|
|
for (i = 0; i < bp->tx_nr_rings; i++) {
|
|
txr = &bp->tx_ring[i];
|
|
txr->dev_state = 0;
|
|
}
|
|
netif_tx_wake_all_queues(bp->dev);
|
|
if (bp->link_info.link_up)
|
|
netif_carrier_on(bp->dev);
|
|
}
|
|
|
|
static void bnxt_report_link(struct bnxt *bp)
|
|
{
|
|
if (bp->link_info.link_up) {
|
|
const char *duplex;
|
|
const char *flow_ctrl;
|
|
u32 speed;
|
|
u16 fec;
|
|
|
|
netif_carrier_on(bp->dev);
|
|
if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL)
|
|
duplex = "full";
|
|
else
|
|
duplex = "half";
|
|
if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH)
|
|
flow_ctrl = "ON - receive & transmit";
|
|
else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX)
|
|
flow_ctrl = "ON - transmit";
|
|
else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX)
|
|
flow_ctrl = "ON - receive";
|
|
else
|
|
flow_ctrl = "none";
|
|
speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed);
|
|
netdev_info(bp->dev, "NIC Link is Up, %u Mbps %s duplex, Flow control: %s\n",
|
|
speed, duplex, flow_ctrl);
|
|
if (bp->flags & BNXT_FLAG_EEE_CAP)
|
|
netdev_info(bp->dev, "EEE is %s\n",
|
|
bp->eee.eee_active ? "active" :
|
|
"not active");
|
|
fec = bp->link_info.fec_cfg;
|
|
if (!(fec & PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED))
|
|
netdev_info(bp->dev, "FEC autoneg %s encodings: %s\n",
|
|
(fec & BNXT_FEC_AUTONEG) ? "on" : "off",
|
|
(fec & BNXT_FEC_ENC_BASE_R) ? "BaseR" :
|
|
(fec & BNXT_FEC_ENC_RS) ? "RS" : "None");
|
|
} else {
|
|
netif_carrier_off(bp->dev);
|
|
netdev_err(bp->dev, "NIC Link is Down\n");
|
|
}
|
|
}
|
|
|
|
static int bnxt_hwrm_phy_qcaps(struct bnxt *bp)
|
|
{
|
|
int rc = 0;
|
|
struct hwrm_port_phy_qcaps_input req = {0};
|
|
struct hwrm_port_phy_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
|
|
struct bnxt_link_info *link_info = &bp->link_info;
|
|
|
|
bp->flags &= ~BNXT_FLAG_EEE_CAP;
|
|
if (bp->test_info)
|
|
bp->test_info->flags &= ~BNXT_TEST_FL_EXT_LPBK;
|
|
if (bp->hwrm_spec_code < 0x10201)
|
|
return 0;
|
|
|
|
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCAPS, -1, -1);
|
|
|
|
mutex_lock(&bp->hwrm_cmd_lock);
|
|
rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
|
|
if (rc)
|
|
goto hwrm_phy_qcaps_exit;
|
|
|
|
if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_EEE_SUPPORTED) {
|
|
struct ethtool_eee *eee = &bp->eee;
|
|
u16 fw_speeds = le16_to_cpu(resp->supported_speeds_eee_mode);
|
|
|
|
bp->flags |= BNXT_FLAG_EEE_CAP;
|
|
eee->supported = _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
|
|
bp->lpi_tmr_lo = le32_to_cpu(resp->tx_lpi_timer_low) &
|
|
PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_LOW_MASK;
|
|
bp->lpi_tmr_hi = le32_to_cpu(resp->valid_tx_lpi_timer_high) &
|
|
PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_HIGH_MASK;
|
|
}
|
|
if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_EXTERNAL_LPBK_SUPPORTED) {
|
|
if (bp->test_info)
|
|
bp->test_info->flags |= BNXT_TEST_FL_EXT_LPBK;
|
|
}
|
|
if (resp->supported_speeds_auto_mode)
|
|
link_info->support_auto_speeds =
|
|
le16_to_cpu(resp->supported_speeds_auto_mode);
|
|
|
|
bp->port_count = resp->port_cnt;
|
|
|
|
hwrm_phy_qcaps_exit:
|
|
mutex_unlock(&bp->hwrm_cmd_lock);
|
|
return rc;
|
|
}
|
|
|
|
static int bnxt_update_link(struct bnxt *bp, bool chng_link_state)
|
|
{
|
|
int rc = 0;
|
|
struct bnxt_link_info *link_info = &bp->link_info;
|
|
struct hwrm_port_phy_qcfg_input req = {0};
|
|
struct hwrm_port_phy_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
|
|
u8 link_up = link_info->link_up;
|
|
u16 diff;
|
|
|
|
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCFG, -1, -1);
|
|
|
|
mutex_lock(&bp->hwrm_cmd_lock);
|
|
rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
|
|
if (rc) {
|
|
mutex_unlock(&bp->hwrm_cmd_lock);
|
|
return rc;
|
|
}
|
|
|
|
memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp));
|
|
link_info->phy_link_status = resp->link;
|
|
link_info->duplex = resp->duplex_cfg;
|
|
if (bp->hwrm_spec_code >= 0x10800)
|
|
link_info->duplex = resp->duplex_state;
|
|
link_info->pause = resp->pause;
|
|
link_info->auto_mode = resp->auto_mode;
|
|
link_info->auto_pause_setting = resp->auto_pause;
|
|
link_info->lp_pause = resp->link_partner_adv_pause;
|
|
link_info->force_pause_setting = resp->force_pause;
|
|
link_info->duplex_setting = resp->duplex_cfg;
|
|
if (link_info->phy_link_status == BNXT_LINK_LINK)
|
|
link_info->link_speed = le16_to_cpu(resp->link_speed);
|
|
else
|
|
link_info->link_speed = 0;
|
|
link_info->force_link_speed = le16_to_cpu(resp->force_link_speed);
|
|
link_info->support_speeds = le16_to_cpu(resp->support_speeds);
|
|
link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask);
|
|
link_info->lp_auto_link_speeds =
|
|
le16_to_cpu(resp->link_partner_adv_speeds);
|
|
link_info->preemphasis = le32_to_cpu(resp->preemphasis);
|
|
link_info->phy_ver[0] = resp->phy_maj;
|
|
link_info->phy_ver[1] = resp->phy_min;
|
|
link_info->phy_ver[2] = resp->phy_bld;
|
|
link_info->media_type = resp->media_type;
|
|
link_info->phy_type = resp->phy_type;
|
|
link_info->transceiver = resp->xcvr_pkg_type;
|
|
link_info->phy_addr = resp->eee_config_phy_addr &
|
|
PORT_PHY_QCFG_RESP_PHY_ADDR_MASK;
|
|
link_info->module_status = resp->module_status;
|
|
|
|
if (bp->flags & BNXT_FLAG_EEE_CAP) {
|
|
struct ethtool_eee *eee = &bp->eee;
|
|
u16 fw_speeds;
|
|
|
|
eee->eee_active = 0;
|
|
if (resp->eee_config_phy_addr &
|
|
PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ACTIVE) {
|
|
eee->eee_active = 1;
|
|
fw_speeds = le16_to_cpu(
|
|
resp->link_partner_adv_eee_link_speed_mask);
|
|
eee->lp_advertised =
|
|
_bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
|
|
}
|
|
|
|
/* Pull initial EEE config */
|
|
if (!chng_link_state) {
|
|
if (resp->eee_config_phy_addr &
|
|
PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ENABLED)
|
|
eee->eee_enabled = 1;
|
|
|
|
fw_speeds = le16_to_cpu(resp->adv_eee_link_speed_mask);
|
|
eee->advertised =
|
|
_bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
|
|
|
|
if (resp->eee_config_phy_addr &
|
|
PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_TX_LPI) {
|
|
__le32 tmr;
|
|
|
|
eee->tx_lpi_enabled = 1;
|
|
tmr = resp->xcvr_identifier_type_tx_lpi_timer;
|
|
eee->tx_lpi_timer = le32_to_cpu(tmr) &
|
|
PORT_PHY_QCFG_RESP_TX_LPI_TIMER_MASK;
|
|
}
|
|
}
|
|
}
|
|
|
|
link_info->fec_cfg = PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED;
|
|
if (bp->hwrm_spec_code >= 0x10504)
|
|
link_info->fec_cfg = le16_to_cpu(resp->fec_cfg);
|
|
|
|
/* TODO: need to add more logic to report VF link */
|
|
if (chng_link_state) {
|
|
if (link_info->phy_link_status == BNXT_LINK_LINK)
|
|
link_info->link_up = 1;
|
|
else
|
|
link_info->link_up = 0;
|
|
if (link_up != link_info->link_up)
|
|
bnxt_report_link(bp);
|
|
} else {
|
|
/* alwasy link down if not require to update link state */
|
|
link_info->link_up = 0;
|
|
}
|
|
mutex_unlock(&bp->hwrm_cmd_lock);
|
|
|
|
if (!BNXT_SINGLE_PF(bp))
|
|
return 0;
|
|
|
|
diff = link_info->support_auto_speeds ^ link_info->advertising;
|
|
if ((link_info->support_auto_speeds | diff) !=
|
|
link_info->support_auto_speeds) {
|
|
/* An advertised speed is no longer supported, so we need to
|
|
* update the advertisement settings. Caller holds RTNL
|
|
* so we can modify link settings.
|
|
*/
|
|
link_info->advertising = link_info->support_auto_speeds;
|
|
if (link_info->autoneg & BNXT_AUTONEG_SPEED)
|
|
bnxt_hwrm_set_link_setting(bp, true, false);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void bnxt_get_port_module_status(struct bnxt *bp)
|
|
{
|
|
struct bnxt_link_info *link_info = &bp->link_info;
|
|
struct hwrm_port_phy_qcfg_output *resp = &link_info->phy_qcfg_resp;
|
|
u8 module_status;
|
|
|
|
if (bnxt_update_link(bp, true))
|
|
return;
|
|
|
|
module_status = link_info->module_status;
|
|
switch (module_status) {
|
|
case PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX:
|
|
case PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN:
|
|
case PORT_PHY_QCFG_RESP_MODULE_STATUS_WARNINGMSG:
|
|
netdev_warn(bp->dev, "Unqualified SFP+ module detected on port %d\n",
|
|
bp->pf.port_id);
|
|
if (bp->hwrm_spec_code >= 0x10201) {
|
|
netdev_warn(bp->dev, "Module part number %s\n",
|
|
resp->phy_vendor_partnumber);
|
|
}
|
|
if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX)
|
|
netdev_warn(bp->dev, "TX is disabled\n");
|
|
if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN)
|
|
netdev_warn(bp->dev, "SFP+ module is shutdown\n");
|
|
}
|
|
}
|
|
|
|
static void
|
|
bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
|
|
{
|
|
if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) {
|
|
if (bp->hwrm_spec_code >= 0x10201)
|
|
req->auto_pause =
|
|
PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE;
|
|
if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
|
|
req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX;
|
|
if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
|
|
req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_TX;
|
|
req->enables |=
|
|
cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
|
|
} else {
|
|
if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
|
|
req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX;
|
|
if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
|
|
req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX;
|
|
req->enables |=
|
|
cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE);
|
|
if (bp->hwrm_spec_code >= 0x10201) {
|
|
req->auto_pause = req->force_pause;
|
|
req->enables |= cpu_to_le32(
|
|
PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void bnxt_hwrm_set_link_common(struct bnxt *bp,
|
|
struct hwrm_port_phy_cfg_input *req)
|
|
{
|
|
u8 autoneg = bp->link_info.autoneg;
|
|
u16 fw_link_speed = bp->link_info.req_link_speed;
|
|
u16 advertising = bp->link_info.advertising;
|
|
|
|
if (autoneg & BNXT_AUTONEG_SPEED) {
|
|
req->auto_mode |=
|
|
PORT_PHY_CFG_REQ_AUTO_MODE_SPEED_MASK;
|
|
|
|
req->enables |= cpu_to_le32(
|
|
PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK);
|
|
req->auto_link_speed_mask = cpu_to_le16(advertising);
|
|
|
|
req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE);
|
|
req->flags |=
|
|
cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG);
|
|
} else {
|
|
req->force_link_speed = cpu_to_le16(fw_link_speed);
|
|
req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE);
|
|
}
|
|
|
|
/* tell chimp that the setting takes effect immediately */
|
|
req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY);
|
|
}
|
|
|
|
int bnxt_hwrm_set_pause(struct bnxt *bp)
|
|
{
|
|
struct hwrm_port_phy_cfg_input req = {0};
|
|
int rc;
|
|
|
|
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
|
|
bnxt_hwrm_set_pause_common(bp, &req);
|
|
|
|
if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) ||
|
|
bp->link_info.force_link_chng)
|
|
bnxt_hwrm_set_link_common(bp, &req);
|
|
|
|
mutex_lock(&bp->hwrm_cmd_lock);
|
|
rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
|
|
if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) {
|
|
/* since changing of pause setting doesn't trigger any link
|
|
* change event, the driver needs to update the current pause
|
|
* result upon successfully return of the phy_cfg command
|
|
*/
|
|
bp->link_info.pause =
|
|
bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl;
|
|
bp->link_info.auto_pause_setting = 0;
|
|
if (!bp->link_info.force_link_chng)
|
|
bnxt_report_link(bp);
|
|
}
|
|
bp->link_info.force_link_chng = false;
|
|
mutex_unlock(&bp->hwrm_cmd_lock);
|
|
return rc;
|
|
}
|
|
|
|
static void bnxt_hwrm_set_eee(struct bnxt *bp,
|
|
struct hwrm_port_phy_cfg_input *req)
|
|
{
|
|
struct ethtool_eee *eee = &bp->eee;
|
|
|
|
if (eee->eee_enabled) {
|
|
u16 eee_speeds;
|
|
u32 flags = PORT_PHY_CFG_REQ_FLAGS_EEE_ENABLE;
|
|
|
|
if (eee->tx_lpi_enabled)
|
|
flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_ENABLE;
|
|
else
|
|
flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_DISABLE;
|
|
|
|
req->flags |= cpu_to_le32(flags);
|
|
eee_speeds = bnxt_get_fw_auto_link_speeds(eee->advertised);
|
|
req->eee_link_speed_mask = cpu_to_le16(eee_speeds);
|
|
req->tx_lpi_timer = cpu_to_le32(eee->tx_lpi_timer);
|
|
} else {
|
|
req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_EEE_DISABLE);
|
|
}
|
|
}
|
|
|
|
int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause, bool set_eee)
|
|
{
|
|
struct hwrm_port_phy_cfg_input req = {0};
|
|
|
|
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
|
|
if (set_pause)
|
|
bnxt_hwrm_set_pause_common(bp, &req);
|
|
|
|
bnxt_hwrm_set_link_common(bp, &req);
|
|
|
|
if (set_eee)
|
|
bnxt_hwrm_set_eee(bp, &req);
|
|
return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
|
|
}
|
|
|
|
static int bnxt_hwrm_shutdown_link(struct bnxt *bp)
|
|
{
|
|
struct hwrm_port_phy_cfg_input req = {0};
|
|
|
|
if (!BNXT_SINGLE_PF(bp))
|
|
return 0;
|
|
|
|
if (pci_num_vf(bp->pdev))
|
|
return 0;
|
|
|
|
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
|
|
req.flags = cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE_LINK_DWN);
|
|
return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
|
|
}
|
|
|
|
static int bnxt_fw_init_one(struct bnxt *bp);
|
|
|
|
static int bnxt_hwrm_if_change(struct bnxt *bp, bool up)
|
|
{
|
|
struct hwrm_func_drv_if_change_output *resp = bp->hwrm_cmd_resp_addr;
|
|
struct hwrm_func_drv_if_change_input req = {0};
|
|
bool resc_reinit = false, fw_reset = false;
|
|
u32 flags = 0;
|
|
int rc;
|
|
|
|
if (!(bp->fw_cap & BNXT_FW_CAP_IF_CHANGE))
|
|
return 0;
|
|
|
|
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_IF_CHANGE, -1, -1);
|
|
if (up)
|
|
req.flags = cpu_to_le32(FUNC_DRV_IF_CHANGE_REQ_FLAGS_UP);
|
|
mutex_lock(&bp->hwrm_cmd_lock);
|
|
rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
|
|
if (!rc)
|
|
flags = le32_to_cpu(resp->flags);
|
|
mutex_unlock(&bp->hwrm_cmd_lock);
|
|
if (rc)
|
|
return rc;
|
|
|
|
if (!up)
|
|
return 0;
|
|
|
|
if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_RESC_CHANGE)
|
|
resc_reinit = true;
|
|
if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_HOT_FW_RESET_DONE)
|
|
fw_reset = true;
|
|
|
|
if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state) && !fw_reset) {
|
|
netdev_err(bp->dev, "RESET_DONE not set during FW reset.\n");
|
|
return -ENODEV;
|
|
}
|
|
if (resc_reinit || fw_reset) {
|
|
if (fw_reset) {
|
|
if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
|
|
bnxt_ulp_stop(bp);
|
|
rc = bnxt_fw_init_one(bp);
|
|
if (rc) {
|
|
set_bit(BNXT_STATE_ABORT_ERR, &bp->state);
|
|
return rc;
|
|
}
|
|
bnxt_clear_int_mode(bp);
|
|
rc = bnxt_init_int_mode(bp);
|
|
if (rc) {
|
|
netdev_err(bp->dev, "init int mode failed\n");
|
|
return rc;
|
|
}
|
|
set_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
|
|
}
|
|
if (BNXT_NEW_RM(bp)) {
|
|
struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
|
|
|
|
rc = bnxt_hwrm_func_resc_qcaps(bp, true);
|
|
hw_resc->resv_cp_rings = 0;
|
|
hw_resc->resv_stat_ctxs = 0;
|
|
hw_resc->resv_irqs = 0;
|
|
hw_resc->resv_tx_rings = 0;
|
|
hw_resc->resv_rx_rings = 0;
|
|
hw_resc->resv_hw_ring_grps = 0;
|
|
hw_resc->resv_vnics = 0;
|
|
if (!fw_reset) {
|
|
bp->tx_nr_rings = 0;
|
|
bp->rx_nr_rings = 0;
|
|
}
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int bnxt_hwrm_port_led_qcaps(struct bnxt *bp)
|
|
{
|
|
struct hwrm_port_led_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
|
|
struct hwrm_port_led_qcaps_input req = {0};
|
|
struct bnxt_pf_info *pf = &bp->pf;
|
|
int rc;
|
|
|
|
bp->num_leds = 0;
|
|
if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10601)
|
|
return 0;
|
|
|
|
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_LED_QCAPS, -1, -1);
|
|
req.port_id = cpu_to_le16(pf->port_id);
|
|
mutex_lock(&bp->hwrm_cmd_lock);
|
|
rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
|
|
if (rc) {
|
|
mutex_unlock(&bp->hwrm_cmd_lock);
|
|
return rc;
|
|
}
|
|
if (resp->num_leds > 0 && resp->num_leds < BNXT_MAX_LED) {
|
|
int i;
|
|
|
|
bp->num_leds = resp->num_leds;
|
|
memcpy(bp->leds, &resp->led0_id, sizeof(bp->leds[0]) *
|
|
bp->num_leds);
|
|
for (i = 0; i < bp->num_leds; i++) {
|
|
struct bnxt_led_info *led = &bp->leds[i];
|
|
__le16 caps = led->led_state_caps;
|
|
|
|
if (!led->led_group_id ||
|
|
!BNXT_LED_ALT_BLINK_CAP(caps)) {
|
|
bp->num_leds = 0;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
mutex_unlock(&bp->hwrm_cmd_lock);
|
|
return 0;
|
|
}
|
|
|
|
int bnxt_hwrm_alloc_wol_fltr(struct bnxt *bp)
|
|
{
|
|
struct hwrm_wol_filter_alloc_input req = {0};
|
|
struct hwrm_wol_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr;
|
|
int rc;
|
|
|
|
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_ALLOC, -1, -1);
|
|
req.port_id = cpu_to_le16(bp->pf.port_id);
|
|
req.wol_type = WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT;
|
|
req.enables = cpu_to_le32(WOL_FILTER_ALLOC_REQ_ENABLES_MAC_ADDRESS);
|
|
memcpy(req.mac_address, bp->dev->dev_addr, ETH_ALEN);
|
|
mutex_lock(&bp->hwrm_cmd_lock);
|
|
rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
|
|
if (!rc)
|
|
bp->wol_filter_id = resp->wol_filter_id;
|
|
mutex_unlock(&bp->hwrm_cmd_lock);
|
|
return rc;
|
|
}
|
|
|
|
int bnxt_hwrm_free_wol_fltr(struct bnxt *bp)
|
|
{
|
|
struct hwrm_wol_filter_free_input req = {0};
|
|
int rc;
|
|
|
|
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_FREE, -1, -1);
|
|
req.port_id = cpu_to_le16(bp->pf.port_id);
|
|
req.enables = cpu_to_le32(WOL_FILTER_FREE_REQ_ENABLES_WOL_FILTER_ID);
|
|
req.wol_filter_id = bp->wol_filter_id;
|
|
rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
|
|
return rc;
|
|
}
|
|
|
|
static u16 bnxt_hwrm_get_wol_fltrs(struct bnxt *bp, u16 handle)
|
|
{
|
|
struct hwrm_wol_filter_qcfg_input req = {0};
|
|
struct hwrm_wol_filter_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
|
|
u16 next_handle = 0;
|
|
int rc;
|
|
|
|
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_QCFG, -1, -1);
|
|
req.port_id = cpu_to_le16(bp->pf.port_id);
|
|
req.handle = cpu_to_le16(handle);
|
|
mutex_lock(&bp->hwrm_cmd_lock);
|
|
rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
|
|
if (!rc) {
|
|
next_handle = le16_to_cpu(resp->next_handle);
|
|
if (next_handle != 0) {
|
|
if (resp->wol_type ==
|
|
WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT) {
|
|
bp->wol = 1;
|
|
bp->wol_filter_id = resp->wol_filter_id;
|
|
}
|
|
}
|
|
}
|
|
mutex_unlock(&bp->hwrm_cmd_lock);
|
|
return next_handle;
|
|
}
|
|
|
|
static void bnxt_get_wol_settings(struct bnxt *bp)
|
|
{
|
|
u16 handle = 0;
|
|
|
|
bp->wol = 0;
|
|
if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_WOL_CAP))
|
|
return;
|
|
|
|
do {
|
|
handle = bnxt_hwrm_get_wol_fltrs(bp, handle);
|
|
} while (handle && handle != 0xffff);
|
|
}
|
|
|
|
#ifdef CONFIG_BNXT_HWMON
|
|
static ssize_t bnxt_show_temp(struct device *dev,
|
|
struct device_attribute *devattr, char *buf)
|
|
{
|
|
struct hwrm_temp_monitor_query_input req = {0};
|
|
struct hwrm_temp_monitor_query_output *resp;
|
|
struct bnxt *bp = dev_get_drvdata(dev);
|
|
u32 temp = 0;
|
|
|
|
resp = bp->hwrm_cmd_resp_addr;
|
|
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TEMP_MONITOR_QUERY, -1, -1);
|
|
mutex_lock(&bp->hwrm_cmd_lock);
|
|
if (!_hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT))
|
|
temp = resp->temp * 1000; /* display millidegree */
|
|
mutex_unlock(&bp->hwrm_cmd_lock);
|
|
|
|
return sprintf(buf, "%u\n", temp);
|
|
}
|
|
static SENSOR_DEVICE_ATTR(temp1_input, 0444, bnxt_show_temp, NULL, 0);
|
|
|
|
static struct attribute *bnxt_attrs[] = {
|
|
&sensor_dev_attr_temp1_input.dev_attr.attr,
|
|
NULL
|
|
};
|
|
ATTRIBUTE_GROUPS(bnxt);
|
|
|
|
static void bnxt_hwmon_close(struct bnxt *bp)
|
|
{
|
|
if (bp->hwmon_dev) {
|
|
hwmon_device_unregister(bp->hwmon_dev);
|
|
bp->hwmon_dev = NULL;
|
|
}
|
|
}
|
|
|
|
static void bnxt_hwmon_open(struct bnxt *bp)
|
|
{
|
|
struct pci_dev *pdev = bp->pdev;
|
|
|
|
if (bp->hwmon_dev)
|
|
return;
|
|
|
|
bp->hwmon_dev = hwmon_device_register_with_groups(&pdev->dev,
|
|
DRV_MODULE_NAME, bp,
|
|
bnxt_groups);
|
|
if (IS_ERR(bp->hwmon_dev)) {
|
|
bp->hwmon_dev = NULL;
|
|
dev_warn(&pdev->dev, "Cannot register hwmon device\n");
|
|
}
|
|
}
|
|
#else
|
|
static void bnxt_hwmon_close(struct bnxt *bp)
|
|
{
|
|
}
|
|
|
|
static void bnxt_hwmon_open(struct bnxt *bp)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
static bool bnxt_eee_config_ok(struct bnxt *bp)
|
|
{
|
|
struct ethtool_eee *eee = &bp->eee;
|
|
struct bnxt_link_info *link_info = &bp->link_info;
|
|
|
|
if (!(bp->flags & BNXT_FLAG_EEE_CAP))
|
|
return true;
|
|
|
|
if (eee->eee_enabled) {
|
|
u32 advertising =
|
|
_bnxt_fw_to_ethtool_adv_spds(link_info->advertising, 0);
|
|
|
|
if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
|
|
eee->eee_enabled = 0;
|
|
return false;
|
|
}
|
|
if (eee->advertised & ~advertising) {
|
|
eee->advertised = advertising & eee->supported;
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static int bnxt_update_phy_setting(struct bnxt *bp)
|
|
{
|
|
int rc;
|
|
bool update_link = false;
|
|
bool update_pause = false;
|
|
bool update_eee = false;
|
|
struct bnxt_link_info *link_info = &bp->link_info;
|
|
|
|
rc = bnxt_update_link(bp, true);
|
|
if (rc) {
|
|
netdev_err(bp->dev, "failed to update link (rc: %x)\n",
|
|
rc);
|
|
return rc;
|
|
}
|
|
if (!BNXT_SINGLE_PF(bp))
|
|
return 0;
|
|
|
|
if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
|
|
(link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH) !=
|
|
link_info->req_flow_ctrl)
|
|
update_pause = true;
|
|
if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
|
|
link_info->force_pause_setting != link_info->req_flow_ctrl)
|
|
update_pause = true;
|
|
if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
|
|
if (BNXT_AUTO_MODE(link_info->auto_mode))
|
|
update_link = true;
|
|
if (link_info->req_link_speed != link_info->force_link_speed)
|
|
update_link = true;
|
|
if (link_info->req_duplex != link_info->duplex_setting)
|
|
update_link = true;
|
|
} else {
|
|
if (link_info->auto_mode == BNXT_LINK_AUTO_NONE)
|
|
update_link = true;
|
|
if (link_info->advertising != link_info->auto_link_speeds)
|
|
update_link = true;
|
|
}
|
|
|
|
/* The last close may have shutdown the link, so need to call
|
|
* PHY_CFG to bring it back up.
|
|
*/
|
|
if (!netif_carrier_ok(bp->dev))
|
|
update_link = true;
|
|
|
|
if (!bnxt_eee_config_ok(bp))
|
|
update_eee = true;
|
|
|
|
if (update_link)
|
|
rc = bnxt_hwrm_set_link_setting(bp, update_pause, update_eee);
|
|
else if (update_pause)
|
|
rc = bnxt_hwrm_set_pause(bp);
|
|
if (rc) {
|
|
netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n",
|
|
rc);
|
|
return rc;
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
/* Common routine to pre-map certain register block to different GRC window.
|
|
* A PF has 16 4K windows and a VF has 4 4K windows. However, only 15 windows
|
|
* in PF and 3 windows in VF that can be customized to map in different
|
|
* register blocks.
|
|
*/
|
|
static void bnxt_preset_reg_win(struct bnxt *bp)
|
|
{
|
|
if (BNXT_PF(bp)) {
|
|
/* CAG registers map to GRC window #4 */
|
|
writel(BNXT_CAG_REG_BASE,
|
|
bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 12);
|
|
}
|
|
}
|
|
|
|
static int bnxt_init_dflt_ring_mode(struct bnxt *bp);
|
|
|
|
static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
|
|
{
|
|
int rc = 0;
|
|
|
|
bnxt_preset_reg_win(bp);
|
|
netif_carrier_off(bp->dev);
|
|
if (irq_re_init) {
|
|
/* Reserve rings now if none were reserved at driver probe. */
|
|
rc = bnxt_init_dflt_ring_mode(bp);
|
|
if (rc) {
|
|
netdev_err(bp->dev, "Failed to reserve default rings at open\n");
|
|
return rc;
|
|
}
|
|
}
|
|
rc = bnxt_reserve_rings(bp, irq_re_init);
|
|
if (rc)
|
|
return rc;
|
|
if ((bp->flags & BNXT_FLAG_RFS) &&
|
|
!(bp->flags & BNXT_FLAG_USING_MSIX)) {
|
|
/* disable RFS if falling back to INTA */
|
|
bp->dev->hw_features &= ~NETIF_F_NTUPLE;
|
|
bp->flags &= ~BNXT_FLAG_RFS;
|
|
}
|
|
|
|
rc = bnxt_alloc_mem(bp, irq_re_init);
|
|
if (rc) {
|
|
netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
|
|
goto open_err_free_mem;
|
|
}
|
|
|
|
if (irq_re_init) {
|
|
bnxt_init_napi(bp);
|
|
rc = bnxt_request_irq(bp);
|
|
if (rc) {
|
|
netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc);
|
|
goto open_err_irq;
|
|
}
|
|
}
|
|
|
|
bnxt_enable_napi(bp);
|
|
bnxt_debug_dev_init(bp);
|
|
|
|
rc = bnxt_init_nic(bp, irq_re_init);
|
|
if (rc) {
|
|
netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
|
|
goto open_err;
|
|
}
|
|
|
|
if (link_re_init) {
|
|
mutex_lock(&bp->link_lock);
|
|
rc = bnxt_update_phy_setting(bp);
|
|
mutex_unlock(&bp->link_lock);
|
|
if (rc) {
|
|
netdev_warn(bp->dev, "failed to update phy settings\n");
|
|
if (BNXT_SINGLE_PF(bp)) {
|
|
bp->link_info.phy_retry = true;
|
|
bp->link_info.phy_retry_expires =
|
|
jiffies + 5 * HZ;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (irq_re_init)
|
|
udp_tunnel_get_rx_info(bp->dev);
|
|
|
|
set_bit(BNXT_STATE_OPEN, &bp->state);
|
|
bnxt_enable_int(bp);
|
|
/* Enable TX queues */
|
|
bnxt_tx_enable(bp);
|
|
mod_timer(&bp->timer, jiffies + bp->current_interval);
|
|
/* Poll link status and check for SFP+ module status */
|
|
bnxt_get_port_module_status(bp);
|
|
|
|
/* VF-reps may need to be re-opened after the PF is re-opened */
|
|
if (BNXT_PF(bp))
|
|
bnxt_vf_reps_open(bp);
|
|
return 0;
|
|
|
|
open_err:
|
|
bnxt_debug_dev_exit(bp);
|
|
bnxt_disable_napi(bp);
|
|
|
|
open_err_irq:
|
|
bnxt_del_napi(bp);
|
|
|
|
open_err_free_mem:
|
|
bnxt_free_skbs(bp);
|
|
bnxt_free_irq(bp);
|
|
bnxt_free_mem(bp, true);
|
|
return rc;
|
|
}
|
|
|
|
/* rtnl_lock held */
|
|
int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
|
|
{
|
|
int rc = 0;
|
|
|
|
rc = __bnxt_open_nic(bp, irq_re_init, link_re_init);
|
|
if (rc) {
|
|
netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc);
|
|
dev_close(bp->dev);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/* rtnl_lock held, open the NIC half way by allocating all resources, but
|
|
* NAPI, IRQ, and TX are not enabled. This is mainly used for offline
|
|
* self tests.
|
|
*/
|
|
int bnxt_half_open_nic(struct bnxt *bp)
|
|
{
|
|
int rc = 0;
|
|
|
|
rc = bnxt_alloc_mem(bp, false);
|
|
if (rc) {
|
|
netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
|
|
goto half_open_err;
|
|
}
|
|
rc = bnxt_init_nic(bp, false);
|
|
if (rc) {
|
|
netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
|
|
goto half_open_err;
|
|
}
|
|
return 0;
|
|
|
|
half_open_err:
|
|
bnxt_free_skbs(bp);
|
|
bnxt_free_mem(bp, false);
|
|
dev_close(bp->dev);
|
|
return rc;
|
|
}
|
|
|
|
/* rtnl_lock held, this call can only be made after a previous successful
|
|
* call to bnxt_half_open_nic().
|
|
*/
|
|
void bnxt_half_close_nic(struct bnxt *bp)
|
|
{
|
|
bnxt_hwrm_resource_free(bp, false, false);
|
|
bnxt_free_skbs(bp);
|
|
bnxt_free_mem(bp, false);
|
|
}
|
|
|
|
static int bnxt_open(struct net_device *dev)
|
|
{
|
|
struct bnxt *bp = netdev_priv(dev);
|
|
int rc;
|
|
|
|
if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) {
|
|
netdev_err(bp->dev, "A previous firmware reset did not complete, aborting\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
rc = bnxt_hwrm_if_change(bp, true);
|
|
if (rc)
|
|
return rc;
|
|
rc = __bnxt_open_nic(bp, true, true);
|
|
if (rc) {
|
|
bnxt_hwrm_if_change(bp, false);
|
|
} else {
|
|
if (test_and_clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state)) {
|
|
if (BNXT_PF(bp)) {
|
|
struct bnxt_pf_info *pf = &bp->pf;
|
|
int n = pf->active_vfs;
|
|
|
|
if (n)
|
|
bnxt_cfg_hw_sriov(bp, &n, true);
|
|
}
|
|
if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
|
|
bnxt_ulp_start(bp, 0);
|
|
}
|
|
bnxt_hwmon_open(bp);
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
static bool bnxt_drv_busy(struct bnxt *bp)
|
|
{
|
|
return (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state) ||
|
|
test_bit(BNXT_STATE_READ_STATS, &bp->state));
|
|
}
|
|
|
|
static void bnxt_get_ring_stats(struct bnxt *bp,
|
|
struct rtnl_link_stats64 *stats);
|
|
|
|
static void __bnxt_close_nic(struct bnxt *bp, bool irq_re_init,
|
|
bool link_re_init)
|
|
{
|
|
/* Close the VF-reps before closing PF */
|
|
if (BNXT_PF(bp))
|
|
bnxt_vf_reps_close(bp);
|
|
|
|
/* Change device state to avoid TX queue wake up's */
|
|
bnxt_tx_disable(bp);
|
|
|
|
clear_bit(BNXT_STATE_OPEN, &bp->state);
|
|
smp_mb__after_atomic();
|
|
while (bnxt_drv_busy(bp))
|
|
msleep(20);
|
|
|
|
/* Flush rings and and disable interrupts */
|
|
bnxt_shutdown_nic(bp, irq_re_init);
|
|
|
|
/* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */
|
|
|
|
bnxt_debug_dev_exit(bp);
|
|
bnxt_disable_napi(bp);
|
|
del_timer_sync(&bp->timer);
|
|
if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state) &&
|
|
pci_is_enabled(bp->pdev))
|
|
pci_disable_device(bp->pdev);
|
|
|
|
bnxt_free_skbs(bp);
|
|
|
|
/* Save ring stats before shutdown */
|
|
if (bp->bnapi)
|
|
bnxt_get_ring_stats(bp, &bp->net_stats_prev);
|
|
if (irq_re_init) {
|
|
bnxt_free_irq(bp);
|
|
bnxt_del_napi(bp);
|
|
}
|
|
bnxt_free_mem(bp, irq_re_init);
|
|
}
|
|
|
|
int bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
|
|
{
|
|
int rc = 0;
|
|
|
|
if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
|
|
/* If we get here, it means firmware reset is in progress
|
|
* while we are trying to close. We can safely proceed with
|
|
* the close because we are holding rtnl_lock(). Some firmware
|
|
* messages may fail as we proceed to close. We set the
|
|
* ABORT_ERR flag here so that the FW reset thread will later
|
|
* abort when it gets the rtnl_lock() and sees the flag.
|
|
*/
|
|
netdev_warn(bp->dev, "FW reset in progress during close, FW reset will be aborted\n");
|
|
set_bit(BNXT_STATE_ABORT_ERR, &bp->state);
|
|
}
|
|
|
|
#ifdef CONFIG_BNXT_SRIOV
|
|
if (bp->sriov_cfg) {
|
|
rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait,
|
|
!bp->sriov_cfg,
|
|
BNXT_SRIOV_CFG_WAIT_TMO);
|
|
if (rc)
|
|
netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete!\n");
|
|
}
|
|
#endif
|
|
__bnxt_close_nic(bp, irq_re_init, link_re_init);
|
|
return rc;
|
|
}
|
|
|
|
static int bnxt_close(struct net_device *dev)
|
|
{
|
|
struct bnxt *bp = netdev_priv(dev);
|
|
|
|
bnxt_hwmon_close(bp);
|
|
bnxt_close_nic(bp, true, true);
|
|
bnxt_hwrm_shutdown_link(bp);
|
|
bnxt_hwrm_if_change(bp, false);
|
|
return 0;
|
|
}
|
|
|
|
static int bnxt_hwrm_port_phy_read(struct bnxt *bp, u16 phy_addr, u16 reg,
|
|
u16 *val)
|
|
{
|
|
struct hwrm_port_phy_mdio_read_output *resp = bp->hwrm_cmd_resp_addr;
|
|
struct hwrm_port_phy_mdio_read_input req = {0};
|
|
int rc;
|
|
|
|
if (bp->hwrm_spec_code < 0x10a00)
|
|
return -EOPNOTSUPP;
|
|
|
|
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_MDIO_READ, -1, -1);
|
|
req.port_id = cpu_to_le16(bp->pf.port_id);
|
|
req.phy_addr = phy_addr;
|
|
req.reg_addr = cpu_to_le16(reg & 0x1f);
|
|
if (mdio_phy_id_is_c45(phy_addr)) {
|
|
req.cl45_mdio = 1;
|
|
req.phy_addr = mdio_phy_id_prtad(phy_addr);
|
|
req.dev_addr = mdio_phy_id_devad(phy_addr);
|
|
req.reg_addr = cpu_to_le16(reg);
|
|
}
|
|
|
|
mutex_lock(&bp->hwrm_cmd_lock);
|
|
rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
|
|
if (!rc)
|
|
*val = le16_to_cpu(resp->reg_data);
|
|
mutex_unlock(&bp->hwrm_cmd_lock);
|
|
return rc;
|
|
}
|
|
|
|
static int bnxt_hwrm_port_phy_write(struct bnxt *bp, u16 phy_addr, u16 reg,
|
|
u16 val)
|
|
{
|
|
struct hwrm_port_phy_mdio_write_input req = {0};
|
|
|
|
if (bp->hwrm_spec_code < 0x10a00)
|
|
return -EOPNOTSUPP;
|
|
|
|
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_MDIO_WRITE, -1, -1);
|
|
req.port_id = cpu_to_le16(bp->pf.port_id);
|
|
req.phy_addr = phy_addr;
|
|
req.reg_addr = cpu_to_le16(reg & 0x1f);
|
|
if (mdio_phy_id_is_c45(phy_addr)) {
|
|
req.cl45_mdio = 1;
|
|
req.phy_addr = mdio_phy_id_prtad(phy_addr);
|
|
req.dev_addr = mdio_phy_id_devad(phy_addr);
|
|
req.reg_addr = cpu_to_le16(reg);
|
|
}
|
|
req.reg_data = cpu_to_le16(val);
|
|
|
|
return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
|
|
}
|
|
|
|
/* rtnl_lock held */
|
|
static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
|
|
{
|
|
struct mii_ioctl_data *mdio = if_mii(ifr);
|
|
struct bnxt *bp = netdev_priv(dev);
|
|
int rc;
|
|
|
|
switch (cmd) {
|
|
case SIOCGMIIPHY:
|
|
mdio->phy_id = bp->link_info.phy_addr;
|
|
|
|
/* fallthru */
|
|
case SIOCGMIIREG: {
|
|
u16 mii_regval = 0;
|
|
|
|
if (!netif_running(dev))
|
|
return -EAGAIN;
|
|
|
|
rc = bnxt_hwrm_port_phy_read(bp, mdio->phy_id, mdio->reg_num,
|
|
&mii_regval);
|
|
mdio->val_out = mii_regval;
|
|
return rc;
|
|
}
|
|
|
|
case SIOCSMIIREG:
|
|
if (!netif_running(dev))
|
|
return -EAGAIN;
|
|
|
|
return bnxt_hwrm_port_phy_write(bp, mdio->phy_id, mdio->reg_num,
|
|
mdio->val_in);
|
|
|
|
default:
|
|
/* do nothing */
|
|
break;
|
|
}
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
static void bnxt_get_ring_stats(struct bnxt *bp,
|
|
struct rtnl_link_stats64 *stats)
|
|
{
|
|
int i;
|
|
|
|
|
|
for (i = 0; i < bp->cp_nr_rings; i++) {
|
|
struct bnxt_napi *bnapi = bp->bnapi[i];
|
|
struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
|
|
struct ctx_hw_stats *hw_stats = cpr->hw_stats;
|
|
|
|
stats->rx_packets += le64_to_cpu(hw_stats->rx_ucast_pkts);
|
|
stats->rx_packets += le64_to_cpu(hw_stats->rx_mcast_pkts);
|
|
stats->rx_packets += le64_to_cpu(hw_stats->rx_bcast_pkts);
|
|
|
|
stats->tx_packets += le64_to_cpu(hw_stats->tx_ucast_pkts);
|
|
stats->tx_packets += le64_to_cpu(hw_stats->tx_mcast_pkts);
|
|
stats->tx_packets += le64_to_cpu(hw_stats->tx_bcast_pkts);
|
|
|
|
stats->rx_bytes += le64_to_cpu(hw_stats->rx_ucast_bytes);
|
|
stats->rx_bytes += le64_to_cpu(hw_stats->rx_mcast_bytes);
|
|
stats->rx_bytes += le64_to_cpu(hw_stats->rx_bcast_bytes);
|
|
|
|
stats->tx_bytes += le64_to_cpu(hw_stats->tx_ucast_bytes);
|
|
stats->tx_bytes += le64_to_cpu(hw_stats->tx_mcast_bytes);
|
|
stats->tx_bytes += le64_to_cpu(hw_stats->tx_bcast_bytes);
|
|
|
|
stats->rx_missed_errors +=
|
|
le64_to_cpu(hw_stats->rx_discard_pkts);
|
|
|
|
stats->multicast += le64_to_cpu(hw_stats->rx_mcast_pkts);
|
|
|
|
stats->tx_dropped += le64_to_cpu(hw_stats->tx_drop_pkts);
|
|
}
|
|
}
|
|
|
|
static void bnxt_add_prev_stats(struct bnxt *bp,
|
|
struct rtnl_link_stats64 *stats)
|
|
{
|
|
struct rtnl_link_stats64 *prev_stats = &bp->net_stats_prev;
|
|
|
|
stats->rx_packets += prev_stats->rx_packets;
|
|
stats->tx_packets += prev_stats->tx_packets;
|
|
stats->rx_bytes += prev_stats->rx_bytes;
|
|
stats->tx_bytes += prev_stats->tx_bytes;
|
|
stats->rx_missed_errors += prev_stats->rx_missed_errors;
|
|
stats->multicast += prev_stats->multicast;
|
|
stats->tx_dropped += prev_stats->tx_dropped;
|
|
}
|
|
|
|
static void
|
|
bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
|
|
{
|
|
struct bnxt *bp = netdev_priv(dev);
|
|
|
|
set_bit(BNXT_STATE_READ_STATS, &bp->state);
|
|
/* Make sure bnxt_close_nic() sees that we are reading stats before
|
|
* we check the BNXT_STATE_OPEN flag.
|
|
*/
|
|
smp_mb__after_atomic();
|
|
if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
|
|
clear_bit(BNXT_STATE_READ_STATS, &bp->state);
|
|
*stats = bp->net_stats_prev;
|
|
return;
|
|
}
|
|
|
|
bnxt_get_ring_stats(bp, stats);
|
|
bnxt_add_prev_stats(bp, stats);
|
|
|
|
if (bp->flags & BNXT_FLAG_PORT_STATS) {
|
|
struct rx_port_stats *rx = bp->hw_rx_port_stats;
|
|
struct tx_port_stats *tx = bp->hw_tx_port_stats;
|
|
|
|
stats->rx_crc_errors = le64_to_cpu(rx->rx_fcs_err_frames);
|
|
stats->rx_frame_errors = le64_to_cpu(rx->rx_align_err_frames);
|
|
stats->rx_length_errors = le64_to_cpu(rx->rx_undrsz_frames) +
|
|
le64_to_cpu(rx->rx_ovrsz_frames) +
|
|
le64_to_cpu(rx->rx_runt_frames);
|
|
stats->rx_errors = le64_to_cpu(rx->rx_false_carrier_frames) +
|
|
le64_to_cpu(rx->rx_jbr_frames);
|
|
stats->collisions = le64_to_cpu(tx->tx_total_collisions);
|
|
stats->tx_fifo_errors = le64_to_cpu(tx->tx_fifo_underruns);
|
|
stats->tx_errors = le64_to_cpu(tx->tx_err);
|
|
}
|
|
clear_bit(BNXT_STATE_READ_STATS, &bp->state);
|
|
}
|
|
|
|
static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask)
|
|
{
|
|
struct net_device *dev = bp->dev;
|
|
struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
|
|
struct netdev_hw_addr *ha;
|
|
u8 *haddr;
|
|
int mc_count = 0;
|
|
bool update = false;
|
|
int off = 0;
|
|
|
|
netdev_for_each_mc_addr(ha, dev) {
|
|
if (mc_count >= BNXT_MAX_MC_ADDRS) {
|
|
*rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
|
|
vnic->mc_list_count = 0;
|
|
return false;
|
|
}
|
|
haddr = ha->addr;
|
|
if (!ether_addr_equal(haddr, vnic->mc_list + off)) {
|
|
memcpy(vnic->mc_list + off, haddr, ETH_ALEN);
|
|
update = true;
|
|
}
|
|
off += ETH_ALEN;
|
|
mc_count++;
|
|
}
|
|
if (mc_count)
|
|
*rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST;
|
|
|
|
if (mc_count != vnic->mc_list_count) {
|
|
vnic->mc_list_count = mc_count;
|
|
update = true;
|
|
}
|
|
return update;
|
|
}
|
|
|
|
static bool bnxt_uc_list_updated(struct bnxt *bp)
|
|
{
|
|
struct net_device *dev = bp->dev;
|
|
struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
|
|
struct netdev_hw_addr *ha;
|
|
int off = 0;
|
|
|
|
if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1))
|
|
return true;
|
|
|
|
netdev_for_each_uc_addr(ha, dev) {
|
|
if (!ether_addr_equal(ha->addr, vnic->uc_list + off))
|
|
return true;
|
|
|
|
off += ETH_ALEN;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static void bnxt_set_rx_mode(struct net_device *dev)
|
|
{
|
|
struct bnxt *bp = netdev_priv(dev);
|
|
struct bnxt_vnic_info *vnic;
|
|
bool mc_update = false;
|
|
bool uc_update;
|
|
u32 mask;
|
|
|
|
if (!test_bit(BNXT_STATE_OPEN, &bp->state))
|
|
return;
|
|
|
|
vnic = &bp->vnic_info[0];
|
|
mask = vnic->rx_mask;
|
|
mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS |
|
|
CFA_L2_SET_RX_MASK_REQ_MASK_MCAST |
|
|
CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST |
|
|
CFA_L2_SET_RX_MASK_REQ_MASK_BCAST);
|
|
|
|
if ((dev->flags & IFF_PROMISC) && bnxt_promisc_ok(bp))
|
|
mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
|
|
|
|
uc_update = bnxt_uc_list_updated(bp);
|
|
|
|
if (dev->flags & IFF_BROADCAST)
|
|
mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
|
|
if (dev->flags & IFF_ALLMULTI) {
|
|
mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
|
|
vnic->mc_list_count = 0;
|
|
} else {
|
|
mc_update = bnxt_mc_list_updated(bp, &mask);
|
|
}
|
|
|
|
if (mask != vnic->rx_mask || uc_update || mc_update) {
|
|
vnic->rx_mask = mask;
|
|
|
|
set_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event);
|
|
bnxt_queue_sp_work(bp);
|
|
}
|
|
}
|
|
|
|
static int bnxt_cfg_rx_mode(struct bnxt *bp)
|
|
{
|
|
struct net_device *dev = bp->dev;
|
|
struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
|
|
struct netdev_hw_addr *ha;
|
|
int i, off = 0, rc;
|
|
bool uc_update;
|
|
|
|
netif_addr_lock_bh(dev);
|
|
uc_update = bnxt_uc_list_updated(bp);
|
|
netif_addr_unlock_bh(dev);
|
|
|
|
if (!uc_update)
|
|
goto skip_uc;
|
|
|
|
mutex_lock(&bp->hwrm_cmd_lock);
|
|
for (i = 1; i < vnic->uc_filter_count; i++) {
|
|
struct hwrm_cfa_l2_filter_free_input req = {0};
|
|
|
|
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_FREE, -1,
|
|
-1);
|
|
|
|
req.l2_filter_id = vnic->fw_l2_filter_id[i];
|
|
|
|
rc = _hwrm_send_message(bp, &req, sizeof(req),
|
|
HWRM_CMD_TIMEOUT);
|
|
}
|
|
mutex_unlock(&bp->hwrm_cmd_lock);
|
|
|
|
vnic->uc_filter_count = 1;
|
|
|
|
netif_addr_lock_bh(dev);
|
|
if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) {
|
|
vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
|
|
} else {
|
|
netdev_for_each_uc_addr(ha, dev) {
|
|
memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN);
|
|
off += ETH_ALEN;
|
|
vnic->uc_filter_count++;
|
|
}
|
|
}
|
|
netif_addr_unlock_bh(dev);
|
|
|
|
for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) {
|
|
rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off);
|
|
if (rc) {
|
|
netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n",
|
|
rc);
|
|
vnic->uc_filter_count = i;
|
|
return rc;
|
|
}
|
|
}
|
|
|
|
skip_uc:
|
|
rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
|
|
if (rc && vnic->mc_list_count) {
|
|
netdev_info(bp->dev, "Failed setting MC filters rc: %d, turning on ALL_MCAST mode\n",
|
|
rc);
|
|
vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
|
|
vnic->mc_list_count = 0;
|
|
rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
|
|
}
|
|
if (rc)
|
|
netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %d\n",
|
|
rc);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static bool bnxt_can_reserve_rings(struct bnxt *bp)
|
|
{
|
|
#ifdef CONFIG_BNXT_SRIOV
|
|
if (BNXT_NEW_RM(bp) && BNXT_VF(bp)) {
|
|
struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
|
|
|
|
/* No minimum rings were provisioned by the PF. Don't
|
|
* reserve rings by default when device is down.
|
|
*/
|
|
if (hw_resc->min_tx_rings || hw_resc->resv_tx_rings)
|
|
return true;
|
|
|
|
if (!netif_running(bp->dev))
|
|
return false;
|
|
}
|
|
#endif
|
|
return true;
|
|
}
|
|
|
|
/* If the chip and firmware supports RFS */
|
|
static bool bnxt_rfs_supported(struct bnxt *bp)
|
|
{
|
|
if (bp->flags & BNXT_FLAG_CHIP_P5) {
|
|
if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2)
|
|
return true;
|
|
return false;
|
|
}
|
|
if (BNXT_PF(bp) && !BNXT_CHIP_TYPE_NITRO_A0(bp))
|
|
return true;
|
|
if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/* If runtime conditions support RFS */
|
|
static bool bnxt_rfs_capable(struct bnxt *bp)
|
|
{
|
|
#ifdef CONFIG_RFS_ACCEL
|
|
int vnics, max_vnics, max_rss_ctxs;
|
|
|
|
if (bp->flags & BNXT_FLAG_CHIP_P5)
|
|
return bnxt_rfs_supported(bp);
|
|
if (!(bp->flags & BNXT_FLAG_MSIX_CAP) || !bnxt_can_reserve_rings(bp))
|
|
return false;
|
|
|
|
vnics = 1 + bp->rx_nr_rings;
|
|
max_vnics = bnxt_get_max_func_vnics(bp);
|
|
max_rss_ctxs = bnxt_get_max_func_rss_ctxs(bp);
|
|
|
|
/* RSS contexts not a limiting factor */
|
|
if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
|
|
max_rss_ctxs = max_vnics;
|
|
if (vnics > max_vnics || vnics > max_rss_ctxs) {
|
|
if (bp->rx_nr_rings > 1)
|
|
netdev_warn(bp->dev,
|
|
"Not enough resources to support NTUPLE filters, enough resources for up to %d rx rings\n",
|
|
min(max_rss_ctxs - 1, max_vnics - 1));
|
|
return false;
|
|
}
|
|
|
|
if (!BNXT_NEW_RM(bp))
|
|
return true;
|
|
|
|
if (vnics == bp->hw_resc.resv_vnics)
|
|
return true;
|
|
|
|
bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 0, vnics);
|
|
if (vnics <= bp->hw_resc.resv_vnics)
|
|
return true;
|
|
|
|
netdev_warn(bp->dev, "Unable to reserve resources to support NTUPLE filters.\n");
|
|
bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 0, 1);
|
|
return false;
|
|
#else
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
static netdev_features_t bnxt_fix_features(struct net_device *dev,
|
|
netdev_features_t features)
|
|
{
|
|
struct bnxt *bp = netdev_priv(dev);
|
|
|
|
if ((features & NETIF_F_NTUPLE) && !bnxt_rfs_capable(bp))
|
|
features &= ~NETIF_F_NTUPLE;
|
|
|
|
if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
|
|
features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
|
|
|
|
if (!(features & NETIF_F_GRO))
|
|
features &= ~NETIF_F_GRO_HW;
|
|
|
|
if (features & NETIF_F_GRO_HW)
|
|
features &= ~NETIF_F_LRO;
|
|
|
|
/* Both CTAG and STAG VLAN accelaration on the RX side have to be
|
|
* turned on or off together.
|
|
*/
|
|
if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX)) !=
|
|
(NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX)) {
|
|
if (dev->features & NETIF_F_HW_VLAN_CTAG_RX)
|
|
features &= ~(NETIF_F_HW_VLAN_CTAG_RX |
|
|
NETIF_F_HW_VLAN_STAG_RX);
|
|
else
|
|
features |= NETIF_F_HW_VLAN_CTAG_RX |
|
|
NETIF_F_HW_VLAN_STAG_RX;
|
|
}
|
|
#ifdef CONFIG_BNXT_SRIOV
|
|
if (BNXT_VF(bp)) {
|
|
if (bp->vf.vlan) {
|
|
features &= ~(NETIF_F_HW_VLAN_CTAG_RX |
|
|
NETIF_F_HW_VLAN_STAG_RX);
|
|
}
|
|
}
|
|
#endif
|
|
return features;
|
|
}
|
|
|
|
static int bnxt_set_features(struct net_device *dev, netdev_features_t features)
|
|
{
|
|
struct bnxt *bp = netdev_priv(dev);
|
|
u32 flags = bp->flags;
|
|
u32 changes;
|
|
int rc = 0;
|
|
bool re_init = false;
|
|
bool update_tpa = false;
|
|
|
|
flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS;
|
|
if (features & NETIF_F_GRO_HW)
|
|
flags |= BNXT_FLAG_GRO;
|
|
else if (features & NETIF_F_LRO)
|
|
flags |= BNXT_FLAG_LRO;
|
|
|
|
if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
|
|
flags &= ~BNXT_FLAG_TPA;
|
|
|
|
if (features & NETIF_F_HW_VLAN_CTAG_RX)
|
|
flags |= BNXT_FLAG_STRIP_VLAN;
|
|
|
|
if (features & NETIF_F_NTUPLE)
|
|
flags |= BNXT_FLAG_RFS;
|
|
|
|
changes = flags ^ bp->flags;
|
|
if (changes & BNXT_FLAG_TPA) {
|
|
update_tpa = true;
|
|
if ((bp->flags & BNXT_FLAG_TPA) == 0 ||
|
|
(flags & BNXT_FLAG_TPA) == 0 ||
|
|
(bp->flags & BNXT_FLAG_CHIP_P5))
|
|
re_init = true;
|
|
}
|
|
|
|
if (changes & ~BNXT_FLAG_TPA)
|
|
re_init = true;
|
|
|
|
if (flags != bp->flags) {
|
|
u32 old_flags = bp->flags;
|
|
|
|
if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
|
|
bp->flags = flags;
|
|
if (update_tpa)
|
|
bnxt_set_ring_params(bp);
|
|
return rc;
|
|
}
|
|
|
|
if (re_init) {
|
|
bnxt_close_nic(bp, false, false);
|
|
bp->flags = flags;
|
|
if (update_tpa)
|
|
bnxt_set_ring_params(bp);
|
|
|
|
return bnxt_open_nic(bp, false, false);
|
|
}
|
|
if (update_tpa) {
|
|
bp->flags = flags;
|
|
rc = bnxt_set_tpa(bp,
|
|
(flags & BNXT_FLAG_TPA) ?
|
|
true : false);
|
|
if (rc)
|
|
bp->flags = old_flags;
|
|
}
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
static int bnxt_dbg_hwrm_ring_info_get(struct bnxt *bp, u8 ring_type,
|
|
u32 ring_id, u32 *prod, u32 *cons)
|
|
{
|
|
struct hwrm_dbg_ring_info_get_output *resp = bp->hwrm_cmd_resp_addr;
|
|
struct hwrm_dbg_ring_info_get_input req = {0};
|
|
int rc;
|
|
|
|
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_DBG_RING_INFO_GET, -1, -1);
|
|
req.ring_type = ring_type;
|
|
req.fw_ring_id = cpu_to_le32(ring_id);
|
|
mutex_lock(&bp->hwrm_cmd_lock);
|
|
rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
|
|
if (!rc) {
|
|
*prod = le32_to_cpu(resp->producer_index);
|
|
*cons = le32_to_cpu(resp->consumer_index);
|
|
}
|
|
mutex_unlock(&bp->hwrm_cmd_lock);
|
|
return rc;
|
|
}
|
|
|
|
static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi)
|
|
{
|
|
struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
|
|
int i = bnapi->index;
|
|
|
|
if (!txr)
|
|
return;
|
|
|
|
netdev_info(bnapi->bp->dev, "[%d]: tx{fw_ring: %d prod: %x cons: %x}\n",
|
|
i, txr->tx_ring_struct.fw_ring_id, txr->tx_prod,
|
|
txr->tx_cons);
|
|
}
|
|
|
|
static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi)
|
|
{
|
|
struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
|
|
int i = bnapi->index;
|
|
|
|
if (!rxr)
|
|
return;
|
|
|
|
netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n",
|
|
i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod,
|
|
rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod,
|
|
rxr->rx_sw_agg_prod);
|
|
}
|
|
|
|
static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi)
|
|
{
|
|
struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
|
|
int i = bnapi->index;
|
|
|
|
netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n",
|
|
i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons);
|
|
}
|
|
|
|
static void bnxt_dbg_dump_states(struct bnxt *bp)
|
|
{
|
|
int i;
|
|
struct bnxt_napi *bnapi;
|
|
|
|
for (i = 0; i < bp->cp_nr_rings; i++) {
|
|
bnapi = bp->bnapi[i];
|
|
if (netif_msg_drv(bp)) {
|
|
bnxt_dump_tx_sw_state(bnapi);
|
|
bnxt_dump_rx_sw_state(bnapi);
|
|
bnxt_dump_cp_sw_state(bnapi);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void bnxt_reset_task(struct bnxt *bp, bool silent)
|
|
{
|
|
if (!silent)
|
|
bnxt_dbg_dump_states(bp);
|
|
if (netif_running(bp->dev)) {
|
|
int rc;
|
|
|
|
if (silent) {
|
|
bnxt_close_nic(bp, false, false);
|
|
bnxt_open_nic(bp, false, false);
|
|
} else {
|
|
bnxt_ulp_stop(bp);
|
|
bnxt_close_nic(bp, true, false);
|
|
rc = bnxt_open_nic(bp, true, false);
|
|
bnxt_ulp_start(bp, rc);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void bnxt_tx_timeout(struct net_device *dev)
|
|
{
|
|
struct bnxt *bp = netdev_priv(dev);
|
|
|
|
netdev_err(bp->dev, "TX timeout detected, starting reset task!\n");
|
|
set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
|
|
bnxt_queue_sp_work(bp);
|
|
}
|
|
|
|
static void bnxt_fw_health_check(struct bnxt *bp)
|
|
{
|
|
struct bnxt_fw_health *fw_health = bp->fw_health;
|
|
u32 val;
|
|
|
|
if (!fw_health || !fw_health->enabled ||
|
|
test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
|
|
return;
|
|
|
|
if (fw_health->tmr_counter) {
|
|
fw_health->tmr_counter--;
|
|
return;
|
|
}
|
|
|
|
val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG);
|
|
if (val == fw_health->last_fw_heartbeat)
|
|
goto fw_reset;
|
|
|
|
fw_health->last_fw_heartbeat = val;
|
|
|
|
val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
|
|
if (val != fw_health->last_fw_reset_cnt)
|
|
goto fw_reset;
|
|
|
|
fw_health->tmr_counter = fw_health->tmr_multiplier;
|
|
return;
|
|
|
|
fw_reset:
|
|
set_bit(BNXT_FW_EXCEPTION_SP_EVENT, &bp->sp_event);
|
|
bnxt_queue_sp_work(bp);
|
|
}
|
|
|
|
static void bnxt_timer(struct timer_list *t)
|
|
{
|
|
struct bnxt *bp = from_timer(bp, t, timer);
|
|
struct net_device *dev = bp->dev;
|
|
|
|
if (!netif_running(dev))
|
|
return;
|
|
|
|
if (atomic_read(&bp->intr_sem) != 0)
|
|
goto bnxt_restart_timer;
|
|
|
|
if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)
|
|
bnxt_fw_health_check(bp);
|
|
|
|
if (bp->link_info.link_up && (bp->flags & BNXT_FLAG_PORT_STATS) &&
|
|
bp->stats_coal_ticks) {
|
|
set_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event);
|
|
bnxt_queue_sp_work(bp);
|
|
}
|
|
|
|
if (bnxt_tc_flower_enabled(bp)) {
|
|
set_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event);
|
|
bnxt_queue_sp_work(bp);
|
|
}
|
|
|
|
if (bp->link_info.phy_retry) {
|
|
if (time_after(jiffies, bp->link_info.phy_retry_expires)) {
|
|
bp->link_info.phy_retry = false;
|
|
netdev_warn(bp->dev, "failed to update phy settings after maximum retries.\n");
|
|
} else {
|
|
set_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event);
|
|
bnxt_queue_sp_work(bp);
|
|
}
|
|
}
|
|
|
|
if ((bp->flags & BNXT_FLAG_CHIP_P5) && netif_carrier_ok(dev)) {
|
|
set_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event);
|
|
bnxt_queue_sp_work(bp);
|
|
}
|
|
bnxt_restart_timer:
|
|
mod_timer(&bp->timer, jiffies + bp->current_interval);
|
|
}
|
|
|
|
static void bnxt_rtnl_lock_sp(struct bnxt *bp)
|
|
{
|
|
/* We are called from bnxt_sp_task which has BNXT_STATE_IN_SP_TASK
|
|
* set. If the device is being closed, bnxt_close() may be holding
|
|
* rtnl() and waiting for BNXT_STATE_IN_SP_TASK to clear. So we
|
|
* must clear BNXT_STATE_IN_SP_TASK before holding rtnl().
|
|
*/
|
|
clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
|
|
rtnl_lock();
|
|
}
|
|
|
|
static void bnxt_rtnl_unlock_sp(struct bnxt *bp)
|
|
{
|
|
set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
|
|
rtnl_unlock();
|
|
}
|
|
|
|
/* Only called from bnxt_sp_task() */
|
|
static void bnxt_reset(struct bnxt *bp, bool silent)
|
|
{
|
|
bnxt_rtnl_lock_sp(bp);
|
|
if (test_bit(BNXT_STATE_OPEN, &bp->state))
|
|
bnxt_reset_task(bp, silent);
|
|
bnxt_rtnl_unlock_sp(bp);
|
|
}
|
|
|
|
static void bnxt_fw_reset_close(struct bnxt *bp)
|
|
{
|
|
bnxt_ulp_stop(bp);
|
|
__bnxt_close_nic(bp, true, false);
|
|
bnxt_clear_int_mode(bp);
|
|
bnxt_hwrm_func_drv_unrgtr(bp);
|
|
bnxt_free_ctx_mem(bp);
|
|
kfree(bp->ctx);
|
|
bp->ctx = NULL;
|
|
}
|
|
|
|
static bool is_bnxt_fw_ok(struct bnxt *bp)
|
|
{
|
|
struct bnxt_fw_health *fw_health = bp->fw_health;
|
|
bool no_heartbeat = false, has_reset = false;
|
|
u32 val;
|
|
|
|
val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG);
|
|
if (val == fw_health->last_fw_heartbeat)
|
|
no_heartbeat = true;
|
|
|
|
val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
|
|
if (val != fw_health->last_fw_reset_cnt)
|
|
has_reset = true;
|
|
|
|
if (!no_heartbeat && has_reset)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/* rtnl_lock is acquired before calling this function */
|
|
static void bnxt_force_fw_reset(struct bnxt *bp)
|
|
{
|
|
struct bnxt_fw_health *fw_health = bp->fw_health;
|
|
u32 wait_dsecs;
|
|
|
|
if (!test_bit(BNXT_STATE_OPEN, &bp->state) ||
|
|
test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
|
|
return;
|
|
|
|
set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
|
|
bnxt_fw_reset_close(bp);
|
|
wait_dsecs = fw_health->master_func_wait_dsecs;
|
|
if (fw_health->master) {
|
|
if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU)
|
|
wait_dsecs = 0;
|
|
bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW;
|
|
} else {
|
|
bp->fw_reset_timestamp = jiffies + wait_dsecs * HZ / 10;
|
|
wait_dsecs = fw_health->normal_func_wait_dsecs;
|
|
bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
|
|
}
|
|
|
|
bp->fw_reset_min_dsecs = fw_health->post_reset_wait_dsecs;
|
|
bp->fw_reset_max_dsecs = fw_health->post_reset_max_wait_dsecs;
|
|
bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10);
|
|
}
|
|
|
|
void bnxt_fw_exception(struct bnxt *bp)
|
|
{
|
|
set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state);
|
|
bnxt_rtnl_lock_sp(bp);
|
|
bnxt_force_fw_reset(bp);
|
|
bnxt_rtnl_unlock_sp(bp);
|
|
}
|
|
|
|
/* Returns the number of registered VFs, or 1 if VF configuration is pending, or
|
|
* < 0 on error.
|
|
*/
|
|
static int bnxt_get_registered_vfs(struct bnxt *bp)
|
|
{
|
|
#ifdef CONFIG_BNXT_SRIOV
|
|
int rc;
|
|
|
|
if (!BNXT_PF(bp))
|
|
return 0;
|
|
|
|
rc = bnxt_hwrm_func_qcfg(bp);
|
|
if (rc) {
|
|
netdev_err(bp->dev, "func_qcfg cmd failed, rc = %d\n", rc);
|
|
return rc;
|
|
}
|
|
if (bp->pf.registered_vfs)
|
|
return bp->pf.registered_vfs;
|
|
if (bp->sriov_cfg)
|
|
return 1;
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
void bnxt_fw_reset(struct bnxt *bp)
|
|
{
|
|
bnxt_rtnl_lock_sp(bp);
|
|
if (test_bit(BNXT_STATE_OPEN, &bp->state) &&
|
|
!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
|
|
int n = 0, tmo;
|
|
|
|
set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
|
|
if (bp->pf.active_vfs &&
|
|
!test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))
|
|
n = bnxt_get_registered_vfs(bp);
|
|
if (n < 0) {
|
|
netdev_err(bp->dev, "Firmware reset aborted, rc = %d\n",
|
|
n);
|
|
clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
|
|
dev_close(bp->dev);
|
|
goto fw_reset_exit;
|
|
} else if (n > 0) {
|
|
u16 vf_tmo_dsecs = n * 10;
|
|
|
|
if (bp->fw_reset_max_dsecs < vf_tmo_dsecs)
|
|
bp->fw_reset_max_dsecs = vf_tmo_dsecs;
|
|
bp->fw_reset_state =
|
|
BNXT_FW_RESET_STATE_POLL_VF;
|
|
bnxt_queue_fw_reset_work(bp, HZ / 10);
|
|
goto fw_reset_exit;
|
|
}
|
|
bnxt_fw_reset_close(bp);
|
|
if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) {
|
|
bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN;
|
|
tmo = HZ / 10;
|
|
} else {
|
|
bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
|
|
tmo = bp->fw_reset_min_dsecs * HZ / 10;
|
|
}
|
|
bnxt_queue_fw_reset_work(bp, tmo);
|
|
}
|
|
fw_reset_exit:
|
|
bnxt_rtnl_unlock_sp(bp);
|
|
}
|
|
|
|
static void bnxt_chk_missed_irq(struct bnxt *bp)
|
|
{
|
|
int i;
|
|
|
|
if (!(bp->flags & BNXT_FLAG_CHIP_P5))
|
|
return;
|
|
|
|
for (i = 0; i < bp->cp_nr_rings; i++) {
|
|
struct bnxt_napi *bnapi = bp->bnapi[i];
|
|
struct bnxt_cp_ring_info *cpr;
|
|
u32 fw_ring_id;
|
|
int j;
|
|
|
|
if (!bnapi)
|
|
continue;
|
|
|
|
cpr = &bnapi->cp_ring;
|
|
for (j = 0; j < 2; j++) {
|
|
struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
|
|
u32 val[2];
|
|
|
|
if (!cpr2 || cpr2->has_more_work ||
|
|
!bnxt_has_work(bp, cpr2))
|
|
continue;
|
|
|
|
if (cpr2->cp_raw_cons != cpr2->last_cp_raw_cons) {
|
|
cpr2->last_cp_raw_cons = cpr2->cp_raw_cons;
|
|
continue;
|
|
}
|
|
fw_ring_id = cpr2->cp_ring_struct.fw_ring_id;
|
|
bnxt_dbg_hwrm_ring_info_get(bp,
|
|
DBG_RING_INFO_GET_REQ_RING_TYPE_L2_CMPL,
|
|
fw_ring_id, &val[0], &val[1]);
|
|
cpr->missed_irqs++;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void bnxt_cfg_ntp_filters(struct bnxt *);
|
|
|
|
static void bnxt_sp_task(struct work_struct *work)
|
|
{
|
|
struct bnxt *bp = container_of(work, struct bnxt, sp_task);
|
|
|
|
set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
|
|
smp_mb__after_atomic();
|
|
if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
|
|
clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
|
|
return;
|
|
}
|
|
|
|
if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event))
|
|
bnxt_cfg_rx_mode(bp);
|
|
|
|
if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event))
|
|
bnxt_cfg_ntp_filters(bp);
|
|
if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event))
|
|
bnxt_hwrm_exec_fwd_req(bp);
|
|
if (test_and_clear_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event)) {
|
|
bnxt_hwrm_tunnel_dst_port_alloc(
|
|
bp, bp->vxlan_port,
|
|
TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
|
|
}
|
|
if (test_and_clear_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event)) {
|
|
bnxt_hwrm_tunnel_dst_port_free(
|
|
bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
|
|
}
|
|
if (test_and_clear_bit(BNXT_GENEVE_ADD_PORT_SP_EVENT, &bp->sp_event)) {
|
|
bnxt_hwrm_tunnel_dst_port_alloc(
|
|
bp, bp->nge_port,
|
|
TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
|
|
}
|
|
if (test_and_clear_bit(BNXT_GENEVE_DEL_PORT_SP_EVENT, &bp->sp_event)) {
|
|
bnxt_hwrm_tunnel_dst_port_free(
|
|
bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
|
|
}
|
|
if (test_and_clear_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event)) {
|
|
bnxt_hwrm_port_qstats(bp);
|
|
bnxt_hwrm_port_qstats_ext(bp);
|
|
bnxt_hwrm_pcie_qstats(bp);
|
|
}
|
|
|
|
if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) {
|
|
int rc;
|
|
|
|
mutex_lock(&bp->link_lock);
|
|
if (test_and_clear_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT,
|
|
&bp->sp_event))
|
|
bnxt_hwrm_phy_qcaps(bp);
|
|
|
|
rc = bnxt_update_link(bp, true);
|
|
mutex_unlock(&bp->link_lock);
|
|
if (rc)
|
|
netdev_err(bp->dev, "SP task can't update link (rc: %x)\n",
|
|
rc);
|
|
}
|
|
if (test_and_clear_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event)) {
|
|
int rc;
|
|
|
|
mutex_lock(&bp->link_lock);
|
|
rc = bnxt_update_phy_setting(bp);
|
|
mutex_unlock(&bp->link_lock);
|
|
if (rc) {
|
|
netdev_warn(bp->dev, "update phy settings retry failed\n");
|
|
} else {
|
|
bp->link_info.phy_retry = false;
|
|
netdev_info(bp->dev, "update phy settings retry succeeded\n");
|
|
}
|
|
}
|
|
if (test_and_clear_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event)) {
|
|
mutex_lock(&bp->link_lock);
|
|
bnxt_get_port_module_status(bp);
|
|
mutex_unlock(&bp->link_lock);
|
|
}
|
|
|
|
if (test_and_clear_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event))
|
|
bnxt_tc_flow_stats_work(bp);
|
|
|
|
if (test_and_clear_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event))
|
|
bnxt_chk_missed_irq(bp);
|
|
|
|
/* These functions below will clear BNXT_STATE_IN_SP_TASK. They
|
|
* must be the last functions to be called before exiting.
|
|
*/
|
|
if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event))
|
|
bnxt_reset(bp, false);
|
|
|
|
if (test_and_clear_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event))
|
|
bnxt_reset(bp, true);
|
|
|
|
if (test_and_clear_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event))
|
|
bnxt_devlink_health_report(bp, BNXT_FW_RESET_NOTIFY_SP_EVENT);
|
|
|
|
if (test_and_clear_bit(BNXT_FW_EXCEPTION_SP_EVENT, &bp->sp_event)) {
|
|
if (!is_bnxt_fw_ok(bp))
|
|
bnxt_devlink_health_report(bp,
|
|
BNXT_FW_EXCEPTION_SP_EVENT);
|
|
}
|
|
|
|
smp_mb__before_atomic();
|
|
clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
|
|
}
|
|
|
|
/* Under rtnl_lock */
|
|
int bnxt_check_rings(struct bnxt *bp, int tx, int rx, bool sh, int tcs,
|
|
int tx_xdp)
|
|
{
|
|
int max_rx, max_tx, tx_sets = 1;
|
|
int tx_rings_needed, stats;
|
|
int rx_rings = rx;
|
|
int cp, vnics, rc;
|
|
|
|
if (tcs)
|
|
tx_sets = tcs;
|
|
|
|
rc = bnxt_get_max_rings(bp, &max_rx, &max_tx, sh);
|
|
if (rc)
|
|
return rc;
|
|
|
|
if (max_rx < rx)
|
|
return -ENOMEM;
|
|
|
|
tx_rings_needed = tx * tx_sets + tx_xdp;
|
|
if (max_tx < tx_rings_needed)
|
|
return -ENOMEM;
|
|
|
|
vnics = 1;
|
|
if ((bp->flags & (BNXT_FLAG_RFS | BNXT_FLAG_CHIP_P5)) == BNXT_FLAG_RFS)
|
|
vnics += rx_rings;
|
|
|
|
if (bp->flags & BNXT_FLAG_AGG_RINGS)
|
|
rx_rings <<= 1;
|
|
cp = sh ? max_t(int, tx_rings_needed, rx) : tx_rings_needed + rx;
|
|
stats = cp;
|
|
if (BNXT_NEW_RM(bp)) {
|
|
cp += bnxt_get_ulp_msix_num(bp);
|
|
stats += bnxt_get_ulp_stat_ctxs(bp);
|
|
}
|
|
return bnxt_hwrm_check_rings(bp, tx_rings_needed, rx_rings, rx, cp,
|
|
stats, vnics);
|
|
}
|
|
|
|
static void bnxt_unmap_bars(struct bnxt *bp, struct pci_dev *pdev)
|
|
{
|
|
if (bp->bar2) {
|
|
pci_iounmap(pdev, bp->bar2);
|
|
bp->bar2 = NULL;
|
|
}
|
|
|
|
if (bp->bar1) {
|
|
pci_iounmap(pdev, bp->bar1);
|
|
bp->bar1 = NULL;
|
|
}
|
|
|
|
if (bp->bar0) {
|
|
pci_iounmap(pdev, bp->bar0);
|
|
bp->bar0 = NULL;
|
|
}
|
|
}
|
|
|
|
static void bnxt_cleanup_pci(struct bnxt *bp)
|
|
{
|
|
bnxt_unmap_bars(bp, bp->pdev);
|
|
pci_release_regions(bp->pdev);
|
|
if (pci_is_enabled(bp->pdev))
|
|
pci_disable_device(bp->pdev);
|
|
}
|
|
|
|
static void bnxt_init_dflt_coal(struct bnxt *bp)
|
|
{
|
|
struct bnxt_coal *coal;
|
|
|
|
/* Tick values in micro seconds.
|
|
* 1 coal_buf x bufs_per_record = 1 completion record.
|
|
*/
|
|
coal = &bp->rx_coal;
|
|
coal->coal_ticks = 10;
|
|
coal->coal_bufs = 30;
|
|
coal->coal_ticks_irq = 1;
|
|
coal->coal_bufs_irq = 2;
|
|
coal->idle_thresh = 50;
|
|
coal->bufs_per_record = 2;
|
|
coal->budget = 64; /* NAPI budget */
|
|
|
|
coal = &bp->tx_coal;
|
|
coal->coal_ticks = 28;
|
|
coal->coal_bufs = 30;
|
|
coal->coal_ticks_irq = 2;
|
|
coal->coal_bufs_irq = 2;
|
|
coal->bufs_per_record = 1;
|
|
|
|
bp->stats_coal_ticks = BNXT_DEF_STATS_COAL_TICKS;
|
|
}
|
|
|
|
static int bnxt_fw_init_one_p1(struct bnxt *bp)
|
|
{
|
|
int rc;
|
|
|
|
bp->fw_cap = 0;
|
|
rc = bnxt_hwrm_ver_get(bp);
|
|
if (rc)
|
|
return rc;
|
|
|
|
if (bp->fw_cap & BNXT_FW_CAP_KONG_MB_CHNL) {
|
|
rc = bnxt_alloc_kong_hwrm_resources(bp);
|
|
if (rc)
|
|
bp->fw_cap &= ~BNXT_FW_CAP_KONG_MB_CHNL;
|
|
}
|
|
|
|
if ((bp->fw_cap & BNXT_FW_CAP_SHORT_CMD) ||
|
|
bp->hwrm_max_ext_req_len > BNXT_HWRM_MAX_REQ_LEN) {
|
|
rc = bnxt_alloc_hwrm_short_cmd_req(bp);
|
|
if (rc)
|
|
return rc;
|
|
}
|
|
rc = bnxt_hwrm_func_reset(bp);
|
|
if (rc)
|
|
return -ENODEV;
|
|
|
|
bnxt_hwrm_fw_set_time(bp);
|
|
return 0;
|
|
}
|
|
|
|
static int bnxt_fw_init_one_p2(struct bnxt *bp)
|
|
{
|
|
int rc;
|
|
|
|
/* Get the MAX capabilities for this function */
|
|
rc = bnxt_hwrm_func_qcaps(bp);
|
|
if (rc) {
|
|
netdev_err(bp->dev, "hwrm query capability failure rc: %x\n",
|
|
rc);
|
|
return -ENODEV;
|
|
}
|
|
|
|
rc = bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(bp);
|
|
if (rc)
|
|
netdev_warn(bp->dev, "hwrm query adv flow mgnt failure rc: %d\n",
|
|
rc);
|
|
|
|
rc = bnxt_hwrm_error_recovery_qcfg(bp);
|
|
if (rc)
|
|
netdev_warn(bp->dev, "hwrm query error recovery failure rc: %d\n",
|
|
rc);
|
|
|
|
rc = bnxt_hwrm_func_drv_rgtr(bp);
|
|
if (rc)
|
|
return -ENODEV;
|
|
|
|
rc = bnxt_hwrm_func_rgtr_async_events(bp, NULL, 0);
|
|
if (rc)
|
|
return -ENODEV;
|
|
|
|
bnxt_hwrm_func_qcfg(bp);
|
|
bnxt_hwrm_vnic_qcaps(bp);
|
|
bnxt_hwrm_port_led_qcaps(bp);
|
|
bnxt_ethtool_init(bp);
|
|
bnxt_dcb_init(bp);
|
|
return 0;
|
|
}
|
|
|
|
static void bnxt_set_dflt_rss_hash_type(struct bnxt *bp)
|
|
{
|
|
bp->flags &= ~BNXT_FLAG_UDP_RSS_CAP;
|
|
bp->rss_hash_cfg = VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4 |
|
|
VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4 |
|
|
VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6 |
|
|
VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6;
|
|
if (BNXT_CHIP_P4(bp) && bp->hwrm_spec_code >= 0x10501) {
|
|
bp->flags |= BNXT_FLAG_UDP_RSS_CAP;
|
|
bp->rss_hash_cfg |= VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4 |
|
|
VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6;
|
|
}
|
|
}
|
|
|
|
static void bnxt_set_dflt_rfs(struct bnxt *bp)
|
|
{
|
|
struct net_device *dev = bp->dev;
|
|
|
|
dev->hw_features &= ~NETIF_F_NTUPLE;
|
|
dev->features &= ~NETIF_F_NTUPLE;
|
|
bp->flags &= ~BNXT_FLAG_RFS;
|
|
if (bnxt_rfs_supported(bp)) {
|
|
dev->hw_features |= NETIF_F_NTUPLE;
|
|
if (bnxt_rfs_capable(bp)) {
|
|
bp->flags |= BNXT_FLAG_RFS;
|
|
dev->features |= NETIF_F_NTUPLE;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void bnxt_fw_init_one_p3(struct bnxt *bp)
|
|
{
|
|
struct pci_dev *pdev = bp->pdev;
|
|
|
|
bnxt_set_dflt_rss_hash_type(bp);
|
|
bnxt_set_dflt_rfs(bp);
|
|
|
|
bnxt_get_wol_settings(bp);
|
|
if (bp->flags & BNXT_FLAG_WOL_CAP)
|
|
device_set_wakeup_enable(&pdev->dev, bp->wol);
|
|
else
|
|
device_set_wakeup_capable(&pdev->dev, false);
|
|
|
|
bnxt_hwrm_set_cache_line_size(bp, cache_line_size());
|
|
bnxt_hwrm_coal_params_qcaps(bp);
|
|
}
|
|
|
|
static int bnxt_fw_init_one(struct bnxt *bp)
|
|
{
|
|
int rc;
|
|
|
|
rc = bnxt_fw_init_one_p1(bp);
|
|
if (rc) {
|
|
netdev_err(bp->dev, "Firmware init phase 1 failed\n");
|
|
return rc;
|
|
}
|
|
rc = bnxt_fw_init_one_p2(bp);
|
|
if (rc) {
|
|
netdev_err(bp->dev, "Firmware init phase 2 failed\n");
|
|
return rc;
|
|
}
|
|
rc = bnxt_approve_mac(bp, bp->dev->dev_addr, false);
|
|
if (rc)
|
|
return rc;
|
|
bnxt_fw_init_one_p3(bp);
|
|
return 0;
|
|
}
|
|
|
|
static void bnxt_fw_reset_writel(struct bnxt *bp, int reg_idx)
|
|
{
|
|
struct bnxt_fw_health *fw_health = bp->fw_health;
|
|
u32 reg = fw_health->fw_reset_seq_regs[reg_idx];
|
|
u32 val = fw_health->fw_reset_seq_vals[reg_idx];
|
|
u32 reg_type, reg_off, delay_msecs;
|
|
|
|
delay_msecs = fw_health->fw_reset_seq_delay_msec[reg_idx];
|
|
reg_type = BNXT_FW_HEALTH_REG_TYPE(reg);
|
|
reg_off = BNXT_FW_HEALTH_REG_OFF(reg);
|
|
switch (reg_type) {
|
|
case BNXT_FW_HEALTH_REG_TYPE_CFG:
|
|
pci_write_config_dword(bp->pdev, reg_off, val);
|
|
break;
|
|
case BNXT_FW_HEALTH_REG_TYPE_GRC:
|
|
writel(reg_off & BNXT_GRC_BASE_MASK,
|
|
bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 4);
|
|
reg_off = (reg_off & BNXT_GRC_OFFSET_MASK) + 0x2000;
|
|
/* fall through */
|
|
case BNXT_FW_HEALTH_REG_TYPE_BAR0:
|
|
writel(val, bp->bar0 + reg_off);
|
|
break;
|
|
case BNXT_FW_HEALTH_REG_TYPE_BAR1:
|
|
writel(val, bp->bar1 + reg_off);
|
|
break;
|
|
}
|
|
if (delay_msecs) {
|
|
pci_read_config_dword(bp->pdev, 0, &val);
|
|
msleep(delay_msecs);
|
|
}
|
|
}
|
|
|
|
static void bnxt_reset_all(struct bnxt *bp)
|
|
{
|
|
struct bnxt_fw_health *fw_health = bp->fw_health;
|
|
int i, rc;
|
|
|
|
if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) {
|
|
#ifdef CONFIG_TEE_BNXT_FW
|
|
rc = tee_bnxt_fw_load();
|
|
if (rc)
|
|
netdev_err(bp->dev, "Unable to reset FW rc=%d\n", rc);
|
|
bp->fw_reset_timestamp = jiffies;
|
|
#endif
|
|
return;
|
|
}
|
|
|
|
if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_HOST) {
|
|
for (i = 0; i < fw_health->fw_reset_seq_cnt; i++)
|
|
bnxt_fw_reset_writel(bp, i);
|
|
} else if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) {
|
|
struct hwrm_fw_reset_input req = {0};
|
|
|
|
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FW_RESET, -1, -1);
|
|
req.resp_addr = cpu_to_le64(bp->hwrm_cmd_kong_resp_dma_addr);
|
|
req.embedded_proc_type = FW_RESET_REQ_EMBEDDED_PROC_TYPE_CHIP;
|
|
req.selfrst_status = FW_RESET_REQ_SELFRST_STATUS_SELFRSTASAP;
|
|
req.flags = FW_RESET_REQ_FLAGS_RESET_GRACEFUL;
|
|
rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
|
|
if (rc)
|
|
netdev_warn(bp->dev, "Unable to reset FW rc=%d\n", rc);
|
|
}
|
|
bp->fw_reset_timestamp = jiffies;
|
|
}
|
|
|
|
static void bnxt_fw_reset_task(struct work_struct *work)
|
|
{
|
|
struct bnxt *bp = container_of(work, struct bnxt, fw_reset_task.work);
|
|
int rc;
|
|
|
|
if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
|
|
netdev_err(bp->dev, "bnxt_fw_reset_task() called when not in fw reset mode!\n");
|
|
return;
|
|
}
|
|
|
|
switch (bp->fw_reset_state) {
|
|
case BNXT_FW_RESET_STATE_POLL_VF: {
|
|
int n = bnxt_get_registered_vfs(bp);
|
|
int tmo;
|
|
|
|
if (n < 0) {
|
|
netdev_err(bp->dev, "Firmware reset aborted, subsequent func_qcfg cmd failed, rc = %d, %d msecs since reset timestamp\n",
|
|
n, jiffies_to_msecs(jiffies -
|
|
bp->fw_reset_timestamp));
|
|
goto fw_reset_abort;
|
|
} else if (n > 0) {
|
|
if (time_after(jiffies, bp->fw_reset_timestamp +
|
|
(bp->fw_reset_max_dsecs * HZ / 10))) {
|
|
clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
|
|
bp->fw_reset_state = 0;
|
|
netdev_err(bp->dev, "Firmware reset aborted, bnxt_get_registered_vfs() returns %d\n",
|
|
n);
|
|
return;
|
|
}
|
|
bnxt_queue_fw_reset_work(bp, HZ / 10);
|
|
return;
|
|
}
|
|
bp->fw_reset_timestamp = jiffies;
|
|
rtnl_lock();
|
|
bnxt_fw_reset_close(bp);
|
|
if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) {
|
|
bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN;
|
|
tmo = HZ / 10;
|
|
} else {
|
|
bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
|
|
tmo = bp->fw_reset_min_dsecs * HZ / 10;
|
|
}
|
|
rtnl_unlock();
|
|
bnxt_queue_fw_reset_work(bp, tmo);
|
|
return;
|
|
}
|
|
case BNXT_FW_RESET_STATE_POLL_FW_DOWN: {
|
|
u32 val;
|
|
|
|
val = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
|
|
if (!(val & BNXT_FW_STATUS_SHUTDOWN) &&
|
|
!time_after(jiffies, bp->fw_reset_timestamp +
|
|
(bp->fw_reset_max_dsecs * HZ / 10))) {
|
|
bnxt_queue_fw_reset_work(bp, HZ / 5);
|
|
return;
|
|
}
|
|
|
|
if (!bp->fw_health->master) {
|
|
u32 wait_dsecs = bp->fw_health->normal_func_wait_dsecs;
|
|
|
|
bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
|
|
bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10);
|
|
return;
|
|
}
|
|
bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW;
|
|
}
|
|
/* fall through */
|
|
case BNXT_FW_RESET_STATE_RESET_FW:
|
|
bnxt_reset_all(bp);
|
|
bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
|
|
bnxt_queue_fw_reset_work(bp, bp->fw_reset_min_dsecs * HZ / 10);
|
|
return;
|
|
case BNXT_FW_RESET_STATE_ENABLE_DEV:
|
|
if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state) &&
|
|
bp->fw_health) {
|
|
u32 val;
|
|
|
|
val = bnxt_fw_health_readl(bp,
|
|
BNXT_FW_RESET_INPROG_REG);
|
|
if (val)
|
|
netdev_warn(bp->dev, "FW reset inprog %x after min wait time.\n",
|
|
val);
|
|
}
|
|
clear_bit(BNXT_STATE_FW_FATAL_COND, &bp->state);
|
|
if (pci_enable_device(bp->pdev)) {
|
|
netdev_err(bp->dev, "Cannot re-enable PCI device\n");
|
|
goto fw_reset_abort;
|
|
}
|
|
pci_set_master(bp->pdev);
|
|
bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW;
|
|
/* fall through */
|
|
case BNXT_FW_RESET_STATE_POLL_FW:
|
|
bp->hwrm_cmd_timeout = SHORT_HWRM_CMD_TIMEOUT;
|
|
rc = __bnxt_hwrm_ver_get(bp, true);
|
|
if (rc) {
|
|
if (time_after(jiffies, bp->fw_reset_timestamp +
|
|
(bp->fw_reset_max_dsecs * HZ / 10))) {
|
|
netdev_err(bp->dev, "Firmware reset aborted\n");
|
|
goto fw_reset_abort;
|
|
}
|
|
bnxt_queue_fw_reset_work(bp, HZ / 5);
|
|
return;
|
|
}
|
|
bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT;
|
|
bp->fw_reset_state = BNXT_FW_RESET_STATE_OPENING;
|
|
/* fall through */
|
|
case BNXT_FW_RESET_STATE_OPENING:
|
|
while (!rtnl_trylock()) {
|
|
bnxt_queue_fw_reset_work(bp, HZ / 10);
|
|
return;
|
|
}
|
|
rc = bnxt_open(bp->dev);
|
|
if (rc) {
|
|
netdev_err(bp->dev, "bnxt_open_nic() failed\n");
|
|
clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
|
|
dev_close(bp->dev);
|
|
}
|
|
|
|
bp->fw_reset_state = 0;
|
|
/* Make sure fw_reset_state is 0 before clearing the flag */
|
|
smp_mb__before_atomic();
|
|
clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
|
|
bnxt_ulp_start(bp, rc);
|
|
rtnl_unlock();
|
|
break;
|
|
}
|
|
return;
|
|
|
|
fw_reset_abort:
|
|
clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
|
|
bp->fw_reset_state = 0;
|
|
rtnl_lock();
|
|
dev_close(bp->dev);
|
|
rtnl_unlock();
|
|
}
|
|
|
|
static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev)
|
|
{
|
|
int rc;
|
|
struct bnxt *bp = netdev_priv(dev);
|
|
|
|
SET_NETDEV_DEV(dev, &pdev->dev);
|
|
|
|
/* enable device (incl. PCI PM wakeup), and bus-mastering */
|
|
rc = pci_enable_device(pdev);
|
|
if (rc) {
|
|
dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
|
|
goto init_err;
|
|
}
|
|
|
|
if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
|
|
dev_err(&pdev->dev,
|
|
"Cannot find PCI device base address, aborting\n");
|
|
rc = -ENODEV;
|
|
goto init_err_disable;
|
|
}
|
|
|
|
rc = pci_request_regions(pdev, DRV_MODULE_NAME);
|
|
if (rc) {
|
|
dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
|
|
goto init_err_disable;
|
|
}
|
|
|
|
if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 &&
|
|
dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) {
|
|
dev_err(&pdev->dev, "System does not support DMA, aborting\n");
|
|
goto init_err_disable;
|
|
}
|
|
|
|
pci_set_master(pdev);
|
|
|
|
bp->dev = dev;
|
|
bp->pdev = pdev;
|
|
|
|
bp->bar0 = pci_ioremap_bar(pdev, 0);
|
|
if (!bp->bar0) {
|
|
dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
|
|
rc = -ENOMEM;
|
|
goto init_err_release;
|
|
}
|
|
|
|
bp->bar1 = pci_ioremap_bar(pdev, 2);
|
|
if (!bp->bar1) {
|
|
dev_err(&pdev->dev, "Cannot map doorbell registers, aborting\n");
|
|
rc = -ENOMEM;
|
|
goto init_err_release;
|
|
}
|
|
|
|
bp->bar2 = pci_ioremap_bar(pdev, 4);
|
|
if (!bp->bar2) {
|
|
dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n");
|
|
rc = -ENOMEM;
|
|
goto init_err_release;
|
|
}
|
|
|
|
pci_enable_pcie_error_reporting(pdev);
|
|
|
|
INIT_WORK(&bp->sp_task, bnxt_sp_task);
|
|
INIT_DELAYED_WORK(&bp->fw_reset_task, bnxt_fw_reset_task);
|
|
|
|
spin_lock_init(&bp->ntp_fltr_lock);
|
|
#if BITS_PER_LONG == 32
|
|
spin_lock_init(&bp->db_lock);
|
|
#endif
|
|
|
|
bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE;
|
|
bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE;
|
|
|
|
bnxt_init_dflt_coal(bp);
|
|
|
|
timer_setup(&bp->timer, bnxt_timer, 0);
|
|
bp->current_interval = BNXT_TIMER_INTERVAL;
|
|
|
|
clear_bit(BNXT_STATE_OPEN, &bp->state);
|
|
return 0;
|
|
|
|
init_err_release:
|
|
bnxt_unmap_bars(bp, pdev);
|
|
pci_release_regions(pdev);
|
|
|
|
init_err_disable:
|
|
pci_disable_device(pdev);
|
|
|
|
init_err:
|
|
return rc;
|
|
}
|
|
|
|
/* rtnl_lock held */
|
|
static int bnxt_change_mac_addr(struct net_device *dev, void *p)
|
|
{
|
|
struct sockaddr *addr = p;
|
|
struct bnxt *bp = netdev_priv(dev);
|
|
int rc = 0;
|
|
|
|
if (!is_valid_ether_addr(addr->sa_data))
|
|
return -EADDRNOTAVAIL;
|
|
|
|
if (ether_addr_equal(addr->sa_data, dev->dev_addr))
|
|
return 0;
|
|
|
|
rc = bnxt_approve_mac(bp, addr->sa_data, true);
|
|
if (rc)
|
|
return rc;
|
|
|
|
memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
|
|
if (netif_running(dev)) {
|
|
bnxt_close_nic(bp, false, false);
|
|
rc = bnxt_open_nic(bp, false, false);
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
/* rtnl_lock held */
|
|
static int bnxt_change_mtu(struct net_device *dev, int new_mtu)
|
|
{
|
|
struct bnxt *bp = netdev_priv(dev);
|
|
|
|
if (netif_running(dev))
|
|
bnxt_close_nic(bp, false, false);
|
|
|
|
dev->mtu = new_mtu;
|
|
bnxt_set_ring_params(bp);
|
|
|
|
if (netif_running(dev))
|
|
return bnxt_open_nic(bp, false, false);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int bnxt_setup_mq_tc(struct net_device *dev, u8 tc)
|
|
{
|
|
struct bnxt *bp = netdev_priv(dev);
|
|
bool sh = false;
|
|
int rc;
|
|
|
|
if (tc > bp->max_tc) {
|
|
netdev_err(dev, "Too many traffic classes requested: %d. Max supported is %d.\n",
|
|
tc, bp->max_tc);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (netdev_get_num_tc(dev) == tc)
|
|
return 0;
|
|
|
|
if (bp->flags & BNXT_FLAG_SHARED_RINGS)
|
|
sh = true;
|
|
|
|
rc = bnxt_check_rings(bp, bp->tx_nr_rings_per_tc, bp->rx_nr_rings,
|
|
sh, tc, bp->tx_nr_rings_xdp);
|
|
if (rc)
|
|
return rc;
|
|
|
|
/* Needs to close the device and do hw resource re-allocations */
|
|
if (netif_running(bp->dev))
|
|
bnxt_close_nic(bp, true, false);
|
|
|
|
if (tc) {
|
|
bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc;
|
|
netdev_set_num_tc(dev, tc);
|
|
} else {
|
|
bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
|
|
netdev_reset_tc(dev);
|
|
}
|
|
bp->tx_nr_rings += bp->tx_nr_rings_xdp;
|
|
bp->cp_nr_rings = sh ? max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
|
|
bp->tx_nr_rings + bp->rx_nr_rings;
|
|
|
|
if (netif_running(bp->dev))
|
|
return bnxt_open_nic(bp, true, false);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int bnxt_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
|
|
void *cb_priv)
|
|
{
|
|
struct bnxt *bp = cb_priv;
|
|
|
|
if (!bnxt_tc_flower_enabled(bp) ||
|
|
!tc_cls_can_offload_and_chain0(bp->dev, type_data))
|
|
return -EOPNOTSUPP;
|
|
|
|
switch (type) {
|
|
case TC_SETUP_CLSFLOWER:
|
|
return bnxt_tc_setup_flower(bp, bp->pf.fw_fid, type_data);
|
|
default:
|
|
return -EOPNOTSUPP;
|
|
}
|
|
}
|
|
|
|
LIST_HEAD(bnxt_block_cb_list);
|
|
|
|
static int bnxt_setup_tc(struct net_device *dev, enum tc_setup_type type,
|
|
void *type_data)
|
|
{
|
|
struct bnxt *bp = netdev_priv(dev);
|
|
|
|
switch (type) {
|
|
case TC_SETUP_BLOCK:
|
|
return flow_block_cb_setup_simple(type_data,
|
|
&bnxt_block_cb_list,
|
|
bnxt_setup_tc_block_cb,
|
|
bp, bp, true);
|
|
case TC_SETUP_QDISC_MQPRIO: {
|
|
struct tc_mqprio_qopt *mqprio = type_data;
|
|
|
|
mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
|
|
|
|
return bnxt_setup_mq_tc(dev, mqprio->num_tc);
|
|
}
|
|
default:
|
|
return -EOPNOTSUPP;
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_RFS_ACCEL
|
|
static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1,
|
|
struct bnxt_ntuple_filter *f2)
|
|
{
|
|
struct flow_keys *keys1 = &f1->fkeys;
|
|
struct flow_keys *keys2 = &f2->fkeys;
|
|
|
|
if (keys1->addrs.v4addrs.src == keys2->addrs.v4addrs.src &&
|
|
keys1->addrs.v4addrs.dst == keys2->addrs.v4addrs.dst &&
|
|
keys1->ports.ports == keys2->ports.ports &&
|
|
keys1->basic.ip_proto == keys2->basic.ip_proto &&
|
|
keys1->basic.n_proto == keys2->basic.n_proto &&
|
|
keys1->control.flags == keys2->control.flags &&
|
|
ether_addr_equal(f1->src_mac_addr, f2->src_mac_addr) &&
|
|
ether_addr_equal(f1->dst_mac_addr, f2->dst_mac_addr))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
|
|
u16 rxq_index, u32 flow_id)
|
|
{
|
|
struct bnxt *bp = netdev_priv(dev);
|
|
struct bnxt_ntuple_filter *fltr, *new_fltr;
|
|
struct flow_keys *fkeys;
|
|
struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb);
|
|
int rc = 0, idx, bit_id, l2_idx = 0;
|
|
struct hlist_head *head;
|
|
|
|
if (!ether_addr_equal(dev->dev_addr, eth->h_dest)) {
|
|
struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
|
|
int off = 0, j;
|
|
|
|
netif_addr_lock_bh(dev);
|
|
for (j = 0; j < vnic->uc_filter_count; j++, off += ETH_ALEN) {
|
|
if (ether_addr_equal(eth->h_dest,
|
|
vnic->uc_list + off)) {
|
|
l2_idx = j + 1;
|
|
break;
|
|
}
|
|
}
|
|
netif_addr_unlock_bh(dev);
|
|
if (!l2_idx)
|
|
return -EINVAL;
|
|
}
|
|
new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC);
|
|
if (!new_fltr)
|
|
return -ENOMEM;
|
|
|
|
fkeys = &new_fltr->fkeys;
|
|
if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) {
|
|
rc = -EPROTONOSUPPORT;
|
|
goto err_free;
|
|
}
|
|
|
|
if ((fkeys->basic.n_proto != htons(ETH_P_IP) &&
|
|
fkeys->basic.n_proto != htons(ETH_P_IPV6)) ||
|
|
((fkeys->basic.ip_proto != IPPROTO_TCP) &&
|
|
(fkeys->basic.ip_proto != IPPROTO_UDP))) {
|
|
rc = -EPROTONOSUPPORT;
|
|
goto err_free;
|
|
}
|
|
if (fkeys->basic.n_proto == htons(ETH_P_IPV6) &&
|
|
bp->hwrm_spec_code < 0x10601) {
|
|
rc = -EPROTONOSUPPORT;
|
|
goto err_free;
|
|
}
|
|
if ((fkeys->control.flags & FLOW_DIS_ENCAPSULATION) &&
|
|
bp->hwrm_spec_code < 0x10601) {
|
|
rc = -EPROTONOSUPPORT;
|
|
goto err_free;
|
|
}
|
|
|
|
memcpy(new_fltr->dst_mac_addr, eth->h_dest, ETH_ALEN);
|
|
memcpy(new_fltr->src_mac_addr, eth->h_source, ETH_ALEN);
|
|
|
|
idx = skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK;
|
|
head = &bp->ntp_fltr_hash_tbl[idx];
|
|
rcu_read_lock();
|
|
hlist_for_each_entry_rcu(fltr, head, hash) {
|
|
if (bnxt_fltr_match(fltr, new_fltr)) {
|
|
rcu_read_unlock();
|
|
rc = 0;
|
|
goto err_free;
|
|
}
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
spin_lock_bh(&bp->ntp_fltr_lock);
|
|
bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap,
|
|
BNXT_NTP_FLTR_MAX_FLTR, 0);
|
|
if (bit_id < 0) {
|
|
spin_unlock_bh(&bp->ntp_fltr_lock);
|
|
rc = -ENOMEM;
|
|
goto err_free;
|
|
}
|
|
|
|
new_fltr->sw_id = (u16)bit_id;
|
|
new_fltr->flow_id = flow_id;
|
|
new_fltr->l2_fltr_idx = l2_idx;
|
|
new_fltr->rxq = rxq_index;
|
|
hlist_add_head_rcu(&new_fltr->hash, head);
|
|
bp->ntp_fltr_count++;
|
|
spin_unlock_bh(&bp->ntp_fltr_lock);
|
|
|
|
set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event);
|
|
bnxt_queue_sp_work(bp);
|
|
|
|
return new_fltr->sw_id;
|
|
|
|
err_free:
|
|
kfree(new_fltr);
|
|
return rc;
|
|
}
|
|
|
|
static void bnxt_cfg_ntp_filters(struct bnxt *bp)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
|
|
struct hlist_head *head;
|
|
struct hlist_node *tmp;
|
|
struct bnxt_ntuple_filter *fltr;
|
|
int rc;
|
|
|
|
head = &bp->ntp_fltr_hash_tbl[i];
|
|
hlist_for_each_entry_safe(fltr, tmp, head, hash) {
|
|
bool del = false;
|
|
|
|
if (test_bit(BNXT_FLTR_VALID, &fltr->state)) {
|
|
if (rps_may_expire_flow(bp->dev, fltr->rxq,
|
|
fltr->flow_id,
|
|
fltr->sw_id)) {
|
|
bnxt_hwrm_cfa_ntuple_filter_free(bp,
|
|
fltr);
|
|
del = true;
|
|
}
|
|
} else {
|
|
rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp,
|
|
fltr);
|
|
if (rc)
|
|
del = true;
|
|
else
|
|
set_bit(BNXT_FLTR_VALID, &fltr->state);
|
|
}
|
|
|
|
if (del) {
|
|
spin_lock_bh(&bp->ntp_fltr_lock);
|
|
hlist_del_rcu(&fltr->hash);
|
|
bp->ntp_fltr_count--;
|
|
spin_unlock_bh(&bp->ntp_fltr_lock);
|
|
synchronize_rcu();
|
|
clear_bit(fltr->sw_id, bp->ntp_fltr_bmap);
|
|
kfree(fltr);
|
|
}
|
|
}
|
|
}
|
|
if (test_and_clear_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event))
|
|
netdev_info(bp->dev, "Receive PF driver unload event!");
|
|
}
|
|
|
|
#else
|
|
|
|
static void bnxt_cfg_ntp_filters(struct bnxt *bp)
|
|
{
|
|
}
|
|
|
|
#endif /* CONFIG_RFS_ACCEL */
|
|
|
|
static void bnxt_udp_tunnel_add(struct net_device *dev,
|
|
struct udp_tunnel_info *ti)
|
|
{
|
|
struct bnxt *bp = netdev_priv(dev);
|
|
|
|
if (ti->sa_family != AF_INET6 && ti->sa_family != AF_INET)
|
|
return;
|
|
|
|
if (!netif_running(dev))
|
|
return;
|
|
|
|
switch (ti->type) {
|
|
case UDP_TUNNEL_TYPE_VXLAN:
|
|
if (bp->vxlan_port_cnt && bp->vxlan_port != ti->port)
|
|
return;
|
|
|
|
bp->vxlan_port_cnt++;
|
|
if (bp->vxlan_port_cnt == 1) {
|
|
bp->vxlan_port = ti->port;
|
|
set_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event);
|
|
bnxt_queue_sp_work(bp);
|
|
}
|
|
break;
|
|
case UDP_TUNNEL_TYPE_GENEVE:
|
|
if (bp->nge_port_cnt && bp->nge_port != ti->port)
|
|
return;
|
|
|
|
bp->nge_port_cnt++;
|
|
if (bp->nge_port_cnt == 1) {
|
|
bp->nge_port = ti->port;
|
|
set_bit(BNXT_GENEVE_ADD_PORT_SP_EVENT, &bp->sp_event);
|
|
}
|
|
break;
|
|
default:
|
|
return;
|
|
}
|
|
|
|
bnxt_queue_sp_work(bp);
|
|
}
|
|
|
|
static void bnxt_udp_tunnel_del(struct net_device *dev,
|
|
struct udp_tunnel_info *ti)
|
|
{
|
|
struct bnxt *bp = netdev_priv(dev);
|
|
|
|
if (ti->sa_family != AF_INET6 && ti->sa_family != AF_INET)
|
|
return;
|
|
|
|
if (!netif_running(dev))
|
|
return;
|
|
|
|
switch (ti->type) {
|
|
case UDP_TUNNEL_TYPE_VXLAN:
|
|
if (!bp->vxlan_port_cnt || bp->vxlan_port != ti->port)
|
|
return;
|
|
bp->vxlan_port_cnt--;
|
|
|
|
if (bp->vxlan_port_cnt != 0)
|
|
return;
|
|
|
|
set_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event);
|
|
break;
|
|
case UDP_TUNNEL_TYPE_GENEVE:
|
|
if (!bp->nge_port_cnt || bp->nge_port != ti->port)
|
|
return;
|
|
bp->nge_port_cnt--;
|
|
|
|
if (bp->nge_port_cnt != 0)
|
|
return;
|
|
|
|
set_bit(BNXT_GENEVE_DEL_PORT_SP_EVENT, &bp->sp_event);
|
|
break;
|
|
default:
|
|
return;
|
|
}
|
|
|
|
bnxt_queue_sp_work(bp);
|
|
}
|
|
|
|
static int bnxt_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
|
|
struct net_device *dev, u32 filter_mask,
|
|
int nlflags)
|
|
{
|
|
struct bnxt *bp = netdev_priv(dev);
|
|
|
|
return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bp->br_mode, 0, 0,
|
|
nlflags, filter_mask, NULL);
|
|
}
|
|
|
|
static int bnxt_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
|
|
u16 flags, struct netlink_ext_ack *extack)
|
|
{
|
|
struct bnxt *bp = netdev_priv(dev);
|
|
struct nlattr *attr, *br_spec;
|
|
int rem, rc = 0;
|
|
|
|
if (bp->hwrm_spec_code < 0x10708 || !BNXT_SINGLE_PF(bp))
|
|
return -EOPNOTSUPP;
|
|
|
|
br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
|
|
if (!br_spec)
|
|
return -EINVAL;
|
|
|
|
nla_for_each_nested(attr, br_spec, rem) {
|
|
u16 mode;
|
|
|
|
if (nla_type(attr) != IFLA_BRIDGE_MODE)
|
|
continue;
|
|
|
|
if (nla_len(attr) < sizeof(mode))
|
|
return -EINVAL;
|
|
|
|
mode = nla_get_u16(attr);
|
|
if (mode == bp->br_mode)
|
|
break;
|
|
|
|
rc = bnxt_hwrm_set_br_mode(bp, mode);
|
|
if (!rc)
|
|
bp->br_mode = mode;
|
|
break;
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
int bnxt_get_port_parent_id(struct net_device *dev,
|
|
struct netdev_phys_item_id *ppid)
|
|
{
|
|
struct bnxt *bp = netdev_priv(dev);
|
|
|
|
if (bp->eswitch_mode != DEVLINK_ESWITCH_MODE_SWITCHDEV)
|
|
return -EOPNOTSUPP;
|
|
|
|
/* The PF and it's VF-reps only support the switchdev framework */
|
|
if (!BNXT_PF(bp))
|
|
return -EOPNOTSUPP;
|
|
|
|
ppid->id_len = sizeof(bp->switch_id);
|
|
memcpy(ppid->id, bp->switch_id, ppid->id_len);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct devlink_port *bnxt_get_devlink_port(struct net_device *dev)
|
|
{
|
|
struct bnxt *bp = netdev_priv(dev);
|
|
|
|
return &bp->dl_port;
|
|
}
|
|
|
|
static const struct net_device_ops bnxt_netdev_ops = {
|
|
.ndo_open = bnxt_open,
|
|
.ndo_start_xmit = bnxt_start_xmit,
|
|
.ndo_stop = bnxt_close,
|
|
.ndo_get_stats64 = bnxt_get_stats64,
|
|
.ndo_set_rx_mode = bnxt_set_rx_mode,
|
|
.ndo_do_ioctl = bnxt_ioctl,
|
|
.ndo_validate_addr = eth_validate_addr,
|
|
.ndo_set_mac_address = bnxt_change_mac_addr,
|
|
.ndo_change_mtu = bnxt_change_mtu,
|
|
.ndo_fix_features = bnxt_fix_features,
|
|
.ndo_set_features = bnxt_set_features,
|
|
.ndo_tx_timeout = bnxt_tx_timeout,
|
|
#ifdef CONFIG_BNXT_SRIOV
|
|
.ndo_get_vf_config = bnxt_get_vf_config,
|
|
.ndo_set_vf_mac = bnxt_set_vf_mac,
|
|
.ndo_set_vf_vlan = bnxt_set_vf_vlan,
|
|
.ndo_set_vf_rate = bnxt_set_vf_bw,
|
|
.ndo_set_vf_link_state = bnxt_set_vf_link_state,
|
|
.ndo_set_vf_spoofchk = bnxt_set_vf_spoofchk,
|
|
.ndo_set_vf_trust = bnxt_set_vf_trust,
|
|
#endif
|
|
.ndo_setup_tc = bnxt_setup_tc,
|
|
#ifdef CONFIG_RFS_ACCEL
|
|
.ndo_rx_flow_steer = bnxt_rx_flow_steer,
|
|
#endif
|
|
.ndo_udp_tunnel_add = bnxt_udp_tunnel_add,
|
|
.ndo_udp_tunnel_del = bnxt_udp_tunnel_del,
|
|
.ndo_bpf = bnxt_xdp,
|
|
.ndo_xdp_xmit = bnxt_xdp_xmit,
|
|
.ndo_bridge_getlink = bnxt_bridge_getlink,
|
|
.ndo_bridge_setlink = bnxt_bridge_setlink,
|
|
.ndo_get_devlink_port = bnxt_get_devlink_port,
|
|
};
|
|
|
|
static void bnxt_remove_one(struct pci_dev *pdev)
|
|
{
|
|
struct net_device *dev = pci_get_drvdata(pdev);
|
|
struct bnxt *bp = netdev_priv(dev);
|
|
|
|
if (BNXT_PF(bp)) {
|
|
bnxt_sriov_disable(bp);
|
|
bnxt_dl_unregister(bp);
|
|
}
|
|
|
|
pci_disable_pcie_error_reporting(pdev);
|
|
unregister_netdev(dev);
|
|
bnxt_shutdown_tc(bp);
|
|
bnxt_cancel_sp_work(bp);
|
|
bp->sp_event = 0;
|
|
|
|
bnxt_clear_int_mode(bp);
|
|
bnxt_hwrm_func_drv_unrgtr(bp);
|
|
bnxt_free_hwrm_resources(bp);
|
|
bnxt_free_hwrm_short_cmd_req(bp);
|
|
bnxt_ethtool_free(bp);
|
|
bnxt_dcb_free(bp);
|
|
kfree(bp->edev);
|
|
bp->edev = NULL;
|
|
bnxt_cleanup_pci(bp);
|
|
bnxt_free_ctx_mem(bp);
|
|
kfree(bp->ctx);
|
|
bp->ctx = NULL;
|
|
bnxt_free_port_stats(bp);
|
|
free_netdev(dev);
|
|
}
|
|
|
|
static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt)
|
|
{
|
|
int rc = 0;
|
|
struct bnxt_link_info *link_info = &bp->link_info;
|
|
|
|
rc = bnxt_hwrm_phy_qcaps(bp);
|
|
if (rc) {
|
|
netdev_err(bp->dev, "Probe phy can't get phy capabilities (rc: %x)\n",
|
|
rc);
|
|
return rc;
|
|
}
|
|
rc = bnxt_update_link(bp, false);
|
|
if (rc) {
|
|
netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n",
|
|
rc);
|
|
return rc;
|
|
}
|
|
|
|
/* Older firmware does not have supported_auto_speeds, so assume
|
|
* that all supported speeds can be autonegotiated.
|
|
*/
|
|
if (link_info->auto_link_speeds && !link_info->support_auto_speeds)
|
|
link_info->support_auto_speeds = link_info->support_speeds;
|
|
|
|
if (!fw_dflt)
|
|
return 0;
|
|
|
|
/*initialize the ethool setting copy with NVM settings */
|
|
if (BNXT_AUTO_MODE(link_info->auto_mode)) {
|
|
link_info->autoneg = BNXT_AUTONEG_SPEED;
|
|
if (bp->hwrm_spec_code >= 0x10201) {
|
|
if (link_info->auto_pause_setting &
|
|
PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE)
|
|
link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
|
|
} else {
|
|
link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
|
|
}
|
|
link_info->advertising = link_info->auto_link_speeds;
|
|
} else {
|
|
link_info->req_link_speed = link_info->force_link_speed;
|
|
link_info->req_duplex = link_info->duplex_setting;
|
|
}
|
|
if (link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL)
|
|
link_info->req_flow_ctrl =
|
|
link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH;
|
|
else
|
|
link_info->req_flow_ctrl = link_info->force_pause_setting;
|
|
return 0;
|
|
}
|
|
|
|
static int bnxt_get_max_irq(struct pci_dev *pdev)
|
|
{
|
|
u16 ctrl;
|
|
|
|
if (!pdev->msix_cap)
|
|
return 1;
|
|
|
|
pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl);
|
|
return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1;
|
|
}
|
|
|
|
static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx,
|
|
int *max_cp)
|
|
{
|
|
struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
|
|
int max_ring_grps = 0, max_irq;
|
|
|
|
*max_tx = hw_resc->max_tx_rings;
|
|
*max_rx = hw_resc->max_rx_rings;
|
|
*max_cp = bnxt_get_max_func_cp_rings_for_en(bp);
|
|
max_irq = min_t(int, bnxt_get_max_func_irqs(bp) -
|
|
bnxt_get_ulp_msix_num(bp),
|
|
hw_resc->max_stat_ctxs - bnxt_get_ulp_stat_ctxs(bp));
|
|
if (!(bp->flags & BNXT_FLAG_CHIP_P5))
|
|
*max_cp = min_t(int, *max_cp, max_irq);
|
|
max_ring_grps = hw_resc->max_hw_ring_grps;
|
|
if (BNXT_CHIP_TYPE_NITRO_A0(bp) && BNXT_PF(bp)) {
|
|
*max_cp -= 1;
|
|
*max_rx -= 2;
|
|
}
|
|
if (bp->flags & BNXT_FLAG_AGG_RINGS)
|
|
*max_rx >>= 1;
|
|
if (bp->flags & BNXT_FLAG_CHIP_P5) {
|
|
bnxt_trim_rings(bp, max_rx, max_tx, *max_cp, false);
|
|
/* On P5 chips, max_cp output param should be available NQs */
|
|
*max_cp = max_irq;
|
|
}
|
|
*max_rx = min_t(int, *max_rx, max_ring_grps);
|
|
}
|
|
|
|
int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared)
|
|
{
|
|
int rx, tx, cp;
|
|
|
|
_bnxt_get_max_rings(bp, &rx, &tx, &cp);
|
|
*max_rx = rx;
|
|
*max_tx = tx;
|
|
if (!rx || !tx || !cp)
|
|
return -ENOMEM;
|
|
|
|
return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared);
|
|
}
|
|
|
|
static int bnxt_get_dflt_rings(struct bnxt *bp, int *max_rx, int *max_tx,
|
|
bool shared)
|
|
{
|
|
int rc;
|
|
|
|
rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
|
|
if (rc && (bp->flags & BNXT_FLAG_AGG_RINGS)) {
|
|
/* Not enough rings, try disabling agg rings. */
|
|
bp->flags &= ~BNXT_FLAG_AGG_RINGS;
|
|
rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
|
|
if (rc) {
|
|
/* set BNXT_FLAG_AGG_RINGS back for consistency */
|
|
bp->flags |= BNXT_FLAG_AGG_RINGS;
|
|
return rc;
|
|
}
|
|
bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
|
|
bp->dev->hw_features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
|
|
bp->dev->features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
|
|
bnxt_set_ring_params(bp);
|
|
}
|
|
|
|
if (bp->flags & BNXT_FLAG_ROCE_CAP) {
|
|
int max_cp, max_stat, max_irq;
|
|
|
|
/* Reserve minimum resources for RoCE */
|
|
max_cp = bnxt_get_max_func_cp_rings(bp);
|
|
max_stat = bnxt_get_max_func_stat_ctxs(bp);
|
|
max_irq = bnxt_get_max_func_irqs(bp);
|
|
if (max_cp <= BNXT_MIN_ROCE_CP_RINGS ||
|
|
max_irq <= BNXT_MIN_ROCE_CP_RINGS ||
|
|
max_stat <= BNXT_MIN_ROCE_STAT_CTXS)
|
|
return 0;
|
|
|
|
max_cp -= BNXT_MIN_ROCE_CP_RINGS;
|
|
max_irq -= BNXT_MIN_ROCE_CP_RINGS;
|
|
max_stat -= BNXT_MIN_ROCE_STAT_CTXS;
|
|
max_cp = min_t(int, max_cp, max_irq);
|
|
max_cp = min_t(int, max_cp, max_stat);
|
|
rc = bnxt_trim_rings(bp, max_rx, max_tx, max_cp, shared);
|
|
if (rc)
|
|
rc = 0;
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/* In initial default shared ring setting, each shared ring must have a
|
|
* RX/TX ring pair.
|
|
*/
|
|
static void bnxt_trim_dflt_sh_rings(struct bnxt *bp)
|
|
{
|
|
bp->cp_nr_rings = min_t(int, bp->tx_nr_rings_per_tc, bp->rx_nr_rings);
|
|
bp->rx_nr_rings = bp->cp_nr_rings;
|
|
bp->tx_nr_rings_per_tc = bp->cp_nr_rings;
|
|
bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
|
|
}
|
|
|
|
static int bnxt_set_dflt_rings(struct bnxt *bp, bool sh)
|
|
{
|
|
int dflt_rings, max_rx_rings, max_tx_rings, rc;
|
|
|
|
if (!bnxt_can_reserve_rings(bp))
|
|
return 0;
|
|
|
|
if (sh)
|
|
bp->flags |= BNXT_FLAG_SHARED_RINGS;
|
|
dflt_rings = is_kdump_kernel() ? 1 : netif_get_num_default_rss_queues();
|
|
/* Reduce default rings on multi-port cards so that total default
|
|
* rings do not exceed CPU count.
|
|
*/
|
|
if (bp->port_count > 1) {
|
|
int max_rings =
|
|
max_t(int, num_online_cpus() / bp->port_count, 1);
|
|
|
|
dflt_rings = min_t(int, dflt_rings, max_rings);
|
|
}
|
|
rc = bnxt_get_dflt_rings(bp, &max_rx_rings, &max_tx_rings, sh);
|
|
if (rc)
|
|
return rc;
|
|
bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings);
|
|
bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings);
|
|
if (sh)
|
|
bnxt_trim_dflt_sh_rings(bp);
|
|
else
|
|
bp->cp_nr_rings = bp->tx_nr_rings_per_tc + bp->rx_nr_rings;
|
|
bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
|
|
|
|
rc = __bnxt_reserve_rings(bp);
|
|
if (rc)
|
|
netdev_warn(bp->dev, "Unable to reserve tx rings\n");
|
|
bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
|
|
if (sh)
|
|
bnxt_trim_dflt_sh_rings(bp);
|
|
|
|
/* Rings may have been trimmed, re-reserve the trimmed rings. */
|
|
if (bnxt_need_reserve_rings(bp)) {
|
|
rc = __bnxt_reserve_rings(bp);
|
|
if (rc)
|
|
netdev_warn(bp->dev, "2nd rings reservation failed.\n");
|
|
bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
|
|
}
|
|
if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
|
|
bp->rx_nr_rings++;
|
|
bp->cp_nr_rings++;
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
static int bnxt_init_dflt_ring_mode(struct bnxt *bp)
|
|
{
|
|
int rc;
|
|
|
|
if (bp->tx_nr_rings)
|
|
return 0;
|
|
|
|
bnxt_ulp_irq_stop(bp);
|
|
bnxt_clear_int_mode(bp);
|
|
rc = bnxt_set_dflt_rings(bp, true);
|
|
if (rc) {
|
|
netdev_err(bp->dev, "Not enough rings available.\n");
|
|
goto init_dflt_ring_err;
|
|
}
|
|
rc = bnxt_init_int_mode(bp);
|
|
if (rc)
|
|
goto init_dflt_ring_err;
|
|
|
|
bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
|
|
if (bnxt_rfs_supported(bp) && bnxt_rfs_capable(bp)) {
|
|
bp->flags |= BNXT_FLAG_RFS;
|
|
bp->dev->features |= NETIF_F_NTUPLE;
|
|
}
|
|
init_dflt_ring_err:
|
|
bnxt_ulp_irq_restart(bp, rc);
|
|
return rc;
|
|
}
|
|
|
|
int bnxt_restore_pf_fw_resources(struct bnxt *bp)
|
|
{
|
|
int rc;
|
|
|
|
ASSERT_RTNL();
|
|
bnxt_hwrm_func_qcaps(bp);
|
|
|
|
if (netif_running(bp->dev))
|
|
__bnxt_close_nic(bp, true, false);
|
|
|
|
bnxt_ulp_irq_stop(bp);
|
|
bnxt_clear_int_mode(bp);
|
|
rc = bnxt_init_int_mode(bp);
|
|
bnxt_ulp_irq_restart(bp, rc);
|
|
|
|
if (netif_running(bp->dev)) {
|
|
if (rc)
|
|
dev_close(bp->dev);
|
|
else
|
|
rc = bnxt_open_nic(bp, true, false);
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int bnxt_init_mac_addr(struct bnxt *bp)
|
|
{
|
|
int rc = 0;
|
|
|
|
if (BNXT_PF(bp)) {
|
|
memcpy(bp->dev->dev_addr, bp->pf.mac_addr, ETH_ALEN);
|
|
} else {
|
|
#ifdef CONFIG_BNXT_SRIOV
|
|
struct bnxt_vf_info *vf = &bp->vf;
|
|
bool strict_approval = true;
|
|
|
|
if (is_valid_ether_addr(vf->mac_addr)) {
|
|
/* overwrite netdev dev_addr with admin VF MAC */
|
|
memcpy(bp->dev->dev_addr, vf->mac_addr, ETH_ALEN);
|
|
/* Older PF driver or firmware may not approve this
|
|
* correctly.
|
|
*/
|
|
strict_approval = false;
|
|
} else {
|
|
eth_hw_addr_random(bp->dev);
|
|
}
|
|
rc = bnxt_approve_mac(bp, bp->dev->dev_addr, strict_approval);
|
|
#endif
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
static int bnxt_pcie_dsn_get(struct bnxt *bp, u8 dsn[])
|
|
{
|
|
struct pci_dev *pdev = bp->pdev;
|
|
int pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_DSN);
|
|
u32 dw;
|
|
|
|
if (!pos) {
|
|
netdev_info(bp->dev, "Unable do read adapter's DSN");
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
/* DSN (two dw) is at an offset of 4 from the cap pos */
|
|
pos += 4;
|
|
pci_read_config_dword(pdev, pos, &dw);
|
|
put_unaligned_le32(dw, &dsn[0]);
|
|
pci_read_config_dword(pdev, pos + 4, &dw);
|
|
put_unaligned_le32(dw, &dsn[4]);
|
|
return 0;
|
|
}
|
|
|
|
static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
|
|
{
|
|
static int version_printed;
|
|
struct net_device *dev;
|
|
struct bnxt *bp;
|
|
int rc, max_irqs;
|
|
|
|
if (pci_is_bridge(pdev))
|
|
return -ENODEV;
|
|
|
|
if (version_printed++ == 0)
|
|
pr_info("%s", version);
|
|
|
|
max_irqs = bnxt_get_max_irq(pdev);
|
|
dev = alloc_etherdev_mq(sizeof(*bp), max_irqs);
|
|
if (!dev)
|
|
return -ENOMEM;
|
|
|
|
bp = netdev_priv(dev);
|
|
bnxt_set_max_func_irqs(bp, max_irqs);
|
|
|
|
if (bnxt_vf_pciid(ent->driver_data))
|
|
bp->flags |= BNXT_FLAG_VF;
|
|
|
|
if (pdev->msix_cap)
|
|
bp->flags |= BNXT_FLAG_MSIX_CAP;
|
|
|
|
rc = bnxt_init_board(pdev, dev);
|
|
if (rc < 0)
|
|
goto init_err_free;
|
|
|
|
dev->netdev_ops = &bnxt_netdev_ops;
|
|
dev->watchdog_timeo = BNXT_TX_TIMEOUT;
|
|
dev->ethtool_ops = &bnxt_ethtool_ops;
|
|
pci_set_drvdata(pdev, dev);
|
|
|
|
rc = bnxt_alloc_hwrm_resources(bp);
|
|
if (rc)
|
|
goto init_err_pci_clean;
|
|
|
|
mutex_init(&bp->hwrm_cmd_lock);
|
|
mutex_init(&bp->link_lock);
|
|
|
|
rc = bnxt_fw_init_one_p1(bp);
|
|
if (rc)
|
|
goto init_err_pci_clean;
|
|
|
|
if (BNXT_CHIP_P5(bp))
|
|
bp->flags |= BNXT_FLAG_CHIP_P5;
|
|
|
|
rc = bnxt_fw_init_one_p2(bp);
|
|
if (rc)
|
|
goto init_err_pci_clean;
|
|
|
|
dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
|
|
NETIF_F_TSO | NETIF_F_TSO6 |
|
|
NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
|
|
NETIF_F_GSO_IPXIP4 |
|
|
NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
|
|
NETIF_F_GSO_PARTIAL | NETIF_F_RXHASH |
|
|
NETIF_F_RXCSUM | NETIF_F_GRO;
|
|
|
|
if (BNXT_SUPPORTS_TPA(bp))
|
|
dev->hw_features |= NETIF_F_LRO;
|
|
|
|
dev->hw_enc_features =
|
|
NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
|
|
NETIF_F_TSO | NETIF_F_TSO6 |
|
|
NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
|
|
NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
|
|
NETIF_F_GSO_IPXIP4 | NETIF_F_GSO_PARTIAL;
|
|
dev->gso_partial_features = NETIF_F_GSO_UDP_TUNNEL_CSUM |
|
|
NETIF_F_GSO_GRE_CSUM;
|
|
dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA;
|
|
dev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
|
|
NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX;
|
|
if (BNXT_SUPPORTS_TPA(bp))
|
|
dev->hw_features |= NETIF_F_GRO_HW;
|
|
dev->features |= dev->hw_features | NETIF_F_HIGHDMA;
|
|
if (dev->features & NETIF_F_GRO_HW)
|
|
dev->features &= ~NETIF_F_LRO;
|
|
dev->priv_flags |= IFF_UNICAST_FLT;
|
|
|
|
#ifdef CONFIG_BNXT_SRIOV
|
|
init_waitqueue_head(&bp->sriov_cfg_wait);
|
|
mutex_init(&bp->sriov_lock);
|
|
#endif
|
|
if (BNXT_SUPPORTS_TPA(bp)) {
|
|
bp->gro_func = bnxt_gro_func_5730x;
|
|
if (BNXT_CHIP_P4(bp))
|
|
bp->gro_func = bnxt_gro_func_5731x;
|
|
else if (BNXT_CHIP_P5(bp))
|
|
bp->gro_func = bnxt_gro_func_5750x;
|
|
}
|
|
if (!BNXT_CHIP_P4_PLUS(bp))
|
|
bp->flags |= BNXT_FLAG_DOUBLE_DB;
|
|
|
|
bp->ulp_probe = bnxt_ulp_probe;
|
|
|
|
rc = bnxt_init_mac_addr(bp);
|
|
if (rc) {
|
|
dev_err(&pdev->dev, "Unable to initialize mac address.\n");
|
|
rc = -EADDRNOTAVAIL;
|
|
goto init_err_pci_clean;
|
|
}
|
|
|
|
if (BNXT_PF(bp)) {
|
|
/* Read the adapter's DSN to use as the eswitch switch_id */
|
|
rc = bnxt_pcie_dsn_get(bp, bp->switch_id);
|
|
if (rc)
|
|
goto init_err_pci_clean;
|
|
}
|
|
|
|
/* MTU range: 60 - FW defined max */
|
|
dev->min_mtu = ETH_ZLEN;
|
|
dev->max_mtu = bp->max_mtu;
|
|
|
|
rc = bnxt_probe_phy(bp, true);
|
|
if (rc)
|
|
goto init_err_pci_clean;
|
|
|
|
bnxt_set_rx_skb_mode(bp, false);
|
|
bnxt_set_tpa_flags(bp);
|
|
bnxt_set_ring_params(bp);
|
|
rc = bnxt_set_dflt_rings(bp, true);
|
|
if (rc) {
|
|
netdev_err(bp->dev, "Not enough rings available.\n");
|
|
rc = -ENOMEM;
|
|
goto init_err_pci_clean;
|
|
}
|
|
|
|
bnxt_fw_init_one_p3(bp);
|
|
|
|
if (dev->hw_features & NETIF_F_HW_VLAN_CTAG_RX)
|
|
bp->flags |= BNXT_FLAG_STRIP_VLAN;
|
|
|
|
rc = bnxt_init_int_mode(bp);
|
|
if (rc)
|
|
goto init_err_pci_clean;
|
|
|
|
/* No TC has been set yet and rings may have been trimmed due to
|
|
* limited MSIX, so we re-initialize the TX rings per TC.
|
|
*/
|
|
bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
|
|
|
|
if (BNXT_PF(bp)) {
|
|
if (!bnxt_pf_wq) {
|
|
bnxt_pf_wq =
|
|
create_singlethread_workqueue("bnxt_pf_wq");
|
|
if (!bnxt_pf_wq) {
|
|
dev_err(&pdev->dev, "Unable to create workqueue.\n");
|
|
goto init_err_pci_clean;
|
|
}
|
|
}
|
|
bnxt_init_tc(bp);
|
|
}
|
|
|
|
rc = register_netdev(dev);
|
|
if (rc)
|
|
goto init_err_cleanup_tc;
|
|
|
|
if (BNXT_PF(bp))
|
|
bnxt_dl_register(bp);
|
|
|
|
netdev_info(dev, "%s found at mem %lx, node addr %pM\n",
|
|
board_info[ent->driver_data].name,
|
|
(long)pci_resource_start(pdev, 0), dev->dev_addr);
|
|
pcie_print_link_status(pdev);
|
|
|
|
return 0;
|
|
|
|
init_err_cleanup_tc:
|
|
bnxt_shutdown_tc(bp);
|
|
bnxt_clear_int_mode(bp);
|
|
|
|
init_err_pci_clean:
|
|
bnxt_free_hwrm_short_cmd_req(bp);
|
|
bnxt_free_hwrm_resources(bp);
|
|
bnxt_free_ctx_mem(bp);
|
|
kfree(bp->ctx);
|
|
bp->ctx = NULL;
|
|
kfree(bp->fw_health);
|
|
bp->fw_health = NULL;
|
|
bnxt_cleanup_pci(bp);
|
|
|
|
init_err_free:
|
|
free_netdev(dev);
|
|
return rc;
|
|
}
|
|
|
|
static void bnxt_shutdown(struct pci_dev *pdev)
|
|
{
|
|
struct net_device *dev = pci_get_drvdata(pdev);
|
|
struct bnxt *bp;
|
|
|
|
if (!dev)
|
|
return;
|
|
|
|
rtnl_lock();
|
|
bp = netdev_priv(dev);
|
|
if (!bp)
|
|
goto shutdown_exit;
|
|
|
|
if (netif_running(dev))
|
|
dev_close(dev);
|
|
|
|
bnxt_ulp_shutdown(bp);
|
|
|
|
if (system_state == SYSTEM_POWER_OFF) {
|
|
bnxt_clear_int_mode(bp);
|
|
pci_disable_device(pdev);
|
|
pci_wake_from_d3(pdev, bp->wol);
|
|
pci_set_power_state(pdev, PCI_D3hot);
|
|
}
|
|
|
|
shutdown_exit:
|
|
rtnl_unlock();
|
|
}
|
|
|
|
#ifdef CONFIG_PM_SLEEP
|
|
static int bnxt_suspend(struct device *device)
|
|
{
|
|
struct net_device *dev = dev_get_drvdata(device);
|
|
struct bnxt *bp = netdev_priv(dev);
|
|
int rc = 0;
|
|
|
|
rtnl_lock();
|
|
bnxt_ulp_stop(bp);
|
|
if (netif_running(dev)) {
|
|
netif_device_detach(dev);
|
|
rc = bnxt_close(dev);
|
|
}
|
|
bnxt_hwrm_func_drv_unrgtr(bp);
|
|
rtnl_unlock();
|
|
return rc;
|
|
}
|
|
|
|
static int bnxt_resume(struct device *device)
|
|
{
|
|
struct net_device *dev = dev_get_drvdata(device);
|
|
struct bnxt *bp = netdev_priv(dev);
|
|
int rc = 0;
|
|
|
|
rtnl_lock();
|
|
if (bnxt_hwrm_ver_get(bp) || bnxt_hwrm_func_drv_rgtr(bp)) {
|
|
rc = -ENODEV;
|
|
goto resume_exit;
|
|
}
|
|
rc = bnxt_hwrm_func_reset(bp);
|
|
if (rc) {
|
|
rc = -EBUSY;
|
|
goto resume_exit;
|
|
}
|
|
bnxt_get_wol_settings(bp);
|
|
if (netif_running(dev)) {
|
|
rc = bnxt_open(dev);
|
|
if (!rc)
|
|
netif_device_attach(dev);
|
|
}
|
|
|
|
resume_exit:
|
|
bnxt_ulp_start(bp, rc);
|
|
rtnl_unlock();
|
|
return rc;
|
|
}
|
|
|
|
static SIMPLE_DEV_PM_OPS(bnxt_pm_ops, bnxt_suspend, bnxt_resume);
|
|
#define BNXT_PM_OPS (&bnxt_pm_ops)
|
|
|
|
#else
|
|
|
|
#define BNXT_PM_OPS NULL
|
|
|
|
#endif /* CONFIG_PM_SLEEP */
|
|
|
|
/**
|
|
* bnxt_io_error_detected - called when PCI error is detected
|
|
* @pdev: Pointer to PCI device
|
|
* @state: The current pci connection state
|
|
*
|
|
* This function is called after a PCI bus error affecting
|
|
* this device has been detected.
|
|
*/
|
|
static pci_ers_result_t bnxt_io_error_detected(struct pci_dev *pdev,
|
|
pci_channel_state_t state)
|
|
{
|
|
struct net_device *netdev = pci_get_drvdata(pdev);
|
|
struct bnxt *bp = netdev_priv(netdev);
|
|
|
|
netdev_info(netdev, "PCI I/O error detected\n");
|
|
|
|
rtnl_lock();
|
|
netif_device_detach(netdev);
|
|
|
|
bnxt_ulp_stop(bp);
|
|
|
|
if (state == pci_channel_io_perm_failure) {
|
|
rtnl_unlock();
|
|
return PCI_ERS_RESULT_DISCONNECT;
|
|
}
|
|
|
|
if (netif_running(netdev))
|
|
bnxt_close(netdev);
|
|
|
|
pci_disable_device(pdev);
|
|
rtnl_unlock();
|
|
|
|
/* Request a slot slot reset. */
|
|
return PCI_ERS_RESULT_NEED_RESET;
|
|
}
|
|
|
|
/**
|
|
* bnxt_io_slot_reset - called after the pci bus has been reset.
|
|
* @pdev: Pointer to PCI device
|
|
*
|
|
* Restart the card from scratch, as if from a cold-boot.
|
|
* At this point, the card has exprienced a hard reset,
|
|
* followed by fixups by BIOS, and has its config space
|
|
* set up identically to what it was at cold boot.
|
|
*/
|
|
static pci_ers_result_t bnxt_io_slot_reset(struct pci_dev *pdev)
|
|
{
|
|
struct net_device *netdev = pci_get_drvdata(pdev);
|
|
struct bnxt *bp = netdev_priv(netdev);
|
|
int err = 0;
|
|
pci_ers_result_t result = PCI_ERS_RESULT_DISCONNECT;
|
|
|
|
netdev_info(bp->dev, "PCI Slot Reset\n");
|
|
|
|
rtnl_lock();
|
|
|
|
if (pci_enable_device(pdev)) {
|
|
dev_err(&pdev->dev,
|
|
"Cannot re-enable PCI device after reset.\n");
|
|
} else {
|
|
pci_set_master(pdev);
|
|
|
|
err = bnxt_hwrm_func_reset(bp);
|
|
if (!err && netif_running(netdev))
|
|
err = bnxt_open(netdev);
|
|
|
|
if (!err)
|
|
result = PCI_ERS_RESULT_RECOVERED;
|
|
bnxt_ulp_start(bp, err);
|
|
}
|
|
|
|
if (result != PCI_ERS_RESULT_RECOVERED && netif_running(netdev))
|
|
dev_close(netdev);
|
|
|
|
rtnl_unlock();
|
|
|
|
return PCI_ERS_RESULT_RECOVERED;
|
|
}
|
|
|
|
/**
|
|
* bnxt_io_resume - called when traffic can start flowing again.
|
|
* @pdev: Pointer to PCI device
|
|
*
|
|
* This callback is called when the error recovery driver tells
|
|
* us that its OK to resume normal operation.
|
|
*/
|
|
static void bnxt_io_resume(struct pci_dev *pdev)
|
|
{
|
|
struct net_device *netdev = pci_get_drvdata(pdev);
|
|
|
|
rtnl_lock();
|
|
|
|
netif_device_attach(netdev);
|
|
|
|
rtnl_unlock();
|
|
}
|
|
|
|
static const struct pci_error_handlers bnxt_err_handler = {
|
|
.error_detected = bnxt_io_error_detected,
|
|
.slot_reset = bnxt_io_slot_reset,
|
|
.resume = bnxt_io_resume
|
|
};
|
|
|
|
static struct pci_driver bnxt_pci_driver = {
|
|
.name = DRV_MODULE_NAME,
|
|
.id_table = bnxt_pci_tbl,
|
|
.probe = bnxt_init_one,
|
|
.remove = bnxt_remove_one,
|
|
.shutdown = bnxt_shutdown,
|
|
.driver.pm = BNXT_PM_OPS,
|
|
.err_handler = &bnxt_err_handler,
|
|
#if defined(CONFIG_BNXT_SRIOV)
|
|
.sriov_configure = bnxt_sriov_configure,
|
|
#endif
|
|
};
|
|
|
|
static int __init bnxt_init(void)
|
|
{
|
|
bnxt_debug_init();
|
|
return pci_register_driver(&bnxt_pci_driver);
|
|
}
|
|
|
|
static void __exit bnxt_exit(void)
|
|
{
|
|
pci_unregister_driver(&bnxt_pci_driver);
|
|
if (bnxt_pf_wq)
|
|
destroy_workqueue(bnxt_pf_wq);
|
|
bnxt_debug_exit();
|
|
}
|
|
|
|
module_init(bnxt_init);
|
|
module_exit(bnxt_exit);
|