mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-28 11:18:45 +07:00
9cc02f4c0a
This helper is not very useful and very often people get confused: they use nand_release() instead of nand_cleanup(). Let's stop using nand_release() by calling mtd_device_unregister() and nand_cleanup() directly. Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com> Link: https://lore.kernel.org/linux-mtd/20200519130035.1883-18-miquel.raynal@bootlin.com
1206 lines
29 KiB
C
1206 lines
29 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* ST Microelectronics
|
|
* Flexible Static Memory Controller (FSMC)
|
|
* Driver for NAND portions
|
|
*
|
|
* Copyright © 2010 ST Microelectronics
|
|
* Vipin Kumar <vipin.kumar@st.com>
|
|
* Ashish Priyadarshi
|
|
*
|
|
* Based on drivers/mtd/nand/nomadik_nand.c (removed in v3.8)
|
|
* Copyright © 2007 STMicroelectronics Pvt. Ltd.
|
|
* Copyright © 2009 Alessandro Rubini
|
|
*/
|
|
|
|
#include <linux/clk.h>
|
|
#include <linux/completion.h>
|
|
#include <linux/dmaengine.h>
|
|
#include <linux/dma-direction.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/err.h>
|
|
#include <linux/init.h>
|
|
#include <linux/module.h>
|
|
#include <linux/resource.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/types.h>
|
|
#include <linux/mtd/mtd.h>
|
|
#include <linux/mtd/rawnand.h>
|
|
#include <linux/mtd/nand_ecc.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/of.h>
|
|
#include <linux/mtd/partitions.h>
|
|
#include <linux/io.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/amba/bus.h>
|
|
#include <mtd/mtd-abi.h>
|
|
|
|
/* fsmc controller registers for NOR flash */
|
|
#define CTRL 0x0
|
|
/* ctrl register definitions */
|
|
#define BANK_ENABLE BIT(0)
|
|
#define MUXED BIT(1)
|
|
#define NOR_DEV (2 << 2)
|
|
#define WIDTH_16 BIT(4)
|
|
#define RSTPWRDWN BIT(6)
|
|
#define WPROT BIT(7)
|
|
#define WRT_ENABLE BIT(12)
|
|
#define WAIT_ENB BIT(13)
|
|
|
|
#define CTRL_TIM 0x4
|
|
/* ctrl_tim register definitions */
|
|
|
|
#define FSMC_NOR_BANK_SZ 0x8
|
|
#define FSMC_NOR_REG_SIZE 0x40
|
|
|
|
#define FSMC_NOR_REG(base, bank, reg) ((base) + \
|
|
(FSMC_NOR_BANK_SZ * (bank)) + \
|
|
(reg))
|
|
|
|
/* fsmc controller registers for NAND flash */
|
|
#define FSMC_PC 0x00
|
|
/* pc register definitions */
|
|
#define FSMC_RESET BIT(0)
|
|
#define FSMC_WAITON BIT(1)
|
|
#define FSMC_ENABLE BIT(2)
|
|
#define FSMC_DEVTYPE_NAND BIT(3)
|
|
#define FSMC_DEVWID_16 BIT(4)
|
|
#define FSMC_ECCEN BIT(6)
|
|
#define FSMC_ECCPLEN_256 BIT(7)
|
|
#define FSMC_TCLR_SHIFT (9)
|
|
#define FSMC_TCLR_MASK (0xF)
|
|
#define FSMC_TAR_SHIFT (13)
|
|
#define FSMC_TAR_MASK (0xF)
|
|
#define STS 0x04
|
|
/* sts register definitions */
|
|
#define FSMC_CODE_RDY BIT(15)
|
|
#define COMM 0x08
|
|
/* comm register definitions */
|
|
#define FSMC_TSET_SHIFT 0
|
|
#define FSMC_TSET_MASK 0xFF
|
|
#define FSMC_TWAIT_SHIFT 8
|
|
#define FSMC_TWAIT_MASK 0xFF
|
|
#define FSMC_THOLD_SHIFT 16
|
|
#define FSMC_THOLD_MASK 0xFF
|
|
#define FSMC_THIZ_SHIFT 24
|
|
#define FSMC_THIZ_MASK 0xFF
|
|
#define ATTRIB 0x0C
|
|
#define IOATA 0x10
|
|
#define ECC1 0x14
|
|
#define ECC2 0x18
|
|
#define ECC3 0x1C
|
|
#define FSMC_NAND_BANK_SZ 0x20
|
|
|
|
#define FSMC_BUSY_WAIT_TIMEOUT (1 * HZ)
|
|
|
|
struct fsmc_nand_timings {
|
|
u8 tclr;
|
|
u8 tar;
|
|
u8 thiz;
|
|
u8 thold;
|
|
u8 twait;
|
|
u8 tset;
|
|
};
|
|
|
|
enum access_mode {
|
|
USE_DMA_ACCESS = 1,
|
|
USE_WORD_ACCESS,
|
|
};
|
|
|
|
/**
|
|
* struct fsmc_nand_data - structure for FSMC NAND device state
|
|
*
|
|
* @base: Inherit from the nand_controller struct
|
|
* @pid: Part ID on the AMBA PrimeCell format
|
|
* @nand: Chip related info for a NAND flash.
|
|
*
|
|
* @bank: Bank number for probed device.
|
|
* @dev: Parent device
|
|
* @mode: Access mode
|
|
* @clk: Clock structure for FSMC.
|
|
*
|
|
* @read_dma_chan: DMA channel for read access
|
|
* @write_dma_chan: DMA channel for write access to NAND
|
|
* @dma_access_complete: Completion structure
|
|
*
|
|
* @dev_timings: NAND timings
|
|
*
|
|
* @data_pa: NAND Physical port for Data.
|
|
* @data_va: NAND port for Data.
|
|
* @cmd_va: NAND port for Command.
|
|
* @addr_va: NAND port for Address.
|
|
* @regs_va: Registers base address for a given bank.
|
|
*/
|
|
struct fsmc_nand_data {
|
|
struct nand_controller base;
|
|
u32 pid;
|
|
struct nand_chip nand;
|
|
|
|
unsigned int bank;
|
|
struct device *dev;
|
|
enum access_mode mode;
|
|
struct clk *clk;
|
|
|
|
/* DMA related objects */
|
|
struct dma_chan *read_dma_chan;
|
|
struct dma_chan *write_dma_chan;
|
|
struct completion dma_access_complete;
|
|
|
|
struct fsmc_nand_timings *dev_timings;
|
|
|
|
dma_addr_t data_pa;
|
|
void __iomem *data_va;
|
|
void __iomem *cmd_va;
|
|
void __iomem *addr_va;
|
|
void __iomem *regs_va;
|
|
};
|
|
|
|
static int fsmc_ecc1_ooblayout_ecc(struct mtd_info *mtd, int section,
|
|
struct mtd_oob_region *oobregion)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
|
|
if (section >= chip->ecc.steps)
|
|
return -ERANGE;
|
|
|
|
oobregion->offset = (section * 16) + 2;
|
|
oobregion->length = 3;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fsmc_ecc1_ooblayout_free(struct mtd_info *mtd, int section,
|
|
struct mtd_oob_region *oobregion)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
|
|
if (section >= chip->ecc.steps)
|
|
return -ERANGE;
|
|
|
|
oobregion->offset = (section * 16) + 8;
|
|
|
|
if (section < chip->ecc.steps - 1)
|
|
oobregion->length = 8;
|
|
else
|
|
oobregion->length = mtd->oobsize - oobregion->offset;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct mtd_ooblayout_ops fsmc_ecc1_ooblayout_ops = {
|
|
.ecc = fsmc_ecc1_ooblayout_ecc,
|
|
.free = fsmc_ecc1_ooblayout_free,
|
|
};
|
|
|
|
/*
|
|
* ECC placement definitions in oobfree type format.
|
|
* There are 13 bytes of ecc for every 512 byte block and it has to be read
|
|
* consecutively and immediately after the 512 byte data block for hardware to
|
|
* generate the error bit offsets in 512 byte data.
|
|
*/
|
|
static int fsmc_ecc4_ooblayout_ecc(struct mtd_info *mtd, int section,
|
|
struct mtd_oob_region *oobregion)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
|
|
if (section >= chip->ecc.steps)
|
|
return -ERANGE;
|
|
|
|
oobregion->length = chip->ecc.bytes;
|
|
|
|
if (!section && mtd->writesize <= 512)
|
|
oobregion->offset = 0;
|
|
else
|
|
oobregion->offset = (section * 16) + 2;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fsmc_ecc4_ooblayout_free(struct mtd_info *mtd, int section,
|
|
struct mtd_oob_region *oobregion)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
|
|
if (section >= chip->ecc.steps)
|
|
return -ERANGE;
|
|
|
|
oobregion->offset = (section * 16) + 15;
|
|
|
|
if (section < chip->ecc.steps - 1)
|
|
oobregion->length = 3;
|
|
else
|
|
oobregion->length = mtd->oobsize - oobregion->offset;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct mtd_ooblayout_ops fsmc_ecc4_ooblayout_ops = {
|
|
.ecc = fsmc_ecc4_ooblayout_ecc,
|
|
.free = fsmc_ecc4_ooblayout_free,
|
|
};
|
|
|
|
static inline struct fsmc_nand_data *nand_to_fsmc(struct nand_chip *chip)
|
|
{
|
|
return container_of(chip, struct fsmc_nand_data, nand);
|
|
}
|
|
|
|
/*
|
|
* fsmc_nand_setup - FSMC (Flexible Static Memory Controller) init routine
|
|
*
|
|
* This routine initializes timing parameters related to NAND memory access in
|
|
* FSMC registers
|
|
*/
|
|
static void fsmc_nand_setup(struct fsmc_nand_data *host,
|
|
struct fsmc_nand_timings *tims)
|
|
{
|
|
u32 value = FSMC_DEVTYPE_NAND | FSMC_ENABLE | FSMC_WAITON;
|
|
u32 tclr, tar, thiz, thold, twait, tset;
|
|
|
|
tclr = (tims->tclr & FSMC_TCLR_MASK) << FSMC_TCLR_SHIFT;
|
|
tar = (tims->tar & FSMC_TAR_MASK) << FSMC_TAR_SHIFT;
|
|
thiz = (tims->thiz & FSMC_THIZ_MASK) << FSMC_THIZ_SHIFT;
|
|
thold = (tims->thold & FSMC_THOLD_MASK) << FSMC_THOLD_SHIFT;
|
|
twait = (tims->twait & FSMC_TWAIT_MASK) << FSMC_TWAIT_SHIFT;
|
|
tset = (tims->tset & FSMC_TSET_MASK) << FSMC_TSET_SHIFT;
|
|
|
|
if (host->nand.options & NAND_BUSWIDTH_16)
|
|
value |= FSMC_DEVWID_16;
|
|
|
|
writel_relaxed(value | tclr | tar, host->regs_va + FSMC_PC);
|
|
writel_relaxed(thiz | thold | twait | tset, host->regs_va + COMM);
|
|
writel_relaxed(thiz | thold | twait | tset, host->regs_va + ATTRIB);
|
|
}
|
|
|
|
static int fsmc_calc_timings(struct fsmc_nand_data *host,
|
|
const struct nand_sdr_timings *sdrt,
|
|
struct fsmc_nand_timings *tims)
|
|
{
|
|
unsigned long hclk = clk_get_rate(host->clk);
|
|
unsigned long hclkn = NSEC_PER_SEC / hclk;
|
|
u32 thiz, thold, twait, tset;
|
|
|
|
if (sdrt->tRC_min < 30000)
|
|
return -EOPNOTSUPP;
|
|
|
|
tims->tar = DIV_ROUND_UP(sdrt->tAR_min / 1000, hclkn) - 1;
|
|
if (tims->tar > FSMC_TAR_MASK)
|
|
tims->tar = FSMC_TAR_MASK;
|
|
tims->tclr = DIV_ROUND_UP(sdrt->tCLR_min / 1000, hclkn) - 1;
|
|
if (tims->tclr > FSMC_TCLR_MASK)
|
|
tims->tclr = FSMC_TCLR_MASK;
|
|
|
|
thiz = sdrt->tCS_min - sdrt->tWP_min;
|
|
tims->thiz = DIV_ROUND_UP(thiz / 1000, hclkn);
|
|
|
|
thold = sdrt->tDH_min;
|
|
if (thold < sdrt->tCH_min)
|
|
thold = sdrt->tCH_min;
|
|
if (thold < sdrt->tCLH_min)
|
|
thold = sdrt->tCLH_min;
|
|
if (thold < sdrt->tWH_min)
|
|
thold = sdrt->tWH_min;
|
|
if (thold < sdrt->tALH_min)
|
|
thold = sdrt->tALH_min;
|
|
if (thold < sdrt->tREH_min)
|
|
thold = sdrt->tREH_min;
|
|
tims->thold = DIV_ROUND_UP(thold / 1000, hclkn);
|
|
if (tims->thold == 0)
|
|
tims->thold = 1;
|
|
else if (tims->thold > FSMC_THOLD_MASK)
|
|
tims->thold = FSMC_THOLD_MASK;
|
|
|
|
twait = max(sdrt->tRP_min, sdrt->tWP_min);
|
|
tims->twait = DIV_ROUND_UP(twait / 1000, hclkn) - 1;
|
|
if (tims->twait == 0)
|
|
tims->twait = 1;
|
|
else if (tims->twait > FSMC_TWAIT_MASK)
|
|
tims->twait = FSMC_TWAIT_MASK;
|
|
|
|
tset = max(sdrt->tCS_min - sdrt->tWP_min,
|
|
sdrt->tCEA_max - sdrt->tREA_max);
|
|
tims->tset = DIV_ROUND_UP(tset / 1000, hclkn) - 1;
|
|
if (tims->tset == 0)
|
|
tims->tset = 1;
|
|
else if (tims->tset > FSMC_TSET_MASK)
|
|
tims->tset = FSMC_TSET_MASK;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fsmc_setup_data_interface(struct nand_chip *nand, int csline,
|
|
const struct nand_data_interface *conf)
|
|
{
|
|
struct fsmc_nand_data *host = nand_to_fsmc(nand);
|
|
struct fsmc_nand_timings tims;
|
|
const struct nand_sdr_timings *sdrt;
|
|
int ret;
|
|
|
|
sdrt = nand_get_sdr_timings(conf);
|
|
if (IS_ERR(sdrt))
|
|
return PTR_ERR(sdrt);
|
|
|
|
ret = fsmc_calc_timings(host, sdrt, &tims);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (csline == NAND_DATA_IFACE_CHECK_ONLY)
|
|
return 0;
|
|
|
|
fsmc_nand_setup(host, &tims);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* fsmc_enable_hwecc - Enables Hardware ECC through FSMC registers
|
|
*/
|
|
static void fsmc_enable_hwecc(struct nand_chip *chip, int mode)
|
|
{
|
|
struct fsmc_nand_data *host = nand_to_fsmc(chip);
|
|
|
|
writel_relaxed(readl(host->regs_va + FSMC_PC) & ~FSMC_ECCPLEN_256,
|
|
host->regs_va + FSMC_PC);
|
|
writel_relaxed(readl(host->regs_va + FSMC_PC) & ~FSMC_ECCEN,
|
|
host->regs_va + FSMC_PC);
|
|
writel_relaxed(readl(host->regs_va + FSMC_PC) | FSMC_ECCEN,
|
|
host->regs_va + FSMC_PC);
|
|
}
|
|
|
|
/*
|
|
* fsmc_read_hwecc_ecc4 - Hardware ECC calculator for ecc4 option supported by
|
|
* FSMC. ECC is 13 bytes for 512 bytes of data (supports error correction up to
|
|
* max of 8-bits)
|
|
*/
|
|
static int fsmc_read_hwecc_ecc4(struct nand_chip *chip, const u8 *data,
|
|
u8 *ecc)
|
|
{
|
|
struct fsmc_nand_data *host = nand_to_fsmc(chip);
|
|
u32 ecc_tmp;
|
|
unsigned long deadline = jiffies + FSMC_BUSY_WAIT_TIMEOUT;
|
|
|
|
do {
|
|
if (readl_relaxed(host->regs_va + STS) & FSMC_CODE_RDY)
|
|
break;
|
|
|
|
cond_resched();
|
|
} while (!time_after_eq(jiffies, deadline));
|
|
|
|
if (time_after_eq(jiffies, deadline)) {
|
|
dev_err(host->dev, "calculate ecc timed out\n");
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
ecc_tmp = readl_relaxed(host->regs_va + ECC1);
|
|
ecc[0] = ecc_tmp;
|
|
ecc[1] = ecc_tmp >> 8;
|
|
ecc[2] = ecc_tmp >> 16;
|
|
ecc[3] = ecc_tmp >> 24;
|
|
|
|
ecc_tmp = readl_relaxed(host->regs_va + ECC2);
|
|
ecc[4] = ecc_tmp;
|
|
ecc[5] = ecc_tmp >> 8;
|
|
ecc[6] = ecc_tmp >> 16;
|
|
ecc[7] = ecc_tmp >> 24;
|
|
|
|
ecc_tmp = readl_relaxed(host->regs_va + ECC3);
|
|
ecc[8] = ecc_tmp;
|
|
ecc[9] = ecc_tmp >> 8;
|
|
ecc[10] = ecc_tmp >> 16;
|
|
ecc[11] = ecc_tmp >> 24;
|
|
|
|
ecc_tmp = readl_relaxed(host->regs_va + STS);
|
|
ecc[12] = ecc_tmp >> 16;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* fsmc_read_hwecc_ecc1 - Hardware ECC calculator for ecc1 option supported by
|
|
* FSMC. ECC is 3 bytes for 512 bytes of data (supports error correction up to
|
|
* max of 1-bit)
|
|
*/
|
|
static int fsmc_read_hwecc_ecc1(struct nand_chip *chip, const u8 *data,
|
|
u8 *ecc)
|
|
{
|
|
struct fsmc_nand_data *host = nand_to_fsmc(chip);
|
|
u32 ecc_tmp;
|
|
|
|
ecc_tmp = readl_relaxed(host->regs_va + ECC1);
|
|
ecc[0] = ecc_tmp;
|
|
ecc[1] = ecc_tmp >> 8;
|
|
ecc[2] = ecc_tmp >> 16;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Count the number of 0's in buff upto a max of max_bits */
|
|
static int count_written_bits(u8 *buff, int size, int max_bits)
|
|
{
|
|
int k, written_bits = 0;
|
|
|
|
for (k = 0; k < size; k++) {
|
|
written_bits += hweight8(~buff[k]);
|
|
if (written_bits > max_bits)
|
|
break;
|
|
}
|
|
|
|
return written_bits;
|
|
}
|
|
|
|
static void dma_complete(void *param)
|
|
{
|
|
struct fsmc_nand_data *host = param;
|
|
|
|
complete(&host->dma_access_complete);
|
|
}
|
|
|
|
static int dma_xfer(struct fsmc_nand_data *host, void *buffer, int len,
|
|
enum dma_data_direction direction)
|
|
{
|
|
struct dma_chan *chan;
|
|
struct dma_device *dma_dev;
|
|
struct dma_async_tx_descriptor *tx;
|
|
dma_addr_t dma_dst, dma_src, dma_addr;
|
|
dma_cookie_t cookie;
|
|
unsigned long flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
|
|
int ret;
|
|
unsigned long time_left;
|
|
|
|
if (direction == DMA_TO_DEVICE)
|
|
chan = host->write_dma_chan;
|
|
else if (direction == DMA_FROM_DEVICE)
|
|
chan = host->read_dma_chan;
|
|
else
|
|
return -EINVAL;
|
|
|
|
dma_dev = chan->device;
|
|
dma_addr = dma_map_single(dma_dev->dev, buffer, len, direction);
|
|
|
|
if (direction == DMA_TO_DEVICE) {
|
|
dma_src = dma_addr;
|
|
dma_dst = host->data_pa;
|
|
} else {
|
|
dma_src = host->data_pa;
|
|
dma_dst = dma_addr;
|
|
}
|
|
|
|
tx = dma_dev->device_prep_dma_memcpy(chan, dma_dst, dma_src,
|
|
len, flags);
|
|
if (!tx) {
|
|
dev_err(host->dev, "device_prep_dma_memcpy error\n");
|
|
ret = -EIO;
|
|
goto unmap_dma;
|
|
}
|
|
|
|
tx->callback = dma_complete;
|
|
tx->callback_param = host;
|
|
cookie = tx->tx_submit(tx);
|
|
|
|
ret = dma_submit_error(cookie);
|
|
if (ret) {
|
|
dev_err(host->dev, "dma_submit_error %d\n", cookie);
|
|
goto unmap_dma;
|
|
}
|
|
|
|
dma_async_issue_pending(chan);
|
|
|
|
time_left =
|
|
wait_for_completion_timeout(&host->dma_access_complete,
|
|
msecs_to_jiffies(3000));
|
|
if (time_left == 0) {
|
|
dmaengine_terminate_all(chan);
|
|
dev_err(host->dev, "wait_for_completion_timeout\n");
|
|
ret = -ETIMEDOUT;
|
|
goto unmap_dma;
|
|
}
|
|
|
|
ret = 0;
|
|
|
|
unmap_dma:
|
|
dma_unmap_single(dma_dev->dev, dma_addr, len, direction);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* fsmc_write_buf - write buffer to chip
|
|
* @host: FSMC NAND controller
|
|
* @buf: data buffer
|
|
* @len: number of bytes to write
|
|
*/
|
|
static void fsmc_write_buf(struct fsmc_nand_data *host, const u8 *buf,
|
|
int len)
|
|
{
|
|
int i;
|
|
|
|
if (IS_ALIGNED((uintptr_t)buf, sizeof(u32)) &&
|
|
IS_ALIGNED(len, sizeof(u32))) {
|
|
u32 *p = (u32 *)buf;
|
|
|
|
len = len >> 2;
|
|
for (i = 0; i < len; i++)
|
|
writel_relaxed(p[i], host->data_va);
|
|
} else {
|
|
for (i = 0; i < len; i++)
|
|
writeb_relaxed(buf[i], host->data_va);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* fsmc_read_buf - read chip data into buffer
|
|
* @host: FSMC NAND controller
|
|
* @buf: buffer to store date
|
|
* @len: number of bytes to read
|
|
*/
|
|
static void fsmc_read_buf(struct fsmc_nand_data *host, u8 *buf, int len)
|
|
{
|
|
int i;
|
|
|
|
if (IS_ALIGNED((uintptr_t)buf, sizeof(u32)) &&
|
|
IS_ALIGNED(len, sizeof(u32))) {
|
|
u32 *p = (u32 *)buf;
|
|
|
|
len = len >> 2;
|
|
for (i = 0; i < len; i++)
|
|
p[i] = readl_relaxed(host->data_va);
|
|
} else {
|
|
for (i = 0; i < len; i++)
|
|
buf[i] = readb_relaxed(host->data_va);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* fsmc_read_buf_dma - read chip data into buffer
|
|
* @host: FSMC NAND controller
|
|
* @buf: buffer to store date
|
|
* @len: number of bytes to read
|
|
*/
|
|
static void fsmc_read_buf_dma(struct fsmc_nand_data *host, u8 *buf,
|
|
int len)
|
|
{
|
|
dma_xfer(host, buf, len, DMA_FROM_DEVICE);
|
|
}
|
|
|
|
/*
|
|
* fsmc_write_buf_dma - write buffer to chip
|
|
* @host: FSMC NAND controller
|
|
* @buf: data buffer
|
|
* @len: number of bytes to write
|
|
*/
|
|
static void fsmc_write_buf_dma(struct fsmc_nand_data *host, const u8 *buf,
|
|
int len)
|
|
{
|
|
dma_xfer(host, (void *)buf, len, DMA_TO_DEVICE);
|
|
}
|
|
|
|
/*
|
|
* fsmc_exec_op - hook called by the core to execute NAND operations
|
|
*
|
|
* This controller is simple enough and thus does not need to use the parser
|
|
* provided by the core, instead, handle every situation here.
|
|
*/
|
|
static int fsmc_exec_op(struct nand_chip *chip, const struct nand_operation *op,
|
|
bool check_only)
|
|
{
|
|
struct fsmc_nand_data *host = nand_to_fsmc(chip);
|
|
const struct nand_op_instr *instr = NULL;
|
|
int ret = 0;
|
|
unsigned int op_id;
|
|
int i;
|
|
|
|
if (check_only)
|
|
return 0;
|
|
|
|
pr_debug("Executing operation [%d instructions]:\n", op->ninstrs);
|
|
|
|
for (op_id = 0; op_id < op->ninstrs; op_id++) {
|
|
instr = &op->instrs[op_id];
|
|
|
|
nand_op_trace(" ", instr);
|
|
|
|
switch (instr->type) {
|
|
case NAND_OP_CMD_INSTR:
|
|
writeb_relaxed(instr->ctx.cmd.opcode, host->cmd_va);
|
|
break;
|
|
|
|
case NAND_OP_ADDR_INSTR:
|
|
for (i = 0; i < instr->ctx.addr.naddrs; i++)
|
|
writeb_relaxed(instr->ctx.addr.addrs[i],
|
|
host->addr_va);
|
|
break;
|
|
|
|
case NAND_OP_DATA_IN_INSTR:
|
|
if (host->mode == USE_DMA_ACCESS)
|
|
fsmc_read_buf_dma(host, instr->ctx.data.buf.in,
|
|
instr->ctx.data.len);
|
|
else
|
|
fsmc_read_buf(host, instr->ctx.data.buf.in,
|
|
instr->ctx.data.len);
|
|
break;
|
|
|
|
case NAND_OP_DATA_OUT_INSTR:
|
|
if (host->mode == USE_DMA_ACCESS)
|
|
fsmc_write_buf_dma(host,
|
|
instr->ctx.data.buf.out,
|
|
instr->ctx.data.len);
|
|
else
|
|
fsmc_write_buf(host, instr->ctx.data.buf.out,
|
|
instr->ctx.data.len);
|
|
break;
|
|
|
|
case NAND_OP_WAITRDY_INSTR:
|
|
ret = nand_soft_waitrdy(chip,
|
|
instr->ctx.waitrdy.timeout_ms);
|
|
break;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* fsmc_read_page_hwecc
|
|
* @chip: nand chip info structure
|
|
* @buf: buffer to store read data
|
|
* @oob_required: caller expects OOB data read to chip->oob_poi
|
|
* @page: page number to read
|
|
*
|
|
* This routine is needed for fsmc version 8 as reading from NAND chip has to be
|
|
* performed in a strict sequence as follows:
|
|
* data(512 byte) -> ecc(13 byte)
|
|
* After this read, fsmc hardware generates and reports error data bits(up to a
|
|
* max of 8 bits)
|
|
*/
|
|
static int fsmc_read_page_hwecc(struct nand_chip *chip, u8 *buf,
|
|
int oob_required, int page)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
int i, j, s, stat, eccsize = chip->ecc.size;
|
|
int eccbytes = chip->ecc.bytes;
|
|
int eccsteps = chip->ecc.steps;
|
|
u8 *p = buf;
|
|
u8 *ecc_calc = chip->ecc.calc_buf;
|
|
u8 *ecc_code = chip->ecc.code_buf;
|
|
int off, len, ret, group = 0;
|
|
/*
|
|
* ecc_oob is intentionally taken as u16. In 16bit devices, we
|
|
* end up reading 14 bytes (7 words) from oob. The local array is
|
|
* to maintain word alignment
|
|
*/
|
|
u16 ecc_oob[7];
|
|
u8 *oob = (u8 *)&ecc_oob[0];
|
|
unsigned int max_bitflips = 0;
|
|
|
|
for (i = 0, s = 0; s < eccsteps; s++, i += eccbytes, p += eccsize) {
|
|
nand_read_page_op(chip, page, s * eccsize, NULL, 0);
|
|
chip->ecc.hwctl(chip, NAND_ECC_READ);
|
|
ret = nand_read_data_op(chip, p, eccsize, false, false);
|
|
if (ret)
|
|
return ret;
|
|
|
|
for (j = 0; j < eccbytes;) {
|
|
struct mtd_oob_region oobregion;
|
|
|
|
ret = mtd_ooblayout_ecc(mtd, group++, &oobregion);
|
|
if (ret)
|
|
return ret;
|
|
|
|
off = oobregion.offset;
|
|
len = oobregion.length;
|
|
|
|
/*
|
|
* length is intentionally kept a higher multiple of 2
|
|
* to read at least 13 bytes even in case of 16 bit NAND
|
|
* devices
|
|
*/
|
|
if (chip->options & NAND_BUSWIDTH_16)
|
|
len = roundup(len, 2);
|
|
|
|
nand_read_oob_op(chip, page, off, oob + j, len);
|
|
j += len;
|
|
}
|
|
|
|
memcpy(&ecc_code[i], oob, chip->ecc.bytes);
|
|
chip->ecc.calculate(chip, p, &ecc_calc[i]);
|
|
|
|
stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]);
|
|
if (stat < 0) {
|
|
mtd->ecc_stats.failed++;
|
|
} else {
|
|
mtd->ecc_stats.corrected += stat;
|
|
max_bitflips = max_t(unsigned int, max_bitflips, stat);
|
|
}
|
|
}
|
|
|
|
return max_bitflips;
|
|
}
|
|
|
|
/*
|
|
* fsmc_bch8_correct_data
|
|
* @mtd: mtd info structure
|
|
* @dat: buffer of read data
|
|
* @read_ecc: ecc read from device spare area
|
|
* @calc_ecc: ecc calculated from read data
|
|
*
|
|
* calc_ecc is a 104 bit information containing maximum of 8 error
|
|
* offset information of 13 bits each in 512 bytes of read data.
|
|
*/
|
|
static int fsmc_bch8_correct_data(struct nand_chip *chip, u8 *dat,
|
|
u8 *read_ecc, u8 *calc_ecc)
|
|
{
|
|
struct fsmc_nand_data *host = nand_to_fsmc(chip);
|
|
u32 err_idx[8];
|
|
u32 num_err, i;
|
|
u32 ecc1, ecc2, ecc3, ecc4;
|
|
|
|
num_err = (readl_relaxed(host->regs_va + STS) >> 10) & 0xF;
|
|
|
|
/* no bit flipping */
|
|
if (likely(num_err == 0))
|
|
return 0;
|
|
|
|
/* too many errors */
|
|
if (unlikely(num_err > 8)) {
|
|
/*
|
|
* This is a temporary erase check. A newly erased page read
|
|
* would result in an ecc error because the oob data is also
|
|
* erased to FF and the calculated ecc for an FF data is not
|
|
* FF..FF.
|
|
* This is a workaround to skip performing correction in case
|
|
* data is FF..FF
|
|
*
|
|
* Logic:
|
|
* For every page, each bit written as 0 is counted until these
|
|
* number of bits are greater than 8 (the maximum correction
|
|
* capability of FSMC for each 512 + 13 bytes)
|
|
*/
|
|
|
|
int bits_ecc = count_written_bits(read_ecc, chip->ecc.bytes, 8);
|
|
int bits_data = count_written_bits(dat, chip->ecc.size, 8);
|
|
|
|
if ((bits_ecc + bits_data) <= 8) {
|
|
if (bits_data)
|
|
memset(dat, 0xff, chip->ecc.size);
|
|
return bits_data;
|
|
}
|
|
|
|
return -EBADMSG;
|
|
}
|
|
|
|
/*
|
|
* ------------------- calc_ecc[] bit wise -----------|--13 bits--|
|
|
* |---idx[7]--|--.....-----|---idx[2]--||---idx[1]--||---idx[0]--|
|
|
*
|
|
* calc_ecc is a 104 bit information containing maximum of 8 error
|
|
* offset information of 13 bits each. calc_ecc is copied into a
|
|
* u64 array and error offset indexes are populated in err_idx
|
|
* array
|
|
*/
|
|
ecc1 = readl_relaxed(host->regs_va + ECC1);
|
|
ecc2 = readl_relaxed(host->regs_va + ECC2);
|
|
ecc3 = readl_relaxed(host->regs_va + ECC3);
|
|
ecc4 = readl_relaxed(host->regs_va + STS);
|
|
|
|
err_idx[0] = (ecc1 >> 0) & 0x1FFF;
|
|
err_idx[1] = (ecc1 >> 13) & 0x1FFF;
|
|
err_idx[2] = (((ecc2 >> 0) & 0x7F) << 6) | ((ecc1 >> 26) & 0x3F);
|
|
err_idx[3] = (ecc2 >> 7) & 0x1FFF;
|
|
err_idx[4] = (((ecc3 >> 0) & 0x1) << 12) | ((ecc2 >> 20) & 0xFFF);
|
|
err_idx[5] = (ecc3 >> 1) & 0x1FFF;
|
|
err_idx[6] = (ecc3 >> 14) & 0x1FFF;
|
|
err_idx[7] = (((ecc4 >> 16) & 0xFF) << 5) | ((ecc3 >> 27) & 0x1F);
|
|
|
|
i = 0;
|
|
while (num_err--) {
|
|
err_idx[i] ^= 3;
|
|
|
|
if (err_idx[i] < chip->ecc.size * 8) {
|
|
int err = err_idx[i];
|
|
|
|
dat[err >> 3] ^= BIT(err & 7);
|
|
i++;
|
|
}
|
|
}
|
|
return i;
|
|
}
|
|
|
|
static bool filter(struct dma_chan *chan, void *slave)
|
|
{
|
|
chan->private = slave;
|
|
return true;
|
|
}
|
|
|
|
static int fsmc_nand_probe_config_dt(struct platform_device *pdev,
|
|
struct fsmc_nand_data *host,
|
|
struct nand_chip *nand)
|
|
{
|
|
struct device_node *np = pdev->dev.of_node;
|
|
u32 val;
|
|
int ret;
|
|
|
|
nand->options = 0;
|
|
|
|
if (!of_property_read_u32(np, "bank-width", &val)) {
|
|
if (val == 2) {
|
|
nand->options |= NAND_BUSWIDTH_16;
|
|
} else if (val != 1) {
|
|
dev_err(&pdev->dev, "invalid bank-width %u\n", val);
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
if (of_get_property(np, "nand-skip-bbtscan", NULL))
|
|
nand->options |= NAND_SKIP_BBTSCAN;
|
|
|
|
host->dev_timings = devm_kzalloc(&pdev->dev,
|
|
sizeof(*host->dev_timings),
|
|
GFP_KERNEL);
|
|
if (!host->dev_timings)
|
|
return -ENOMEM;
|
|
|
|
ret = of_property_read_u8_array(np, "timings", (u8 *)host->dev_timings,
|
|
sizeof(*host->dev_timings));
|
|
if (ret)
|
|
host->dev_timings = NULL;
|
|
|
|
/* Set default NAND bank to 0 */
|
|
host->bank = 0;
|
|
if (!of_property_read_u32(np, "bank", &val)) {
|
|
if (val > 3) {
|
|
dev_err(&pdev->dev, "invalid bank %u\n", val);
|
|
return -EINVAL;
|
|
}
|
|
host->bank = val;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int fsmc_nand_attach_chip(struct nand_chip *nand)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(nand);
|
|
struct fsmc_nand_data *host = nand_to_fsmc(nand);
|
|
|
|
if (AMBA_REV_BITS(host->pid) >= 8) {
|
|
switch (mtd->oobsize) {
|
|
case 16:
|
|
case 64:
|
|
case 128:
|
|
case 224:
|
|
case 256:
|
|
break;
|
|
default:
|
|
dev_warn(host->dev,
|
|
"No oob scheme defined for oobsize %d\n",
|
|
mtd->oobsize);
|
|
return -EINVAL;
|
|
}
|
|
|
|
mtd_set_ooblayout(mtd, &fsmc_ecc4_ooblayout_ops);
|
|
|
|
return 0;
|
|
}
|
|
|
|
switch (nand->ecc.mode) {
|
|
case NAND_ECC_HW:
|
|
dev_info(host->dev, "Using 1-bit HW ECC scheme\n");
|
|
nand->ecc.calculate = fsmc_read_hwecc_ecc1;
|
|
nand->ecc.correct = nand_correct_data;
|
|
nand->ecc.bytes = 3;
|
|
nand->ecc.strength = 1;
|
|
nand->ecc.options |= NAND_ECC_SOFT_HAMMING_SM_ORDER;
|
|
break;
|
|
|
|
case NAND_ECC_SOFT:
|
|
if (nand->ecc.algo == NAND_ECC_BCH) {
|
|
dev_info(host->dev,
|
|
"Using 4-bit SW BCH ECC scheme\n");
|
|
break;
|
|
}
|
|
|
|
case NAND_ECC_ON_DIE:
|
|
break;
|
|
|
|
default:
|
|
dev_err(host->dev, "Unsupported ECC mode!\n");
|
|
return -ENOTSUPP;
|
|
}
|
|
|
|
/*
|
|
* Don't set layout for BCH4 SW ECC. This will be
|
|
* generated later in nand_bch_init() later.
|
|
*/
|
|
if (nand->ecc.mode == NAND_ECC_HW) {
|
|
switch (mtd->oobsize) {
|
|
case 16:
|
|
case 64:
|
|
case 128:
|
|
mtd_set_ooblayout(mtd,
|
|
&fsmc_ecc1_ooblayout_ops);
|
|
break;
|
|
default:
|
|
dev_warn(host->dev,
|
|
"No oob scheme defined for oobsize %d\n",
|
|
mtd->oobsize);
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct nand_controller_ops fsmc_nand_controller_ops = {
|
|
.attach_chip = fsmc_nand_attach_chip,
|
|
.exec_op = fsmc_exec_op,
|
|
.setup_data_interface = fsmc_setup_data_interface,
|
|
};
|
|
|
|
/**
|
|
* fsmc_nand_disable() - Disables the NAND bank
|
|
* @host: The instance to disable
|
|
*/
|
|
static void fsmc_nand_disable(struct fsmc_nand_data *host)
|
|
{
|
|
u32 val;
|
|
|
|
val = readl(host->regs_va + FSMC_PC);
|
|
val &= ~FSMC_ENABLE;
|
|
writel(val, host->regs_va + FSMC_PC);
|
|
}
|
|
|
|
/*
|
|
* fsmc_nand_probe - Probe function
|
|
* @pdev: platform device structure
|
|
*/
|
|
static int __init fsmc_nand_probe(struct platform_device *pdev)
|
|
{
|
|
struct fsmc_nand_data *host;
|
|
struct mtd_info *mtd;
|
|
struct nand_chip *nand;
|
|
struct resource *res;
|
|
void __iomem *base;
|
|
dma_cap_mask_t mask;
|
|
int ret = 0;
|
|
u32 pid;
|
|
int i;
|
|
|
|
/* Allocate memory for the device structure (and zero it) */
|
|
host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL);
|
|
if (!host)
|
|
return -ENOMEM;
|
|
|
|
nand = &host->nand;
|
|
|
|
ret = fsmc_nand_probe_config_dt(pdev, host, nand);
|
|
if (ret)
|
|
return ret;
|
|
|
|
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_data");
|
|
host->data_va = devm_ioremap_resource(&pdev->dev, res);
|
|
if (IS_ERR(host->data_va))
|
|
return PTR_ERR(host->data_va);
|
|
|
|
host->data_pa = (dma_addr_t)res->start;
|
|
|
|
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_addr");
|
|
host->addr_va = devm_ioremap_resource(&pdev->dev, res);
|
|
if (IS_ERR(host->addr_va))
|
|
return PTR_ERR(host->addr_va);
|
|
|
|
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_cmd");
|
|
host->cmd_va = devm_ioremap_resource(&pdev->dev, res);
|
|
if (IS_ERR(host->cmd_va))
|
|
return PTR_ERR(host->cmd_va);
|
|
|
|
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "fsmc_regs");
|
|
base = devm_ioremap_resource(&pdev->dev, res);
|
|
if (IS_ERR(base))
|
|
return PTR_ERR(base);
|
|
|
|
host->regs_va = base + FSMC_NOR_REG_SIZE +
|
|
(host->bank * FSMC_NAND_BANK_SZ);
|
|
|
|
host->clk = devm_clk_get(&pdev->dev, NULL);
|
|
if (IS_ERR(host->clk)) {
|
|
dev_err(&pdev->dev, "failed to fetch block clock\n");
|
|
return PTR_ERR(host->clk);
|
|
}
|
|
|
|
ret = clk_prepare_enable(host->clk);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* This device ID is actually a common AMBA ID as used on the
|
|
* AMBA PrimeCell bus. However it is not a PrimeCell.
|
|
*/
|
|
for (pid = 0, i = 0; i < 4; i++)
|
|
pid |= (readl(base + resource_size(res) - 0x20 + 4 * i) &
|
|
255) << (i * 8);
|
|
|
|
host->pid = pid;
|
|
|
|
dev_info(&pdev->dev,
|
|
"FSMC device partno %03x, manufacturer %02x, revision %02x, config %02x\n",
|
|
AMBA_PART_BITS(pid), AMBA_MANF_BITS(pid),
|
|
AMBA_REV_BITS(pid), AMBA_CONFIG_BITS(pid));
|
|
|
|
host->dev = &pdev->dev;
|
|
|
|
if (host->mode == USE_DMA_ACCESS)
|
|
init_completion(&host->dma_access_complete);
|
|
|
|
/* Link all private pointers */
|
|
mtd = nand_to_mtd(&host->nand);
|
|
nand_set_flash_node(nand, pdev->dev.of_node);
|
|
|
|
mtd->dev.parent = &pdev->dev;
|
|
|
|
/*
|
|
* Setup default ECC mode. nand_dt_init() called from nand_scan_ident()
|
|
* can overwrite this value if the DT provides a different value.
|
|
*/
|
|
nand->ecc.mode = NAND_ECC_HW;
|
|
nand->ecc.hwctl = fsmc_enable_hwecc;
|
|
nand->ecc.size = 512;
|
|
nand->badblockbits = 7;
|
|
|
|
if (host->mode == USE_DMA_ACCESS) {
|
|
dma_cap_zero(mask);
|
|
dma_cap_set(DMA_MEMCPY, mask);
|
|
host->read_dma_chan = dma_request_channel(mask, filter, NULL);
|
|
if (!host->read_dma_chan) {
|
|
dev_err(&pdev->dev, "Unable to get read dma channel\n");
|
|
goto disable_clk;
|
|
}
|
|
host->write_dma_chan = dma_request_channel(mask, filter, NULL);
|
|
if (!host->write_dma_chan) {
|
|
dev_err(&pdev->dev, "Unable to get write dma channel\n");
|
|
goto release_dma_read_chan;
|
|
}
|
|
}
|
|
|
|
if (host->dev_timings) {
|
|
fsmc_nand_setup(host, host->dev_timings);
|
|
nand->options |= NAND_KEEP_TIMINGS;
|
|
}
|
|
|
|
if (AMBA_REV_BITS(host->pid) >= 8) {
|
|
nand->ecc.read_page = fsmc_read_page_hwecc;
|
|
nand->ecc.calculate = fsmc_read_hwecc_ecc4;
|
|
nand->ecc.correct = fsmc_bch8_correct_data;
|
|
nand->ecc.bytes = 13;
|
|
nand->ecc.strength = 8;
|
|
}
|
|
|
|
nand_controller_init(&host->base);
|
|
host->base.ops = &fsmc_nand_controller_ops;
|
|
nand->controller = &host->base;
|
|
|
|
/*
|
|
* Scan to find existence of the device
|
|
*/
|
|
ret = nand_scan(nand, 1);
|
|
if (ret)
|
|
goto release_dma_write_chan;
|
|
|
|
mtd->name = "nand";
|
|
ret = mtd_device_register(mtd, NULL, 0);
|
|
if (ret)
|
|
goto cleanup_nand;
|
|
|
|
platform_set_drvdata(pdev, host);
|
|
dev_info(&pdev->dev, "FSMC NAND driver registration successful\n");
|
|
|
|
return 0;
|
|
|
|
cleanup_nand:
|
|
nand_cleanup(nand);
|
|
release_dma_write_chan:
|
|
if (host->mode == USE_DMA_ACCESS)
|
|
dma_release_channel(host->write_dma_chan);
|
|
release_dma_read_chan:
|
|
if (host->mode == USE_DMA_ACCESS)
|
|
dma_release_channel(host->read_dma_chan);
|
|
disable_clk:
|
|
fsmc_nand_disable(host);
|
|
clk_disable_unprepare(host->clk);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Clean up routine
|
|
*/
|
|
static int fsmc_nand_remove(struct platform_device *pdev)
|
|
{
|
|
struct fsmc_nand_data *host = platform_get_drvdata(pdev);
|
|
|
|
if (host) {
|
|
struct nand_chip *chip = &host->nand;
|
|
int ret;
|
|
|
|
ret = mtd_device_unregister(nand_to_mtd(chip));
|
|
WARN_ON(ret);
|
|
nand_cleanup(chip);
|
|
fsmc_nand_disable(host);
|
|
|
|
if (host->mode == USE_DMA_ACCESS) {
|
|
dma_release_channel(host->write_dma_chan);
|
|
dma_release_channel(host->read_dma_chan);
|
|
}
|
|
clk_disable_unprepare(host->clk);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_PM_SLEEP
|
|
static int fsmc_nand_suspend(struct device *dev)
|
|
{
|
|
struct fsmc_nand_data *host = dev_get_drvdata(dev);
|
|
|
|
if (host)
|
|
clk_disable_unprepare(host->clk);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fsmc_nand_resume(struct device *dev)
|
|
{
|
|
struct fsmc_nand_data *host = dev_get_drvdata(dev);
|
|
|
|
if (host) {
|
|
clk_prepare_enable(host->clk);
|
|
if (host->dev_timings)
|
|
fsmc_nand_setup(host, host->dev_timings);
|
|
nand_reset(&host->nand, 0);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
static SIMPLE_DEV_PM_OPS(fsmc_nand_pm_ops, fsmc_nand_suspend, fsmc_nand_resume);
|
|
|
|
static const struct of_device_id fsmc_nand_id_table[] = {
|
|
{ .compatible = "st,spear600-fsmc-nand" },
|
|
{ .compatible = "stericsson,fsmc-nand" },
|
|
{}
|
|
};
|
|
MODULE_DEVICE_TABLE(of, fsmc_nand_id_table);
|
|
|
|
static struct platform_driver fsmc_nand_driver = {
|
|
.remove = fsmc_nand_remove,
|
|
.driver = {
|
|
.name = "fsmc-nand",
|
|
.of_match_table = fsmc_nand_id_table,
|
|
.pm = &fsmc_nand_pm_ops,
|
|
},
|
|
};
|
|
|
|
module_platform_driver_probe(fsmc_nand_driver, fsmc_nand_probe);
|
|
|
|
MODULE_LICENSE("GPL v2");
|
|
MODULE_AUTHOR("Vipin Kumar <vipin.kumar@st.com>, Ashish Priyadarshi");
|
|
MODULE_DESCRIPTION("NAND driver for SPEAr Platforms");
|