linux_dsm_epyc7002/arch/x86/crypto/crct10dif-pcl-asm_64.S
Eric Biggers 0974037fc5 crypto: x86/crct10dif-pcl - cleanup and optimizations
The x86, arm, and arm64 asm implementations of crct10dif are very
difficult to understand partly because many of the comments, labels, and
macros are named incorrectly: the lengths mentioned are usually off by a
factor of two from the actual code.  Many other things are unnecessarily
convoluted as well, e.g. there are many more fold constants than
actually needed and some aren't fully reduced.

This series therefore cleans up all these implementations to be much
more maintainable.  I also made some small optimizations where I saw
opportunities, resulting in slightly better performance.

This patch cleans up the x86 version.

As part of this, I removed support for len < 16 from the x86 assembly;
now the glue code falls back to the generic table-based implementation
in this case.  Due to the overhead of kernel_fpu_begin(), this actually
significantly improves performance on these lengths.  (And even if
kernel_fpu_begin() were free, the generic code is still faster for about
len < 11.)  This removal also eliminates error-prone special cases and
makes the x86, arm32, and arm64 ports of the code match more closely.

Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2019-02-08 15:29:48 +08:00

334 lines
11 KiB
ArmAsm

########################################################################
# Implement fast CRC-T10DIF computation with SSE and PCLMULQDQ instructions
#
# Copyright (c) 2013, Intel Corporation
#
# Authors:
# Erdinc Ozturk <erdinc.ozturk@intel.com>
# Vinodh Gopal <vinodh.gopal@intel.com>
# James Guilford <james.guilford@intel.com>
# Tim Chen <tim.c.chen@linux.intel.com>
#
# This software is available to you under a choice of one of two
# licenses. You may choose to be licensed under the terms of the GNU
# General Public License (GPL) Version 2, available from the file
# COPYING in the main directory of this source tree, or the
# OpenIB.org BSD license below:
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met:
#
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
#
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the
# distribution.
#
# * Neither the name of the Intel Corporation nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
#
# THIS SOFTWARE IS PROVIDED BY INTEL CORPORATION ""AS IS"" AND ANY
# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL CORPORATION OR
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
# LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
# NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# Reference paper titled "Fast CRC Computation for Generic
# Polynomials Using PCLMULQDQ Instruction"
# URL: http://www.intel.com/content/dam/www/public/us/en/documents
# /white-papers/fast-crc-computation-generic-polynomials-pclmulqdq-paper.pdf
#
#include <linux/linkage.h>
.text
#define init_crc %edi
#define buf %rsi
#define len %rdx
#define FOLD_CONSTS %xmm10
#define BSWAP_MASK %xmm11
# Fold reg1, reg2 into the next 32 data bytes, storing the result back into
# reg1, reg2.
.macro fold_32_bytes offset, reg1, reg2
movdqu \offset(buf), %xmm9
movdqu \offset+16(buf), %xmm12
pshufb BSWAP_MASK, %xmm9
pshufb BSWAP_MASK, %xmm12
movdqa \reg1, %xmm8
movdqa \reg2, %xmm13
pclmulqdq $0x00, FOLD_CONSTS, \reg1
pclmulqdq $0x11, FOLD_CONSTS, %xmm8
pclmulqdq $0x00, FOLD_CONSTS, \reg2
pclmulqdq $0x11, FOLD_CONSTS, %xmm13
pxor %xmm9 , \reg1
xorps %xmm8 , \reg1
pxor %xmm12, \reg2
xorps %xmm13, \reg2
.endm
# Fold src_reg into dst_reg.
.macro fold_16_bytes src_reg, dst_reg
movdqa \src_reg, %xmm8
pclmulqdq $0x11, FOLD_CONSTS, \src_reg
pclmulqdq $0x00, FOLD_CONSTS, %xmm8
pxor %xmm8, \dst_reg
xorps \src_reg, \dst_reg
.endm
#
# u16 crc_t10dif_pcl(u16 init_crc, const *u8 buf, size_t len);
#
# Assumes len >= 16.
#
.align 16
ENTRY(crc_t10dif_pcl)
movdqa .Lbswap_mask(%rip), BSWAP_MASK
# For sizes less than 256 bytes, we can't fold 128 bytes at a time.
cmp $256, len
jl .Lless_than_256_bytes
# Load the first 128 data bytes. Byte swapping is necessary to make the
# bit order match the polynomial coefficient order.
movdqu 16*0(buf), %xmm0
movdqu 16*1(buf), %xmm1
movdqu 16*2(buf), %xmm2
movdqu 16*3(buf), %xmm3
movdqu 16*4(buf), %xmm4
movdqu 16*5(buf), %xmm5
movdqu 16*6(buf), %xmm6
movdqu 16*7(buf), %xmm7
add $128, buf
pshufb BSWAP_MASK, %xmm0
pshufb BSWAP_MASK, %xmm1
pshufb BSWAP_MASK, %xmm2
pshufb BSWAP_MASK, %xmm3
pshufb BSWAP_MASK, %xmm4
pshufb BSWAP_MASK, %xmm5
pshufb BSWAP_MASK, %xmm6
pshufb BSWAP_MASK, %xmm7
# XOR the first 16 data *bits* with the initial CRC value.
pxor %xmm8, %xmm8
pinsrw $7, init_crc, %xmm8
pxor %xmm8, %xmm0
movdqa .Lfold_across_128_bytes_consts(%rip), FOLD_CONSTS
# Subtract 128 for the 128 data bytes just consumed. Subtract another
# 128 to simplify the termination condition of the following loop.
sub $256, len
# While >= 128 data bytes remain (not counting xmm0-7), fold the 128
# bytes xmm0-7 into them, storing the result back into xmm0-7.
.Lfold_128_bytes_loop:
fold_32_bytes 0, %xmm0, %xmm1
fold_32_bytes 32, %xmm2, %xmm3
fold_32_bytes 64, %xmm4, %xmm5
fold_32_bytes 96, %xmm6, %xmm7
add $128, buf
sub $128, len
jge .Lfold_128_bytes_loop
# Now fold the 112 bytes in xmm0-xmm6 into the 16 bytes in xmm7.
# Fold across 64 bytes.
movdqa .Lfold_across_64_bytes_consts(%rip), FOLD_CONSTS
fold_16_bytes %xmm0, %xmm4
fold_16_bytes %xmm1, %xmm5
fold_16_bytes %xmm2, %xmm6
fold_16_bytes %xmm3, %xmm7
# Fold across 32 bytes.
movdqa .Lfold_across_32_bytes_consts(%rip), FOLD_CONSTS
fold_16_bytes %xmm4, %xmm6
fold_16_bytes %xmm5, %xmm7
# Fold across 16 bytes.
movdqa .Lfold_across_16_bytes_consts(%rip), FOLD_CONSTS
fold_16_bytes %xmm6, %xmm7
# Add 128 to get the correct number of data bytes remaining in 0...127
# (not counting xmm7), following the previous extra subtraction by 128.
# Then subtract 16 to simplify the termination condition of the
# following loop.
add $128-16, len
# While >= 16 data bytes remain (not counting xmm7), fold the 16 bytes
# xmm7 into them, storing the result back into xmm7.
jl .Lfold_16_bytes_loop_done
.Lfold_16_bytes_loop:
movdqa %xmm7, %xmm8
pclmulqdq $0x11, FOLD_CONSTS, %xmm7
pclmulqdq $0x00, FOLD_CONSTS, %xmm8
pxor %xmm8, %xmm7
movdqu (buf), %xmm0
pshufb BSWAP_MASK, %xmm0
pxor %xmm0 , %xmm7
add $16, buf
sub $16, len
jge .Lfold_16_bytes_loop
.Lfold_16_bytes_loop_done:
# Add 16 to get the correct number of data bytes remaining in 0...15
# (not counting xmm7), following the previous extra subtraction by 16.
add $16, len
je .Lreduce_final_16_bytes
.Lhandle_partial_segment:
# Reduce the last '16 + len' bytes where 1 <= len <= 15 and the first 16
# bytes are in xmm7 and the rest are the remaining data in 'buf'. To do
# this without needing a fold constant for each possible 'len', redivide
# the bytes into a first chunk of 'len' bytes and a second chunk of 16
# bytes, then fold the first chunk into the second.
movdqa %xmm7, %xmm2
# xmm1 = last 16 original data bytes
movdqu -16(buf, len), %xmm1
pshufb BSWAP_MASK, %xmm1
# xmm2 = high order part of second chunk: xmm7 left-shifted by 'len' bytes.
lea .Lbyteshift_table+16(%rip), %rax
sub len, %rax
movdqu (%rax), %xmm0
pshufb %xmm0, %xmm2
# xmm7 = first chunk: xmm7 right-shifted by '16-len' bytes.
pxor .Lmask1(%rip), %xmm0
pshufb %xmm0, %xmm7
# xmm1 = second chunk: 'len' bytes from xmm1 (low-order bytes),
# then '16-len' bytes from xmm2 (high-order bytes).
pblendvb %xmm2, %xmm1 #xmm0 is implicit
# Fold the first chunk into the second chunk, storing the result in xmm7.
movdqa %xmm7, %xmm8
pclmulqdq $0x11, FOLD_CONSTS, %xmm7
pclmulqdq $0x00, FOLD_CONSTS, %xmm8
pxor %xmm8, %xmm7
pxor %xmm1, %xmm7
.Lreduce_final_16_bytes:
# Reduce the 128-bit value M(x), stored in xmm7, to the final 16-bit CRC
# Load 'x^48 * (x^48 mod G(x))' and 'x^48 * (x^80 mod G(x))'.
movdqa .Lfinal_fold_consts(%rip), FOLD_CONSTS
# Fold the high 64 bits into the low 64 bits, while also multiplying by
# x^64. This produces a 128-bit value congruent to x^64 * M(x) and
# whose low 48 bits are 0.
movdqa %xmm7, %xmm0
pclmulqdq $0x11, FOLD_CONSTS, %xmm7 # high bits * x^48 * (x^80 mod G(x))
pslldq $8, %xmm0
pxor %xmm0, %xmm7 # + low bits * x^64
# Fold the high 32 bits into the low 96 bits. This produces a 96-bit
# value congruent to x^64 * M(x) and whose low 48 bits are 0.
movdqa %xmm7, %xmm0
pand .Lmask2(%rip), %xmm0 # zero high 32 bits
psrldq $12, %xmm7 # extract high 32 bits
pclmulqdq $0x00, FOLD_CONSTS, %xmm7 # high 32 bits * x^48 * (x^48 mod G(x))
pxor %xmm0, %xmm7 # + low bits
# Load G(x) and floor(x^48 / G(x)).
movdqa .Lbarrett_reduction_consts(%rip), FOLD_CONSTS
# Use Barrett reduction to compute the final CRC value.
movdqa %xmm7, %xmm0
pclmulqdq $0x11, FOLD_CONSTS, %xmm7 # high 32 bits * floor(x^48 / G(x))
psrlq $32, %xmm7 # /= x^32
pclmulqdq $0x00, FOLD_CONSTS, %xmm7 # *= G(x)
psrlq $48, %xmm0
pxor %xmm7, %xmm0 # + low 16 nonzero bits
# Final CRC value (x^16 * M(x)) mod G(x) is in low 16 bits of xmm0.
pextrw $0, %xmm0, %eax
ret
.align 16
.Lless_than_256_bytes:
# Checksumming a buffer of length 16...255 bytes
# Load the first 16 data bytes.
movdqu (buf), %xmm7
pshufb BSWAP_MASK, %xmm7
add $16, buf
# XOR the first 16 data *bits* with the initial CRC value.
pxor %xmm0, %xmm0
pinsrw $7, init_crc, %xmm0
pxor %xmm0, %xmm7
movdqa .Lfold_across_16_bytes_consts(%rip), FOLD_CONSTS
cmp $16, len
je .Lreduce_final_16_bytes # len == 16
sub $32, len
jge .Lfold_16_bytes_loop # 32 <= len <= 255
add $16, len
jmp .Lhandle_partial_segment # 17 <= len <= 31
ENDPROC(crc_t10dif_pcl)
.section .rodata, "a", @progbits
.align 16
# Fold constants precomputed from the polynomial 0x18bb7
# G(x) = x^16 + x^15 + x^11 + x^9 + x^8 + x^7 + x^5 + x^4 + x^2 + x^1 + x^0
.Lfold_across_128_bytes_consts:
.quad 0x0000000000006123 # x^(8*128) mod G(x)
.quad 0x0000000000002295 # x^(8*128+64) mod G(x)
.Lfold_across_64_bytes_consts:
.quad 0x0000000000001069 # x^(4*128) mod G(x)
.quad 0x000000000000dd31 # x^(4*128+64) mod G(x)
.Lfold_across_32_bytes_consts:
.quad 0x000000000000857d # x^(2*128) mod G(x)
.quad 0x0000000000007acc # x^(2*128+64) mod G(x)
.Lfold_across_16_bytes_consts:
.quad 0x000000000000a010 # x^(1*128) mod G(x)
.quad 0x0000000000001faa # x^(1*128+64) mod G(x)
.Lfinal_fold_consts:
.quad 0x1368000000000000 # x^48 * (x^48 mod G(x))
.quad 0x2d56000000000000 # x^48 * (x^80 mod G(x))
.Lbarrett_reduction_consts:
.quad 0x0000000000018bb7 # G(x)
.quad 0x00000001f65a57f8 # floor(x^48 / G(x))
.section .rodata.cst16.mask1, "aM", @progbits, 16
.align 16
.Lmask1:
.octa 0x80808080808080808080808080808080
.section .rodata.cst16.mask2, "aM", @progbits, 16
.align 16
.Lmask2:
.octa 0x00000000FFFFFFFFFFFFFFFFFFFFFFFF
.section .rodata.cst16.bswap_mask, "aM", @progbits, 16
.align 16
.Lbswap_mask:
.octa 0x000102030405060708090A0B0C0D0E0F
.section .rodata.cst32.byteshift_table, "aM", @progbits, 32
.align 16
# For 1 <= len <= 15, the 16-byte vector beginning at &byteshift_table[16 - len]
# is the index vector to shift left by 'len' bytes, and is also {0x80, ...,
# 0x80} XOR the index vector to shift right by '16 - len' bytes.
.Lbyteshift_table:
.byte 0x0, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87
.byte 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f
.byte 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7
.byte 0x8, 0x9, 0xa, 0xb, 0xc, 0xd, 0xe , 0x0