linux_dsm_epyc7002/drivers/char/ipmi/ipmi_msghandler.c
Tony Camuso cdea46566b ipmi: use rcu lock around call to intf->handlers->sender()
A vendor with a system having more than 128 CPUs occasionally encounters
the following crash during shutdown. This is not an easily reproduceable
event, but the vendor was able to provide the following analysis of the
crash, which exhibits the same footprint each time.

crash> bt
PID: 0      TASK: ffff88017c70ce70  CPU: 5   COMMAND: "swapper/5"
 #0 [ffff88085c143ac8] machine_kexec at ffffffff81059c8b
 #1 [ffff88085c143b28] __crash_kexec at ffffffff811052e2
 #2 [ffff88085c143bf8] crash_kexec at ffffffff811053d0
 #3 [ffff88085c143c10] oops_end at ffffffff8168ef88
 #4 [ffff88085c143c38] no_context at ffffffff8167ebb3
 #5 [ffff88085c143c88] __bad_area_nosemaphore at ffffffff8167ec49
 #6 [ffff88085c143cd0] bad_area_nosemaphore at ffffffff8167edb3
 #7 [ffff88085c143ce0] __do_page_fault at ffffffff81691d1e
 #8 [ffff88085c143d40] do_page_fault at ffffffff81691ec5
 #9 [ffff88085c143d70] page_fault at ffffffff8168e188
    [exception RIP: unknown or invalid address]
    RIP: ffffffffa053c800  RSP: ffff88085c143e28  RFLAGS: 00010206
    RAX: ffff88017c72bfd8  RBX: ffff88017a8dc000  RCX: ffff8810588b5ac8
    RDX: ffff8810588b5a00  RSI: ffffffffa053c800  RDI: ffff8810588b5a00
    RBP: ffff88085c143e58   R8: ffff88017c70d408   R9: ffff88017a8dc000
    R10: 0000000000000002  R11: ffff88085c143da0  R12: ffff8810588b5ac8
    R13: 0000000000000100  R14: ffffffffa053c800  R15: ffff8810588b5a00
    ORIG_RAX: ffffffffffffffff  CS: 0010  SS: 0018
    <IRQ stack>
    [exception RIP: cpuidle_enter_state+82]
    RIP: ffffffff81514192  RSP: ffff88017c72be50  RFLAGS: 00000202
    RAX: 0000001e4c3c6f16  RBX: 000000000000f8a0  RCX: 0000000000000018
    RDX: 0000000225c17d03  RSI: ffff88017c72bfd8  RDI: 0000001e4c3c6f16
    RBP: ffff88017c72be78   R8: 000000000000237e   R9: 0000000000000018
    R10: 0000000000002494  R11: 0000000000000001  R12: ffff88017c72be20
    R13: ffff88085c14f8e0  R14: 0000000000000082  R15: 0000001e4c3bb400
    ORIG_RAX: ffffffffffffff10  CS: 0010  SS: 0018

This is the corresponding stack trace

It has crashed because the area pointed with RIP extracted from timer
element is already removed during a shutdown process.

The function is smi_timeout().

And we think ffff8810588b5a00 in RDX is a parameter struct smi_info

crash> rd ffff8810588b5a00 20
ffff8810588b5a00:  ffff8810588b6000 0000000000000000   .`.X............
ffff8810588b5a10:  ffff880853264400 ffffffffa05417e0   .D&S......T.....
ffff8810588b5a20:  24a024a000000000 0000000000000000   .....$.$........
ffff8810588b5a30:  0000000000000000 0000000000000000   ................
ffff8810588b5a30:  0000000000000000 0000000000000000   ................
ffff8810588b5a40:  ffffffffa053a040 ffffffffa053a060   @.S.....`.S.....
ffff8810588b5a50:  0000000000000000 0000000100000001   ................
ffff8810588b5a60:  0000000000000000 0000000000000e00   ................
ffff8810588b5a70:  ffffffffa053a580 ffffffffa053a6e0   ..S.......S.....
ffff8810588b5a80:  ffffffffa053a4a0 ffffffffa053a250   ..S.....P.S.....
ffff8810588b5a90:  0000000500000002 0000000000000000   ................

Unfortunately the top of this area is already detroyed by someone.
But because of two reasonns we think this is struct smi_info
 1) The address included in between  ffff8810588b5a70 and ffff8810588b5a80:
  are inside of ipmi_si_intf.c  see crash> module ffff88085779d2c0

 2) We've found the area which point this.
  It is offset 0x68 of  ffff880859df4000

crash> rd  ffff880859df4000 100
ffff880859df4000:  0000000000000000 0000000000000001   ................
ffff880859df4010:  ffffffffa0535290 dead000000000200   .RS.............
ffff880859df4020:  ffff880859df4020 ffff880859df4020    @.Y.... @.Y....
ffff880859df4030:  0000000000000002 0000000000100010   ................
ffff880859df4040:  ffff880859df4040 ffff880859df4040   @@.Y....@@.Y....
ffff880859df4050:  0000000000000000 0000000000000000   ................
ffff880859df4060:  0000000000000000 ffff8810588b5a00   .........Z.X....
ffff880859df4070:  0000000000000001 ffff880859df4078   ........x@.Y....

 If we regards it as struct ipmi_smi in shutdown process
 it looks consistent.

The remedy for this apparent race is affixed below.

Signed-off-by: Tony Camuso <tcamuso@redhat.com>
Cc: stable@vger.kernel.org # 3.19

This was first introduced in 7ea0ed2b5b ipmi: Make the
message handler easier to use for SMI interfaces
where some code was moved outside of the rcu_read_lock()
and the lock was not added.

Signed-off-by: Corey Minyard <cminyard@mvista.com>
2017-06-19 12:49:34 -05:00

4655 lines
118 KiB
C

/*
* ipmi_msghandler.c
*
* Incoming and outgoing message routing for an IPMI interface.
*
* Author: MontaVista Software, Inc.
* Corey Minyard <minyard@mvista.com>
* source@mvista.com
*
* Copyright 2002 MontaVista Software Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
*
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
* TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
* USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/module.h>
#include <linux/errno.h>
#include <linux/poll.h>
#include <linux/sched.h>
#include <linux/seq_file.h>
#include <linux/spinlock.h>
#include <linux/mutex.h>
#include <linux/slab.h>
#include <linux/ipmi.h>
#include <linux/ipmi_smi.h>
#include <linux/notifier.h>
#include <linux/init.h>
#include <linux/proc_fs.h>
#include <linux/rcupdate.h>
#include <linux/interrupt.h>
#define PFX "IPMI message handler: "
#define IPMI_DRIVER_VERSION "39.2"
static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void);
static int ipmi_init_msghandler(void);
static void smi_recv_tasklet(unsigned long);
static void handle_new_recv_msgs(ipmi_smi_t intf);
static void need_waiter(ipmi_smi_t intf);
static int handle_one_recv_msg(ipmi_smi_t intf,
struct ipmi_smi_msg *msg);
static int initialized;
#ifdef CONFIG_PROC_FS
static struct proc_dir_entry *proc_ipmi_root;
#endif /* CONFIG_PROC_FS */
/* Remain in auto-maintenance mode for this amount of time (in ms). */
#define IPMI_MAINTENANCE_MODE_TIMEOUT 30000
#define MAX_EVENTS_IN_QUEUE 25
/*
* Don't let a message sit in a queue forever, always time it with at lest
* the max message timer. This is in milliseconds.
*/
#define MAX_MSG_TIMEOUT 60000
/* Call every ~1000 ms. */
#define IPMI_TIMEOUT_TIME 1000
/* How many jiffies does it take to get to the timeout time. */
#define IPMI_TIMEOUT_JIFFIES ((IPMI_TIMEOUT_TIME * HZ) / 1000)
/*
* Request events from the queue every second (this is the number of
* IPMI_TIMEOUT_TIMES between event requests). Hopefully, in the
* future, IPMI will add a way to know immediately if an event is in
* the queue and this silliness can go away.
*/
#define IPMI_REQUEST_EV_TIME (1000 / (IPMI_TIMEOUT_TIME))
/*
* The main "user" data structure.
*/
struct ipmi_user {
struct list_head link;
/* Set to false when the user is destroyed. */
bool valid;
struct kref refcount;
/* The upper layer that handles receive messages. */
const struct ipmi_user_hndl *handler;
void *handler_data;
/* The interface this user is bound to. */
ipmi_smi_t intf;
/* Does this interface receive IPMI events? */
bool gets_events;
};
struct cmd_rcvr {
struct list_head link;
ipmi_user_t user;
unsigned char netfn;
unsigned char cmd;
unsigned int chans;
/*
* This is used to form a linked lised during mass deletion.
* Since this is in an RCU list, we cannot use the link above
* or change any data until the RCU period completes. So we
* use this next variable during mass deletion so we can have
* a list and don't have to wait and restart the search on
* every individual deletion of a command.
*/
struct cmd_rcvr *next;
};
struct seq_table {
unsigned int inuse : 1;
unsigned int broadcast : 1;
unsigned long timeout;
unsigned long orig_timeout;
unsigned int retries_left;
/*
* To verify on an incoming send message response that this is
* the message that the response is for, we keep a sequence id
* and increment it every time we send a message.
*/
long seqid;
/*
* This is held so we can properly respond to the message on a
* timeout, and it is used to hold the temporary data for
* retransmission, too.
*/
struct ipmi_recv_msg *recv_msg;
};
/*
* Store the information in a msgid (long) to allow us to find a
* sequence table entry from the msgid.
*/
#define STORE_SEQ_IN_MSGID(seq, seqid) \
((((seq) & 0x3f) << 26) | ((seqid) & 0x3ffffff))
#define GET_SEQ_FROM_MSGID(msgid, seq, seqid) \
do { \
seq = (((msgid) >> 26) & 0x3f); \
seqid = ((msgid) & 0x3ffffff); \
} while (0)
#define NEXT_SEQID(seqid) (((seqid) + 1) & 0x3ffffff)
struct ipmi_channel {
unsigned char medium;
unsigned char protocol;
/*
* My slave address. This is initialized to IPMI_BMC_SLAVE_ADDR,
* but may be changed by the user.
*/
unsigned char address;
/*
* My LUN. This should generally stay the SMS LUN, but just in
* case...
*/
unsigned char lun;
};
#ifdef CONFIG_PROC_FS
struct ipmi_proc_entry {
char *name;
struct ipmi_proc_entry *next;
};
#endif
struct bmc_device {
struct platform_device pdev;
struct ipmi_device_id id;
unsigned char guid[16];
int guid_set;
char name[16];
struct kref usecount;
};
#define to_bmc_device(x) container_of((x), struct bmc_device, pdev.dev)
/*
* Various statistics for IPMI, these index stats[] in the ipmi_smi
* structure.
*/
enum ipmi_stat_indexes {
/* Commands we got from the user that were invalid. */
IPMI_STAT_sent_invalid_commands = 0,
/* Commands we sent to the MC. */
IPMI_STAT_sent_local_commands,
/* Responses from the MC that were delivered to a user. */
IPMI_STAT_handled_local_responses,
/* Responses from the MC that were not delivered to a user. */
IPMI_STAT_unhandled_local_responses,
/* Commands we sent out to the IPMB bus. */
IPMI_STAT_sent_ipmb_commands,
/* Commands sent on the IPMB that had errors on the SEND CMD */
IPMI_STAT_sent_ipmb_command_errs,
/* Each retransmit increments this count. */
IPMI_STAT_retransmitted_ipmb_commands,
/*
* When a message times out (runs out of retransmits) this is
* incremented.
*/
IPMI_STAT_timed_out_ipmb_commands,
/*
* This is like above, but for broadcasts. Broadcasts are
* *not* included in the above count (they are expected to
* time out).
*/
IPMI_STAT_timed_out_ipmb_broadcasts,
/* Responses I have sent to the IPMB bus. */
IPMI_STAT_sent_ipmb_responses,
/* The response was delivered to the user. */
IPMI_STAT_handled_ipmb_responses,
/* The response had invalid data in it. */
IPMI_STAT_invalid_ipmb_responses,
/* The response didn't have anyone waiting for it. */
IPMI_STAT_unhandled_ipmb_responses,
/* Commands we sent out to the IPMB bus. */
IPMI_STAT_sent_lan_commands,
/* Commands sent on the IPMB that had errors on the SEND CMD */
IPMI_STAT_sent_lan_command_errs,
/* Each retransmit increments this count. */
IPMI_STAT_retransmitted_lan_commands,
/*
* When a message times out (runs out of retransmits) this is
* incremented.
*/
IPMI_STAT_timed_out_lan_commands,
/* Responses I have sent to the IPMB bus. */
IPMI_STAT_sent_lan_responses,
/* The response was delivered to the user. */
IPMI_STAT_handled_lan_responses,
/* The response had invalid data in it. */
IPMI_STAT_invalid_lan_responses,
/* The response didn't have anyone waiting for it. */
IPMI_STAT_unhandled_lan_responses,
/* The command was delivered to the user. */
IPMI_STAT_handled_commands,
/* The command had invalid data in it. */
IPMI_STAT_invalid_commands,
/* The command didn't have anyone waiting for it. */
IPMI_STAT_unhandled_commands,
/* Invalid data in an event. */
IPMI_STAT_invalid_events,
/* Events that were received with the proper format. */
IPMI_STAT_events,
/* Retransmissions on IPMB that failed. */
IPMI_STAT_dropped_rexmit_ipmb_commands,
/* Retransmissions on LAN that failed. */
IPMI_STAT_dropped_rexmit_lan_commands,
/* This *must* remain last, add new values above this. */
IPMI_NUM_STATS
};
#define IPMI_IPMB_NUM_SEQ 64
#define IPMI_MAX_CHANNELS 16
struct ipmi_smi {
/* What interface number are we? */
int intf_num;
struct kref refcount;
/* Set when the interface is being unregistered. */
bool in_shutdown;
/* Used for a list of interfaces. */
struct list_head link;
/*
* The list of upper layers that are using me. seq_lock
* protects this.
*/
struct list_head users;
/* Information to supply to users. */
unsigned char ipmi_version_major;
unsigned char ipmi_version_minor;
/* Used for wake ups at startup. */
wait_queue_head_t waitq;
struct bmc_device *bmc;
char *my_dev_name;
/*
* This is the lower-layer's sender routine. Note that you
* must either be holding the ipmi_interfaces_mutex or be in
* an umpreemptible region to use this. You must fetch the
* value into a local variable and make sure it is not NULL.
*/
const struct ipmi_smi_handlers *handlers;
void *send_info;
#ifdef CONFIG_PROC_FS
/* A list of proc entries for this interface. */
struct mutex proc_entry_lock;
struct ipmi_proc_entry *proc_entries;
#endif
/* Driver-model device for the system interface. */
struct device *si_dev;
/*
* A table of sequence numbers for this interface. We use the
* sequence numbers for IPMB messages that go out of the
* interface to match them up with their responses. A routine
* is called periodically to time the items in this list.
*/
spinlock_t seq_lock;
struct seq_table seq_table[IPMI_IPMB_NUM_SEQ];
int curr_seq;
/*
* Messages queued for delivery. If delivery fails (out of memory
* for instance), They will stay in here to be processed later in a
* periodic timer interrupt. The tasklet is for handling received
* messages directly from the handler.
*/
spinlock_t waiting_rcv_msgs_lock;
struct list_head waiting_rcv_msgs;
atomic_t watchdog_pretimeouts_to_deliver;
struct tasklet_struct recv_tasklet;
spinlock_t xmit_msgs_lock;
struct list_head xmit_msgs;
struct ipmi_smi_msg *curr_msg;
struct list_head hp_xmit_msgs;
/*
* The list of command receivers that are registered for commands
* on this interface.
*/
struct mutex cmd_rcvrs_mutex;
struct list_head cmd_rcvrs;
/*
* Events that were queues because no one was there to receive
* them.
*/
spinlock_t events_lock; /* For dealing with event stuff. */
struct list_head waiting_events;
unsigned int waiting_events_count; /* How many events in queue? */
char delivering_events;
char event_msg_printed;
atomic_t event_waiters;
unsigned int ticks_to_req_ev;
int last_needs_timer;
/*
* The event receiver for my BMC, only really used at panic
* shutdown as a place to store this.
*/
unsigned char event_receiver;
unsigned char event_receiver_lun;
unsigned char local_sel_device;
unsigned char local_event_generator;
/* For handling of maintenance mode. */
int maintenance_mode;
bool maintenance_mode_enable;
int auto_maintenance_timeout;
spinlock_t maintenance_mode_lock; /* Used in a timer... */
/*
* A cheap hack, if this is non-null and a message to an
* interface comes in with a NULL user, call this routine with
* it. Note that the message will still be freed by the
* caller. This only works on the system interface.
*/
void (*null_user_handler)(ipmi_smi_t intf, struct ipmi_recv_msg *msg);
/*
* When we are scanning the channels for an SMI, this will
* tell which channel we are scanning.
*/
int curr_channel;
/* Channel information */
struct ipmi_channel channels[IPMI_MAX_CHANNELS];
/* Proc FS stuff. */
struct proc_dir_entry *proc_dir;
char proc_dir_name[10];
atomic_t stats[IPMI_NUM_STATS];
/*
* run_to_completion duplicate of smb_info, smi_info
* and ipmi_serial_info structures. Used to decrease numbers of
* parameters passed by "low" level IPMI code.
*/
int run_to_completion;
};
#define to_si_intf_from_dev(device) container_of(device, struct ipmi_smi, dev)
/**
* The driver model view of the IPMI messaging driver.
*/
static struct platform_driver ipmidriver = {
.driver = {
.name = "ipmi",
.bus = &platform_bus_type
}
};
static DEFINE_MUTEX(ipmidriver_mutex);
static LIST_HEAD(ipmi_interfaces);
static DEFINE_MUTEX(ipmi_interfaces_mutex);
/*
* List of watchers that want to know when smi's are added and deleted.
*/
static LIST_HEAD(smi_watchers);
static DEFINE_MUTEX(smi_watchers_mutex);
#define ipmi_inc_stat(intf, stat) \
atomic_inc(&(intf)->stats[IPMI_STAT_ ## stat])
#define ipmi_get_stat(intf, stat) \
((unsigned int) atomic_read(&(intf)->stats[IPMI_STAT_ ## stat]))
static const char * const addr_src_to_str[] = {
"invalid", "hotmod", "hardcoded", "SPMI", "ACPI", "SMBIOS", "PCI",
"device-tree"
};
const char *ipmi_addr_src_to_str(enum ipmi_addr_src src)
{
if (src >= SI_LAST)
src = 0; /* Invalid */
return addr_src_to_str[src];
}
EXPORT_SYMBOL(ipmi_addr_src_to_str);
static int is_lan_addr(struct ipmi_addr *addr)
{
return addr->addr_type == IPMI_LAN_ADDR_TYPE;
}
static int is_ipmb_addr(struct ipmi_addr *addr)
{
return addr->addr_type == IPMI_IPMB_ADDR_TYPE;
}
static int is_ipmb_bcast_addr(struct ipmi_addr *addr)
{
return addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE;
}
static void free_recv_msg_list(struct list_head *q)
{
struct ipmi_recv_msg *msg, *msg2;
list_for_each_entry_safe(msg, msg2, q, link) {
list_del(&msg->link);
ipmi_free_recv_msg(msg);
}
}
static void free_smi_msg_list(struct list_head *q)
{
struct ipmi_smi_msg *msg, *msg2;
list_for_each_entry_safe(msg, msg2, q, link) {
list_del(&msg->link);
ipmi_free_smi_msg(msg);
}
}
static void clean_up_interface_data(ipmi_smi_t intf)
{
int i;
struct cmd_rcvr *rcvr, *rcvr2;
struct list_head list;
tasklet_kill(&intf->recv_tasklet);
free_smi_msg_list(&intf->waiting_rcv_msgs);
free_recv_msg_list(&intf->waiting_events);
/*
* Wholesale remove all the entries from the list in the
* interface and wait for RCU to know that none are in use.
*/
mutex_lock(&intf->cmd_rcvrs_mutex);
INIT_LIST_HEAD(&list);
list_splice_init_rcu(&intf->cmd_rcvrs, &list, synchronize_rcu);
mutex_unlock(&intf->cmd_rcvrs_mutex);
list_for_each_entry_safe(rcvr, rcvr2, &list, link)
kfree(rcvr);
for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
if ((intf->seq_table[i].inuse)
&& (intf->seq_table[i].recv_msg))
ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
}
}
static void intf_free(struct kref *ref)
{
ipmi_smi_t intf = container_of(ref, struct ipmi_smi, refcount);
clean_up_interface_data(intf);
kfree(intf);
}
struct watcher_entry {
int intf_num;
ipmi_smi_t intf;
struct list_head link;
};
int ipmi_smi_watcher_register(struct ipmi_smi_watcher *watcher)
{
ipmi_smi_t intf;
LIST_HEAD(to_deliver);
struct watcher_entry *e, *e2;
mutex_lock(&smi_watchers_mutex);
mutex_lock(&ipmi_interfaces_mutex);
/* Build a list of things to deliver. */
list_for_each_entry(intf, &ipmi_interfaces, link) {
if (intf->intf_num == -1)
continue;
e = kmalloc(sizeof(*e), GFP_KERNEL);
if (!e)
goto out_err;
kref_get(&intf->refcount);
e->intf = intf;
e->intf_num = intf->intf_num;
list_add_tail(&e->link, &to_deliver);
}
/* We will succeed, so add it to the list. */
list_add(&watcher->link, &smi_watchers);
mutex_unlock(&ipmi_interfaces_mutex);
list_for_each_entry_safe(e, e2, &to_deliver, link) {
list_del(&e->link);
watcher->new_smi(e->intf_num, e->intf->si_dev);
kref_put(&e->intf->refcount, intf_free);
kfree(e);
}
mutex_unlock(&smi_watchers_mutex);
return 0;
out_err:
mutex_unlock(&ipmi_interfaces_mutex);
mutex_unlock(&smi_watchers_mutex);
list_for_each_entry_safe(e, e2, &to_deliver, link) {
list_del(&e->link);
kref_put(&e->intf->refcount, intf_free);
kfree(e);
}
return -ENOMEM;
}
EXPORT_SYMBOL(ipmi_smi_watcher_register);
int ipmi_smi_watcher_unregister(struct ipmi_smi_watcher *watcher)
{
mutex_lock(&smi_watchers_mutex);
list_del(&(watcher->link));
mutex_unlock(&smi_watchers_mutex);
return 0;
}
EXPORT_SYMBOL(ipmi_smi_watcher_unregister);
/*
* Must be called with smi_watchers_mutex held.
*/
static void
call_smi_watchers(int i, struct device *dev)
{
struct ipmi_smi_watcher *w;
list_for_each_entry(w, &smi_watchers, link) {
if (try_module_get(w->owner)) {
w->new_smi(i, dev);
module_put(w->owner);
}
}
}
static int
ipmi_addr_equal(struct ipmi_addr *addr1, struct ipmi_addr *addr2)
{
if (addr1->addr_type != addr2->addr_type)
return 0;
if (addr1->channel != addr2->channel)
return 0;
if (addr1->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
struct ipmi_system_interface_addr *smi_addr1
= (struct ipmi_system_interface_addr *) addr1;
struct ipmi_system_interface_addr *smi_addr2
= (struct ipmi_system_interface_addr *) addr2;
return (smi_addr1->lun == smi_addr2->lun);
}
if (is_ipmb_addr(addr1) || is_ipmb_bcast_addr(addr1)) {
struct ipmi_ipmb_addr *ipmb_addr1
= (struct ipmi_ipmb_addr *) addr1;
struct ipmi_ipmb_addr *ipmb_addr2
= (struct ipmi_ipmb_addr *) addr2;
return ((ipmb_addr1->slave_addr == ipmb_addr2->slave_addr)
&& (ipmb_addr1->lun == ipmb_addr2->lun));
}
if (is_lan_addr(addr1)) {
struct ipmi_lan_addr *lan_addr1
= (struct ipmi_lan_addr *) addr1;
struct ipmi_lan_addr *lan_addr2
= (struct ipmi_lan_addr *) addr2;
return ((lan_addr1->remote_SWID == lan_addr2->remote_SWID)
&& (lan_addr1->local_SWID == lan_addr2->local_SWID)
&& (lan_addr1->session_handle
== lan_addr2->session_handle)
&& (lan_addr1->lun == lan_addr2->lun));
}
return 1;
}
int ipmi_validate_addr(struct ipmi_addr *addr, int len)
{
if (len < sizeof(struct ipmi_system_interface_addr))
return -EINVAL;
if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
if (addr->channel != IPMI_BMC_CHANNEL)
return -EINVAL;
return 0;
}
if ((addr->channel == IPMI_BMC_CHANNEL)
|| (addr->channel >= IPMI_MAX_CHANNELS)
|| (addr->channel < 0))
return -EINVAL;
if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
if (len < sizeof(struct ipmi_ipmb_addr))
return -EINVAL;
return 0;
}
if (is_lan_addr(addr)) {
if (len < sizeof(struct ipmi_lan_addr))
return -EINVAL;
return 0;
}
return -EINVAL;
}
EXPORT_SYMBOL(ipmi_validate_addr);
unsigned int ipmi_addr_length(int addr_type)
{
if (addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
return sizeof(struct ipmi_system_interface_addr);
if ((addr_type == IPMI_IPMB_ADDR_TYPE)
|| (addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE))
return sizeof(struct ipmi_ipmb_addr);
if (addr_type == IPMI_LAN_ADDR_TYPE)
return sizeof(struct ipmi_lan_addr);
return 0;
}
EXPORT_SYMBOL(ipmi_addr_length);
static void deliver_response(struct ipmi_recv_msg *msg)
{
if (!msg->user) {
ipmi_smi_t intf = msg->user_msg_data;
/* Special handling for NULL users. */
if (intf->null_user_handler) {
intf->null_user_handler(intf, msg);
ipmi_inc_stat(intf, handled_local_responses);
} else {
/* No handler, so give up. */
ipmi_inc_stat(intf, unhandled_local_responses);
}
ipmi_free_recv_msg(msg);
} else if (!oops_in_progress) {
/*
* If we are running in the panic context, calling the
* receive handler doesn't much meaning and has a deadlock
* risk. At this moment, simply skip it in that case.
*/
ipmi_user_t user = msg->user;
user->handler->ipmi_recv_hndl(msg, user->handler_data);
}
}
static void
deliver_err_response(struct ipmi_recv_msg *msg, int err)
{
msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
msg->msg_data[0] = err;
msg->msg.netfn |= 1; /* Convert to a response. */
msg->msg.data_len = 1;
msg->msg.data = msg->msg_data;
deliver_response(msg);
}
/*
* Find the next sequence number not being used and add the given
* message with the given timeout to the sequence table. This must be
* called with the interface's seq_lock held.
*/
static int intf_next_seq(ipmi_smi_t intf,
struct ipmi_recv_msg *recv_msg,
unsigned long timeout,
int retries,
int broadcast,
unsigned char *seq,
long *seqid)
{
int rv = 0;
unsigned int i;
for (i = intf->curr_seq; (i+1)%IPMI_IPMB_NUM_SEQ != intf->curr_seq;
i = (i+1)%IPMI_IPMB_NUM_SEQ) {
if (!intf->seq_table[i].inuse)
break;
}
if (!intf->seq_table[i].inuse) {
intf->seq_table[i].recv_msg = recv_msg;
/*
* Start with the maximum timeout, when the send response
* comes in we will start the real timer.
*/
intf->seq_table[i].timeout = MAX_MSG_TIMEOUT;
intf->seq_table[i].orig_timeout = timeout;
intf->seq_table[i].retries_left = retries;
intf->seq_table[i].broadcast = broadcast;
intf->seq_table[i].inuse = 1;
intf->seq_table[i].seqid = NEXT_SEQID(intf->seq_table[i].seqid);
*seq = i;
*seqid = intf->seq_table[i].seqid;
intf->curr_seq = (i+1)%IPMI_IPMB_NUM_SEQ;
need_waiter(intf);
} else {
rv = -EAGAIN;
}
return rv;
}
/*
* Return the receive message for the given sequence number and
* release the sequence number so it can be reused. Some other data
* is passed in to be sure the message matches up correctly (to help
* guard against message coming in after their timeout and the
* sequence number being reused).
*/
static int intf_find_seq(ipmi_smi_t intf,
unsigned char seq,
short channel,
unsigned char cmd,
unsigned char netfn,
struct ipmi_addr *addr,
struct ipmi_recv_msg **recv_msg)
{
int rv = -ENODEV;
unsigned long flags;
if (seq >= IPMI_IPMB_NUM_SEQ)
return -EINVAL;
spin_lock_irqsave(&(intf->seq_lock), flags);
if (intf->seq_table[seq].inuse) {
struct ipmi_recv_msg *msg = intf->seq_table[seq].recv_msg;
if ((msg->addr.channel == channel) && (msg->msg.cmd == cmd)
&& (msg->msg.netfn == netfn)
&& (ipmi_addr_equal(addr, &(msg->addr)))) {
*recv_msg = msg;
intf->seq_table[seq].inuse = 0;
rv = 0;
}
}
spin_unlock_irqrestore(&(intf->seq_lock), flags);
return rv;
}
/* Start the timer for a specific sequence table entry. */
static int intf_start_seq_timer(ipmi_smi_t intf,
long msgid)
{
int rv = -ENODEV;
unsigned long flags;
unsigned char seq;
unsigned long seqid;
GET_SEQ_FROM_MSGID(msgid, seq, seqid);
spin_lock_irqsave(&(intf->seq_lock), flags);
/*
* We do this verification because the user can be deleted
* while a message is outstanding.
*/
if ((intf->seq_table[seq].inuse)
&& (intf->seq_table[seq].seqid == seqid)) {
struct seq_table *ent = &(intf->seq_table[seq]);
ent->timeout = ent->orig_timeout;
rv = 0;
}
spin_unlock_irqrestore(&(intf->seq_lock), flags);
return rv;
}
/* Got an error for the send message for a specific sequence number. */
static int intf_err_seq(ipmi_smi_t intf,
long msgid,
unsigned int err)
{
int rv = -ENODEV;
unsigned long flags;
unsigned char seq;
unsigned long seqid;
struct ipmi_recv_msg *msg = NULL;
GET_SEQ_FROM_MSGID(msgid, seq, seqid);
spin_lock_irqsave(&(intf->seq_lock), flags);
/*
* We do this verification because the user can be deleted
* while a message is outstanding.
*/
if ((intf->seq_table[seq].inuse)
&& (intf->seq_table[seq].seqid == seqid)) {
struct seq_table *ent = &(intf->seq_table[seq]);
ent->inuse = 0;
msg = ent->recv_msg;
rv = 0;
}
spin_unlock_irqrestore(&(intf->seq_lock), flags);
if (msg)
deliver_err_response(msg, err);
return rv;
}
int ipmi_create_user(unsigned int if_num,
const struct ipmi_user_hndl *handler,
void *handler_data,
ipmi_user_t *user)
{
unsigned long flags;
ipmi_user_t new_user;
int rv = 0;
ipmi_smi_t intf;
/*
* There is no module usecount here, because it's not
* required. Since this can only be used by and called from
* other modules, they will implicitly use this module, and
* thus this can't be removed unless the other modules are
* removed.
*/
if (handler == NULL)
return -EINVAL;
/*
* Make sure the driver is actually initialized, this handles
* problems with initialization order.
*/
if (!initialized) {
rv = ipmi_init_msghandler();
if (rv)
return rv;
/*
* The init code doesn't return an error if it was turned
* off, but it won't initialize. Check that.
*/
if (!initialized)
return -ENODEV;
}
new_user = kmalloc(sizeof(*new_user), GFP_KERNEL);
if (!new_user)
return -ENOMEM;
mutex_lock(&ipmi_interfaces_mutex);
list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
if (intf->intf_num == if_num)
goto found;
}
/* Not found, return an error */
rv = -EINVAL;
goto out_kfree;
found:
/* Note that each existing user holds a refcount to the interface. */
kref_get(&intf->refcount);
kref_init(&new_user->refcount);
new_user->handler = handler;
new_user->handler_data = handler_data;
new_user->intf = intf;
new_user->gets_events = false;
if (!try_module_get(intf->handlers->owner)) {
rv = -ENODEV;
goto out_kref;
}
if (intf->handlers->inc_usecount) {
rv = intf->handlers->inc_usecount(intf->send_info);
if (rv) {
module_put(intf->handlers->owner);
goto out_kref;
}
}
/*
* Hold the lock so intf->handlers is guaranteed to be good
* until now
*/
mutex_unlock(&ipmi_interfaces_mutex);
new_user->valid = true;
spin_lock_irqsave(&intf->seq_lock, flags);
list_add_rcu(&new_user->link, &intf->users);
spin_unlock_irqrestore(&intf->seq_lock, flags);
if (handler->ipmi_watchdog_pretimeout) {
/* User wants pretimeouts, so make sure to watch for them. */
if (atomic_inc_return(&intf->event_waiters) == 1)
need_waiter(intf);
}
*user = new_user;
return 0;
out_kref:
kref_put(&intf->refcount, intf_free);
out_kfree:
mutex_unlock(&ipmi_interfaces_mutex);
kfree(new_user);
return rv;
}
EXPORT_SYMBOL(ipmi_create_user);
int ipmi_get_smi_info(int if_num, struct ipmi_smi_info *data)
{
int rv = 0;
ipmi_smi_t intf;
const struct ipmi_smi_handlers *handlers;
mutex_lock(&ipmi_interfaces_mutex);
list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
if (intf->intf_num == if_num)
goto found;
}
/* Not found, return an error */
rv = -EINVAL;
mutex_unlock(&ipmi_interfaces_mutex);
return rv;
found:
handlers = intf->handlers;
rv = -ENOSYS;
if (handlers->get_smi_info)
rv = handlers->get_smi_info(intf->send_info, data);
mutex_unlock(&ipmi_interfaces_mutex);
return rv;
}
EXPORT_SYMBOL(ipmi_get_smi_info);
static void free_user(struct kref *ref)
{
ipmi_user_t user = container_of(ref, struct ipmi_user, refcount);
kfree(user);
}
int ipmi_destroy_user(ipmi_user_t user)
{
ipmi_smi_t intf = user->intf;
int i;
unsigned long flags;
struct cmd_rcvr *rcvr;
struct cmd_rcvr *rcvrs = NULL;
user->valid = false;
if (user->handler->ipmi_watchdog_pretimeout)
atomic_dec(&intf->event_waiters);
if (user->gets_events)
atomic_dec(&intf->event_waiters);
/* Remove the user from the interface's sequence table. */
spin_lock_irqsave(&intf->seq_lock, flags);
list_del_rcu(&user->link);
for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
if (intf->seq_table[i].inuse
&& (intf->seq_table[i].recv_msg->user == user)) {
intf->seq_table[i].inuse = 0;
ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
}
}
spin_unlock_irqrestore(&intf->seq_lock, flags);
/*
* Remove the user from the command receiver's table. First
* we build a list of everything (not using the standard link,
* since other things may be using it till we do
* synchronize_rcu()) then free everything in that list.
*/
mutex_lock(&intf->cmd_rcvrs_mutex);
list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
if (rcvr->user == user) {
list_del_rcu(&rcvr->link);
rcvr->next = rcvrs;
rcvrs = rcvr;
}
}
mutex_unlock(&intf->cmd_rcvrs_mutex);
synchronize_rcu();
while (rcvrs) {
rcvr = rcvrs;
rcvrs = rcvr->next;
kfree(rcvr);
}
mutex_lock(&ipmi_interfaces_mutex);
if (intf->handlers) {
module_put(intf->handlers->owner);
if (intf->handlers->dec_usecount)
intf->handlers->dec_usecount(intf->send_info);
}
mutex_unlock(&ipmi_interfaces_mutex);
kref_put(&intf->refcount, intf_free);
kref_put(&user->refcount, free_user);
return 0;
}
EXPORT_SYMBOL(ipmi_destroy_user);
void ipmi_get_version(ipmi_user_t user,
unsigned char *major,
unsigned char *minor)
{
*major = user->intf->ipmi_version_major;
*minor = user->intf->ipmi_version_minor;
}
EXPORT_SYMBOL(ipmi_get_version);
int ipmi_set_my_address(ipmi_user_t user,
unsigned int channel,
unsigned char address)
{
if (channel >= IPMI_MAX_CHANNELS)
return -EINVAL;
user->intf->channels[channel].address = address;
return 0;
}
EXPORT_SYMBOL(ipmi_set_my_address);
int ipmi_get_my_address(ipmi_user_t user,
unsigned int channel,
unsigned char *address)
{
if (channel >= IPMI_MAX_CHANNELS)
return -EINVAL;
*address = user->intf->channels[channel].address;
return 0;
}
EXPORT_SYMBOL(ipmi_get_my_address);
int ipmi_set_my_LUN(ipmi_user_t user,
unsigned int channel,
unsigned char LUN)
{
if (channel >= IPMI_MAX_CHANNELS)
return -EINVAL;
user->intf->channels[channel].lun = LUN & 0x3;
return 0;
}
EXPORT_SYMBOL(ipmi_set_my_LUN);
int ipmi_get_my_LUN(ipmi_user_t user,
unsigned int channel,
unsigned char *address)
{
if (channel >= IPMI_MAX_CHANNELS)
return -EINVAL;
*address = user->intf->channels[channel].lun;
return 0;
}
EXPORT_SYMBOL(ipmi_get_my_LUN);
int ipmi_get_maintenance_mode(ipmi_user_t user)
{
int mode;
unsigned long flags;
spin_lock_irqsave(&user->intf->maintenance_mode_lock, flags);
mode = user->intf->maintenance_mode;
spin_unlock_irqrestore(&user->intf->maintenance_mode_lock, flags);
return mode;
}
EXPORT_SYMBOL(ipmi_get_maintenance_mode);
static void maintenance_mode_update(ipmi_smi_t intf)
{
if (intf->handlers->set_maintenance_mode)
intf->handlers->set_maintenance_mode(
intf->send_info, intf->maintenance_mode_enable);
}
int ipmi_set_maintenance_mode(ipmi_user_t user, int mode)
{
int rv = 0;
unsigned long flags;
ipmi_smi_t intf = user->intf;
spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
if (intf->maintenance_mode != mode) {
switch (mode) {
case IPMI_MAINTENANCE_MODE_AUTO:
intf->maintenance_mode_enable
= (intf->auto_maintenance_timeout > 0);
break;
case IPMI_MAINTENANCE_MODE_OFF:
intf->maintenance_mode_enable = false;
break;
case IPMI_MAINTENANCE_MODE_ON:
intf->maintenance_mode_enable = true;
break;
default:
rv = -EINVAL;
goto out_unlock;
}
intf->maintenance_mode = mode;
maintenance_mode_update(intf);
}
out_unlock:
spin_unlock_irqrestore(&intf->maintenance_mode_lock, flags);
return rv;
}
EXPORT_SYMBOL(ipmi_set_maintenance_mode);
int ipmi_set_gets_events(ipmi_user_t user, bool val)
{
unsigned long flags;
ipmi_smi_t intf = user->intf;
struct ipmi_recv_msg *msg, *msg2;
struct list_head msgs;
INIT_LIST_HEAD(&msgs);
spin_lock_irqsave(&intf->events_lock, flags);
if (user->gets_events == val)
goto out;
user->gets_events = val;
if (val) {
if (atomic_inc_return(&intf->event_waiters) == 1)
need_waiter(intf);
} else {
atomic_dec(&intf->event_waiters);
}
if (intf->delivering_events)
/*
* Another thread is delivering events for this, so
* let it handle any new events.
*/
goto out;
/* Deliver any queued events. */
while (user->gets_events && !list_empty(&intf->waiting_events)) {
list_for_each_entry_safe(msg, msg2, &intf->waiting_events, link)
list_move_tail(&msg->link, &msgs);
intf->waiting_events_count = 0;
if (intf->event_msg_printed) {
printk(KERN_WARNING PFX "Event queue no longer"
" full\n");
intf->event_msg_printed = 0;
}
intf->delivering_events = 1;
spin_unlock_irqrestore(&intf->events_lock, flags);
list_for_each_entry_safe(msg, msg2, &msgs, link) {
msg->user = user;
kref_get(&user->refcount);
deliver_response(msg);
}
spin_lock_irqsave(&intf->events_lock, flags);
intf->delivering_events = 0;
}
out:
spin_unlock_irqrestore(&intf->events_lock, flags);
return 0;
}
EXPORT_SYMBOL(ipmi_set_gets_events);
static struct cmd_rcvr *find_cmd_rcvr(ipmi_smi_t intf,
unsigned char netfn,
unsigned char cmd,
unsigned char chan)
{
struct cmd_rcvr *rcvr;
list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
&& (rcvr->chans & (1 << chan)))
return rcvr;
}
return NULL;
}
static int is_cmd_rcvr_exclusive(ipmi_smi_t intf,
unsigned char netfn,
unsigned char cmd,
unsigned int chans)
{
struct cmd_rcvr *rcvr;
list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
&& (rcvr->chans & chans))
return 0;
}
return 1;
}
int ipmi_register_for_cmd(ipmi_user_t user,
unsigned char netfn,
unsigned char cmd,
unsigned int chans)
{
ipmi_smi_t intf = user->intf;
struct cmd_rcvr *rcvr;
int rv = 0;
rcvr = kmalloc(sizeof(*rcvr), GFP_KERNEL);
if (!rcvr)
return -ENOMEM;
rcvr->cmd = cmd;
rcvr->netfn = netfn;
rcvr->chans = chans;
rcvr->user = user;
mutex_lock(&intf->cmd_rcvrs_mutex);
/* Make sure the command/netfn is not already registered. */
if (!is_cmd_rcvr_exclusive(intf, netfn, cmd, chans)) {
rv = -EBUSY;
goto out_unlock;
}
if (atomic_inc_return(&intf->event_waiters) == 1)
need_waiter(intf);
list_add_rcu(&rcvr->link, &intf->cmd_rcvrs);
out_unlock:
mutex_unlock(&intf->cmd_rcvrs_mutex);
if (rv)
kfree(rcvr);
return rv;
}
EXPORT_SYMBOL(ipmi_register_for_cmd);
int ipmi_unregister_for_cmd(ipmi_user_t user,
unsigned char netfn,
unsigned char cmd,
unsigned int chans)
{
ipmi_smi_t intf = user->intf;
struct cmd_rcvr *rcvr;
struct cmd_rcvr *rcvrs = NULL;
int i, rv = -ENOENT;
mutex_lock(&intf->cmd_rcvrs_mutex);
for (i = 0; i < IPMI_NUM_CHANNELS; i++) {
if (((1 << i) & chans) == 0)
continue;
rcvr = find_cmd_rcvr(intf, netfn, cmd, i);
if (rcvr == NULL)
continue;
if (rcvr->user == user) {
rv = 0;
rcvr->chans &= ~chans;
if (rcvr->chans == 0) {
list_del_rcu(&rcvr->link);
rcvr->next = rcvrs;
rcvrs = rcvr;
}
}
}
mutex_unlock(&intf->cmd_rcvrs_mutex);
synchronize_rcu();
while (rcvrs) {
atomic_dec(&intf->event_waiters);
rcvr = rcvrs;
rcvrs = rcvr->next;
kfree(rcvr);
}
return rv;
}
EXPORT_SYMBOL(ipmi_unregister_for_cmd);
static unsigned char
ipmb_checksum(unsigned char *data, int size)
{
unsigned char csum = 0;
for (; size > 0; size--, data++)
csum += *data;
return -csum;
}
static inline void format_ipmb_msg(struct ipmi_smi_msg *smi_msg,
struct kernel_ipmi_msg *msg,
struct ipmi_ipmb_addr *ipmb_addr,
long msgid,
unsigned char ipmb_seq,
int broadcast,
unsigned char source_address,
unsigned char source_lun)
{
int i = broadcast;
/* Format the IPMB header data. */
smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
smi_msg->data[1] = IPMI_SEND_MSG_CMD;
smi_msg->data[2] = ipmb_addr->channel;
if (broadcast)
smi_msg->data[3] = 0;
smi_msg->data[i+3] = ipmb_addr->slave_addr;
smi_msg->data[i+4] = (msg->netfn << 2) | (ipmb_addr->lun & 0x3);
smi_msg->data[i+5] = ipmb_checksum(&(smi_msg->data[i+3]), 2);
smi_msg->data[i+6] = source_address;
smi_msg->data[i+7] = (ipmb_seq << 2) | source_lun;
smi_msg->data[i+8] = msg->cmd;
/* Now tack on the data to the message. */
if (msg->data_len > 0)
memcpy(&(smi_msg->data[i+9]), msg->data,
msg->data_len);
smi_msg->data_size = msg->data_len + 9;
/* Now calculate the checksum and tack it on. */
smi_msg->data[i+smi_msg->data_size]
= ipmb_checksum(&(smi_msg->data[i+6]),
smi_msg->data_size-6);
/*
* Add on the checksum size and the offset from the
* broadcast.
*/
smi_msg->data_size += 1 + i;
smi_msg->msgid = msgid;
}
static inline void format_lan_msg(struct ipmi_smi_msg *smi_msg,
struct kernel_ipmi_msg *msg,
struct ipmi_lan_addr *lan_addr,
long msgid,
unsigned char ipmb_seq,
unsigned char source_lun)
{
/* Format the IPMB header data. */
smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
smi_msg->data[1] = IPMI_SEND_MSG_CMD;
smi_msg->data[2] = lan_addr->channel;
smi_msg->data[3] = lan_addr->session_handle;
smi_msg->data[4] = lan_addr->remote_SWID;
smi_msg->data[5] = (msg->netfn << 2) | (lan_addr->lun & 0x3);
smi_msg->data[6] = ipmb_checksum(&(smi_msg->data[4]), 2);
smi_msg->data[7] = lan_addr->local_SWID;
smi_msg->data[8] = (ipmb_seq << 2) | source_lun;
smi_msg->data[9] = msg->cmd;
/* Now tack on the data to the message. */
if (msg->data_len > 0)
memcpy(&(smi_msg->data[10]), msg->data,
msg->data_len);
smi_msg->data_size = msg->data_len + 10;
/* Now calculate the checksum and tack it on. */
smi_msg->data[smi_msg->data_size]
= ipmb_checksum(&(smi_msg->data[7]),
smi_msg->data_size-7);
/*
* Add on the checksum size and the offset from the
* broadcast.
*/
smi_msg->data_size += 1;
smi_msg->msgid = msgid;
}
static struct ipmi_smi_msg *smi_add_send_msg(ipmi_smi_t intf,
struct ipmi_smi_msg *smi_msg,
int priority)
{
if (intf->curr_msg) {
if (priority > 0)
list_add_tail(&smi_msg->link, &intf->hp_xmit_msgs);
else
list_add_tail(&smi_msg->link, &intf->xmit_msgs);
smi_msg = NULL;
} else {
intf->curr_msg = smi_msg;
}
return smi_msg;
}
static void smi_send(ipmi_smi_t intf, const struct ipmi_smi_handlers *handlers,
struct ipmi_smi_msg *smi_msg, int priority)
{
int run_to_completion = intf->run_to_completion;
if (run_to_completion) {
smi_msg = smi_add_send_msg(intf, smi_msg, priority);
} else {
unsigned long flags;
spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
smi_msg = smi_add_send_msg(intf, smi_msg, priority);
spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
}
if (smi_msg)
handlers->sender(intf->send_info, smi_msg);
}
/*
* Separate from ipmi_request so that the user does not have to be
* supplied in certain circumstances (mainly at panic time). If
* messages are supplied, they will be freed, even if an error
* occurs.
*/
static int i_ipmi_request(ipmi_user_t user,
ipmi_smi_t intf,
struct ipmi_addr *addr,
long msgid,
struct kernel_ipmi_msg *msg,
void *user_msg_data,
void *supplied_smi,
struct ipmi_recv_msg *supplied_recv,
int priority,
unsigned char source_address,
unsigned char source_lun,
int retries,
unsigned int retry_time_ms)
{
int rv = 0;
struct ipmi_smi_msg *smi_msg;
struct ipmi_recv_msg *recv_msg;
unsigned long flags;
if (supplied_recv)
recv_msg = supplied_recv;
else {
recv_msg = ipmi_alloc_recv_msg();
if (recv_msg == NULL)
return -ENOMEM;
}
recv_msg->user_msg_data = user_msg_data;
if (supplied_smi)
smi_msg = (struct ipmi_smi_msg *) supplied_smi;
else {
smi_msg = ipmi_alloc_smi_msg();
if (smi_msg == NULL) {
ipmi_free_recv_msg(recv_msg);
return -ENOMEM;
}
}
rcu_read_lock();
if (intf->in_shutdown) {
rv = -ENODEV;
goto out_err;
}
recv_msg->user = user;
if (user)
kref_get(&user->refcount);
recv_msg->msgid = msgid;
/*
* Store the message to send in the receive message so timeout
* responses can get the proper response data.
*/
recv_msg->msg = *msg;
if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
struct ipmi_system_interface_addr *smi_addr;
if (msg->netfn & 1) {
/* Responses are not allowed to the SMI. */
rv = -EINVAL;
goto out_err;
}
smi_addr = (struct ipmi_system_interface_addr *) addr;
if (smi_addr->lun > 3) {
ipmi_inc_stat(intf, sent_invalid_commands);
rv = -EINVAL;
goto out_err;
}
memcpy(&recv_msg->addr, smi_addr, sizeof(*smi_addr));
if ((msg->netfn == IPMI_NETFN_APP_REQUEST)
&& ((msg->cmd == IPMI_SEND_MSG_CMD)
|| (msg->cmd == IPMI_GET_MSG_CMD)
|| (msg->cmd == IPMI_READ_EVENT_MSG_BUFFER_CMD))) {
/*
* We don't let the user do these, since we manage
* the sequence numbers.
*/
ipmi_inc_stat(intf, sent_invalid_commands);
rv = -EINVAL;
goto out_err;
}
if (((msg->netfn == IPMI_NETFN_APP_REQUEST)
&& ((msg->cmd == IPMI_COLD_RESET_CMD)
|| (msg->cmd == IPMI_WARM_RESET_CMD)))
|| (msg->netfn == IPMI_NETFN_FIRMWARE_REQUEST)) {
spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
intf->auto_maintenance_timeout
= IPMI_MAINTENANCE_MODE_TIMEOUT;
if (!intf->maintenance_mode
&& !intf->maintenance_mode_enable) {
intf->maintenance_mode_enable = true;
maintenance_mode_update(intf);
}
spin_unlock_irqrestore(&intf->maintenance_mode_lock,
flags);
}
if ((msg->data_len + 2) > IPMI_MAX_MSG_LENGTH) {
ipmi_inc_stat(intf, sent_invalid_commands);
rv = -EMSGSIZE;
goto out_err;
}
smi_msg->data[0] = (msg->netfn << 2) | (smi_addr->lun & 0x3);
smi_msg->data[1] = msg->cmd;
smi_msg->msgid = msgid;
smi_msg->user_data = recv_msg;
if (msg->data_len > 0)
memcpy(&(smi_msg->data[2]), msg->data, msg->data_len);
smi_msg->data_size = msg->data_len + 2;
ipmi_inc_stat(intf, sent_local_commands);
} else if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
struct ipmi_ipmb_addr *ipmb_addr;
unsigned char ipmb_seq;
long seqid;
int broadcast = 0;
if (addr->channel >= IPMI_MAX_CHANNELS) {
ipmi_inc_stat(intf, sent_invalid_commands);
rv = -EINVAL;
goto out_err;
}
if (intf->channels[addr->channel].medium
!= IPMI_CHANNEL_MEDIUM_IPMB) {
ipmi_inc_stat(intf, sent_invalid_commands);
rv = -EINVAL;
goto out_err;
}
if (retries < 0) {
if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE)
retries = 0; /* Don't retry broadcasts. */
else
retries = 4;
}
if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE) {
/*
* Broadcasts add a zero at the beginning of the
* message, but otherwise is the same as an IPMB
* address.
*/
addr->addr_type = IPMI_IPMB_ADDR_TYPE;
broadcast = 1;
}
/* Default to 1 second retries. */
if (retry_time_ms == 0)
retry_time_ms = 1000;
/*
* 9 for the header and 1 for the checksum, plus
* possibly one for the broadcast.
*/
if ((msg->data_len + 10 + broadcast) > IPMI_MAX_MSG_LENGTH) {
ipmi_inc_stat(intf, sent_invalid_commands);
rv = -EMSGSIZE;
goto out_err;
}
ipmb_addr = (struct ipmi_ipmb_addr *) addr;
if (ipmb_addr->lun > 3) {
ipmi_inc_stat(intf, sent_invalid_commands);
rv = -EINVAL;
goto out_err;
}
memcpy(&recv_msg->addr, ipmb_addr, sizeof(*ipmb_addr));
if (recv_msg->msg.netfn & 0x1) {
/*
* It's a response, so use the user's sequence
* from msgid.
*/
ipmi_inc_stat(intf, sent_ipmb_responses);
format_ipmb_msg(smi_msg, msg, ipmb_addr, msgid,
msgid, broadcast,
source_address, source_lun);
/*
* Save the receive message so we can use it
* to deliver the response.
*/
smi_msg->user_data = recv_msg;
} else {
/* It's a command, so get a sequence for it. */
spin_lock_irqsave(&(intf->seq_lock), flags);
/*
* Create a sequence number with a 1 second
* timeout and 4 retries.
*/
rv = intf_next_seq(intf,
recv_msg,
retry_time_ms,
retries,
broadcast,
&ipmb_seq,
&seqid);
if (rv) {
/*
* We have used up all the sequence numbers,
* probably, so abort.
*/
spin_unlock_irqrestore(&(intf->seq_lock),
flags);
goto out_err;
}
ipmi_inc_stat(intf, sent_ipmb_commands);
/*
* Store the sequence number in the message,
* so that when the send message response
* comes back we can start the timer.
*/
format_ipmb_msg(smi_msg, msg, ipmb_addr,
STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
ipmb_seq, broadcast,
source_address, source_lun);
/*
* Copy the message into the recv message data, so we
* can retransmit it later if necessary.
*/
memcpy(recv_msg->msg_data, smi_msg->data,
smi_msg->data_size);
recv_msg->msg.data = recv_msg->msg_data;
recv_msg->msg.data_len = smi_msg->data_size;
/*
* We don't unlock until here, because we need
* to copy the completed message into the
* recv_msg before we release the lock.
* Otherwise, race conditions may bite us. I
* know that's pretty paranoid, but I prefer
* to be correct.
*/
spin_unlock_irqrestore(&(intf->seq_lock), flags);
}
} else if (is_lan_addr(addr)) {
struct ipmi_lan_addr *lan_addr;
unsigned char ipmb_seq;
long seqid;
if (addr->channel >= IPMI_MAX_CHANNELS) {
ipmi_inc_stat(intf, sent_invalid_commands);
rv = -EINVAL;
goto out_err;
}
if ((intf->channels[addr->channel].medium
!= IPMI_CHANNEL_MEDIUM_8023LAN)
&& (intf->channels[addr->channel].medium
!= IPMI_CHANNEL_MEDIUM_ASYNC)) {
ipmi_inc_stat(intf, sent_invalid_commands);
rv = -EINVAL;
goto out_err;
}
retries = 4;
/* Default to 1 second retries. */
if (retry_time_ms == 0)
retry_time_ms = 1000;
/* 11 for the header and 1 for the checksum. */
if ((msg->data_len + 12) > IPMI_MAX_MSG_LENGTH) {
ipmi_inc_stat(intf, sent_invalid_commands);
rv = -EMSGSIZE;
goto out_err;
}
lan_addr = (struct ipmi_lan_addr *) addr;
if (lan_addr->lun > 3) {
ipmi_inc_stat(intf, sent_invalid_commands);
rv = -EINVAL;
goto out_err;
}
memcpy(&recv_msg->addr, lan_addr, sizeof(*lan_addr));
if (recv_msg->msg.netfn & 0x1) {
/*
* It's a response, so use the user's sequence
* from msgid.
*/
ipmi_inc_stat(intf, sent_lan_responses);
format_lan_msg(smi_msg, msg, lan_addr, msgid,
msgid, source_lun);
/*
* Save the receive message so we can use it
* to deliver the response.
*/
smi_msg->user_data = recv_msg;
} else {
/* It's a command, so get a sequence for it. */
spin_lock_irqsave(&(intf->seq_lock), flags);
/*
* Create a sequence number with a 1 second
* timeout and 4 retries.
*/
rv = intf_next_seq(intf,
recv_msg,
retry_time_ms,
retries,
0,
&ipmb_seq,
&seqid);
if (rv) {
/*
* We have used up all the sequence numbers,
* probably, so abort.
*/
spin_unlock_irqrestore(&(intf->seq_lock),
flags);
goto out_err;
}
ipmi_inc_stat(intf, sent_lan_commands);
/*
* Store the sequence number in the message,
* so that when the send message response
* comes back we can start the timer.
*/
format_lan_msg(smi_msg, msg, lan_addr,
STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
ipmb_seq, source_lun);
/*
* Copy the message into the recv message data, so we
* can retransmit it later if necessary.
*/
memcpy(recv_msg->msg_data, smi_msg->data,
smi_msg->data_size);
recv_msg->msg.data = recv_msg->msg_data;
recv_msg->msg.data_len = smi_msg->data_size;
/*
* We don't unlock until here, because we need
* to copy the completed message into the
* recv_msg before we release the lock.
* Otherwise, race conditions may bite us. I
* know that's pretty paranoid, but I prefer
* to be correct.
*/
spin_unlock_irqrestore(&(intf->seq_lock), flags);
}
} else {
/* Unknown address type. */
ipmi_inc_stat(intf, sent_invalid_commands);
rv = -EINVAL;
goto out_err;
}
#ifdef DEBUG_MSGING
{
int m;
for (m = 0; m < smi_msg->data_size; m++)
printk(" %2.2x", smi_msg->data[m]);
printk("\n");
}
#endif
smi_send(intf, intf->handlers, smi_msg, priority);
rcu_read_unlock();
return 0;
out_err:
rcu_read_unlock();
ipmi_free_smi_msg(smi_msg);
ipmi_free_recv_msg(recv_msg);
return rv;
}
static int check_addr(ipmi_smi_t intf,
struct ipmi_addr *addr,
unsigned char *saddr,
unsigned char *lun)
{
if (addr->channel >= IPMI_MAX_CHANNELS)
return -EINVAL;
*lun = intf->channels[addr->channel].lun;
*saddr = intf->channels[addr->channel].address;
return 0;
}
int ipmi_request_settime(ipmi_user_t user,
struct ipmi_addr *addr,
long msgid,
struct kernel_ipmi_msg *msg,
void *user_msg_data,
int priority,
int retries,
unsigned int retry_time_ms)
{
unsigned char saddr = 0, lun = 0;
int rv;
if (!user)
return -EINVAL;
rv = check_addr(user->intf, addr, &saddr, &lun);
if (rv)
return rv;
return i_ipmi_request(user,
user->intf,
addr,
msgid,
msg,
user_msg_data,
NULL, NULL,
priority,
saddr,
lun,
retries,
retry_time_ms);
}
EXPORT_SYMBOL(ipmi_request_settime);
int ipmi_request_supply_msgs(ipmi_user_t user,
struct ipmi_addr *addr,
long msgid,
struct kernel_ipmi_msg *msg,
void *user_msg_data,
void *supplied_smi,
struct ipmi_recv_msg *supplied_recv,
int priority)
{
unsigned char saddr = 0, lun = 0;
int rv;
if (!user)
return -EINVAL;
rv = check_addr(user->intf, addr, &saddr, &lun);
if (rv)
return rv;
return i_ipmi_request(user,
user->intf,
addr,
msgid,
msg,
user_msg_data,
supplied_smi,
supplied_recv,
priority,
saddr,
lun,
-1, 0);
}
EXPORT_SYMBOL(ipmi_request_supply_msgs);
#ifdef CONFIG_PROC_FS
static int smi_ipmb_proc_show(struct seq_file *m, void *v)
{
ipmi_smi_t intf = m->private;
int i;
seq_printf(m, "%x", intf->channels[0].address);
for (i = 1; i < IPMI_MAX_CHANNELS; i++)
seq_printf(m, " %x", intf->channels[i].address);
seq_putc(m, '\n');
return 0;
}
static int smi_ipmb_proc_open(struct inode *inode, struct file *file)
{
return single_open(file, smi_ipmb_proc_show, PDE_DATA(inode));
}
static const struct file_operations smi_ipmb_proc_ops = {
.open = smi_ipmb_proc_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static int smi_version_proc_show(struct seq_file *m, void *v)
{
ipmi_smi_t intf = m->private;
seq_printf(m, "%u.%u\n",
ipmi_version_major(&intf->bmc->id),
ipmi_version_minor(&intf->bmc->id));
return 0;
}
static int smi_version_proc_open(struct inode *inode, struct file *file)
{
return single_open(file, smi_version_proc_show, PDE_DATA(inode));
}
static const struct file_operations smi_version_proc_ops = {
.open = smi_version_proc_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static int smi_stats_proc_show(struct seq_file *m, void *v)
{
ipmi_smi_t intf = m->private;
seq_printf(m, "sent_invalid_commands: %u\n",
ipmi_get_stat(intf, sent_invalid_commands));
seq_printf(m, "sent_local_commands: %u\n",
ipmi_get_stat(intf, sent_local_commands));
seq_printf(m, "handled_local_responses: %u\n",
ipmi_get_stat(intf, handled_local_responses));
seq_printf(m, "unhandled_local_responses: %u\n",
ipmi_get_stat(intf, unhandled_local_responses));
seq_printf(m, "sent_ipmb_commands: %u\n",
ipmi_get_stat(intf, sent_ipmb_commands));
seq_printf(m, "sent_ipmb_command_errs: %u\n",
ipmi_get_stat(intf, sent_ipmb_command_errs));
seq_printf(m, "retransmitted_ipmb_commands: %u\n",
ipmi_get_stat(intf, retransmitted_ipmb_commands));
seq_printf(m, "timed_out_ipmb_commands: %u\n",
ipmi_get_stat(intf, timed_out_ipmb_commands));
seq_printf(m, "timed_out_ipmb_broadcasts: %u\n",
ipmi_get_stat(intf, timed_out_ipmb_broadcasts));
seq_printf(m, "sent_ipmb_responses: %u\n",
ipmi_get_stat(intf, sent_ipmb_responses));
seq_printf(m, "handled_ipmb_responses: %u\n",
ipmi_get_stat(intf, handled_ipmb_responses));
seq_printf(m, "invalid_ipmb_responses: %u\n",
ipmi_get_stat(intf, invalid_ipmb_responses));
seq_printf(m, "unhandled_ipmb_responses: %u\n",
ipmi_get_stat(intf, unhandled_ipmb_responses));
seq_printf(m, "sent_lan_commands: %u\n",
ipmi_get_stat(intf, sent_lan_commands));
seq_printf(m, "sent_lan_command_errs: %u\n",
ipmi_get_stat(intf, sent_lan_command_errs));
seq_printf(m, "retransmitted_lan_commands: %u\n",
ipmi_get_stat(intf, retransmitted_lan_commands));
seq_printf(m, "timed_out_lan_commands: %u\n",
ipmi_get_stat(intf, timed_out_lan_commands));
seq_printf(m, "sent_lan_responses: %u\n",
ipmi_get_stat(intf, sent_lan_responses));
seq_printf(m, "handled_lan_responses: %u\n",
ipmi_get_stat(intf, handled_lan_responses));
seq_printf(m, "invalid_lan_responses: %u\n",
ipmi_get_stat(intf, invalid_lan_responses));
seq_printf(m, "unhandled_lan_responses: %u\n",
ipmi_get_stat(intf, unhandled_lan_responses));
seq_printf(m, "handled_commands: %u\n",
ipmi_get_stat(intf, handled_commands));
seq_printf(m, "invalid_commands: %u\n",
ipmi_get_stat(intf, invalid_commands));
seq_printf(m, "unhandled_commands: %u\n",
ipmi_get_stat(intf, unhandled_commands));
seq_printf(m, "invalid_events: %u\n",
ipmi_get_stat(intf, invalid_events));
seq_printf(m, "events: %u\n",
ipmi_get_stat(intf, events));
seq_printf(m, "failed rexmit LAN msgs: %u\n",
ipmi_get_stat(intf, dropped_rexmit_lan_commands));
seq_printf(m, "failed rexmit IPMB msgs: %u\n",
ipmi_get_stat(intf, dropped_rexmit_ipmb_commands));
return 0;
}
static int smi_stats_proc_open(struct inode *inode, struct file *file)
{
return single_open(file, smi_stats_proc_show, PDE_DATA(inode));
}
static const struct file_operations smi_stats_proc_ops = {
.open = smi_stats_proc_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
#endif /* CONFIG_PROC_FS */
int ipmi_smi_add_proc_entry(ipmi_smi_t smi, char *name,
const struct file_operations *proc_ops,
void *data)
{
int rv = 0;
#ifdef CONFIG_PROC_FS
struct proc_dir_entry *file;
struct ipmi_proc_entry *entry;
/* Create a list element. */
entry = kmalloc(sizeof(*entry), GFP_KERNEL);
if (!entry)
return -ENOMEM;
entry->name = kstrdup(name, GFP_KERNEL);
if (!entry->name) {
kfree(entry);
return -ENOMEM;
}
file = proc_create_data(name, 0, smi->proc_dir, proc_ops, data);
if (!file) {
kfree(entry->name);
kfree(entry);
rv = -ENOMEM;
} else {
mutex_lock(&smi->proc_entry_lock);
/* Stick it on the list. */
entry->next = smi->proc_entries;
smi->proc_entries = entry;
mutex_unlock(&smi->proc_entry_lock);
}
#endif /* CONFIG_PROC_FS */
return rv;
}
EXPORT_SYMBOL(ipmi_smi_add_proc_entry);
static int add_proc_entries(ipmi_smi_t smi, int num)
{
int rv = 0;
#ifdef CONFIG_PROC_FS
sprintf(smi->proc_dir_name, "%d", num);
smi->proc_dir = proc_mkdir(smi->proc_dir_name, proc_ipmi_root);
if (!smi->proc_dir)
rv = -ENOMEM;
if (rv == 0)
rv = ipmi_smi_add_proc_entry(smi, "stats",
&smi_stats_proc_ops,
smi);
if (rv == 0)
rv = ipmi_smi_add_proc_entry(smi, "ipmb",
&smi_ipmb_proc_ops,
smi);
if (rv == 0)
rv = ipmi_smi_add_proc_entry(smi, "version",
&smi_version_proc_ops,
smi);
#endif /* CONFIG_PROC_FS */
return rv;
}
static void remove_proc_entries(ipmi_smi_t smi)
{
#ifdef CONFIG_PROC_FS
struct ipmi_proc_entry *entry;
mutex_lock(&smi->proc_entry_lock);
while (smi->proc_entries) {
entry = smi->proc_entries;
smi->proc_entries = entry->next;
remove_proc_entry(entry->name, smi->proc_dir);
kfree(entry->name);
kfree(entry);
}
mutex_unlock(&smi->proc_entry_lock);
remove_proc_entry(smi->proc_dir_name, proc_ipmi_root);
#endif /* CONFIG_PROC_FS */
}
static int __find_bmc_guid(struct device *dev, void *data)
{
unsigned char *id = data;
struct bmc_device *bmc = to_bmc_device(dev);
return memcmp(bmc->guid, id, 16) == 0;
}
static struct bmc_device *ipmi_find_bmc_guid(struct device_driver *drv,
unsigned char *guid)
{
struct device *dev;
dev = driver_find_device(drv, NULL, guid, __find_bmc_guid);
if (dev)
return to_bmc_device(dev);
else
return NULL;
}
struct prod_dev_id {
unsigned int product_id;
unsigned char device_id;
};
static int __find_bmc_prod_dev_id(struct device *dev, void *data)
{
struct prod_dev_id *id = data;
struct bmc_device *bmc = to_bmc_device(dev);
return (bmc->id.product_id == id->product_id
&& bmc->id.device_id == id->device_id);
}
static struct bmc_device *ipmi_find_bmc_prod_dev_id(
struct device_driver *drv,
unsigned int product_id, unsigned char device_id)
{
struct prod_dev_id id = {
.product_id = product_id,
.device_id = device_id,
};
struct device *dev;
dev = driver_find_device(drv, NULL, &id, __find_bmc_prod_dev_id);
if (dev)
return to_bmc_device(dev);
else
return NULL;
}
static ssize_t device_id_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct bmc_device *bmc = to_bmc_device(dev);
return snprintf(buf, 10, "%u\n", bmc->id.device_id);
}
static DEVICE_ATTR(device_id, S_IRUGO, device_id_show, NULL);
static ssize_t provides_device_sdrs_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct bmc_device *bmc = to_bmc_device(dev);
return snprintf(buf, 10, "%u\n",
(bmc->id.device_revision & 0x80) >> 7);
}
static DEVICE_ATTR(provides_device_sdrs, S_IRUGO, provides_device_sdrs_show,
NULL);
static ssize_t revision_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct bmc_device *bmc = to_bmc_device(dev);
return snprintf(buf, 20, "%u\n",
bmc->id.device_revision & 0x0F);
}
static DEVICE_ATTR(revision, S_IRUGO, revision_show, NULL);
static ssize_t firmware_revision_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct bmc_device *bmc = to_bmc_device(dev);
return snprintf(buf, 20, "%u.%x\n", bmc->id.firmware_revision_1,
bmc->id.firmware_revision_2);
}
static DEVICE_ATTR(firmware_revision, S_IRUGO, firmware_revision_show, NULL);
static ssize_t ipmi_version_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct bmc_device *bmc = to_bmc_device(dev);
return snprintf(buf, 20, "%u.%u\n",
ipmi_version_major(&bmc->id),
ipmi_version_minor(&bmc->id));
}
static DEVICE_ATTR(ipmi_version, S_IRUGO, ipmi_version_show, NULL);
static ssize_t add_dev_support_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct bmc_device *bmc = to_bmc_device(dev);
return snprintf(buf, 10, "0x%02x\n",
bmc->id.additional_device_support);
}
static DEVICE_ATTR(additional_device_support, S_IRUGO, add_dev_support_show,
NULL);
static ssize_t manufacturer_id_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct bmc_device *bmc = to_bmc_device(dev);
return snprintf(buf, 20, "0x%6.6x\n", bmc->id.manufacturer_id);
}
static DEVICE_ATTR(manufacturer_id, S_IRUGO, manufacturer_id_show, NULL);
static ssize_t product_id_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct bmc_device *bmc = to_bmc_device(dev);
return snprintf(buf, 10, "0x%4.4x\n", bmc->id.product_id);
}
static DEVICE_ATTR(product_id, S_IRUGO, product_id_show, NULL);
static ssize_t aux_firmware_rev_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct bmc_device *bmc = to_bmc_device(dev);
return snprintf(buf, 21, "0x%02x 0x%02x 0x%02x 0x%02x\n",
bmc->id.aux_firmware_revision[3],
bmc->id.aux_firmware_revision[2],
bmc->id.aux_firmware_revision[1],
bmc->id.aux_firmware_revision[0]);
}
static DEVICE_ATTR(aux_firmware_revision, S_IRUGO, aux_firmware_rev_show, NULL);
static ssize_t guid_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct bmc_device *bmc = to_bmc_device(dev);
return snprintf(buf, 100, "%Lx%Lx\n",
(long long) bmc->guid[0],
(long long) bmc->guid[8]);
}
static DEVICE_ATTR(guid, S_IRUGO, guid_show, NULL);
static struct attribute *bmc_dev_attrs[] = {
&dev_attr_device_id.attr,
&dev_attr_provides_device_sdrs.attr,
&dev_attr_revision.attr,
&dev_attr_firmware_revision.attr,
&dev_attr_ipmi_version.attr,
&dev_attr_additional_device_support.attr,
&dev_attr_manufacturer_id.attr,
&dev_attr_product_id.attr,
&dev_attr_aux_firmware_revision.attr,
&dev_attr_guid.attr,
NULL
};
static umode_t bmc_dev_attr_is_visible(struct kobject *kobj,
struct attribute *attr, int idx)
{
struct device *dev = kobj_to_dev(kobj);
struct bmc_device *bmc = to_bmc_device(dev);
umode_t mode = attr->mode;
if (attr == &dev_attr_aux_firmware_revision.attr)
return bmc->id.aux_firmware_revision_set ? mode : 0;
if (attr == &dev_attr_guid.attr)
return bmc->guid_set ? mode : 0;
return mode;
}
static struct attribute_group bmc_dev_attr_group = {
.attrs = bmc_dev_attrs,
.is_visible = bmc_dev_attr_is_visible,
};
static const struct attribute_group *bmc_dev_attr_groups[] = {
&bmc_dev_attr_group,
NULL
};
static struct device_type bmc_device_type = {
.groups = bmc_dev_attr_groups,
};
static void
release_bmc_device(struct device *dev)
{
kfree(to_bmc_device(dev));
}
static void
cleanup_bmc_device(struct kref *ref)
{
struct bmc_device *bmc = container_of(ref, struct bmc_device, usecount);
platform_device_unregister(&bmc->pdev);
}
static void ipmi_bmc_unregister(ipmi_smi_t intf)
{
struct bmc_device *bmc = intf->bmc;
sysfs_remove_link(&intf->si_dev->kobj, "bmc");
if (intf->my_dev_name) {
sysfs_remove_link(&bmc->pdev.dev.kobj, intf->my_dev_name);
kfree(intf->my_dev_name);
intf->my_dev_name = NULL;
}
mutex_lock(&ipmidriver_mutex);
kref_put(&bmc->usecount, cleanup_bmc_device);
intf->bmc = NULL;
mutex_unlock(&ipmidriver_mutex);
}
static int ipmi_bmc_register(ipmi_smi_t intf, int ifnum)
{
int rv;
struct bmc_device *bmc = intf->bmc;
struct bmc_device *old_bmc;
mutex_lock(&ipmidriver_mutex);
/*
* Try to find if there is an bmc_device struct
* representing the interfaced BMC already
*/
if (bmc->guid_set)
old_bmc = ipmi_find_bmc_guid(&ipmidriver.driver, bmc->guid);
else
old_bmc = ipmi_find_bmc_prod_dev_id(&ipmidriver.driver,
bmc->id.product_id,
bmc->id.device_id);
/*
* If there is already an bmc_device, free the new one,
* otherwise register the new BMC device
*/
if (old_bmc) {
kfree(bmc);
intf->bmc = old_bmc;
bmc = old_bmc;
kref_get(&bmc->usecount);
mutex_unlock(&ipmidriver_mutex);
printk(KERN_INFO
"ipmi: interfacing existing BMC (man_id: 0x%6.6x,"
" prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
bmc->id.manufacturer_id,
bmc->id.product_id,
bmc->id.device_id);
} else {
unsigned char orig_dev_id = bmc->id.device_id;
int warn_printed = 0;
snprintf(bmc->name, sizeof(bmc->name),
"ipmi_bmc.%4.4x", bmc->id.product_id);
bmc->pdev.name = bmc->name;
while (ipmi_find_bmc_prod_dev_id(&ipmidriver.driver,
bmc->id.product_id,
bmc->id.device_id)) {
if (!warn_printed) {
printk(KERN_WARNING PFX
"This machine has two different BMCs"
" with the same product id and device"
" id. This is an error in the"
" firmware, but incrementing the"
" device id to work around the problem."
" Prod ID = 0x%x, Dev ID = 0x%x\n",
bmc->id.product_id, bmc->id.device_id);
warn_printed = 1;
}
bmc->id.device_id++; /* Wraps at 255 */
if (bmc->id.device_id == orig_dev_id) {
printk(KERN_ERR PFX
"Out of device ids!\n");
break;
}
}
bmc->pdev.dev.driver = &ipmidriver.driver;
bmc->pdev.id = bmc->id.device_id;
bmc->pdev.dev.release = release_bmc_device;
bmc->pdev.dev.type = &bmc_device_type;
kref_init(&bmc->usecount);
rv = platform_device_register(&bmc->pdev);
mutex_unlock(&ipmidriver_mutex);
if (rv) {
put_device(&bmc->pdev.dev);
printk(KERN_ERR
"ipmi_msghandler:"
" Unable to register bmc device: %d\n",
rv);
/*
* Don't go to out_err, you can only do that if
* the device is registered already.
*/
return rv;
}
dev_info(intf->si_dev, "Found new BMC (man_id: 0x%6.6x, "
"prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
bmc->id.manufacturer_id,
bmc->id.product_id,
bmc->id.device_id);
}
/*
* create symlink from system interface device to bmc device
* and back.
*/
rv = sysfs_create_link(&intf->si_dev->kobj, &bmc->pdev.dev.kobj, "bmc");
if (rv) {
printk(KERN_ERR
"ipmi_msghandler: Unable to create bmc symlink: %d\n",
rv);
goto out_err;
}
intf->my_dev_name = kasprintf(GFP_KERNEL, "ipmi%d", ifnum);
if (!intf->my_dev_name) {
rv = -ENOMEM;
printk(KERN_ERR
"ipmi_msghandler: allocate link from BMC: %d\n",
rv);
goto out_err;
}
rv = sysfs_create_link(&bmc->pdev.dev.kobj, &intf->si_dev->kobj,
intf->my_dev_name);
if (rv) {
kfree(intf->my_dev_name);
intf->my_dev_name = NULL;
printk(KERN_ERR
"ipmi_msghandler:"
" Unable to create symlink to bmc: %d\n",
rv);
goto out_err;
}
return 0;
out_err:
ipmi_bmc_unregister(intf);
return rv;
}
static int
send_guid_cmd(ipmi_smi_t intf, int chan)
{
struct kernel_ipmi_msg msg;
struct ipmi_system_interface_addr si;
si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
si.channel = IPMI_BMC_CHANNEL;
si.lun = 0;
msg.netfn = IPMI_NETFN_APP_REQUEST;
msg.cmd = IPMI_GET_DEVICE_GUID_CMD;
msg.data = NULL;
msg.data_len = 0;
return i_ipmi_request(NULL,
intf,
(struct ipmi_addr *) &si,
0,
&msg,
intf,
NULL,
NULL,
0,
intf->channels[0].address,
intf->channels[0].lun,
-1, 0);
}
static void
guid_handler(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
{
if ((msg->addr.addr_type != IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
|| (msg->msg.netfn != IPMI_NETFN_APP_RESPONSE)
|| (msg->msg.cmd != IPMI_GET_DEVICE_GUID_CMD))
/* Not for me */
return;
if (msg->msg.data[0] != 0) {
/* Error from getting the GUID, the BMC doesn't have one. */
intf->bmc->guid_set = 0;
goto out;
}
if (msg->msg.data_len < 17) {
intf->bmc->guid_set = 0;
printk(KERN_WARNING PFX
"guid_handler: The GUID response from the BMC was too"
" short, it was %d but should have been 17. Assuming"
" GUID is not available.\n",
msg->msg.data_len);
goto out;
}
memcpy(intf->bmc->guid, msg->msg.data, 16);
intf->bmc->guid_set = 1;
out:
wake_up(&intf->waitq);
}
static void
get_guid(ipmi_smi_t intf)
{
int rv;
intf->bmc->guid_set = 0x2;
intf->null_user_handler = guid_handler;
rv = send_guid_cmd(intf, 0);
if (rv)
/* Send failed, no GUID available. */
intf->bmc->guid_set = 0;
wait_event(intf->waitq, intf->bmc->guid_set != 2);
intf->null_user_handler = NULL;
}
static int
send_channel_info_cmd(ipmi_smi_t intf, int chan)
{
struct kernel_ipmi_msg msg;
unsigned char data[1];
struct ipmi_system_interface_addr si;
si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
si.channel = IPMI_BMC_CHANNEL;
si.lun = 0;
msg.netfn = IPMI_NETFN_APP_REQUEST;
msg.cmd = IPMI_GET_CHANNEL_INFO_CMD;
msg.data = data;
msg.data_len = 1;
data[0] = chan;
return i_ipmi_request(NULL,
intf,
(struct ipmi_addr *) &si,
0,
&msg,
intf,
NULL,
NULL,
0,
intf->channels[0].address,
intf->channels[0].lun,
-1, 0);
}
static void
channel_handler(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
{
int rv = 0;
int chan;
if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
&& (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
&& (msg->msg.cmd == IPMI_GET_CHANNEL_INFO_CMD)) {
/* It's the one we want */
if (msg->msg.data[0] != 0) {
/* Got an error from the channel, just go on. */
if (msg->msg.data[0] == IPMI_INVALID_COMMAND_ERR) {
/*
* If the MC does not support this
* command, that is legal. We just
* assume it has one IPMB at channel
* zero.
*/
intf->channels[0].medium
= IPMI_CHANNEL_MEDIUM_IPMB;
intf->channels[0].protocol
= IPMI_CHANNEL_PROTOCOL_IPMB;
intf->curr_channel = IPMI_MAX_CHANNELS;
wake_up(&intf->waitq);
goto out;
}
goto next_channel;
}
if (msg->msg.data_len < 4) {
/* Message not big enough, just go on. */
goto next_channel;
}
chan = intf->curr_channel;
intf->channels[chan].medium = msg->msg.data[2] & 0x7f;
intf->channels[chan].protocol = msg->msg.data[3] & 0x1f;
next_channel:
intf->curr_channel++;
if (intf->curr_channel >= IPMI_MAX_CHANNELS)
wake_up(&intf->waitq);
else
rv = send_channel_info_cmd(intf, intf->curr_channel);
if (rv) {
/* Got an error somehow, just give up. */
printk(KERN_WARNING PFX
"Error sending channel information for channel"
" %d: %d\n", intf->curr_channel, rv);
intf->curr_channel = IPMI_MAX_CHANNELS;
wake_up(&intf->waitq);
}
}
out:
return;
}
static void ipmi_poll(ipmi_smi_t intf)
{
if (intf->handlers->poll)
intf->handlers->poll(intf->send_info);
/* In case something came in */
handle_new_recv_msgs(intf);
}
void ipmi_poll_interface(ipmi_user_t user)
{
ipmi_poll(user->intf);
}
EXPORT_SYMBOL(ipmi_poll_interface);
int ipmi_register_smi(const struct ipmi_smi_handlers *handlers,
void *send_info,
struct ipmi_device_id *device_id,
struct device *si_dev,
unsigned char slave_addr)
{
int i, j;
int rv;
ipmi_smi_t intf;
ipmi_smi_t tintf;
struct list_head *link;
/*
* Make sure the driver is actually initialized, this handles
* problems with initialization order.
*/
if (!initialized) {
rv = ipmi_init_msghandler();
if (rv)
return rv;
/*
* The init code doesn't return an error if it was turned
* off, but it won't initialize. Check that.
*/
if (!initialized)
return -ENODEV;
}
intf = kzalloc(sizeof(*intf), GFP_KERNEL);
if (!intf)
return -ENOMEM;
intf->ipmi_version_major = ipmi_version_major(device_id);
intf->ipmi_version_minor = ipmi_version_minor(device_id);
intf->bmc = kzalloc(sizeof(*intf->bmc), GFP_KERNEL);
if (!intf->bmc) {
kfree(intf);
return -ENOMEM;
}
intf->intf_num = -1; /* Mark it invalid for now. */
kref_init(&intf->refcount);
intf->bmc->id = *device_id;
intf->si_dev = si_dev;
for (j = 0; j < IPMI_MAX_CHANNELS; j++) {
intf->channels[j].address = IPMI_BMC_SLAVE_ADDR;
intf->channels[j].lun = 2;
}
if (slave_addr != 0)
intf->channels[0].address = slave_addr;
INIT_LIST_HEAD(&intf->users);
intf->handlers = handlers;
intf->send_info = send_info;
spin_lock_init(&intf->seq_lock);
for (j = 0; j < IPMI_IPMB_NUM_SEQ; j++) {
intf->seq_table[j].inuse = 0;
intf->seq_table[j].seqid = 0;
}
intf->curr_seq = 0;
#ifdef CONFIG_PROC_FS
mutex_init(&intf->proc_entry_lock);
#endif
spin_lock_init(&intf->waiting_rcv_msgs_lock);
INIT_LIST_HEAD(&intf->waiting_rcv_msgs);
tasklet_init(&intf->recv_tasklet,
smi_recv_tasklet,
(unsigned long) intf);
atomic_set(&intf->watchdog_pretimeouts_to_deliver, 0);
spin_lock_init(&intf->xmit_msgs_lock);
INIT_LIST_HEAD(&intf->xmit_msgs);
INIT_LIST_HEAD(&intf->hp_xmit_msgs);
spin_lock_init(&intf->events_lock);
atomic_set(&intf->event_waiters, 0);
intf->ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
INIT_LIST_HEAD(&intf->waiting_events);
intf->waiting_events_count = 0;
mutex_init(&intf->cmd_rcvrs_mutex);
spin_lock_init(&intf->maintenance_mode_lock);
INIT_LIST_HEAD(&intf->cmd_rcvrs);
init_waitqueue_head(&intf->waitq);
for (i = 0; i < IPMI_NUM_STATS; i++)
atomic_set(&intf->stats[i], 0);
intf->proc_dir = NULL;
mutex_lock(&smi_watchers_mutex);
mutex_lock(&ipmi_interfaces_mutex);
/* Look for a hole in the numbers. */
i = 0;
link = &ipmi_interfaces;
list_for_each_entry_rcu(tintf, &ipmi_interfaces, link) {
if (tintf->intf_num != i) {
link = &tintf->link;
break;
}
i++;
}
/* Add the new interface in numeric order. */
if (i == 0)
list_add_rcu(&intf->link, &ipmi_interfaces);
else
list_add_tail_rcu(&intf->link, link);
rv = handlers->start_processing(send_info, intf);
if (rv)
goto out;
get_guid(intf);
if ((intf->ipmi_version_major > 1)
|| ((intf->ipmi_version_major == 1)
&& (intf->ipmi_version_minor >= 5))) {
/*
* Start scanning the channels to see what is
* available.
*/
intf->null_user_handler = channel_handler;
intf->curr_channel = 0;
rv = send_channel_info_cmd(intf, 0);
if (rv) {
printk(KERN_WARNING PFX
"Error sending channel information for channel"
" 0, %d\n", rv);
goto out;
}
/* Wait for the channel info to be read. */
wait_event(intf->waitq,
intf->curr_channel >= IPMI_MAX_CHANNELS);
intf->null_user_handler = NULL;
} else {
/* Assume a single IPMB channel at zero. */
intf->channels[0].medium = IPMI_CHANNEL_MEDIUM_IPMB;
intf->channels[0].protocol = IPMI_CHANNEL_PROTOCOL_IPMB;
intf->curr_channel = IPMI_MAX_CHANNELS;
}
rv = ipmi_bmc_register(intf, i);
if (rv == 0)
rv = add_proc_entries(intf, i);
out:
if (rv) {
if (intf->proc_dir)
remove_proc_entries(intf);
intf->handlers = NULL;
list_del_rcu(&intf->link);
mutex_unlock(&ipmi_interfaces_mutex);
mutex_unlock(&smi_watchers_mutex);
synchronize_rcu();
kref_put(&intf->refcount, intf_free);
} else {
/*
* Keep memory order straight for RCU readers. Make
* sure everything else is committed to memory before
* setting intf_num to mark the interface valid.
*/
smp_wmb();
intf->intf_num = i;
mutex_unlock(&ipmi_interfaces_mutex);
/* After this point the interface is legal to use. */
call_smi_watchers(i, intf->si_dev);
mutex_unlock(&smi_watchers_mutex);
}
return rv;
}
EXPORT_SYMBOL(ipmi_register_smi);
static void deliver_smi_err_response(ipmi_smi_t intf,
struct ipmi_smi_msg *msg,
unsigned char err)
{
msg->rsp[0] = msg->data[0] | 4;
msg->rsp[1] = msg->data[1];
msg->rsp[2] = err;
msg->rsp_size = 3;
/* It's an error, so it will never requeue, no need to check return. */
handle_one_recv_msg(intf, msg);
}
static void cleanup_smi_msgs(ipmi_smi_t intf)
{
int i;
struct seq_table *ent;
struct ipmi_smi_msg *msg;
struct list_head *entry;
struct list_head tmplist;
/* Clear out our transmit queues and hold the messages. */
INIT_LIST_HEAD(&tmplist);
list_splice_tail(&intf->hp_xmit_msgs, &tmplist);
list_splice_tail(&intf->xmit_msgs, &tmplist);
/* Current message first, to preserve order */
while (intf->curr_msg && !list_empty(&intf->waiting_rcv_msgs)) {
/* Wait for the message to clear out. */
schedule_timeout(1);
}
/* No need for locks, the interface is down. */
/*
* Return errors for all pending messages in queue and in the
* tables waiting for remote responses.
*/
while (!list_empty(&tmplist)) {
entry = tmplist.next;
list_del(entry);
msg = list_entry(entry, struct ipmi_smi_msg, link);
deliver_smi_err_response(intf, msg, IPMI_ERR_UNSPECIFIED);
}
for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
ent = &(intf->seq_table[i]);
if (!ent->inuse)
continue;
deliver_err_response(ent->recv_msg, IPMI_ERR_UNSPECIFIED);
}
}
int ipmi_unregister_smi(ipmi_smi_t intf)
{
struct ipmi_smi_watcher *w;
int intf_num = intf->intf_num;
ipmi_user_t user;
mutex_lock(&smi_watchers_mutex);
mutex_lock(&ipmi_interfaces_mutex);
intf->intf_num = -1;
intf->in_shutdown = true;
list_del_rcu(&intf->link);
mutex_unlock(&ipmi_interfaces_mutex);
synchronize_rcu();
cleanup_smi_msgs(intf);
/* Clean up the effects of users on the lower-level software. */
mutex_lock(&ipmi_interfaces_mutex);
rcu_read_lock();
list_for_each_entry_rcu(user, &intf->users, link) {
module_put(intf->handlers->owner);
if (intf->handlers->dec_usecount)
intf->handlers->dec_usecount(intf->send_info);
}
rcu_read_unlock();
intf->handlers = NULL;
mutex_unlock(&ipmi_interfaces_mutex);
remove_proc_entries(intf);
ipmi_bmc_unregister(intf);
/*
* Call all the watcher interfaces to tell them that
* an interface is gone.
*/
list_for_each_entry(w, &smi_watchers, link)
w->smi_gone(intf_num);
mutex_unlock(&smi_watchers_mutex);
kref_put(&intf->refcount, intf_free);
return 0;
}
EXPORT_SYMBOL(ipmi_unregister_smi);
static int handle_ipmb_get_msg_rsp(ipmi_smi_t intf,
struct ipmi_smi_msg *msg)
{
struct ipmi_ipmb_addr ipmb_addr;
struct ipmi_recv_msg *recv_msg;
/*
* This is 11, not 10, because the response must contain a
* completion code.
*/
if (msg->rsp_size < 11) {
/* Message not big enough, just ignore it. */
ipmi_inc_stat(intf, invalid_ipmb_responses);
return 0;
}
if (msg->rsp[2] != 0) {
/* An error getting the response, just ignore it. */
return 0;
}
ipmb_addr.addr_type = IPMI_IPMB_ADDR_TYPE;
ipmb_addr.slave_addr = msg->rsp[6];
ipmb_addr.channel = msg->rsp[3] & 0x0f;
ipmb_addr.lun = msg->rsp[7] & 3;
/*
* It's a response from a remote entity. Look up the sequence
* number and handle the response.
*/
if (intf_find_seq(intf,
msg->rsp[7] >> 2,
msg->rsp[3] & 0x0f,
msg->rsp[8],
(msg->rsp[4] >> 2) & (~1),
(struct ipmi_addr *) &(ipmb_addr),
&recv_msg)) {
/*
* We were unable to find the sequence number,
* so just nuke the message.
*/
ipmi_inc_stat(intf, unhandled_ipmb_responses);
return 0;
}
memcpy(recv_msg->msg_data,
&(msg->rsp[9]),
msg->rsp_size - 9);
/*
* The other fields matched, so no need to set them, except
* for netfn, which needs to be the response that was
* returned, not the request value.
*/
recv_msg->msg.netfn = msg->rsp[4] >> 2;
recv_msg->msg.data = recv_msg->msg_data;
recv_msg->msg.data_len = msg->rsp_size - 10;
recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
ipmi_inc_stat(intf, handled_ipmb_responses);
deliver_response(recv_msg);
return 0;
}
static int handle_ipmb_get_msg_cmd(ipmi_smi_t intf,
struct ipmi_smi_msg *msg)
{
struct cmd_rcvr *rcvr;
int rv = 0;
unsigned char netfn;
unsigned char cmd;
unsigned char chan;
ipmi_user_t user = NULL;
struct ipmi_ipmb_addr *ipmb_addr;
struct ipmi_recv_msg *recv_msg;
if (msg->rsp_size < 10) {
/* Message not big enough, just ignore it. */
ipmi_inc_stat(intf, invalid_commands);
return 0;
}
if (msg->rsp[2] != 0) {
/* An error getting the response, just ignore it. */
return 0;
}
netfn = msg->rsp[4] >> 2;
cmd = msg->rsp[8];
chan = msg->rsp[3] & 0xf;
rcu_read_lock();
rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
if (rcvr) {
user = rcvr->user;
kref_get(&user->refcount);
} else
user = NULL;
rcu_read_unlock();
if (user == NULL) {
/* We didn't find a user, deliver an error response. */
ipmi_inc_stat(intf, unhandled_commands);
msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
msg->data[1] = IPMI_SEND_MSG_CMD;
msg->data[2] = msg->rsp[3];
msg->data[3] = msg->rsp[6];
msg->data[4] = ((netfn + 1) << 2) | (msg->rsp[7] & 0x3);
msg->data[5] = ipmb_checksum(&(msg->data[3]), 2);
msg->data[6] = intf->channels[msg->rsp[3] & 0xf].address;
/* rqseq/lun */
msg->data[7] = (msg->rsp[7] & 0xfc) | (msg->rsp[4] & 0x3);
msg->data[8] = msg->rsp[8]; /* cmd */
msg->data[9] = IPMI_INVALID_CMD_COMPLETION_CODE;
msg->data[10] = ipmb_checksum(&(msg->data[6]), 4);
msg->data_size = 11;
#ifdef DEBUG_MSGING
{
int m;
printk("Invalid command:");
for (m = 0; m < msg->data_size; m++)
printk(" %2.2x", msg->data[m]);
printk("\n");
}
#endif
rcu_read_lock();
if (!intf->in_shutdown) {
smi_send(intf, intf->handlers, msg, 0);
/*
* We used the message, so return the value
* that causes it to not be freed or
* queued.
*/
rv = -1;
}
rcu_read_unlock();
} else {
/* Deliver the message to the user. */
ipmi_inc_stat(intf, handled_commands);
recv_msg = ipmi_alloc_recv_msg();
if (!recv_msg) {
/*
* We couldn't allocate memory for the
* message, so requeue it for handling
* later.
*/
rv = 1;
kref_put(&user->refcount, free_user);
} else {
/* Extract the source address from the data. */
ipmb_addr = (struct ipmi_ipmb_addr *) &recv_msg->addr;
ipmb_addr->addr_type = IPMI_IPMB_ADDR_TYPE;
ipmb_addr->slave_addr = msg->rsp[6];
ipmb_addr->lun = msg->rsp[7] & 3;
ipmb_addr->channel = msg->rsp[3] & 0xf;
/*
* Extract the rest of the message information
* from the IPMB header.
*/
recv_msg->user = user;
recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
recv_msg->msgid = msg->rsp[7] >> 2;
recv_msg->msg.netfn = msg->rsp[4] >> 2;
recv_msg->msg.cmd = msg->rsp[8];
recv_msg->msg.data = recv_msg->msg_data;
/*
* We chop off 10, not 9 bytes because the checksum
* at the end also needs to be removed.
*/
recv_msg->msg.data_len = msg->rsp_size - 10;
memcpy(recv_msg->msg_data,
&(msg->rsp[9]),
msg->rsp_size - 10);
deliver_response(recv_msg);
}
}
return rv;
}
static int handle_lan_get_msg_rsp(ipmi_smi_t intf,
struct ipmi_smi_msg *msg)
{
struct ipmi_lan_addr lan_addr;
struct ipmi_recv_msg *recv_msg;
/*
* This is 13, not 12, because the response must contain a
* completion code.
*/
if (msg->rsp_size < 13) {
/* Message not big enough, just ignore it. */
ipmi_inc_stat(intf, invalid_lan_responses);
return 0;
}
if (msg->rsp[2] != 0) {
/* An error getting the response, just ignore it. */
return 0;
}
lan_addr.addr_type = IPMI_LAN_ADDR_TYPE;
lan_addr.session_handle = msg->rsp[4];
lan_addr.remote_SWID = msg->rsp[8];
lan_addr.local_SWID = msg->rsp[5];
lan_addr.channel = msg->rsp[3] & 0x0f;
lan_addr.privilege = msg->rsp[3] >> 4;
lan_addr.lun = msg->rsp[9] & 3;
/*
* It's a response from a remote entity. Look up the sequence
* number and handle the response.
*/
if (intf_find_seq(intf,
msg->rsp[9] >> 2,
msg->rsp[3] & 0x0f,
msg->rsp[10],
(msg->rsp[6] >> 2) & (~1),
(struct ipmi_addr *) &(lan_addr),
&recv_msg)) {
/*
* We were unable to find the sequence number,
* so just nuke the message.
*/
ipmi_inc_stat(intf, unhandled_lan_responses);
return 0;
}
memcpy(recv_msg->msg_data,
&(msg->rsp[11]),
msg->rsp_size - 11);
/*
* The other fields matched, so no need to set them, except
* for netfn, which needs to be the response that was
* returned, not the request value.
*/
recv_msg->msg.netfn = msg->rsp[6] >> 2;
recv_msg->msg.data = recv_msg->msg_data;
recv_msg->msg.data_len = msg->rsp_size - 12;
recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
ipmi_inc_stat(intf, handled_lan_responses);
deliver_response(recv_msg);
return 0;
}
static int handle_lan_get_msg_cmd(ipmi_smi_t intf,
struct ipmi_smi_msg *msg)
{
struct cmd_rcvr *rcvr;
int rv = 0;
unsigned char netfn;
unsigned char cmd;
unsigned char chan;
ipmi_user_t user = NULL;
struct ipmi_lan_addr *lan_addr;
struct ipmi_recv_msg *recv_msg;
if (msg->rsp_size < 12) {
/* Message not big enough, just ignore it. */
ipmi_inc_stat(intf, invalid_commands);
return 0;
}
if (msg->rsp[2] != 0) {
/* An error getting the response, just ignore it. */
return 0;
}
netfn = msg->rsp[6] >> 2;
cmd = msg->rsp[10];
chan = msg->rsp[3] & 0xf;
rcu_read_lock();
rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
if (rcvr) {
user = rcvr->user;
kref_get(&user->refcount);
} else
user = NULL;
rcu_read_unlock();
if (user == NULL) {
/* We didn't find a user, just give up. */
ipmi_inc_stat(intf, unhandled_commands);
/*
* Don't do anything with these messages, just allow
* them to be freed.
*/
rv = 0;
} else {
/* Deliver the message to the user. */
ipmi_inc_stat(intf, handled_commands);
recv_msg = ipmi_alloc_recv_msg();
if (!recv_msg) {
/*
* We couldn't allocate memory for the
* message, so requeue it for handling later.
*/
rv = 1;
kref_put(&user->refcount, free_user);
} else {
/* Extract the source address from the data. */
lan_addr = (struct ipmi_lan_addr *) &recv_msg->addr;
lan_addr->addr_type = IPMI_LAN_ADDR_TYPE;
lan_addr->session_handle = msg->rsp[4];
lan_addr->remote_SWID = msg->rsp[8];
lan_addr->local_SWID = msg->rsp[5];
lan_addr->lun = msg->rsp[9] & 3;
lan_addr->channel = msg->rsp[3] & 0xf;
lan_addr->privilege = msg->rsp[3] >> 4;
/*
* Extract the rest of the message information
* from the IPMB header.
*/
recv_msg->user = user;
recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
recv_msg->msgid = msg->rsp[9] >> 2;
recv_msg->msg.netfn = msg->rsp[6] >> 2;
recv_msg->msg.cmd = msg->rsp[10];
recv_msg->msg.data = recv_msg->msg_data;
/*
* We chop off 12, not 11 bytes because the checksum
* at the end also needs to be removed.
*/
recv_msg->msg.data_len = msg->rsp_size - 12;
memcpy(recv_msg->msg_data,
&(msg->rsp[11]),
msg->rsp_size - 12);
deliver_response(recv_msg);
}
}
return rv;
}
/*
* This routine will handle "Get Message" command responses with
* channels that use an OEM Medium. The message format belongs to
* the OEM. See IPMI 2.0 specification, Chapter 6 and
* Chapter 22, sections 22.6 and 22.24 for more details.
*/
static int handle_oem_get_msg_cmd(ipmi_smi_t intf,
struct ipmi_smi_msg *msg)
{
struct cmd_rcvr *rcvr;
int rv = 0;
unsigned char netfn;
unsigned char cmd;
unsigned char chan;
ipmi_user_t user = NULL;
struct ipmi_system_interface_addr *smi_addr;
struct ipmi_recv_msg *recv_msg;
/*
* We expect the OEM SW to perform error checking
* so we just do some basic sanity checks
*/
if (msg->rsp_size < 4) {
/* Message not big enough, just ignore it. */
ipmi_inc_stat(intf, invalid_commands);
return 0;
}
if (msg->rsp[2] != 0) {
/* An error getting the response, just ignore it. */
return 0;
}
/*
* This is an OEM Message so the OEM needs to know how
* handle the message. We do no interpretation.
*/
netfn = msg->rsp[0] >> 2;
cmd = msg->rsp[1];
chan = msg->rsp[3] & 0xf;
rcu_read_lock();
rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
if (rcvr) {
user = rcvr->user;
kref_get(&user->refcount);
} else
user = NULL;
rcu_read_unlock();
if (user == NULL) {
/* We didn't find a user, just give up. */
ipmi_inc_stat(intf, unhandled_commands);
/*
* Don't do anything with these messages, just allow
* them to be freed.
*/
rv = 0;
} else {
/* Deliver the message to the user. */
ipmi_inc_stat(intf, handled_commands);
recv_msg = ipmi_alloc_recv_msg();
if (!recv_msg) {
/*
* We couldn't allocate memory for the
* message, so requeue it for handling
* later.
*/
rv = 1;
kref_put(&user->refcount, free_user);
} else {
/*
* OEM Messages are expected to be delivered via
* the system interface to SMS software. We might
* need to visit this again depending on OEM
* requirements
*/
smi_addr = ((struct ipmi_system_interface_addr *)
&(recv_msg->addr));
smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
smi_addr->channel = IPMI_BMC_CHANNEL;
smi_addr->lun = msg->rsp[0] & 3;
recv_msg->user = user;
recv_msg->user_msg_data = NULL;
recv_msg->recv_type = IPMI_OEM_RECV_TYPE;
recv_msg->msg.netfn = msg->rsp[0] >> 2;
recv_msg->msg.cmd = msg->rsp[1];
recv_msg->msg.data = recv_msg->msg_data;
/*
* The message starts at byte 4 which follows the
* the Channel Byte in the "GET MESSAGE" command
*/
recv_msg->msg.data_len = msg->rsp_size - 4;
memcpy(recv_msg->msg_data,
&(msg->rsp[4]),
msg->rsp_size - 4);
deliver_response(recv_msg);
}
}
return rv;
}
static void copy_event_into_recv_msg(struct ipmi_recv_msg *recv_msg,
struct ipmi_smi_msg *msg)
{
struct ipmi_system_interface_addr *smi_addr;
recv_msg->msgid = 0;
smi_addr = (struct ipmi_system_interface_addr *) &(recv_msg->addr);
smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
smi_addr->channel = IPMI_BMC_CHANNEL;
smi_addr->lun = msg->rsp[0] & 3;
recv_msg->recv_type = IPMI_ASYNC_EVENT_RECV_TYPE;
recv_msg->msg.netfn = msg->rsp[0] >> 2;
recv_msg->msg.cmd = msg->rsp[1];
memcpy(recv_msg->msg_data, &(msg->rsp[3]), msg->rsp_size - 3);
recv_msg->msg.data = recv_msg->msg_data;
recv_msg->msg.data_len = msg->rsp_size - 3;
}
static int handle_read_event_rsp(ipmi_smi_t intf,
struct ipmi_smi_msg *msg)
{
struct ipmi_recv_msg *recv_msg, *recv_msg2;
struct list_head msgs;
ipmi_user_t user;
int rv = 0;
int deliver_count = 0;
unsigned long flags;
if (msg->rsp_size < 19) {
/* Message is too small to be an IPMB event. */
ipmi_inc_stat(intf, invalid_events);
return 0;
}
if (msg->rsp[2] != 0) {
/* An error getting the event, just ignore it. */
return 0;
}
INIT_LIST_HEAD(&msgs);
spin_lock_irqsave(&intf->events_lock, flags);
ipmi_inc_stat(intf, events);
/*
* Allocate and fill in one message for every user that is
* getting events.
*/
rcu_read_lock();
list_for_each_entry_rcu(user, &intf->users, link) {
if (!user->gets_events)
continue;
recv_msg = ipmi_alloc_recv_msg();
if (!recv_msg) {
rcu_read_unlock();
list_for_each_entry_safe(recv_msg, recv_msg2, &msgs,
link) {
list_del(&recv_msg->link);
ipmi_free_recv_msg(recv_msg);
}
/*
* We couldn't allocate memory for the
* message, so requeue it for handling
* later.
*/
rv = 1;
goto out;
}
deliver_count++;
copy_event_into_recv_msg(recv_msg, msg);
recv_msg->user = user;
kref_get(&user->refcount);
list_add_tail(&(recv_msg->link), &msgs);
}
rcu_read_unlock();
if (deliver_count) {
/* Now deliver all the messages. */
list_for_each_entry_safe(recv_msg, recv_msg2, &msgs, link) {
list_del(&recv_msg->link);
deliver_response(recv_msg);
}
} else if (intf->waiting_events_count < MAX_EVENTS_IN_QUEUE) {
/*
* No one to receive the message, put it in queue if there's
* not already too many things in the queue.
*/
recv_msg = ipmi_alloc_recv_msg();
if (!recv_msg) {
/*
* We couldn't allocate memory for the
* message, so requeue it for handling
* later.
*/
rv = 1;
goto out;
}
copy_event_into_recv_msg(recv_msg, msg);
list_add_tail(&(recv_msg->link), &(intf->waiting_events));
intf->waiting_events_count++;
} else if (!intf->event_msg_printed) {
/*
* There's too many things in the queue, discard this
* message.
*/
printk(KERN_WARNING PFX "Event queue full, discarding"
" incoming events\n");
intf->event_msg_printed = 1;
}
out:
spin_unlock_irqrestore(&(intf->events_lock), flags);
return rv;
}
static int handle_bmc_rsp(ipmi_smi_t intf,
struct ipmi_smi_msg *msg)
{
struct ipmi_recv_msg *recv_msg;
struct ipmi_user *user;
recv_msg = (struct ipmi_recv_msg *) msg->user_data;
if (recv_msg == NULL) {
printk(KERN_WARNING
"IPMI message received with no owner. This\n"
"could be because of a malformed message, or\n"
"because of a hardware error. Contact your\n"
"hardware vender for assistance\n");
return 0;
}
user = recv_msg->user;
/* Make sure the user still exists. */
if (user && !user->valid) {
/* The user for the message went away, so give up. */
ipmi_inc_stat(intf, unhandled_local_responses);
ipmi_free_recv_msg(recv_msg);
} else {
struct ipmi_system_interface_addr *smi_addr;
ipmi_inc_stat(intf, handled_local_responses);
recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
recv_msg->msgid = msg->msgid;
smi_addr = ((struct ipmi_system_interface_addr *)
&(recv_msg->addr));
smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
smi_addr->channel = IPMI_BMC_CHANNEL;
smi_addr->lun = msg->rsp[0] & 3;
recv_msg->msg.netfn = msg->rsp[0] >> 2;
recv_msg->msg.cmd = msg->rsp[1];
memcpy(recv_msg->msg_data,
&(msg->rsp[2]),
msg->rsp_size - 2);
recv_msg->msg.data = recv_msg->msg_data;
recv_msg->msg.data_len = msg->rsp_size - 2;
deliver_response(recv_msg);
}
return 0;
}
/*
* Handle a received message. Return 1 if the message should be requeued,
* 0 if the message should be freed, or -1 if the message should not
* be freed or requeued.
*/
static int handle_one_recv_msg(ipmi_smi_t intf,
struct ipmi_smi_msg *msg)
{
int requeue;
int chan;
#ifdef DEBUG_MSGING
int m;
printk("Recv:");
for (m = 0; m < msg->rsp_size; m++)
printk(" %2.2x", msg->rsp[m]);
printk("\n");
#endif
if (msg->rsp_size < 2) {
/* Message is too small to be correct. */
printk(KERN_WARNING PFX "BMC returned to small a message"
" for netfn %x cmd %x, got %d bytes\n",
(msg->data[0] >> 2) | 1, msg->data[1], msg->rsp_size);
/* Generate an error response for the message. */
msg->rsp[0] = msg->data[0] | (1 << 2);
msg->rsp[1] = msg->data[1];
msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
msg->rsp_size = 3;
} else if (((msg->rsp[0] >> 2) != ((msg->data[0] >> 2) | 1))
|| (msg->rsp[1] != msg->data[1])) {
/*
* The NetFN and Command in the response is not even
* marginally correct.
*/
printk(KERN_WARNING PFX "BMC returned incorrect response,"
" expected netfn %x cmd %x, got netfn %x cmd %x\n",
(msg->data[0] >> 2) | 1, msg->data[1],
msg->rsp[0] >> 2, msg->rsp[1]);
/* Generate an error response for the message. */
msg->rsp[0] = msg->data[0] | (1 << 2);
msg->rsp[1] = msg->data[1];
msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
msg->rsp_size = 3;
}
if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
&& (msg->rsp[1] == IPMI_SEND_MSG_CMD)
&& (msg->user_data != NULL)) {
/*
* It's a response to a response we sent. For this we
* deliver a send message response to the user.
*/
struct ipmi_recv_msg *recv_msg = msg->user_data;
requeue = 0;
if (msg->rsp_size < 2)
/* Message is too small to be correct. */
goto out;
chan = msg->data[2] & 0x0f;
if (chan >= IPMI_MAX_CHANNELS)
/* Invalid channel number */
goto out;
if (!recv_msg)
goto out;
/* Make sure the user still exists. */
if (!recv_msg->user || !recv_msg->user->valid)
goto out;
recv_msg->recv_type = IPMI_RESPONSE_RESPONSE_TYPE;
recv_msg->msg.data = recv_msg->msg_data;
recv_msg->msg.data_len = 1;
recv_msg->msg_data[0] = msg->rsp[2];
deliver_response(recv_msg);
} else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
&& (msg->rsp[1] == IPMI_GET_MSG_CMD)) {
/* It's from the receive queue. */
chan = msg->rsp[3] & 0xf;
if (chan >= IPMI_MAX_CHANNELS) {
/* Invalid channel number */
requeue = 0;
goto out;
}
/*
* We need to make sure the channels have been initialized.
* The channel_handler routine will set the "curr_channel"
* equal to or greater than IPMI_MAX_CHANNELS when all the
* channels for this interface have been initialized.
*/
if (intf->curr_channel < IPMI_MAX_CHANNELS) {
requeue = 0; /* Throw the message away */
goto out;
}
switch (intf->channels[chan].medium) {
case IPMI_CHANNEL_MEDIUM_IPMB:
if (msg->rsp[4] & 0x04) {
/*
* It's a response, so find the
* requesting message and send it up.
*/
requeue = handle_ipmb_get_msg_rsp(intf, msg);
} else {
/*
* It's a command to the SMS from some other
* entity. Handle that.
*/
requeue = handle_ipmb_get_msg_cmd(intf, msg);
}
break;
case IPMI_CHANNEL_MEDIUM_8023LAN:
case IPMI_CHANNEL_MEDIUM_ASYNC:
if (msg->rsp[6] & 0x04) {
/*
* It's a response, so find the
* requesting message and send it up.
*/
requeue = handle_lan_get_msg_rsp(intf, msg);
} else {
/*
* It's a command to the SMS from some other
* entity. Handle that.
*/
requeue = handle_lan_get_msg_cmd(intf, msg);
}
break;
default:
/* Check for OEM Channels. Clients had better
register for these commands. */
if ((intf->channels[chan].medium
>= IPMI_CHANNEL_MEDIUM_OEM_MIN)
&& (intf->channels[chan].medium
<= IPMI_CHANNEL_MEDIUM_OEM_MAX)) {
requeue = handle_oem_get_msg_cmd(intf, msg);
} else {
/*
* We don't handle the channel type, so just
* free the message.
*/
requeue = 0;
}
}
} else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
&& (msg->rsp[1] == IPMI_READ_EVENT_MSG_BUFFER_CMD)) {
/* It's an asynchronous event. */
requeue = handle_read_event_rsp(intf, msg);
} else {
/* It's a response from the local BMC. */
requeue = handle_bmc_rsp(intf, msg);
}
out:
return requeue;
}
/*
* If there are messages in the queue or pretimeouts, handle them.
*/
static void handle_new_recv_msgs(ipmi_smi_t intf)
{
struct ipmi_smi_msg *smi_msg;
unsigned long flags = 0;
int rv;
int run_to_completion = intf->run_to_completion;
/* See if any waiting messages need to be processed. */
if (!run_to_completion)
spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
while (!list_empty(&intf->waiting_rcv_msgs)) {
smi_msg = list_entry(intf->waiting_rcv_msgs.next,
struct ipmi_smi_msg, link);
list_del(&smi_msg->link);
if (!run_to_completion)
spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock,
flags);
rv = handle_one_recv_msg(intf, smi_msg);
if (!run_to_completion)
spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
if (rv > 0) {
/*
* To preserve message order, quit if we
* can't handle a message. Add the message
* back at the head, this is safe because this
* tasklet is the only thing that pulls the
* messages.
*/
list_add(&smi_msg->link, &intf->waiting_rcv_msgs);
break;
} else {
if (rv == 0)
/* Message handled */
ipmi_free_smi_msg(smi_msg);
/* If rv < 0, fatal error, del but don't free. */
}
}
if (!run_to_completion)
spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock, flags);
/*
* If the pretimout count is non-zero, decrement one from it and
* deliver pretimeouts to all the users.
*/
if (atomic_add_unless(&intf->watchdog_pretimeouts_to_deliver, -1, 0)) {
ipmi_user_t user;
rcu_read_lock();
list_for_each_entry_rcu(user, &intf->users, link) {
if (user->handler->ipmi_watchdog_pretimeout)
user->handler->ipmi_watchdog_pretimeout(
user->handler_data);
}
rcu_read_unlock();
}
}
static void smi_recv_tasklet(unsigned long val)
{
unsigned long flags = 0; /* keep us warning-free. */
ipmi_smi_t intf = (ipmi_smi_t) val;
int run_to_completion = intf->run_to_completion;
struct ipmi_smi_msg *newmsg = NULL;
/*
* Start the next message if available.
*
* Do this here, not in the actual receiver, because we may deadlock
* because the lower layer is allowed to hold locks while calling
* message delivery.
*/
rcu_read_lock();
if (!run_to_completion)
spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
if (intf->curr_msg == NULL && !intf->in_shutdown) {
struct list_head *entry = NULL;
/* Pick the high priority queue first. */
if (!list_empty(&intf->hp_xmit_msgs))
entry = intf->hp_xmit_msgs.next;
else if (!list_empty(&intf->xmit_msgs))
entry = intf->xmit_msgs.next;
if (entry) {
list_del(entry);
newmsg = list_entry(entry, struct ipmi_smi_msg, link);
intf->curr_msg = newmsg;
}
}
if (!run_to_completion)
spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
if (newmsg)
intf->handlers->sender(intf->send_info, newmsg);
rcu_read_unlock();
handle_new_recv_msgs(intf);
}
/* Handle a new message from the lower layer. */
void ipmi_smi_msg_received(ipmi_smi_t intf,
struct ipmi_smi_msg *msg)
{
unsigned long flags = 0; /* keep us warning-free. */
int run_to_completion = intf->run_to_completion;
if ((msg->data_size >= 2)
&& (msg->data[0] == (IPMI_NETFN_APP_REQUEST << 2))
&& (msg->data[1] == IPMI_SEND_MSG_CMD)
&& (msg->user_data == NULL)) {
if (intf->in_shutdown)
goto free_msg;
/*
* This is the local response to a command send, start
* the timer for these. The user_data will not be
* NULL if this is a response send, and we will let
* response sends just go through.
*/
/*
* Check for errors, if we get certain errors (ones
* that mean basically we can try again later), we
* ignore them and start the timer. Otherwise we
* report the error immediately.
*/
if ((msg->rsp_size >= 3) && (msg->rsp[2] != 0)
&& (msg->rsp[2] != IPMI_NODE_BUSY_ERR)
&& (msg->rsp[2] != IPMI_LOST_ARBITRATION_ERR)
&& (msg->rsp[2] != IPMI_BUS_ERR)
&& (msg->rsp[2] != IPMI_NAK_ON_WRITE_ERR)) {
int chan = msg->rsp[3] & 0xf;
/* Got an error sending the message, handle it. */
if (chan >= IPMI_MAX_CHANNELS)
; /* This shouldn't happen */
else if ((intf->channels[chan].medium
== IPMI_CHANNEL_MEDIUM_8023LAN)
|| (intf->channels[chan].medium
== IPMI_CHANNEL_MEDIUM_ASYNC))
ipmi_inc_stat(intf, sent_lan_command_errs);
else
ipmi_inc_stat(intf, sent_ipmb_command_errs);
intf_err_seq(intf, msg->msgid, msg->rsp[2]);
} else
/* The message was sent, start the timer. */
intf_start_seq_timer(intf, msg->msgid);
free_msg:
ipmi_free_smi_msg(msg);
} else {
/*
* To preserve message order, we keep a queue and deliver from
* a tasklet.
*/
if (!run_to_completion)
spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
list_add_tail(&msg->link, &intf->waiting_rcv_msgs);
if (!run_to_completion)
spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock,
flags);
}
if (!run_to_completion)
spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
/*
* We can get an asynchronous event or receive message in addition
* to commands we send.
*/
if (msg == intf->curr_msg)
intf->curr_msg = NULL;
if (!run_to_completion)
spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
if (run_to_completion)
smi_recv_tasklet((unsigned long) intf);
else
tasklet_schedule(&intf->recv_tasklet);
}
EXPORT_SYMBOL(ipmi_smi_msg_received);
void ipmi_smi_watchdog_pretimeout(ipmi_smi_t intf)
{
if (intf->in_shutdown)
return;
atomic_set(&intf->watchdog_pretimeouts_to_deliver, 1);
tasklet_schedule(&intf->recv_tasklet);
}
EXPORT_SYMBOL(ipmi_smi_watchdog_pretimeout);
static struct ipmi_smi_msg *
smi_from_recv_msg(ipmi_smi_t intf, struct ipmi_recv_msg *recv_msg,
unsigned char seq, long seqid)
{
struct ipmi_smi_msg *smi_msg = ipmi_alloc_smi_msg();
if (!smi_msg)
/*
* If we can't allocate the message, then just return, we
* get 4 retries, so this should be ok.
*/
return NULL;
memcpy(smi_msg->data, recv_msg->msg.data, recv_msg->msg.data_len);
smi_msg->data_size = recv_msg->msg.data_len;
smi_msg->msgid = STORE_SEQ_IN_MSGID(seq, seqid);
#ifdef DEBUG_MSGING
{
int m;
printk("Resend: ");
for (m = 0; m < smi_msg->data_size; m++)
printk(" %2.2x", smi_msg->data[m]);
printk("\n");
}
#endif
return smi_msg;
}
static void check_msg_timeout(ipmi_smi_t intf, struct seq_table *ent,
struct list_head *timeouts, long timeout_period,
int slot, unsigned long *flags,
unsigned int *waiting_msgs)
{
struct ipmi_recv_msg *msg;
const struct ipmi_smi_handlers *handlers;
if (intf->in_shutdown)
return;
if (!ent->inuse)
return;
ent->timeout -= timeout_period;
if (ent->timeout > 0) {
(*waiting_msgs)++;
return;
}
if (ent->retries_left == 0) {
/* The message has used all its retries. */
ent->inuse = 0;
msg = ent->recv_msg;
list_add_tail(&msg->link, timeouts);
if (ent->broadcast)
ipmi_inc_stat(intf, timed_out_ipmb_broadcasts);
else if (is_lan_addr(&ent->recv_msg->addr))
ipmi_inc_stat(intf, timed_out_lan_commands);
else
ipmi_inc_stat(intf, timed_out_ipmb_commands);
} else {
struct ipmi_smi_msg *smi_msg;
/* More retries, send again. */
(*waiting_msgs)++;
/*
* Start with the max timer, set to normal timer after
* the message is sent.
*/
ent->timeout = MAX_MSG_TIMEOUT;
ent->retries_left--;
smi_msg = smi_from_recv_msg(intf, ent->recv_msg, slot,
ent->seqid);
if (!smi_msg) {
if (is_lan_addr(&ent->recv_msg->addr))
ipmi_inc_stat(intf,
dropped_rexmit_lan_commands);
else
ipmi_inc_stat(intf,
dropped_rexmit_ipmb_commands);
return;
}
spin_unlock_irqrestore(&intf->seq_lock, *flags);
/*
* Send the new message. We send with a zero
* priority. It timed out, I doubt time is that
* critical now, and high priority messages are really
* only for messages to the local MC, which don't get
* resent.
*/
handlers = intf->handlers;
if (handlers) {
if (is_lan_addr(&ent->recv_msg->addr))
ipmi_inc_stat(intf,
retransmitted_lan_commands);
else
ipmi_inc_stat(intf,
retransmitted_ipmb_commands);
smi_send(intf, handlers, smi_msg, 0);
} else
ipmi_free_smi_msg(smi_msg);
spin_lock_irqsave(&intf->seq_lock, *flags);
}
}
static unsigned int ipmi_timeout_handler(ipmi_smi_t intf, long timeout_period)
{
struct list_head timeouts;
struct ipmi_recv_msg *msg, *msg2;
unsigned long flags;
int i;
unsigned int waiting_msgs = 0;
/*
* Go through the seq table and find any messages that
* have timed out, putting them in the timeouts
* list.
*/
INIT_LIST_HEAD(&timeouts);
spin_lock_irqsave(&intf->seq_lock, flags);
for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++)
check_msg_timeout(intf, &(intf->seq_table[i]),
&timeouts, timeout_period, i,
&flags, &waiting_msgs);
spin_unlock_irqrestore(&intf->seq_lock, flags);
list_for_each_entry_safe(msg, msg2, &timeouts, link)
deliver_err_response(msg, IPMI_TIMEOUT_COMPLETION_CODE);
/*
* Maintenance mode handling. Check the timeout
* optimistically before we claim the lock. It may
* mean a timeout gets missed occasionally, but that
* only means the timeout gets extended by one period
* in that case. No big deal, and it avoids the lock
* most of the time.
*/
if (intf->auto_maintenance_timeout > 0) {
spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
if (intf->auto_maintenance_timeout > 0) {
intf->auto_maintenance_timeout
-= timeout_period;
if (!intf->maintenance_mode
&& (intf->auto_maintenance_timeout <= 0)) {
intf->maintenance_mode_enable = false;
maintenance_mode_update(intf);
}
}
spin_unlock_irqrestore(&intf->maintenance_mode_lock,
flags);
}
tasklet_schedule(&intf->recv_tasklet);
return waiting_msgs;
}
static void ipmi_request_event(ipmi_smi_t intf)
{
/* No event requests when in maintenance mode. */
if (intf->maintenance_mode_enable)
return;
if (!intf->in_shutdown)
intf->handlers->request_events(intf->send_info);
}
static struct timer_list ipmi_timer;
static atomic_t stop_operation;
static void ipmi_timeout(unsigned long data)
{
ipmi_smi_t intf;
int nt = 0;
if (atomic_read(&stop_operation))
return;
rcu_read_lock();
list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
int lnt = 0;
if (atomic_read(&intf->event_waiters)) {
intf->ticks_to_req_ev--;
if (intf->ticks_to_req_ev == 0) {
ipmi_request_event(intf);
intf->ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
}
lnt++;
}
lnt += ipmi_timeout_handler(intf, IPMI_TIMEOUT_TIME);
lnt = !!lnt;
if (lnt != intf->last_needs_timer &&
intf->handlers->set_need_watch)
intf->handlers->set_need_watch(intf->send_info, lnt);
intf->last_needs_timer = lnt;
nt += lnt;
}
rcu_read_unlock();
if (nt)
mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
}
static void need_waiter(ipmi_smi_t intf)
{
/* Racy, but worst case we start the timer twice. */
if (!timer_pending(&ipmi_timer))
mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
}
static atomic_t smi_msg_inuse_count = ATOMIC_INIT(0);
static atomic_t recv_msg_inuse_count = ATOMIC_INIT(0);
static void free_smi_msg(struct ipmi_smi_msg *msg)
{
atomic_dec(&smi_msg_inuse_count);
kfree(msg);
}
struct ipmi_smi_msg *ipmi_alloc_smi_msg(void)
{
struct ipmi_smi_msg *rv;
rv = kmalloc(sizeof(struct ipmi_smi_msg), GFP_ATOMIC);
if (rv) {
rv->done = free_smi_msg;
rv->user_data = NULL;
atomic_inc(&smi_msg_inuse_count);
}
return rv;
}
EXPORT_SYMBOL(ipmi_alloc_smi_msg);
static void free_recv_msg(struct ipmi_recv_msg *msg)
{
atomic_dec(&recv_msg_inuse_count);
kfree(msg);
}
static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void)
{
struct ipmi_recv_msg *rv;
rv = kmalloc(sizeof(struct ipmi_recv_msg), GFP_ATOMIC);
if (rv) {
rv->user = NULL;
rv->done = free_recv_msg;
atomic_inc(&recv_msg_inuse_count);
}
return rv;
}
void ipmi_free_recv_msg(struct ipmi_recv_msg *msg)
{
if (msg->user)
kref_put(&msg->user->refcount, free_user);
msg->done(msg);
}
EXPORT_SYMBOL(ipmi_free_recv_msg);
#ifdef CONFIG_IPMI_PANIC_EVENT
static atomic_t panic_done_count = ATOMIC_INIT(0);
static void dummy_smi_done_handler(struct ipmi_smi_msg *msg)
{
atomic_dec(&panic_done_count);
}
static void dummy_recv_done_handler(struct ipmi_recv_msg *msg)
{
atomic_dec(&panic_done_count);
}
/*
* Inside a panic, send a message and wait for a response.
*/
static void ipmi_panic_request_and_wait(ipmi_smi_t intf,
struct ipmi_addr *addr,
struct kernel_ipmi_msg *msg)
{
struct ipmi_smi_msg smi_msg;
struct ipmi_recv_msg recv_msg;
int rv;
smi_msg.done = dummy_smi_done_handler;
recv_msg.done = dummy_recv_done_handler;
atomic_add(2, &panic_done_count);
rv = i_ipmi_request(NULL,
intf,
addr,
0,
msg,
intf,
&smi_msg,
&recv_msg,
0,
intf->channels[0].address,
intf->channels[0].lun,
0, 1); /* Don't retry, and don't wait. */
if (rv)
atomic_sub(2, &panic_done_count);
else if (intf->handlers->flush_messages)
intf->handlers->flush_messages(intf->send_info);
while (atomic_read(&panic_done_count) != 0)
ipmi_poll(intf);
}
#ifdef CONFIG_IPMI_PANIC_STRING
static void event_receiver_fetcher(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
{
if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
&& (msg->msg.netfn == IPMI_NETFN_SENSOR_EVENT_RESPONSE)
&& (msg->msg.cmd == IPMI_GET_EVENT_RECEIVER_CMD)
&& (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
/* A get event receiver command, save it. */
intf->event_receiver = msg->msg.data[1];
intf->event_receiver_lun = msg->msg.data[2] & 0x3;
}
}
static void device_id_fetcher(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
{
if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
&& (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
&& (msg->msg.cmd == IPMI_GET_DEVICE_ID_CMD)
&& (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
/*
* A get device id command, save if we are an event
* receiver or generator.
*/
intf->local_sel_device = (msg->msg.data[6] >> 2) & 1;
intf->local_event_generator = (msg->msg.data[6] >> 5) & 1;
}
}
#endif
static void send_panic_events(char *str)
{
struct kernel_ipmi_msg msg;
ipmi_smi_t intf;
unsigned char data[16];
struct ipmi_system_interface_addr *si;
struct ipmi_addr addr;
si = (struct ipmi_system_interface_addr *) &addr;
si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
si->channel = IPMI_BMC_CHANNEL;
si->lun = 0;
/* Fill in an event telling that we have failed. */
msg.netfn = 0x04; /* Sensor or Event. */
msg.cmd = 2; /* Platform event command. */
msg.data = data;
msg.data_len = 8;
data[0] = 0x41; /* Kernel generator ID, IPMI table 5-4 */
data[1] = 0x03; /* This is for IPMI 1.0. */
data[2] = 0x20; /* OS Critical Stop, IPMI table 36-3 */
data[4] = 0x6f; /* Sensor specific, IPMI table 36-1 */
data[5] = 0xa1; /* Runtime stop OEM bytes 2 & 3. */
/*
* Put a few breadcrumbs in. Hopefully later we can add more things
* to make the panic events more useful.
*/
if (str) {
data[3] = str[0];
data[6] = str[1];
data[7] = str[2];
}
/* For every registered interface, send the event. */
list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
if (!intf->handlers)
/* Interface is not ready. */
continue;
/* Send the event announcing the panic. */
ipmi_panic_request_and_wait(intf, &addr, &msg);
}
#ifdef CONFIG_IPMI_PANIC_STRING
/*
* On every interface, dump a bunch of OEM event holding the
* string.
*/
if (!str)
return;
/* For every registered interface, send the event. */
list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
char *p = str;
struct ipmi_ipmb_addr *ipmb;
int j;
if (intf->intf_num == -1)
/* Interface was not ready yet. */
continue;
/*
* intf_num is used as an marker to tell if the
* interface is valid. Thus we need a read barrier to
* make sure data fetched before checking intf_num
* won't be used.
*/
smp_rmb();
/*
* First job here is to figure out where to send the
* OEM events. There's no way in IPMI to send OEM
* events using an event send command, so we have to
* find the SEL to put them in and stick them in
* there.
*/
/* Get capabilities from the get device id. */
intf->local_sel_device = 0;
intf->local_event_generator = 0;
intf->event_receiver = 0;
/* Request the device info from the local MC. */
msg.netfn = IPMI_NETFN_APP_REQUEST;
msg.cmd = IPMI_GET_DEVICE_ID_CMD;
msg.data = NULL;
msg.data_len = 0;
intf->null_user_handler = device_id_fetcher;
ipmi_panic_request_and_wait(intf, &addr, &msg);
if (intf->local_event_generator) {
/* Request the event receiver from the local MC. */
msg.netfn = IPMI_NETFN_SENSOR_EVENT_REQUEST;
msg.cmd = IPMI_GET_EVENT_RECEIVER_CMD;
msg.data = NULL;
msg.data_len = 0;
intf->null_user_handler = event_receiver_fetcher;
ipmi_panic_request_and_wait(intf, &addr, &msg);
}
intf->null_user_handler = NULL;
/*
* Validate the event receiver. The low bit must not
* be 1 (it must be a valid IPMB address), it cannot
* be zero, and it must not be my address.
*/
if (((intf->event_receiver & 1) == 0)
&& (intf->event_receiver != 0)
&& (intf->event_receiver != intf->channels[0].address)) {
/*
* The event receiver is valid, send an IPMB
* message.
*/
ipmb = (struct ipmi_ipmb_addr *) &addr;
ipmb->addr_type = IPMI_IPMB_ADDR_TYPE;
ipmb->channel = 0; /* FIXME - is this right? */
ipmb->lun = intf->event_receiver_lun;
ipmb->slave_addr = intf->event_receiver;
} else if (intf->local_sel_device) {
/*
* The event receiver was not valid (or was
* me), but I am an SEL device, just dump it
* in my SEL.
*/
si = (struct ipmi_system_interface_addr *) &addr;
si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
si->channel = IPMI_BMC_CHANNEL;
si->lun = 0;
} else
continue; /* No where to send the event. */
msg.netfn = IPMI_NETFN_STORAGE_REQUEST; /* Storage. */
msg.cmd = IPMI_ADD_SEL_ENTRY_CMD;
msg.data = data;
msg.data_len = 16;
j = 0;
while (*p) {
int size = strlen(p);
if (size > 11)
size = 11;
data[0] = 0;
data[1] = 0;
data[2] = 0xf0; /* OEM event without timestamp. */
data[3] = intf->channels[0].address;
data[4] = j++; /* sequence # */
/*
* Always give 11 bytes, so strncpy will fill
* it with zeroes for me.
*/
strncpy(data+5, p, 11);
p += size;
ipmi_panic_request_and_wait(intf, &addr, &msg);
}
}
#endif /* CONFIG_IPMI_PANIC_STRING */
}
#endif /* CONFIG_IPMI_PANIC_EVENT */
static int has_panicked;
static int panic_event(struct notifier_block *this,
unsigned long event,
void *ptr)
{
ipmi_smi_t intf;
if (has_panicked)
return NOTIFY_DONE;
has_panicked = 1;
/* For every registered interface, set it to run to completion. */
list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
if (!intf->handlers)
/* Interface is not ready. */
continue;
/*
* If we were interrupted while locking xmit_msgs_lock or
* waiting_rcv_msgs_lock, the corresponding list may be
* corrupted. In this case, drop items on the list for
* the safety.
*/
if (!spin_trylock(&intf->xmit_msgs_lock)) {
INIT_LIST_HEAD(&intf->xmit_msgs);
INIT_LIST_HEAD(&intf->hp_xmit_msgs);
} else
spin_unlock(&intf->xmit_msgs_lock);
if (!spin_trylock(&intf->waiting_rcv_msgs_lock))
INIT_LIST_HEAD(&intf->waiting_rcv_msgs);
else
spin_unlock(&intf->waiting_rcv_msgs_lock);
intf->run_to_completion = 1;
intf->handlers->set_run_to_completion(intf->send_info, 1);
}
#ifdef CONFIG_IPMI_PANIC_EVENT
send_panic_events(ptr);
#endif
return NOTIFY_DONE;
}
static struct notifier_block panic_block = {
.notifier_call = panic_event,
.next = NULL,
.priority = 200 /* priority: INT_MAX >= x >= 0 */
};
static int ipmi_init_msghandler(void)
{
int rv;
if (initialized)
return 0;
rv = driver_register(&ipmidriver.driver);
if (rv) {
printk(KERN_ERR PFX "Could not register IPMI driver\n");
return rv;
}
printk(KERN_INFO "ipmi message handler version "
IPMI_DRIVER_VERSION "\n");
#ifdef CONFIG_PROC_FS
proc_ipmi_root = proc_mkdir("ipmi", NULL);
if (!proc_ipmi_root) {
printk(KERN_ERR PFX "Unable to create IPMI proc dir");
driver_unregister(&ipmidriver.driver);
return -ENOMEM;
}
#endif /* CONFIG_PROC_FS */
setup_timer(&ipmi_timer, ipmi_timeout, 0);
mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
atomic_notifier_chain_register(&panic_notifier_list, &panic_block);
initialized = 1;
return 0;
}
static int __init ipmi_init_msghandler_mod(void)
{
ipmi_init_msghandler();
return 0;
}
static void __exit cleanup_ipmi(void)
{
int count;
if (!initialized)
return;
atomic_notifier_chain_unregister(&panic_notifier_list, &panic_block);
/*
* This can't be called if any interfaces exist, so no worry
* about shutting down the interfaces.
*/
/*
* Tell the timer to stop, then wait for it to stop. This
* avoids problems with race conditions removing the timer
* here.
*/
atomic_inc(&stop_operation);
del_timer_sync(&ipmi_timer);
#ifdef CONFIG_PROC_FS
proc_remove(proc_ipmi_root);
#endif /* CONFIG_PROC_FS */
driver_unregister(&ipmidriver.driver);
initialized = 0;
/* Check for buffer leaks. */
count = atomic_read(&smi_msg_inuse_count);
if (count != 0)
printk(KERN_WARNING PFX "SMI message count %d at exit\n",
count);
count = atomic_read(&recv_msg_inuse_count);
if (count != 0)
printk(KERN_WARNING PFX "recv message count %d at exit\n",
count);
}
module_exit(cleanup_ipmi);
module_init(ipmi_init_msghandler_mod);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
MODULE_DESCRIPTION("Incoming and outgoing message routing for an IPMI"
" interface.");
MODULE_VERSION(IPMI_DRIVER_VERSION);
MODULE_SOFTDEP("post: ipmi_devintf");