linux_dsm_epyc7002/tools/perf/builtin-top.c
Mike Galbraith 091bd2e993 perf top: Improve interactive key handling
Pressing any key which is not currently mapped to
functionality, based on startup command line options, displays
currently mapped keys, and prompts for input.

Pressing any unmapped key at the prompt returns the user to
display mode with variables unchanged.  eg, pressing ? <SPACE>
<ESC> etc displays currently available keys, the value of the
variable associated with that key, and prompts.

Pressing same again aborts input.

Signed-off-by: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-08-09 12:54:31 +02:00

1221 lines
27 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* builtin-top.c
*
* Builtin top command: Display a continuously updated profile of
* any workload, CPU or specific PID.
*
* Copyright (C) 2008, Red Hat Inc, Ingo Molnar <mingo@redhat.com>
*
* Improvements and fixes by:
*
* Arjan van de Ven <arjan@linux.intel.com>
* Yanmin Zhang <yanmin.zhang@intel.com>
* Wu Fengguang <fengguang.wu@intel.com>
* Mike Galbraith <efault@gmx.de>
* Paul Mackerras <paulus@samba.org>
*
* Released under the GPL v2. (and only v2, not any later version)
*/
#include "builtin.h"
#include "perf.h"
#include "util/symbol.h"
#include "util/color.h"
#include "util/util.h"
#include <linux/rbtree.h>
#include "util/parse-options.h"
#include "util/parse-events.h"
#include <assert.h>
#include <fcntl.h>
#include <stdio.h>
#include <termios.h>
#include <unistd.h>
#include <errno.h>
#include <time.h>
#include <sched.h>
#include <pthread.h>
#include <sys/syscall.h>
#include <sys/ioctl.h>
#include <sys/poll.h>
#include <sys/prctl.h>
#include <sys/wait.h>
#include <sys/uio.h>
#include <sys/mman.h>
#include <linux/unistd.h>
#include <linux/types.h>
static int fd[MAX_NR_CPUS][MAX_COUNTERS];
static int system_wide = 0;
static int default_interval = 100000;
static int count_filter = 5;
static int print_entries = 15;
static int target_pid = -1;
static int inherit = 0;
static int profile_cpu = -1;
static int nr_cpus = 0;
static unsigned int realtime_prio = 0;
static int group = 0;
static unsigned int page_size;
static unsigned int mmap_pages = 16;
static int freq = 0;
static int verbose = 0;
static char *vmlinux = NULL;
static int delay_secs = 2;
static int zero;
static int dump_symtab;
/*
* Source
*/
struct source_line {
u64 eip;
unsigned long count[MAX_COUNTERS];
char *line;
struct source_line *next;
};
static char *sym_filter = NULL;
struct sym_entry *sym_filter_entry = NULL;
static int sym_pcnt_filter = 5;
static int sym_counter = 0;
static int display_weighted = -1;
/*
* Symbols
*/
static u64 min_ip;
static u64 max_ip = -1ll;
struct sym_entry {
struct rb_node rb_node;
struct list_head node;
unsigned long count[MAX_COUNTERS];
unsigned long snap_count;
double weight;
int skip;
struct source_line *source;
struct source_line *lines;
struct source_line **lines_tail;
pthread_mutex_t source_lock;
};
/*
* Source functions
*/
static void parse_source(struct sym_entry *syme)
{
struct symbol *sym;
struct module *module;
struct section *section = NULL;
FILE *file;
char command[PATH_MAX*2], *path = vmlinux;
u64 start, end, len;
if (!syme)
return;
if (syme->lines) {
pthread_mutex_lock(&syme->source_lock);
goto out_assign;
}
sym = (struct symbol *)(syme + 1);
module = sym->module;
if (module)
path = module->path;
if (!path)
return;
start = sym->obj_start;
if (!start)
start = sym->start;
if (module) {
section = module->sections->find_section(module->sections, ".text");
if (section)
start -= section->vma;
}
end = start + sym->end - sym->start + 1;
len = sym->end - sym->start;
sprintf(command, "objdump --start-address=0x%016Lx --stop-address=0x%016Lx -dS %s", start, end, path);
file = popen(command, "r");
if (!file)
return;
pthread_mutex_lock(&syme->source_lock);
syme->lines_tail = &syme->lines;
while (!feof(file)) {
struct source_line *src;
size_t dummy = 0;
char *c;
src = malloc(sizeof(struct source_line));
assert(src != NULL);
memset(src, 0, sizeof(struct source_line));
if (getline(&src->line, &dummy, file) < 0)
break;
if (!src->line)
break;
c = strchr(src->line, '\n');
if (c)
*c = 0;
src->next = NULL;
*syme->lines_tail = src;
syme->lines_tail = &src->next;
if (strlen(src->line)>8 && src->line[8] == ':') {
src->eip = strtoull(src->line, NULL, 16);
if (section)
src->eip += section->vma;
}
if (strlen(src->line)>8 && src->line[16] == ':') {
src->eip = strtoull(src->line, NULL, 16);
if (section)
src->eip += section->vma;
}
}
pclose(file);
out_assign:
sym_filter_entry = syme;
pthread_mutex_unlock(&syme->source_lock);
}
static void __zero_source_counters(struct sym_entry *syme)
{
int i;
struct source_line *line;
line = syme->lines;
while (line) {
for (i = 0; i < nr_counters; i++)
line->count[i] = 0;
line = line->next;
}
}
static void record_precise_ip(struct sym_entry *syme, int counter, u64 ip)
{
struct source_line *line;
if (syme != sym_filter_entry)
return;
if (pthread_mutex_trylock(&syme->source_lock))
return;
if (!syme->source)
goto out_unlock;
for (line = syme->lines; line; line = line->next) {
if (line->eip == ip) {
line->count[counter]++;
break;
}
if (line->eip > ip)
break;
}
out_unlock:
pthread_mutex_unlock(&syme->source_lock);
}
static void lookup_sym_source(struct sym_entry *syme)
{
struct symbol *symbol = (struct symbol *)(syme + 1);
struct source_line *line;
char pattern[PATH_MAX];
char *idx;
sprintf(pattern, "<%s>:", symbol->name);
if (symbol->module) {
idx = strstr(pattern, "\t");
if (idx)
*idx = 0;
}
pthread_mutex_lock(&syme->source_lock);
for (line = syme->lines; line; line = line->next) {
if (strstr(line->line, pattern)) {
syme->source = line;
break;
}
}
pthread_mutex_unlock(&syme->source_lock);
}
static void show_lines(struct source_line *queue, int count, int total)
{
int i;
struct source_line *line;
line = queue;
for (i = 0; i < count; i++) {
float pcnt = 100.0*(float)line->count[sym_counter]/(float)total;
printf("%8li %4.1f%%\t%s\n", line->count[sym_counter], pcnt, line->line);
line = line->next;
}
}
#define TRACE_COUNT 3
static void show_details(struct sym_entry *syme)
{
struct symbol *symbol;
struct source_line *line;
struct source_line *line_queue = NULL;
int displayed = 0;
int line_queue_count = 0, total = 0, more = 0;
if (!syme)
return;
if (!syme->source)
lookup_sym_source(syme);
if (!syme->source)
return;
symbol = (struct symbol *)(syme + 1);
printf("Showing %s for %s\n", event_name(sym_counter), symbol->name);
printf(" Events Pcnt (>=%d%%)\n", sym_pcnt_filter);
pthread_mutex_lock(&syme->source_lock);
line = syme->source;
while (line) {
total += line->count[sym_counter];
line = line->next;
}
line = syme->source;
while (line) {
float pcnt = 0.0;
if (!line_queue_count)
line_queue = line;
line_queue_count++;
if (line->count[sym_counter])
pcnt = 100.0 * line->count[sym_counter] / (float)total;
if (pcnt >= (float)sym_pcnt_filter) {
if (displayed <= print_entries)
show_lines(line_queue, line_queue_count, total);
else more++;
displayed += line_queue_count;
line_queue_count = 0;
line_queue = NULL;
} else if (line_queue_count > TRACE_COUNT) {
line_queue = line_queue->next;
line_queue_count--;
}
line->count[sym_counter] = zero ? 0 : line->count[sym_counter] * 7 / 8;
line = line->next;
}
pthread_mutex_unlock(&syme->source_lock);
if (more)
printf("%d lines not displayed, maybe increase display entries [e]\n", more);
}
struct dso *kernel_dso;
/*
* Symbols will be added here in record_ip and will get out
* after decayed.
*/
static LIST_HEAD(active_symbols);
static pthread_mutex_t active_symbols_lock = PTHREAD_MUTEX_INITIALIZER;
/*
* Ordering weight: count-1 * count-2 * ... / count-n
*/
static double sym_weight(const struct sym_entry *sym)
{
double weight = sym->snap_count;
int counter;
if (!display_weighted)
return weight;
for (counter = 1; counter < nr_counters-1; counter++)
weight *= sym->count[counter];
weight /= (sym->count[counter] + 1);
return weight;
}
static long samples;
static long userspace_samples;
static const char CONSOLE_CLEAR[] = "";
static void __list_insert_active_sym(struct sym_entry *syme)
{
list_add(&syme->node, &active_symbols);
}
static void list_remove_active_sym(struct sym_entry *syme)
{
pthread_mutex_lock(&active_symbols_lock);
list_del_init(&syme->node);
pthread_mutex_unlock(&active_symbols_lock);
}
static void rb_insert_active_sym(struct rb_root *tree, struct sym_entry *se)
{
struct rb_node **p = &tree->rb_node;
struct rb_node *parent = NULL;
struct sym_entry *iter;
while (*p != NULL) {
parent = *p;
iter = rb_entry(parent, struct sym_entry, rb_node);
if (se->weight > iter->weight)
p = &(*p)->rb_left;
else
p = &(*p)->rb_right;
}
rb_link_node(&se->rb_node, parent, p);
rb_insert_color(&se->rb_node, tree);
}
static void print_sym_table(void)
{
int printed = 0, j;
int counter, snap = !display_weighted ? sym_counter : 0;
float samples_per_sec = samples/delay_secs;
float ksamples_per_sec = (samples-userspace_samples)/delay_secs;
float sum_ksamples = 0.0;
struct sym_entry *syme, *n;
struct rb_root tmp = RB_ROOT;
struct rb_node *nd;
samples = userspace_samples = 0;
/* Sort the active symbols */
pthread_mutex_lock(&active_symbols_lock);
syme = list_entry(active_symbols.next, struct sym_entry, node);
pthread_mutex_unlock(&active_symbols_lock);
list_for_each_entry_safe_from(syme, n, &active_symbols, node) {
syme->snap_count = syme->count[snap];
if (syme->snap_count != 0) {
syme->weight = sym_weight(syme);
rb_insert_active_sym(&tmp, syme);
sum_ksamples += syme->snap_count;
for (j = 0; j < nr_counters; j++)
syme->count[j] = zero ? 0 : syme->count[j] * 7 / 8;
} else
list_remove_active_sym(syme);
}
puts(CONSOLE_CLEAR);
printf(
"------------------------------------------------------------------------------\n");
printf( " PerfTop:%8.0f irqs/sec kernel:%4.1f%% [",
samples_per_sec,
100.0 - (100.0*((samples_per_sec-ksamples_per_sec)/samples_per_sec)));
if (nr_counters == 1 || !display_weighted) {
printf("%Ld", (u64)attrs[0].sample_period);
if (freq)
printf("Hz ");
else
printf(" ");
}
if (!display_weighted)
printf("%s", event_name(sym_counter));
else for (counter = 0; counter < nr_counters; counter++) {
if (counter)
printf("/");
printf("%s", event_name(counter));
}
printf( "], ");
if (target_pid != -1)
printf(" (target_pid: %d", target_pid);
else
printf(" (all");
if (profile_cpu != -1)
printf(", cpu: %d)\n", profile_cpu);
else {
if (target_pid != -1)
printf(")\n");
else
printf(", %d CPUs)\n", nr_cpus);
}
printf("------------------------------------------------------------------------------\n\n");
if (sym_filter_entry) {
show_details(sym_filter_entry);
return;
}
if (nr_counters == 1)
printf(" samples pcnt");
else
printf(" weight samples pcnt");
printf(" RIP kernel function\n"
" ______ _______ _____ ________________ _______________\n\n"
);
for (nd = rb_first(&tmp); nd; nd = rb_next(nd)) {
struct sym_entry *syme = rb_entry(nd, struct sym_entry, rb_node);
struct symbol *sym = (struct symbol *)(syme + 1);
double pcnt;
if (++printed > print_entries || (int)syme->snap_count < count_filter)
continue;
pcnt = 100.0 - (100.0 * ((sum_ksamples - syme->snap_count) /
sum_ksamples));
if (nr_counters == 1 || !display_weighted)
printf("%20.2f - ", syme->weight);
else
printf("%9.1f %10ld - ", syme->weight, syme->snap_count);
percent_color_fprintf(stdout, "%4.1f%%", pcnt);
printf(" - %016llx : %s", sym->start, sym->name);
if (sym->module)
printf("\t[%s]", sym->module->name);
printf("\n");
}
}
static void prompt_integer(int *target, const char *msg)
{
char *buf = malloc(0), *p;
size_t dummy = 0;
int tmp;
fprintf(stdout, "\n%s: ", msg);
if (getline(&buf, &dummy, stdin) < 0)
return;
p = strchr(buf, '\n');
if (p)
*p = 0;
p = buf;
while(*p) {
if (!isdigit(*p))
goto out_free;
p++;
}
tmp = strtoul(buf, NULL, 10);
*target = tmp;
out_free:
free(buf);
}
static void prompt_percent(int *target, const char *msg)
{
int tmp = 0;
prompt_integer(&tmp, msg);
if (tmp >= 0 && tmp <= 100)
*target = tmp;
}
static void prompt_symbol(struct sym_entry **target, const char *msg)
{
char *buf = malloc(0), *p;
struct sym_entry *syme = *target, *n, *found = NULL;
size_t dummy = 0;
/* zero counters of active symbol */
if (syme) {
pthread_mutex_lock(&syme->source_lock);
__zero_source_counters(syme);
*target = NULL;
pthread_mutex_unlock(&syme->source_lock);
}
fprintf(stdout, "\n%s: ", msg);
if (getline(&buf, &dummy, stdin) < 0)
goto out_free;
p = strchr(buf, '\n');
if (p)
*p = 0;
pthread_mutex_lock(&active_symbols_lock);
syme = list_entry(active_symbols.next, struct sym_entry, node);
pthread_mutex_unlock(&active_symbols_lock);
list_for_each_entry_safe_from(syme, n, &active_symbols, node) {
struct symbol *sym = (struct symbol *)(syme + 1);
if (!strcmp(buf, sym->name)) {
found = syme;
break;
}
}
if (!found) {
fprintf(stderr, "Sorry, %s is not active.\n", sym_filter);
sleep(1);
return;
} else
parse_source(found);
out_free:
free(buf);
}
static void print_mapped_keys(void)
{
char *name = NULL;
if (sym_filter_entry) {
struct symbol *sym = (struct symbol *)(sym_filter_entry+1);
name = sym->name;
}
fprintf(stdout, "\nMapped keys:\n");
fprintf(stdout, "\t[d] display refresh delay. \t(%d)\n", delay_secs);
fprintf(stdout, "\t[e] display entries (lines). \t(%d)\n", print_entries);
if (nr_counters > 1)
fprintf(stdout, "\t[E] active event counter. \t(%s)\n", event_name(sym_counter));
fprintf(stdout, "\t[f] profile display filter (count). \t(%d)\n", count_filter);
if (vmlinux) {
fprintf(stdout, "\t[F] annotate display filter (percent). \t(%d%%)\n", sym_pcnt_filter);
fprintf(stdout, "\t[s] annotate symbol. \t(%s)\n", name?: "NULL");
fprintf(stdout, "\t[S] stop annotation.\n");
}
if (nr_counters > 1)
fprintf(stdout, "\t[w] toggle display weighted/count[E]r. \t(%d)\n", display_weighted ? 1 : 0);
fprintf(stdout, "\t[z] toggle sample zeroing. \t(%d)\n", zero ? 1 : 0);
fprintf(stdout, "\t[qQ] quit.\n");
}
static int key_mapped(int c)
{
switch (c) {
case 'd':
case 'e':
case 'f':
case 'z':
case 'q':
case 'Q':
return 1;
case 'E':
case 'w':
return nr_counters > 1 ? 1 : 0;
case 'F':
case 's':
case 'S':
return vmlinux ? 1 : 0;
}
return 0;
}
static void handle_keypress(int c)
{
if (!key_mapped(c)) {
struct pollfd stdin_poll = { .fd = 0, .events = POLLIN };
struct termios tc, save;
print_mapped_keys();
fprintf(stdout, "\nEnter selection, or unmapped key to continue: ");
fflush(stdout);
tcgetattr(0, &save);
tc = save;
tc.c_lflag &= ~(ICANON | ECHO);
tc.c_cc[VMIN] = 0;
tc.c_cc[VTIME] = 0;
tcsetattr(0, TCSANOW, &tc);
poll(&stdin_poll, 1, -1);
c = getc(stdin);
tcsetattr(0, TCSAFLUSH, &save);
if (!key_mapped(c))
return;
}
switch (c) {
case 'd':
prompt_integer(&delay_secs, "Enter display delay");
break;
case 'e':
prompt_integer(&print_entries, "Enter display entries (lines)");
break;
case 'E':
if (nr_counters > 1) {
int i;
fprintf(stderr, "\nAvailable events:");
for (i = 0; i < nr_counters; i++)
fprintf(stderr, "\n\t%d %s", i, event_name(i));
prompt_integer(&sym_counter, "Enter details event counter");
if (sym_counter >= nr_counters) {
fprintf(stderr, "Sorry, no such event, using %s.\n", event_name(0));
sym_counter = 0;
sleep(1);
}
} else sym_counter = 0;
break;
case 'f':
prompt_integer(&count_filter, "Enter display event count filter");
break;
case 'F':
prompt_percent(&sym_pcnt_filter, "Enter details display event filter (percent)");
break;
case 'q':
case 'Q':
printf("exiting.\n");
exit(0);
case 's':
prompt_symbol(&sym_filter_entry, "Enter details symbol");
break;
case 'S':
if (!sym_filter_entry)
break;
else {
struct sym_entry *syme = sym_filter_entry;
pthread_mutex_lock(&syme->source_lock);
sym_filter_entry = NULL;
__zero_source_counters(syme);
pthread_mutex_unlock(&syme->source_lock);
}
break;
case 'w':
display_weighted = ~display_weighted;
break;
case 'z':
zero = ~zero;
break;
}
}
static void *display_thread(void *arg __used)
{
struct pollfd stdin_poll = { .fd = 0, .events = POLLIN };
struct termios tc, save;
int delay_msecs, c;
tcgetattr(0, &save);
tc = save;
tc.c_lflag &= ~(ICANON | ECHO);
tc.c_cc[VMIN] = 0;
tc.c_cc[VTIME] = 0;
repeat:
delay_msecs = delay_secs * 1000;
tcsetattr(0, TCSANOW, &tc);
/* trash return*/
getc(stdin);
do {
print_sym_table();
} while (!poll(&stdin_poll, 1, delay_msecs) == 1);
c = getc(stdin);
tcsetattr(0, TCSAFLUSH, &save);
handle_keypress(c);
goto repeat;
return NULL;
}
/* Tag samples to be skipped. */
static const char *skip_symbols[] = {
"default_idle",
"cpu_idle",
"enter_idle",
"exit_idle",
"mwait_idle",
"mwait_idle_with_hints",
"ppc64_runlatch_off",
"pseries_dedicated_idle_sleep",
NULL
};
static int symbol_filter(struct dso *self, struct symbol *sym)
{
struct sym_entry *syme;
const char *name = sym->name;
int i;
/*
* ppc64 uses function descriptors and appends a '.' to the
* start of every instruction address. Remove it.
*/
if (name[0] == '.')
name++;
if (!strcmp(name, "_text") ||
!strcmp(name, "_etext") ||
!strcmp(name, "_sinittext") ||
!strncmp("init_module", name, 11) ||
!strncmp("cleanup_module", name, 14) ||
strstr(name, "_text_start") ||
strstr(name, "_text_end"))
return 1;
syme = dso__sym_priv(self, sym);
pthread_mutex_init(&syme->source_lock, NULL);
if (!sym_filter_entry && sym_filter && !strcmp(name, sym_filter))
sym_filter_entry = syme;
for (i = 0; skip_symbols[i]; i++) {
if (!strcmp(skip_symbols[i], name)) {
syme->skip = 1;
break;
}
}
return 0;
}
static int parse_symbols(void)
{
struct rb_node *node;
struct symbol *sym;
int modules = vmlinux ? 1 : 0;
kernel_dso = dso__new("[kernel]", sizeof(struct sym_entry));
if (kernel_dso == NULL)
return -1;
if (dso__load_kernel(kernel_dso, vmlinux, symbol_filter, verbose, modules) <= 0)
goto out_delete_dso;
node = rb_first(&kernel_dso->syms);
sym = rb_entry(node, struct symbol, rb_node);
min_ip = sym->start;
node = rb_last(&kernel_dso->syms);
sym = rb_entry(node, struct symbol, rb_node);
max_ip = sym->end;
if (dump_symtab)
dso__fprintf(kernel_dso, stderr);
return 0;
out_delete_dso:
dso__delete(kernel_dso);
kernel_dso = NULL;
return -1;
}
/*
* Binary search in the histogram table and record the hit:
*/
static void record_ip(u64 ip, int counter)
{
struct symbol *sym = dso__find_symbol(kernel_dso, ip);
if (sym != NULL) {
struct sym_entry *syme = dso__sym_priv(kernel_dso, sym);
if (!syme->skip) {
syme->count[counter]++;
record_precise_ip(syme, counter, ip);
pthread_mutex_lock(&active_symbols_lock);
if (list_empty(&syme->node) || !syme->node.next)
__list_insert_active_sym(syme);
pthread_mutex_unlock(&active_symbols_lock);
return;
}
}
samples--;
}
static void process_event(u64 ip, int counter, int user)
{
samples++;
if (user) {
userspace_samples++;
return;
}
record_ip(ip, counter);
}
struct mmap_data {
int counter;
void *base;
int mask;
unsigned int prev;
};
static unsigned int mmap_read_head(struct mmap_data *md)
{
struct perf_counter_mmap_page *pc = md->base;
int head;
head = pc->data_head;
rmb();
return head;
}
struct timeval last_read, this_read;
static void mmap_read_counter(struct mmap_data *md)
{
unsigned int head = mmap_read_head(md);
unsigned int old = md->prev;
unsigned char *data = md->base + page_size;
int diff;
gettimeofday(&this_read, NULL);
/*
* If we're further behind than half the buffer, there's a chance
* the writer will bite our tail and mess up the samples under us.
*
* If we somehow ended up ahead of the head, we got messed up.
*
* In either case, truncate and restart at head.
*/
diff = head - old;
if (diff > md->mask / 2 || diff < 0) {
struct timeval iv;
unsigned long msecs;
timersub(&this_read, &last_read, &iv);
msecs = iv.tv_sec*1000 + iv.tv_usec/1000;
fprintf(stderr, "WARNING: failed to keep up with mmap data."
" Last read %lu msecs ago.\n", msecs);
/*
* head points to a known good entry, start there.
*/
old = head;
}
last_read = this_read;
for (; old != head;) {
struct ip_event {
struct perf_event_header header;
u64 ip;
u32 pid, target_pid;
};
struct mmap_event {
struct perf_event_header header;
u32 pid, target_pid;
u64 start;
u64 len;
u64 pgoff;
char filename[PATH_MAX];
};
typedef union event_union {
struct perf_event_header header;
struct ip_event ip;
struct mmap_event mmap;
} event_t;
event_t *event = (event_t *)&data[old & md->mask];
event_t event_copy;
size_t size = event->header.size;
/*
* Event straddles the mmap boundary -- header should always
* be inside due to u64 alignment of output.
*/
if ((old & md->mask) + size != ((old + size) & md->mask)) {
unsigned int offset = old;
unsigned int len = min(sizeof(*event), size), cpy;
void *dst = &event_copy;
do {
cpy = min(md->mask + 1 - (offset & md->mask), len);
memcpy(dst, &data[offset & md->mask], cpy);
offset += cpy;
dst += cpy;
len -= cpy;
} while (len);
event = &event_copy;
}
old += size;
if (event->header.type == PERF_EVENT_SAMPLE) {
int user =
(event->header.misc & PERF_EVENT_MISC_CPUMODE_MASK) == PERF_EVENT_MISC_USER;
process_event(event->ip.ip, md->counter, user);
}
}
md->prev = old;
}
static struct pollfd event_array[MAX_NR_CPUS * MAX_COUNTERS];
static struct mmap_data mmap_array[MAX_NR_CPUS][MAX_COUNTERS];
static void mmap_read(void)
{
int i, counter;
for (i = 0; i < nr_cpus; i++) {
for (counter = 0; counter < nr_counters; counter++)
mmap_read_counter(&mmap_array[i][counter]);
}
}
int nr_poll;
int group_fd;
static void start_counter(int i, int counter)
{
struct perf_counter_attr *attr;
int cpu;
cpu = profile_cpu;
if (target_pid == -1 && profile_cpu == -1)
cpu = i;
attr = attrs + counter;
attr->sample_type = PERF_SAMPLE_IP | PERF_SAMPLE_TID;
attr->freq = freq;
attr->inherit = (cpu < 0) && inherit;
try_again:
fd[i][counter] = sys_perf_counter_open(attr, target_pid, cpu, group_fd, 0);
if (fd[i][counter] < 0) {
int err = errno;
if (err == EPERM)
die("No permission - are you root?\n");
/*
* If it's cycles then fall back to hrtimer
* based cpu-clock-tick sw counter, which
* is always available even if no PMU support:
*/
if (attr->type == PERF_TYPE_HARDWARE
&& attr->config == PERF_COUNT_HW_CPU_CYCLES) {
if (verbose)
warning(" ... trying to fall back to cpu-clock-ticks\n");
attr->type = PERF_TYPE_SOFTWARE;
attr->config = PERF_COUNT_SW_CPU_CLOCK;
goto try_again;
}
printf("\n");
error("perfcounter syscall returned with %d (%s)\n",
fd[i][counter], strerror(err));
die("No CONFIG_PERF_COUNTERS=y kernel support configured?\n");
exit(-1);
}
assert(fd[i][counter] >= 0);
fcntl(fd[i][counter], F_SETFL, O_NONBLOCK);
/*
* First counter acts as the group leader:
*/
if (group && group_fd == -1)
group_fd = fd[i][counter];
event_array[nr_poll].fd = fd[i][counter];
event_array[nr_poll].events = POLLIN;
nr_poll++;
mmap_array[i][counter].counter = counter;
mmap_array[i][counter].prev = 0;
mmap_array[i][counter].mask = mmap_pages*page_size - 1;
mmap_array[i][counter].base = mmap(NULL, (mmap_pages+1)*page_size,
PROT_READ, MAP_SHARED, fd[i][counter], 0);
if (mmap_array[i][counter].base == MAP_FAILED)
die("failed to mmap with %d (%s)\n", errno, strerror(errno));
}
static int __cmd_top(void)
{
pthread_t thread;
int i, counter;
int ret;
for (i = 0; i < nr_cpus; i++) {
group_fd = -1;
for (counter = 0; counter < nr_counters; counter++)
start_counter(i, counter);
}
/* Wait for a minimal set of events before starting the snapshot */
poll(event_array, nr_poll, 100);
mmap_read();
if (pthread_create(&thread, NULL, display_thread, NULL)) {
printf("Could not create display thread.\n");
exit(-1);
}
if (realtime_prio) {
struct sched_param param;
param.sched_priority = realtime_prio;
if (sched_setscheduler(0, SCHED_FIFO, &param)) {
printf("Could not set realtime priority.\n");
exit(-1);
}
}
while (1) {
int hits = samples;
mmap_read();
if (hits == samples)
ret = poll(event_array, nr_poll, 100);
}
return 0;
}
static const char * const top_usage[] = {
"perf top [<options>]",
NULL
};
static const struct option options[] = {
OPT_CALLBACK('e', "event", NULL, "event",
"event selector. use 'perf list' to list available events",
parse_events),
OPT_INTEGER('c', "count", &default_interval,
"event period to sample"),
OPT_INTEGER('p', "pid", &target_pid,
"profile events on existing pid"),
OPT_BOOLEAN('a', "all-cpus", &system_wide,
"system-wide collection from all CPUs"),
OPT_INTEGER('C', "CPU", &profile_cpu,
"CPU to profile on"),
OPT_STRING('k', "vmlinux", &vmlinux, "file", "vmlinux pathname"),
OPT_INTEGER('m', "mmap-pages", &mmap_pages,
"number of mmap data pages"),
OPT_INTEGER('r', "realtime", &realtime_prio,
"collect data with this RT SCHED_FIFO priority"),
OPT_INTEGER('d', "delay", &delay_secs,
"number of seconds to delay between refreshes"),
OPT_BOOLEAN('D', "dump-symtab", &dump_symtab,
"dump the symbol table used for profiling"),
OPT_INTEGER('f', "count-filter", &count_filter,
"only display functions with more events than this"),
OPT_BOOLEAN('g', "group", &group,
"put the counters into a counter group"),
OPT_BOOLEAN('i', "inherit", &inherit,
"child tasks inherit counters"),
OPT_STRING('s', "sym-annotate", &sym_filter, "symbol name",
"symbol to annotate - requires -k option"),
OPT_BOOLEAN('z', "zero", &zero,
"zero history across updates"),
OPT_INTEGER('F', "freq", &freq,
"profile at this frequency"),
OPT_INTEGER('E', "entries", &print_entries,
"display this many functions"),
OPT_BOOLEAN('v', "verbose", &verbose,
"be more verbose (show counter open errors, etc)"),
OPT_END()
};
int cmd_top(int argc, const char **argv, const char *prefix __used)
{
int counter;
symbol__init();
page_size = sysconf(_SC_PAGE_SIZE);
argc = parse_options(argc, argv, options, top_usage, 0);
if (argc)
usage_with_options(top_usage, options);
if (freq) {
default_interval = freq;
freq = 1;
}
/* CPU and PID are mutually exclusive */
if (target_pid != -1 && profile_cpu != -1) {
printf("WARNING: PID switch overriding CPU\n");
sleep(1);
profile_cpu = -1;
}
if (!nr_counters)
nr_counters = 1;
if (delay_secs < 1)
delay_secs = 1;
parse_symbols();
parse_source(sym_filter_entry);
/*
* Fill in the ones not specifically initialized via -c:
*/
for (counter = 0; counter < nr_counters; counter++) {
if (attrs[counter].sample_period)
continue;
attrs[counter].sample_period = default_interval;
}
nr_cpus = sysconf(_SC_NPROCESSORS_ONLN);
assert(nr_cpus <= MAX_NR_CPUS);
assert(nr_cpus >= 0);
if (target_pid != -1 || profile_cpu != -1)
nr_cpus = 1;
return __cmd_top();
}