mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-24 00:45:19 +07:00
828bf6e904
Collection of misc libnvdimm patches for 4.19 submission * Adding support to read locked nvdimm capacity. * Change test code to make DSM failure code injection an override. * Add support for calculate maximum contiguous area for namespace. * Add support for queueing a short ARS when there is on going ARS for nvdimm. * Allow NULL to be passed in to ->direct_access() for kaddr and pfn params. * Improve smart injection support for nvdimm emulation testing. * Fix test code that supports for emulating controller temperature. * Fix hang on error before devm_memremap_pages() * Fix a bug that causes user memory corruption when data returned to user for ars_status. * Maintainer updates for Ross Zwisler emails and adding Jan Kara to fsdax. -----BEGIN PGP SIGNATURE----- iQIzBAABCAAdFiEE5DAy15EJMCV1R6v9YGjFFmlTOEoFAlt9uUIACgkQYGjFFmlT OErL+xAAgWHSGs8w98VtYA9kLDeTYEXutq93wJZQoBu/FMAXuuU3hYmQYnOQU87h KKYmfDkeusaih1R3IX7mzlegnnzSfQ6MraNSV76M43noJHbRTunknCPZH6ebp4fo b/eljvWlZF/idM+7YcsnoFMnHSRj2pjJGXmKQDlKedHD+KMxpmk6zEl2s5Y0zvPU 4U7UQLtk3D5IIpLNsLEmxge32BfvNf5IzoSO1aZp7Eqk0+U5Tq3Sq/Tjmd+J0RKt 6WH5yA6NqXQgBh+ayHsYU8YX62RqnbKQZXqVxD35OH64zJEUefnP1fpt9pmaZ9eL 43BPMkpM09eLAikO2ET3/3c2k6h3h9ttz1sH8t/hiroCtfmxs3XgskY06hxpKjZV EbN+BUmut5Mr+zzYitRr3dbK2aHPVU9IbU7jUw/1Tz23rq3kU5iI7SHHv1b/eWup 1Cr77Z1M6HB8VBhjnJ+R607sbRrnKQUOV7fGzAaIskyUOTWsEvIgTh/6MRiaj9MD 5HXIgc/0y9E+G93s7MsUWwzpB7J6E7EGoybST2SKPtqwtDMPsBNeWRjyA9quBCoN u1s+e+lWHYutqRW0eisDTTlq3nJwPijSx1nnzhJxw9s1EkCXz3f7KRZhyH1C79Co 7wjiuvKQ79e/HI/oXvGmTnv5lbLEpWYyJ3U3KIFfoUqugeyhr0k= =5p2n -----END PGP SIGNATURE----- Merge tag 'libnvdimm-for-4.19_misc' of gitolite.kernel.org:pub/scm/linux/kernel/git/nvdimm/nvdimm Pull libnvdimm updates from Dave Jiang: "Collection of misc libnvdimm patches for 4.19 submission: - Adding support to read locked nvdimm capacity. - Change test code to make DSM failure code injection an override. - Add support for calculate maximum contiguous area for namespace. - Add support for queueing a short ARS when there is on going ARS for nvdimm. - Allow NULL to be passed in to ->direct_access() for kaddr and pfn params. - Improve smart injection support for nvdimm emulation testing. - Fix test code that supports for emulating controller temperature. - Fix hang on error before devm_memremap_pages() - Fix a bug that causes user memory corruption when data returned to user for ars_status. - Maintainer updates for Ross Zwisler emails and adding Jan Kara to fsdax" * tag 'libnvdimm-for-4.19_misc' of gitolite.kernel.org:pub/scm/linux/kernel/git/nvdimm/nvdimm: libnvdimm: fix ars_status output length calculation device-dax: avoid hang on error before devm_memremap_pages() tools/testing/nvdimm: improve emulation of smart injection filesystem-dax: Do not request kaddr and pfn when not required md/dm-writecache: Don't request pointer dummy_addr when not required dax/super: Do not request a pointer kaddr when not required tools/testing/nvdimm: kaddr and pfn can be NULL to ->direct_access() s390, dcssblk: kaddr and pfn can be NULL to ->direct_access() libnvdimm, pmem: kaddr and pfn can be NULL to ->direct_access() acpi/nfit: queue issuing of ars when an uc error notification comes in libnvdimm: Export max available extent libnvdimm: Use max contiguous area for namespace size MAINTAINERS: Add Jan Kara for filesystem DAX MAINTAINERS: update Ross Zwisler's email address tools/testing/nvdimm: Fix support for emulating controller temperature tools/testing/nvdimm: Make DSM failure code injection an override acpi, nfit: Prefer _DSM over _LSR for namespace label reads libnvdimm: Introduce locked DIMM capacity support
2324 lines
57 KiB
C
2324 lines
57 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (C) 2018 Red Hat. All rights reserved.
|
|
*
|
|
* This file is released under the GPL.
|
|
*/
|
|
|
|
#include <linux/device-mapper.h>
|
|
#include <linux/module.h>
|
|
#include <linux/init.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/kthread.h>
|
|
#include <linux/dm-io.h>
|
|
#include <linux/dm-kcopyd.h>
|
|
#include <linux/dax.h>
|
|
#include <linux/pfn_t.h>
|
|
#include <linux/libnvdimm.h>
|
|
|
|
#define DM_MSG_PREFIX "writecache"
|
|
|
|
#define HIGH_WATERMARK 50
|
|
#define LOW_WATERMARK 45
|
|
#define MAX_WRITEBACK_JOBS 0
|
|
#define ENDIO_LATENCY 16
|
|
#define WRITEBACK_LATENCY 64
|
|
#define AUTOCOMMIT_BLOCKS_SSD 65536
|
|
#define AUTOCOMMIT_BLOCKS_PMEM 64
|
|
#define AUTOCOMMIT_MSEC 1000
|
|
|
|
#define BITMAP_GRANULARITY 65536
|
|
#if BITMAP_GRANULARITY < PAGE_SIZE
|
|
#undef BITMAP_GRANULARITY
|
|
#define BITMAP_GRANULARITY PAGE_SIZE
|
|
#endif
|
|
|
|
#if IS_ENABLED(CONFIG_ARCH_HAS_PMEM_API) && IS_ENABLED(CONFIG_DAX_DRIVER)
|
|
#define DM_WRITECACHE_HAS_PMEM
|
|
#endif
|
|
|
|
#ifdef DM_WRITECACHE_HAS_PMEM
|
|
#define pmem_assign(dest, src) \
|
|
do { \
|
|
typeof(dest) uniq = (src); \
|
|
memcpy_flushcache(&(dest), &uniq, sizeof(dest)); \
|
|
} while (0)
|
|
#else
|
|
#define pmem_assign(dest, src) ((dest) = (src))
|
|
#endif
|
|
|
|
#if defined(__HAVE_ARCH_MEMCPY_MCSAFE) && defined(DM_WRITECACHE_HAS_PMEM)
|
|
#define DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
|
|
#endif
|
|
|
|
#define MEMORY_SUPERBLOCK_MAGIC 0x23489321
|
|
#define MEMORY_SUPERBLOCK_VERSION 1
|
|
|
|
struct wc_memory_entry {
|
|
__le64 original_sector;
|
|
__le64 seq_count;
|
|
};
|
|
|
|
struct wc_memory_superblock {
|
|
union {
|
|
struct {
|
|
__le32 magic;
|
|
__le32 version;
|
|
__le32 block_size;
|
|
__le32 pad;
|
|
__le64 n_blocks;
|
|
__le64 seq_count;
|
|
};
|
|
__le64 padding[8];
|
|
};
|
|
struct wc_memory_entry entries[0];
|
|
};
|
|
|
|
struct wc_entry {
|
|
struct rb_node rb_node;
|
|
struct list_head lru;
|
|
unsigned short wc_list_contiguous;
|
|
bool write_in_progress
|
|
#if BITS_PER_LONG == 64
|
|
:1
|
|
#endif
|
|
;
|
|
unsigned long index
|
|
#if BITS_PER_LONG == 64
|
|
:47
|
|
#endif
|
|
;
|
|
#ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
|
|
uint64_t original_sector;
|
|
uint64_t seq_count;
|
|
#endif
|
|
};
|
|
|
|
#ifdef DM_WRITECACHE_HAS_PMEM
|
|
#define WC_MODE_PMEM(wc) ((wc)->pmem_mode)
|
|
#define WC_MODE_FUA(wc) ((wc)->writeback_fua)
|
|
#else
|
|
#define WC_MODE_PMEM(wc) false
|
|
#define WC_MODE_FUA(wc) false
|
|
#endif
|
|
#define WC_MODE_SORT_FREELIST(wc) (!WC_MODE_PMEM(wc))
|
|
|
|
struct dm_writecache {
|
|
struct mutex lock;
|
|
struct list_head lru;
|
|
union {
|
|
struct list_head freelist;
|
|
struct {
|
|
struct rb_root freetree;
|
|
struct wc_entry *current_free;
|
|
};
|
|
};
|
|
struct rb_root tree;
|
|
|
|
size_t freelist_size;
|
|
size_t writeback_size;
|
|
size_t freelist_high_watermark;
|
|
size_t freelist_low_watermark;
|
|
|
|
unsigned uncommitted_blocks;
|
|
unsigned autocommit_blocks;
|
|
unsigned max_writeback_jobs;
|
|
|
|
int error;
|
|
|
|
unsigned long autocommit_jiffies;
|
|
struct timer_list autocommit_timer;
|
|
struct wait_queue_head freelist_wait;
|
|
|
|
atomic_t bio_in_progress[2];
|
|
struct wait_queue_head bio_in_progress_wait[2];
|
|
|
|
struct dm_target *ti;
|
|
struct dm_dev *dev;
|
|
struct dm_dev *ssd_dev;
|
|
sector_t start_sector;
|
|
void *memory_map;
|
|
uint64_t memory_map_size;
|
|
size_t metadata_sectors;
|
|
size_t n_blocks;
|
|
uint64_t seq_count;
|
|
void *block_start;
|
|
struct wc_entry *entries;
|
|
unsigned block_size;
|
|
unsigned char block_size_bits;
|
|
|
|
bool pmem_mode:1;
|
|
bool writeback_fua:1;
|
|
|
|
bool overwrote_committed:1;
|
|
bool memory_vmapped:1;
|
|
|
|
bool high_wm_percent_set:1;
|
|
bool low_wm_percent_set:1;
|
|
bool max_writeback_jobs_set:1;
|
|
bool autocommit_blocks_set:1;
|
|
bool autocommit_time_set:1;
|
|
bool writeback_fua_set:1;
|
|
bool flush_on_suspend:1;
|
|
|
|
unsigned writeback_all;
|
|
struct workqueue_struct *writeback_wq;
|
|
struct work_struct writeback_work;
|
|
struct work_struct flush_work;
|
|
|
|
struct dm_io_client *dm_io;
|
|
|
|
raw_spinlock_t endio_list_lock;
|
|
struct list_head endio_list;
|
|
struct task_struct *endio_thread;
|
|
|
|
struct task_struct *flush_thread;
|
|
struct bio_list flush_list;
|
|
|
|
struct dm_kcopyd_client *dm_kcopyd;
|
|
unsigned long *dirty_bitmap;
|
|
unsigned dirty_bitmap_size;
|
|
|
|
struct bio_set bio_set;
|
|
mempool_t copy_pool;
|
|
};
|
|
|
|
#define WB_LIST_INLINE 16
|
|
|
|
struct writeback_struct {
|
|
struct list_head endio_entry;
|
|
struct dm_writecache *wc;
|
|
struct wc_entry **wc_list;
|
|
unsigned wc_list_n;
|
|
unsigned page_offset;
|
|
struct page *page;
|
|
struct wc_entry *wc_list_inline[WB_LIST_INLINE];
|
|
struct bio bio;
|
|
};
|
|
|
|
struct copy_struct {
|
|
struct list_head endio_entry;
|
|
struct dm_writecache *wc;
|
|
struct wc_entry *e;
|
|
unsigned n_entries;
|
|
int error;
|
|
};
|
|
|
|
DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(dm_writecache_throttle,
|
|
"A percentage of time allocated for data copying");
|
|
|
|
static void wc_lock(struct dm_writecache *wc)
|
|
{
|
|
mutex_lock(&wc->lock);
|
|
}
|
|
|
|
static void wc_unlock(struct dm_writecache *wc)
|
|
{
|
|
mutex_unlock(&wc->lock);
|
|
}
|
|
|
|
#ifdef DM_WRITECACHE_HAS_PMEM
|
|
static int persistent_memory_claim(struct dm_writecache *wc)
|
|
{
|
|
int r;
|
|
loff_t s;
|
|
long p, da;
|
|
pfn_t pfn;
|
|
int id;
|
|
struct page **pages;
|
|
|
|
wc->memory_vmapped = false;
|
|
|
|
if (!wc->ssd_dev->dax_dev) {
|
|
r = -EOPNOTSUPP;
|
|
goto err1;
|
|
}
|
|
s = wc->memory_map_size;
|
|
p = s >> PAGE_SHIFT;
|
|
if (!p) {
|
|
r = -EINVAL;
|
|
goto err1;
|
|
}
|
|
if (p != s >> PAGE_SHIFT) {
|
|
r = -EOVERFLOW;
|
|
goto err1;
|
|
}
|
|
|
|
id = dax_read_lock();
|
|
|
|
da = dax_direct_access(wc->ssd_dev->dax_dev, 0, p, &wc->memory_map, &pfn);
|
|
if (da < 0) {
|
|
wc->memory_map = NULL;
|
|
r = da;
|
|
goto err2;
|
|
}
|
|
if (!pfn_t_has_page(pfn)) {
|
|
wc->memory_map = NULL;
|
|
r = -EOPNOTSUPP;
|
|
goto err2;
|
|
}
|
|
if (da != p) {
|
|
long i;
|
|
wc->memory_map = NULL;
|
|
pages = kvmalloc_array(p, sizeof(struct page *), GFP_KERNEL);
|
|
if (!pages) {
|
|
r = -ENOMEM;
|
|
goto err2;
|
|
}
|
|
i = 0;
|
|
do {
|
|
long daa;
|
|
daa = dax_direct_access(wc->ssd_dev->dax_dev, i, p - i,
|
|
NULL, &pfn);
|
|
if (daa <= 0) {
|
|
r = daa ? daa : -EINVAL;
|
|
goto err3;
|
|
}
|
|
if (!pfn_t_has_page(pfn)) {
|
|
r = -EOPNOTSUPP;
|
|
goto err3;
|
|
}
|
|
while (daa-- && i < p) {
|
|
pages[i++] = pfn_t_to_page(pfn);
|
|
pfn.val++;
|
|
}
|
|
} while (i < p);
|
|
wc->memory_map = vmap(pages, p, VM_MAP, PAGE_KERNEL);
|
|
if (!wc->memory_map) {
|
|
r = -ENOMEM;
|
|
goto err3;
|
|
}
|
|
kvfree(pages);
|
|
wc->memory_vmapped = true;
|
|
}
|
|
|
|
dax_read_unlock(id);
|
|
|
|
wc->memory_map += (size_t)wc->start_sector << SECTOR_SHIFT;
|
|
wc->memory_map_size -= (size_t)wc->start_sector << SECTOR_SHIFT;
|
|
|
|
return 0;
|
|
err3:
|
|
kvfree(pages);
|
|
err2:
|
|
dax_read_unlock(id);
|
|
err1:
|
|
return r;
|
|
}
|
|
#else
|
|
static int persistent_memory_claim(struct dm_writecache *wc)
|
|
{
|
|
BUG();
|
|
}
|
|
#endif
|
|
|
|
static void persistent_memory_release(struct dm_writecache *wc)
|
|
{
|
|
if (wc->memory_vmapped)
|
|
vunmap(wc->memory_map - ((size_t)wc->start_sector << SECTOR_SHIFT));
|
|
}
|
|
|
|
static struct page *persistent_memory_page(void *addr)
|
|
{
|
|
if (is_vmalloc_addr(addr))
|
|
return vmalloc_to_page(addr);
|
|
else
|
|
return virt_to_page(addr);
|
|
}
|
|
|
|
static unsigned persistent_memory_page_offset(void *addr)
|
|
{
|
|
return (unsigned long)addr & (PAGE_SIZE - 1);
|
|
}
|
|
|
|
static void persistent_memory_flush_cache(void *ptr, size_t size)
|
|
{
|
|
if (is_vmalloc_addr(ptr))
|
|
flush_kernel_vmap_range(ptr, size);
|
|
}
|
|
|
|
static void persistent_memory_invalidate_cache(void *ptr, size_t size)
|
|
{
|
|
if (is_vmalloc_addr(ptr))
|
|
invalidate_kernel_vmap_range(ptr, size);
|
|
}
|
|
|
|
static struct wc_memory_superblock *sb(struct dm_writecache *wc)
|
|
{
|
|
return wc->memory_map;
|
|
}
|
|
|
|
static struct wc_memory_entry *memory_entry(struct dm_writecache *wc, struct wc_entry *e)
|
|
{
|
|
if (is_power_of_2(sizeof(struct wc_entry)) && 0)
|
|
return &sb(wc)->entries[e - wc->entries];
|
|
else
|
|
return &sb(wc)->entries[e->index];
|
|
}
|
|
|
|
static void *memory_data(struct dm_writecache *wc, struct wc_entry *e)
|
|
{
|
|
return (char *)wc->block_start + (e->index << wc->block_size_bits);
|
|
}
|
|
|
|
static sector_t cache_sector(struct dm_writecache *wc, struct wc_entry *e)
|
|
{
|
|
return wc->start_sector + wc->metadata_sectors +
|
|
((sector_t)e->index << (wc->block_size_bits - SECTOR_SHIFT));
|
|
}
|
|
|
|
static uint64_t read_original_sector(struct dm_writecache *wc, struct wc_entry *e)
|
|
{
|
|
#ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
|
|
return e->original_sector;
|
|
#else
|
|
return le64_to_cpu(memory_entry(wc, e)->original_sector);
|
|
#endif
|
|
}
|
|
|
|
static uint64_t read_seq_count(struct dm_writecache *wc, struct wc_entry *e)
|
|
{
|
|
#ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
|
|
return e->seq_count;
|
|
#else
|
|
return le64_to_cpu(memory_entry(wc, e)->seq_count);
|
|
#endif
|
|
}
|
|
|
|
static void clear_seq_count(struct dm_writecache *wc, struct wc_entry *e)
|
|
{
|
|
#ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
|
|
e->seq_count = -1;
|
|
#endif
|
|
pmem_assign(memory_entry(wc, e)->seq_count, cpu_to_le64(-1));
|
|
}
|
|
|
|
static void write_original_sector_seq_count(struct dm_writecache *wc, struct wc_entry *e,
|
|
uint64_t original_sector, uint64_t seq_count)
|
|
{
|
|
struct wc_memory_entry me;
|
|
#ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
|
|
e->original_sector = original_sector;
|
|
e->seq_count = seq_count;
|
|
#endif
|
|
me.original_sector = cpu_to_le64(original_sector);
|
|
me.seq_count = cpu_to_le64(seq_count);
|
|
pmem_assign(*memory_entry(wc, e), me);
|
|
}
|
|
|
|
#define writecache_error(wc, err, msg, arg...) \
|
|
do { \
|
|
if (!cmpxchg(&(wc)->error, 0, err)) \
|
|
DMERR(msg, ##arg); \
|
|
wake_up(&(wc)->freelist_wait); \
|
|
} while (0)
|
|
|
|
#define writecache_has_error(wc) (unlikely(READ_ONCE((wc)->error)))
|
|
|
|
static void writecache_flush_all_metadata(struct dm_writecache *wc)
|
|
{
|
|
if (!WC_MODE_PMEM(wc))
|
|
memset(wc->dirty_bitmap, -1, wc->dirty_bitmap_size);
|
|
}
|
|
|
|
static void writecache_flush_region(struct dm_writecache *wc, void *ptr, size_t size)
|
|
{
|
|
if (!WC_MODE_PMEM(wc))
|
|
__set_bit(((char *)ptr - (char *)wc->memory_map) / BITMAP_GRANULARITY,
|
|
wc->dirty_bitmap);
|
|
}
|
|
|
|
static void writecache_disk_flush(struct dm_writecache *wc, struct dm_dev *dev);
|
|
|
|
struct io_notify {
|
|
struct dm_writecache *wc;
|
|
struct completion c;
|
|
atomic_t count;
|
|
};
|
|
|
|
static void writecache_notify_io(unsigned long error, void *context)
|
|
{
|
|
struct io_notify *endio = context;
|
|
|
|
if (unlikely(error != 0))
|
|
writecache_error(endio->wc, -EIO, "error writing metadata");
|
|
BUG_ON(atomic_read(&endio->count) <= 0);
|
|
if (atomic_dec_and_test(&endio->count))
|
|
complete(&endio->c);
|
|
}
|
|
|
|
static void ssd_commit_flushed(struct dm_writecache *wc)
|
|
{
|
|
struct dm_io_region region;
|
|
struct dm_io_request req;
|
|
struct io_notify endio = {
|
|
wc,
|
|
COMPLETION_INITIALIZER_ONSTACK(endio.c),
|
|
ATOMIC_INIT(1),
|
|
};
|
|
unsigned bitmap_bits = wc->dirty_bitmap_size * 8;
|
|
unsigned i = 0;
|
|
|
|
while (1) {
|
|
unsigned j;
|
|
i = find_next_bit(wc->dirty_bitmap, bitmap_bits, i);
|
|
if (unlikely(i == bitmap_bits))
|
|
break;
|
|
j = find_next_zero_bit(wc->dirty_bitmap, bitmap_bits, i);
|
|
|
|
region.bdev = wc->ssd_dev->bdev;
|
|
region.sector = (sector_t)i * (BITMAP_GRANULARITY >> SECTOR_SHIFT);
|
|
region.count = (sector_t)(j - i) * (BITMAP_GRANULARITY >> SECTOR_SHIFT);
|
|
|
|
if (unlikely(region.sector >= wc->metadata_sectors))
|
|
break;
|
|
if (unlikely(region.sector + region.count > wc->metadata_sectors))
|
|
region.count = wc->metadata_sectors - region.sector;
|
|
|
|
region.sector += wc->start_sector;
|
|
atomic_inc(&endio.count);
|
|
req.bi_op = REQ_OP_WRITE;
|
|
req.bi_op_flags = REQ_SYNC;
|
|
req.mem.type = DM_IO_VMA;
|
|
req.mem.ptr.vma = (char *)wc->memory_map + (size_t)i * BITMAP_GRANULARITY;
|
|
req.client = wc->dm_io;
|
|
req.notify.fn = writecache_notify_io;
|
|
req.notify.context = &endio;
|
|
|
|
/* writing via async dm-io (implied by notify.fn above) won't return an error */
|
|
(void) dm_io(&req, 1, ®ion, NULL);
|
|
i = j;
|
|
}
|
|
|
|
writecache_notify_io(0, &endio);
|
|
wait_for_completion_io(&endio.c);
|
|
|
|
writecache_disk_flush(wc, wc->ssd_dev);
|
|
|
|
memset(wc->dirty_bitmap, 0, wc->dirty_bitmap_size);
|
|
}
|
|
|
|
static void writecache_commit_flushed(struct dm_writecache *wc)
|
|
{
|
|
if (WC_MODE_PMEM(wc))
|
|
wmb();
|
|
else
|
|
ssd_commit_flushed(wc);
|
|
}
|
|
|
|
static void writecache_disk_flush(struct dm_writecache *wc, struct dm_dev *dev)
|
|
{
|
|
int r;
|
|
struct dm_io_region region;
|
|
struct dm_io_request req;
|
|
|
|
region.bdev = dev->bdev;
|
|
region.sector = 0;
|
|
region.count = 0;
|
|
req.bi_op = REQ_OP_WRITE;
|
|
req.bi_op_flags = REQ_PREFLUSH;
|
|
req.mem.type = DM_IO_KMEM;
|
|
req.mem.ptr.addr = NULL;
|
|
req.client = wc->dm_io;
|
|
req.notify.fn = NULL;
|
|
|
|
r = dm_io(&req, 1, ®ion, NULL);
|
|
if (unlikely(r))
|
|
writecache_error(wc, r, "error flushing metadata: %d", r);
|
|
}
|
|
|
|
static void writecache_wait_for_ios(struct dm_writecache *wc, int direction)
|
|
{
|
|
wait_event(wc->bio_in_progress_wait[direction],
|
|
!atomic_read(&wc->bio_in_progress[direction]));
|
|
}
|
|
|
|
#define WFE_RETURN_FOLLOWING 1
|
|
#define WFE_LOWEST_SEQ 2
|
|
|
|
static struct wc_entry *writecache_find_entry(struct dm_writecache *wc,
|
|
uint64_t block, int flags)
|
|
{
|
|
struct wc_entry *e;
|
|
struct rb_node *node = wc->tree.rb_node;
|
|
|
|
if (unlikely(!node))
|
|
return NULL;
|
|
|
|
while (1) {
|
|
e = container_of(node, struct wc_entry, rb_node);
|
|
if (read_original_sector(wc, e) == block)
|
|
break;
|
|
node = (read_original_sector(wc, e) >= block ?
|
|
e->rb_node.rb_left : e->rb_node.rb_right);
|
|
if (unlikely(!node)) {
|
|
if (!(flags & WFE_RETURN_FOLLOWING)) {
|
|
return NULL;
|
|
}
|
|
if (read_original_sector(wc, e) >= block) {
|
|
break;
|
|
} else {
|
|
node = rb_next(&e->rb_node);
|
|
if (unlikely(!node)) {
|
|
return NULL;
|
|
}
|
|
e = container_of(node, struct wc_entry, rb_node);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
while (1) {
|
|
struct wc_entry *e2;
|
|
if (flags & WFE_LOWEST_SEQ)
|
|
node = rb_prev(&e->rb_node);
|
|
else
|
|
node = rb_next(&e->rb_node);
|
|
if (!node)
|
|
return e;
|
|
e2 = container_of(node, struct wc_entry, rb_node);
|
|
if (read_original_sector(wc, e2) != block)
|
|
return e;
|
|
e = e2;
|
|
}
|
|
}
|
|
|
|
static void writecache_insert_entry(struct dm_writecache *wc, struct wc_entry *ins)
|
|
{
|
|
struct wc_entry *e;
|
|
struct rb_node **node = &wc->tree.rb_node, *parent = NULL;
|
|
|
|
while (*node) {
|
|
e = container_of(*node, struct wc_entry, rb_node);
|
|
parent = &e->rb_node;
|
|
if (read_original_sector(wc, e) > read_original_sector(wc, ins))
|
|
node = &parent->rb_left;
|
|
else
|
|
node = &parent->rb_right;
|
|
}
|
|
rb_link_node(&ins->rb_node, parent, node);
|
|
rb_insert_color(&ins->rb_node, &wc->tree);
|
|
list_add(&ins->lru, &wc->lru);
|
|
}
|
|
|
|
static void writecache_unlink(struct dm_writecache *wc, struct wc_entry *e)
|
|
{
|
|
list_del(&e->lru);
|
|
rb_erase(&e->rb_node, &wc->tree);
|
|
}
|
|
|
|
static void writecache_add_to_freelist(struct dm_writecache *wc, struct wc_entry *e)
|
|
{
|
|
if (WC_MODE_SORT_FREELIST(wc)) {
|
|
struct rb_node **node = &wc->freetree.rb_node, *parent = NULL;
|
|
if (unlikely(!*node))
|
|
wc->current_free = e;
|
|
while (*node) {
|
|
parent = *node;
|
|
if (&e->rb_node < *node)
|
|
node = &parent->rb_left;
|
|
else
|
|
node = &parent->rb_right;
|
|
}
|
|
rb_link_node(&e->rb_node, parent, node);
|
|
rb_insert_color(&e->rb_node, &wc->freetree);
|
|
} else {
|
|
list_add_tail(&e->lru, &wc->freelist);
|
|
}
|
|
wc->freelist_size++;
|
|
}
|
|
|
|
static struct wc_entry *writecache_pop_from_freelist(struct dm_writecache *wc)
|
|
{
|
|
struct wc_entry *e;
|
|
|
|
if (WC_MODE_SORT_FREELIST(wc)) {
|
|
struct rb_node *next;
|
|
if (unlikely(!wc->current_free))
|
|
return NULL;
|
|
e = wc->current_free;
|
|
next = rb_next(&e->rb_node);
|
|
rb_erase(&e->rb_node, &wc->freetree);
|
|
if (unlikely(!next))
|
|
next = rb_first(&wc->freetree);
|
|
wc->current_free = next ? container_of(next, struct wc_entry, rb_node) : NULL;
|
|
} else {
|
|
if (unlikely(list_empty(&wc->freelist)))
|
|
return NULL;
|
|
e = container_of(wc->freelist.next, struct wc_entry, lru);
|
|
list_del(&e->lru);
|
|
}
|
|
wc->freelist_size--;
|
|
if (unlikely(wc->freelist_size + wc->writeback_size <= wc->freelist_high_watermark))
|
|
queue_work(wc->writeback_wq, &wc->writeback_work);
|
|
|
|
return e;
|
|
}
|
|
|
|
static void writecache_free_entry(struct dm_writecache *wc, struct wc_entry *e)
|
|
{
|
|
writecache_unlink(wc, e);
|
|
writecache_add_to_freelist(wc, e);
|
|
clear_seq_count(wc, e);
|
|
writecache_flush_region(wc, memory_entry(wc, e), sizeof(struct wc_memory_entry));
|
|
if (unlikely(waitqueue_active(&wc->freelist_wait)))
|
|
wake_up(&wc->freelist_wait);
|
|
}
|
|
|
|
static void writecache_wait_on_freelist(struct dm_writecache *wc)
|
|
{
|
|
DEFINE_WAIT(wait);
|
|
|
|
prepare_to_wait(&wc->freelist_wait, &wait, TASK_UNINTERRUPTIBLE);
|
|
wc_unlock(wc);
|
|
io_schedule();
|
|
finish_wait(&wc->freelist_wait, &wait);
|
|
wc_lock(wc);
|
|
}
|
|
|
|
static void writecache_poison_lists(struct dm_writecache *wc)
|
|
{
|
|
/*
|
|
* Catch incorrect access to these values while the device is suspended.
|
|
*/
|
|
memset(&wc->tree, -1, sizeof wc->tree);
|
|
wc->lru.next = LIST_POISON1;
|
|
wc->lru.prev = LIST_POISON2;
|
|
wc->freelist.next = LIST_POISON1;
|
|
wc->freelist.prev = LIST_POISON2;
|
|
}
|
|
|
|
static void writecache_flush_entry(struct dm_writecache *wc, struct wc_entry *e)
|
|
{
|
|
writecache_flush_region(wc, memory_entry(wc, e), sizeof(struct wc_memory_entry));
|
|
if (WC_MODE_PMEM(wc))
|
|
writecache_flush_region(wc, memory_data(wc, e), wc->block_size);
|
|
}
|
|
|
|
static bool writecache_entry_is_committed(struct dm_writecache *wc, struct wc_entry *e)
|
|
{
|
|
return read_seq_count(wc, e) < wc->seq_count;
|
|
}
|
|
|
|
static void writecache_flush(struct dm_writecache *wc)
|
|
{
|
|
struct wc_entry *e, *e2;
|
|
bool need_flush_after_free;
|
|
|
|
wc->uncommitted_blocks = 0;
|
|
del_timer(&wc->autocommit_timer);
|
|
|
|
if (list_empty(&wc->lru))
|
|
return;
|
|
|
|
e = container_of(wc->lru.next, struct wc_entry, lru);
|
|
if (writecache_entry_is_committed(wc, e)) {
|
|
if (wc->overwrote_committed) {
|
|
writecache_wait_for_ios(wc, WRITE);
|
|
writecache_disk_flush(wc, wc->ssd_dev);
|
|
wc->overwrote_committed = false;
|
|
}
|
|
return;
|
|
}
|
|
while (1) {
|
|
writecache_flush_entry(wc, e);
|
|
if (unlikely(e->lru.next == &wc->lru))
|
|
break;
|
|
e2 = container_of(e->lru.next, struct wc_entry, lru);
|
|
if (writecache_entry_is_committed(wc, e2))
|
|
break;
|
|
e = e2;
|
|
cond_resched();
|
|
}
|
|
writecache_commit_flushed(wc);
|
|
|
|
writecache_wait_for_ios(wc, WRITE);
|
|
|
|
wc->seq_count++;
|
|
pmem_assign(sb(wc)->seq_count, cpu_to_le64(wc->seq_count));
|
|
writecache_flush_region(wc, &sb(wc)->seq_count, sizeof sb(wc)->seq_count);
|
|
writecache_commit_flushed(wc);
|
|
|
|
wc->overwrote_committed = false;
|
|
|
|
need_flush_after_free = false;
|
|
while (1) {
|
|
/* Free another committed entry with lower seq-count */
|
|
struct rb_node *rb_node = rb_prev(&e->rb_node);
|
|
|
|
if (rb_node) {
|
|
e2 = container_of(rb_node, struct wc_entry, rb_node);
|
|
if (read_original_sector(wc, e2) == read_original_sector(wc, e) &&
|
|
likely(!e2->write_in_progress)) {
|
|
writecache_free_entry(wc, e2);
|
|
need_flush_after_free = true;
|
|
}
|
|
}
|
|
if (unlikely(e->lru.prev == &wc->lru))
|
|
break;
|
|
e = container_of(e->lru.prev, struct wc_entry, lru);
|
|
cond_resched();
|
|
}
|
|
|
|
if (need_flush_after_free)
|
|
writecache_commit_flushed(wc);
|
|
}
|
|
|
|
static void writecache_flush_work(struct work_struct *work)
|
|
{
|
|
struct dm_writecache *wc = container_of(work, struct dm_writecache, flush_work);
|
|
|
|
wc_lock(wc);
|
|
writecache_flush(wc);
|
|
wc_unlock(wc);
|
|
}
|
|
|
|
static void writecache_autocommit_timer(struct timer_list *t)
|
|
{
|
|
struct dm_writecache *wc = from_timer(wc, t, autocommit_timer);
|
|
if (!writecache_has_error(wc))
|
|
queue_work(wc->writeback_wq, &wc->flush_work);
|
|
}
|
|
|
|
static void writecache_schedule_autocommit(struct dm_writecache *wc)
|
|
{
|
|
if (!timer_pending(&wc->autocommit_timer))
|
|
mod_timer(&wc->autocommit_timer, jiffies + wc->autocommit_jiffies);
|
|
}
|
|
|
|
static void writecache_discard(struct dm_writecache *wc, sector_t start, sector_t end)
|
|
{
|
|
struct wc_entry *e;
|
|
bool discarded_something = false;
|
|
|
|
e = writecache_find_entry(wc, start, WFE_RETURN_FOLLOWING | WFE_LOWEST_SEQ);
|
|
if (unlikely(!e))
|
|
return;
|
|
|
|
while (read_original_sector(wc, e) < end) {
|
|
struct rb_node *node = rb_next(&e->rb_node);
|
|
|
|
if (likely(!e->write_in_progress)) {
|
|
if (!discarded_something) {
|
|
writecache_wait_for_ios(wc, READ);
|
|
writecache_wait_for_ios(wc, WRITE);
|
|
discarded_something = true;
|
|
}
|
|
writecache_free_entry(wc, e);
|
|
}
|
|
|
|
if (!node)
|
|
break;
|
|
|
|
e = container_of(node, struct wc_entry, rb_node);
|
|
}
|
|
|
|
if (discarded_something)
|
|
writecache_commit_flushed(wc);
|
|
}
|
|
|
|
static bool writecache_wait_for_writeback(struct dm_writecache *wc)
|
|
{
|
|
if (wc->writeback_size) {
|
|
writecache_wait_on_freelist(wc);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static void writecache_suspend(struct dm_target *ti)
|
|
{
|
|
struct dm_writecache *wc = ti->private;
|
|
bool flush_on_suspend;
|
|
|
|
del_timer_sync(&wc->autocommit_timer);
|
|
|
|
wc_lock(wc);
|
|
writecache_flush(wc);
|
|
flush_on_suspend = wc->flush_on_suspend;
|
|
if (flush_on_suspend) {
|
|
wc->flush_on_suspend = false;
|
|
wc->writeback_all++;
|
|
queue_work(wc->writeback_wq, &wc->writeback_work);
|
|
}
|
|
wc_unlock(wc);
|
|
|
|
flush_workqueue(wc->writeback_wq);
|
|
|
|
wc_lock(wc);
|
|
if (flush_on_suspend)
|
|
wc->writeback_all--;
|
|
while (writecache_wait_for_writeback(wc));
|
|
|
|
if (WC_MODE_PMEM(wc))
|
|
persistent_memory_flush_cache(wc->memory_map, wc->memory_map_size);
|
|
|
|
writecache_poison_lists(wc);
|
|
|
|
wc_unlock(wc);
|
|
}
|
|
|
|
static int writecache_alloc_entries(struct dm_writecache *wc)
|
|
{
|
|
size_t b;
|
|
|
|
if (wc->entries)
|
|
return 0;
|
|
wc->entries = vmalloc(array_size(sizeof(struct wc_entry), wc->n_blocks));
|
|
if (!wc->entries)
|
|
return -ENOMEM;
|
|
for (b = 0; b < wc->n_blocks; b++) {
|
|
struct wc_entry *e = &wc->entries[b];
|
|
e->index = b;
|
|
e->write_in_progress = false;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void writecache_resume(struct dm_target *ti)
|
|
{
|
|
struct dm_writecache *wc = ti->private;
|
|
size_t b;
|
|
bool need_flush = false;
|
|
__le64 sb_seq_count;
|
|
int r;
|
|
|
|
wc_lock(wc);
|
|
|
|
if (WC_MODE_PMEM(wc))
|
|
persistent_memory_invalidate_cache(wc->memory_map, wc->memory_map_size);
|
|
|
|
wc->tree = RB_ROOT;
|
|
INIT_LIST_HEAD(&wc->lru);
|
|
if (WC_MODE_SORT_FREELIST(wc)) {
|
|
wc->freetree = RB_ROOT;
|
|
wc->current_free = NULL;
|
|
} else {
|
|
INIT_LIST_HEAD(&wc->freelist);
|
|
}
|
|
wc->freelist_size = 0;
|
|
|
|
r = memcpy_mcsafe(&sb_seq_count, &sb(wc)->seq_count, sizeof(uint64_t));
|
|
if (r) {
|
|
writecache_error(wc, r, "hardware memory error when reading superblock: %d", r);
|
|
sb_seq_count = cpu_to_le64(0);
|
|
}
|
|
wc->seq_count = le64_to_cpu(sb_seq_count);
|
|
|
|
#ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
|
|
for (b = 0; b < wc->n_blocks; b++) {
|
|
struct wc_entry *e = &wc->entries[b];
|
|
struct wc_memory_entry wme;
|
|
if (writecache_has_error(wc)) {
|
|
e->original_sector = -1;
|
|
e->seq_count = -1;
|
|
continue;
|
|
}
|
|
r = memcpy_mcsafe(&wme, memory_entry(wc, e), sizeof(struct wc_memory_entry));
|
|
if (r) {
|
|
writecache_error(wc, r, "hardware memory error when reading metadata entry %lu: %d",
|
|
(unsigned long)b, r);
|
|
e->original_sector = -1;
|
|
e->seq_count = -1;
|
|
} else {
|
|
e->original_sector = le64_to_cpu(wme.original_sector);
|
|
e->seq_count = le64_to_cpu(wme.seq_count);
|
|
}
|
|
}
|
|
#endif
|
|
for (b = 0; b < wc->n_blocks; b++) {
|
|
struct wc_entry *e = &wc->entries[b];
|
|
if (!writecache_entry_is_committed(wc, e)) {
|
|
if (read_seq_count(wc, e) != -1) {
|
|
erase_this:
|
|
clear_seq_count(wc, e);
|
|
need_flush = true;
|
|
}
|
|
writecache_add_to_freelist(wc, e);
|
|
} else {
|
|
struct wc_entry *old;
|
|
|
|
old = writecache_find_entry(wc, read_original_sector(wc, e), 0);
|
|
if (!old) {
|
|
writecache_insert_entry(wc, e);
|
|
} else {
|
|
if (read_seq_count(wc, old) == read_seq_count(wc, e)) {
|
|
writecache_error(wc, -EINVAL,
|
|
"two identical entries, position %llu, sector %llu, sequence %llu",
|
|
(unsigned long long)b, (unsigned long long)read_original_sector(wc, e),
|
|
(unsigned long long)read_seq_count(wc, e));
|
|
}
|
|
if (read_seq_count(wc, old) > read_seq_count(wc, e)) {
|
|
goto erase_this;
|
|
} else {
|
|
writecache_free_entry(wc, old);
|
|
writecache_insert_entry(wc, e);
|
|
need_flush = true;
|
|
}
|
|
}
|
|
}
|
|
cond_resched();
|
|
}
|
|
|
|
if (need_flush) {
|
|
writecache_flush_all_metadata(wc);
|
|
writecache_commit_flushed(wc);
|
|
}
|
|
|
|
wc_unlock(wc);
|
|
}
|
|
|
|
static int process_flush_mesg(unsigned argc, char **argv, struct dm_writecache *wc)
|
|
{
|
|
if (argc != 1)
|
|
return -EINVAL;
|
|
|
|
wc_lock(wc);
|
|
if (dm_suspended(wc->ti)) {
|
|
wc_unlock(wc);
|
|
return -EBUSY;
|
|
}
|
|
if (writecache_has_error(wc)) {
|
|
wc_unlock(wc);
|
|
return -EIO;
|
|
}
|
|
|
|
writecache_flush(wc);
|
|
wc->writeback_all++;
|
|
queue_work(wc->writeback_wq, &wc->writeback_work);
|
|
wc_unlock(wc);
|
|
|
|
flush_workqueue(wc->writeback_wq);
|
|
|
|
wc_lock(wc);
|
|
wc->writeback_all--;
|
|
if (writecache_has_error(wc)) {
|
|
wc_unlock(wc);
|
|
return -EIO;
|
|
}
|
|
wc_unlock(wc);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int process_flush_on_suspend_mesg(unsigned argc, char **argv, struct dm_writecache *wc)
|
|
{
|
|
if (argc != 1)
|
|
return -EINVAL;
|
|
|
|
wc_lock(wc);
|
|
wc->flush_on_suspend = true;
|
|
wc_unlock(wc);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int writecache_message(struct dm_target *ti, unsigned argc, char **argv,
|
|
char *result, unsigned maxlen)
|
|
{
|
|
int r = -EINVAL;
|
|
struct dm_writecache *wc = ti->private;
|
|
|
|
if (!strcasecmp(argv[0], "flush"))
|
|
r = process_flush_mesg(argc, argv, wc);
|
|
else if (!strcasecmp(argv[0], "flush_on_suspend"))
|
|
r = process_flush_on_suspend_mesg(argc, argv, wc);
|
|
else
|
|
DMERR("unrecognised message received: %s", argv[0]);
|
|
|
|
return r;
|
|
}
|
|
|
|
static void bio_copy_block(struct dm_writecache *wc, struct bio *bio, void *data)
|
|
{
|
|
void *buf;
|
|
unsigned long flags;
|
|
unsigned size;
|
|
int rw = bio_data_dir(bio);
|
|
unsigned remaining_size = wc->block_size;
|
|
|
|
do {
|
|
struct bio_vec bv = bio_iter_iovec(bio, bio->bi_iter);
|
|
buf = bvec_kmap_irq(&bv, &flags);
|
|
size = bv.bv_len;
|
|
if (unlikely(size > remaining_size))
|
|
size = remaining_size;
|
|
|
|
if (rw == READ) {
|
|
int r;
|
|
r = memcpy_mcsafe(buf, data, size);
|
|
flush_dcache_page(bio_page(bio));
|
|
if (unlikely(r)) {
|
|
writecache_error(wc, r, "hardware memory error when reading data: %d", r);
|
|
bio->bi_status = BLK_STS_IOERR;
|
|
}
|
|
} else {
|
|
flush_dcache_page(bio_page(bio));
|
|
memcpy_flushcache(data, buf, size);
|
|
}
|
|
|
|
bvec_kunmap_irq(buf, &flags);
|
|
|
|
data = (char *)data + size;
|
|
remaining_size -= size;
|
|
bio_advance(bio, size);
|
|
} while (unlikely(remaining_size));
|
|
}
|
|
|
|
static int writecache_flush_thread(void *data)
|
|
{
|
|
struct dm_writecache *wc = data;
|
|
|
|
while (1) {
|
|
struct bio *bio;
|
|
|
|
wc_lock(wc);
|
|
bio = bio_list_pop(&wc->flush_list);
|
|
if (!bio) {
|
|
set_current_state(TASK_INTERRUPTIBLE);
|
|
wc_unlock(wc);
|
|
|
|
if (unlikely(kthread_should_stop())) {
|
|
set_current_state(TASK_RUNNING);
|
|
break;
|
|
}
|
|
|
|
schedule();
|
|
continue;
|
|
}
|
|
|
|
if (bio_op(bio) == REQ_OP_DISCARD) {
|
|
writecache_discard(wc, bio->bi_iter.bi_sector,
|
|
bio_end_sector(bio));
|
|
wc_unlock(wc);
|
|
bio_set_dev(bio, wc->dev->bdev);
|
|
generic_make_request(bio);
|
|
} else {
|
|
writecache_flush(wc);
|
|
wc_unlock(wc);
|
|
if (writecache_has_error(wc))
|
|
bio->bi_status = BLK_STS_IOERR;
|
|
bio_endio(bio);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void writecache_offload_bio(struct dm_writecache *wc, struct bio *bio)
|
|
{
|
|
if (bio_list_empty(&wc->flush_list))
|
|
wake_up_process(wc->flush_thread);
|
|
bio_list_add(&wc->flush_list, bio);
|
|
}
|
|
|
|
static int writecache_map(struct dm_target *ti, struct bio *bio)
|
|
{
|
|
struct wc_entry *e;
|
|
struct dm_writecache *wc = ti->private;
|
|
|
|
bio->bi_private = NULL;
|
|
|
|
wc_lock(wc);
|
|
|
|
if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
|
|
if (writecache_has_error(wc))
|
|
goto unlock_error;
|
|
if (WC_MODE_PMEM(wc)) {
|
|
writecache_flush(wc);
|
|
if (writecache_has_error(wc))
|
|
goto unlock_error;
|
|
goto unlock_submit;
|
|
} else {
|
|
writecache_offload_bio(wc, bio);
|
|
goto unlock_return;
|
|
}
|
|
}
|
|
|
|
bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
|
|
|
|
if (unlikely((((unsigned)bio->bi_iter.bi_sector | bio_sectors(bio)) &
|
|
(wc->block_size / 512 - 1)) != 0)) {
|
|
DMERR("I/O is not aligned, sector %llu, size %u, block size %u",
|
|
(unsigned long long)bio->bi_iter.bi_sector,
|
|
bio->bi_iter.bi_size, wc->block_size);
|
|
goto unlock_error;
|
|
}
|
|
|
|
if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) {
|
|
if (writecache_has_error(wc))
|
|
goto unlock_error;
|
|
if (WC_MODE_PMEM(wc)) {
|
|
writecache_discard(wc, bio->bi_iter.bi_sector, bio_end_sector(bio));
|
|
goto unlock_remap_origin;
|
|
} else {
|
|
writecache_offload_bio(wc, bio);
|
|
goto unlock_return;
|
|
}
|
|
}
|
|
|
|
if (bio_data_dir(bio) == READ) {
|
|
read_next_block:
|
|
e = writecache_find_entry(wc, bio->bi_iter.bi_sector, WFE_RETURN_FOLLOWING);
|
|
if (e && read_original_sector(wc, e) == bio->bi_iter.bi_sector) {
|
|
if (WC_MODE_PMEM(wc)) {
|
|
bio_copy_block(wc, bio, memory_data(wc, e));
|
|
if (bio->bi_iter.bi_size)
|
|
goto read_next_block;
|
|
goto unlock_submit;
|
|
} else {
|
|
dm_accept_partial_bio(bio, wc->block_size >> SECTOR_SHIFT);
|
|
bio_set_dev(bio, wc->ssd_dev->bdev);
|
|
bio->bi_iter.bi_sector = cache_sector(wc, e);
|
|
if (!writecache_entry_is_committed(wc, e))
|
|
writecache_wait_for_ios(wc, WRITE);
|
|
goto unlock_remap;
|
|
}
|
|
} else {
|
|
if (e) {
|
|
sector_t next_boundary =
|
|
read_original_sector(wc, e) - bio->bi_iter.bi_sector;
|
|
if (next_boundary < bio->bi_iter.bi_size >> SECTOR_SHIFT) {
|
|
dm_accept_partial_bio(bio, next_boundary);
|
|
}
|
|
}
|
|
goto unlock_remap_origin;
|
|
}
|
|
} else {
|
|
do {
|
|
if (writecache_has_error(wc))
|
|
goto unlock_error;
|
|
e = writecache_find_entry(wc, bio->bi_iter.bi_sector, 0);
|
|
if (e) {
|
|
if (!writecache_entry_is_committed(wc, e))
|
|
goto bio_copy;
|
|
if (!WC_MODE_PMEM(wc) && !e->write_in_progress) {
|
|
wc->overwrote_committed = true;
|
|
goto bio_copy;
|
|
}
|
|
}
|
|
e = writecache_pop_from_freelist(wc);
|
|
if (unlikely(!e)) {
|
|
writecache_wait_on_freelist(wc);
|
|
continue;
|
|
}
|
|
write_original_sector_seq_count(wc, e, bio->bi_iter.bi_sector, wc->seq_count);
|
|
writecache_insert_entry(wc, e);
|
|
wc->uncommitted_blocks++;
|
|
bio_copy:
|
|
if (WC_MODE_PMEM(wc)) {
|
|
bio_copy_block(wc, bio, memory_data(wc, e));
|
|
} else {
|
|
dm_accept_partial_bio(bio, wc->block_size >> SECTOR_SHIFT);
|
|
bio_set_dev(bio, wc->ssd_dev->bdev);
|
|
bio->bi_iter.bi_sector = cache_sector(wc, e);
|
|
if (unlikely(wc->uncommitted_blocks >= wc->autocommit_blocks)) {
|
|
wc->uncommitted_blocks = 0;
|
|
queue_work(wc->writeback_wq, &wc->flush_work);
|
|
} else {
|
|
writecache_schedule_autocommit(wc);
|
|
}
|
|
goto unlock_remap;
|
|
}
|
|
} while (bio->bi_iter.bi_size);
|
|
|
|
if (unlikely(wc->uncommitted_blocks >= wc->autocommit_blocks))
|
|
writecache_flush(wc);
|
|
else
|
|
writecache_schedule_autocommit(wc);
|
|
goto unlock_submit;
|
|
}
|
|
|
|
unlock_remap_origin:
|
|
bio_set_dev(bio, wc->dev->bdev);
|
|
wc_unlock(wc);
|
|
return DM_MAPIO_REMAPPED;
|
|
|
|
unlock_remap:
|
|
/* make sure that writecache_end_io decrements bio_in_progress: */
|
|
bio->bi_private = (void *)1;
|
|
atomic_inc(&wc->bio_in_progress[bio_data_dir(bio)]);
|
|
wc_unlock(wc);
|
|
return DM_MAPIO_REMAPPED;
|
|
|
|
unlock_submit:
|
|
wc_unlock(wc);
|
|
bio_endio(bio);
|
|
return DM_MAPIO_SUBMITTED;
|
|
|
|
unlock_return:
|
|
wc_unlock(wc);
|
|
return DM_MAPIO_SUBMITTED;
|
|
|
|
unlock_error:
|
|
wc_unlock(wc);
|
|
bio_io_error(bio);
|
|
return DM_MAPIO_SUBMITTED;
|
|
}
|
|
|
|
static int writecache_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *status)
|
|
{
|
|
struct dm_writecache *wc = ti->private;
|
|
|
|
if (bio->bi_private != NULL) {
|
|
int dir = bio_data_dir(bio);
|
|
if (atomic_dec_and_test(&wc->bio_in_progress[dir]))
|
|
if (unlikely(waitqueue_active(&wc->bio_in_progress_wait[dir])))
|
|
wake_up(&wc->bio_in_progress_wait[dir]);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int writecache_iterate_devices(struct dm_target *ti,
|
|
iterate_devices_callout_fn fn, void *data)
|
|
{
|
|
struct dm_writecache *wc = ti->private;
|
|
|
|
return fn(ti, wc->dev, 0, ti->len, data);
|
|
}
|
|
|
|
static void writecache_io_hints(struct dm_target *ti, struct queue_limits *limits)
|
|
{
|
|
struct dm_writecache *wc = ti->private;
|
|
|
|
if (limits->logical_block_size < wc->block_size)
|
|
limits->logical_block_size = wc->block_size;
|
|
|
|
if (limits->physical_block_size < wc->block_size)
|
|
limits->physical_block_size = wc->block_size;
|
|
|
|
if (limits->io_min < wc->block_size)
|
|
limits->io_min = wc->block_size;
|
|
}
|
|
|
|
|
|
static void writecache_writeback_endio(struct bio *bio)
|
|
{
|
|
struct writeback_struct *wb = container_of(bio, struct writeback_struct, bio);
|
|
struct dm_writecache *wc = wb->wc;
|
|
unsigned long flags;
|
|
|
|
raw_spin_lock_irqsave(&wc->endio_list_lock, flags);
|
|
if (unlikely(list_empty(&wc->endio_list)))
|
|
wake_up_process(wc->endio_thread);
|
|
list_add_tail(&wb->endio_entry, &wc->endio_list);
|
|
raw_spin_unlock_irqrestore(&wc->endio_list_lock, flags);
|
|
}
|
|
|
|
static void writecache_copy_endio(int read_err, unsigned long write_err, void *ptr)
|
|
{
|
|
struct copy_struct *c = ptr;
|
|
struct dm_writecache *wc = c->wc;
|
|
|
|
c->error = likely(!(read_err | write_err)) ? 0 : -EIO;
|
|
|
|
raw_spin_lock_irq(&wc->endio_list_lock);
|
|
if (unlikely(list_empty(&wc->endio_list)))
|
|
wake_up_process(wc->endio_thread);
|
|
list_add_tail(&c->endio_entry, &wc->endio_list);
|
|
raw_spin_unlock_irq(&wc->endio_list_lock);
|
|
}
|
|
|
|
static void __writecache_endio_pmem(struct dm_writecache *wc, struct list_head *list)
|
|
{
|
|
unsigned i;
|
|
struct writeback_struct *wb;
|
|
struct wc_entry *e;
|
|
unsigned long n_walked = 0;
|
|
|
|
do {
|
|
wb = list_entry(list->next, struct writeback_struct, endio_entry);
|
|
list_del(&wb->endio_entry);
|
|
|
|
if (unlikely(wb->bio.bi_status != BLK_STS_OK))
|
|
writecache_error(wc, blk_status_to_errno(wb->bio.bi_status),
|
|
"write error %d", wb->bio.bi_status);
|
|
i = 0;
|
|
do {
|
|
e = wb->wc_list[i];
|
|
BUG_ON(!e->write_in_progress);
|
|
e->write_in_progress = false;
|
|
INIT_LIST_HEAD(&e->lru);
|
|
if (!writecache_has_error(wc))
|
|
writecache_free_entry(wc, e);
|
|
BUG_ON(!wc->writeback_size);
|
|
wc->writeback_size--;
|
|
n_walked++;
|
|
if (unlikely(n_walked >= ENDIO_LATENCY)) {
|
|
writecache_commit_flushed(wc);
|
|
wc_unlock(wc);
|
|
wc_lock(wc);
|
|
n_walked = 0;
|
|
}
|
|
} while (++i < wb->wc_list_n);
|
|
|
|
if (wb->wc_list != wb->wc_list_inline)
|
|
kfree(wb->wc_list);
|
|
bio_put(&wb->bio);
|
|
} while (!list_empty(list));
|
|
}
|
|
|
|
static void __writecache_endio_ssd(struct dm_writecache *wc, struct list_head *list)
|
|
{
|
|
struct copy_struct *c;
|
|
struct wc_entry *e;
|
|
|
|
do {
|
|
c = list_entry(list->next, struct copy_struct, endio_entry);
|
|
list_del(&c->endio_entry);
|
|
|
|
if (unlikely(c->error))
|
|
writecache_error(wc, c->error, "copy error");
|
|
|
|
e = c->e;
|
|
do {
|
|
BUG_ON(!e->write_in_progress);
|
|
e->write_in_progress = false;
|
|
INIT_LIST_HEAD(&e->lru);
|
|
if (!writecache_has_error(wc))
|
|
writecache_free_entry(wc, e);
|
|
|
|
BUG_ON(!wc->writeback_size);
|
|
wc->writeback_size--;
|
|
e++;
|
|
} while (--c->n_entries);
|
|
mempool_free(c, &wc->copy_pool);
|
|
} while (!list_empty(list));
|
|
}
|
|
|
|
static int writecache_endio_thread(void *data)
|
|
{
|
|
struct dm_writecache *wc = data;
|
|
|
|
while (1) {
|
|
struct list_head list;
|
|
|
|
raw_spin_lock_irq(&wc->endio_list_lock);
|
|
if (!list_empty(&wc->endio_list))
|
|
goto pop_from_list;
|
|
set_current_state(TASK_INTERRUPTIBLE);
|
|
raw_spin_unlock_irq(&wc->endio_list_lock);
|
|
|
|
if (unlikely(kthread_should_stop())) {
|
|
set_current_state(TASK_RUNNING);
|
|
break;
|
|
}
|
|
|
|
schedule();
|
|
|
|
continue;
|
|
|
|
pop_from_list:
|
|
list = wc->endio_list;
|
|
list.next->prev = list.prev->next = &list;
|
|
INIT_LIST_HEAD(&wc->endio_list);
|
|
raw_spin_unlock_irq(&wc->endio_list_lock);
|
|
|
|
if (!WC_MODE_FUA(wc))
|
|
writecache_disk_flush(wc, wc->dev);
|
|
|
|
wc_lock(wc);
|
|
|
|
if (WC_MODE_PMEM(wc)) {
|
|
__writecache_endio_pmem(wc, &list);
|
|
} else {
|
|
__writecache_endio_ssd(wc, &list);
|
|
writecache_wait_for_ios(wc, READ);
|
|
}
|
|
|
|
writecache_commit_flushed(wc);
|
|
|
|
wc_unlock(wc);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static bool wc_add_block(struct writeback_struct *wb, struct wc_entry *e, gfp_t gfp)
|
|
{
|
|
struct dm_writecache *wc = wb->wc;
|
|
unsigned block_size = wc->block_size;
|
|
void *address = memory_data(wc, e);
|
|
|
|
persistent_memory_flush_cache(address, block_size);
|
|
return bio_add_page(&wb->bio, persistent_memory_page(address),
|
|
block_size, persistent_memory_page_offset(address)) != 0;
|
|
}
|
|
|
|
struct writeback_list {
|
|
struct list_head list;
|
|
size_t size;
|
|
};
|
|
|
|
static void __writeback_throttle(struct dm_writecache *wc, struct writeback_list *wbl)
|
|
{
|
|
if (unlikely(wc->max_writeback_jobs)) {
|
|
if (READ_ONCE(wc->writeback_size) - wbl->size >= wc->max_writeback_jobs) {
|
|
wc_lock(wc);
|
|
while (wc->writeback_size - wbl->size >= wc->max_writeback_jobs)
|
|
writecache_wait_on_freelist(wc);
|
|
wc_unlock(wc);
|
|
}
|
|
}
|
|
cond_resched();
|
|
}
|
|
|
|
static void __writecache_writeback_pmem(struct dm_writecache *wc, struct writeback_list *wbl)
|
|
{
|
|
struct wc_entry *e, *f;
|
|
struct bio *bio;
|
|
struct writeback_struct *wb;
|
|
unsigned max_pages;
|
|
|
|
while (wbl->size) {
|
|
wbl->size--;
|
|
e = container_of(wbl->list.prev, struct wc_entry, lru);
|
|
list_del(&e->lru);
|
|
|
|
max_pages = e->wc_list_contiguous;
|
|
|
|
bio = bio_alloc_bioset(GFP_NOIO, max_pages, &wc->bio_set);
|
|
wb = container_of(bio, struct writeback_struct, bio);
|
|
wb->wc = wc;
|
|
wb->bio.bi_end_io = writecache_writeback_endio;
|
|
bio_set_dev(&wb->bio, wc->dev->bdev);
|
|
wb->bio.bi_iter.bi_sector = read_original_sector(wc, e);
|
|
wb->page_offset = PAGE_SIZE;
|
|
if (max_pages <= WB_LIST_INLINE ||
|
|
unlikely(!(wb->wc_list = kmalloc_array(max_pages, sizeof(struct wc_entry *),
|
|
GFP_NOIO | __GFP_NORETRY |
|
|
__GFP_NOMEMALLOC | __GFP_NOWARN)))) {
|
|
wb->wc_list = wb->wc_list_inline;
|
|
max_pages = WB_LIST_INLINE;
|
|
}
|
|
|
|
BUG_ON(!wc_add_block(wb, e, GFP_NOIO));
|
|
|
|
wb->wc_list[0] = e;
|
|
wb->wc_list_n = 1;
|
|
|
|
while (wbl->size && wb->wc_list_n < max_pages) {
|
|
f = container_of(wbl->list.prev, struct wc_entry, lru);
|
|
if (read_original_sector(wc, f) !=
|
|
read_original_sector(wc, e) + (wc->block_size >> SECTOR_SHIFT))
|
|
break;
|
|
if (!wc_add_block(wb, f, GFP_NOWAIT | __GFP_NOWARN))
|
|
break;
|
|
wbl->size--;
|
|
list_del(&f->lru);
|
|
wb->wc_list[wb->wc_list_n++] = f;
|
|
e = f;
|
|
}
|
|
bio_set_op_attrs(&wb->bio, REQ_OP_WRITE, WC_MODE_FUA(wc) * REQ_FUA);
|
|
if (writecache_has_error(wc)) {
|
|
bio->bi_status = BLK_STS_IOERR;
|
|
bio_endio(&wb->bio);
|
|
} else {
|
|
submit_bio(&wb->bio);
|
|
}
|
|
|
|
__writeback_throttle(wc, wbl);
|
|
}
|
|
}
|
|
|
|
static void __writecache_writeback_ssd(struct dm_writecache *wc, struct writeback_list *wbl)
|
|
{
|
|
struct wc_entry *e, *f;
|
|
struct dm_io_region from, to;
|
|
struct copy_struct *c;
|
|
|
|
while (wbl->size) {
|
|
unsigned n_sectors;
|
|
|
|
wbl->size--;
|
|
e = container_of(wbl->list.prev, struct wc_entry, lru);
|
|
list_del(&e->lru);
|
|
|
|
n_sectors = e->wc_list_contiguous << (wc->block_size_bits - SECTOR_SHIFT);
|
|
|
|
from.bdev = wc->ssd_dev->bdev;
|
|
from.sector = cache_sector(wc, e);
|
|
from.count = n_sectors;
|
|
to.bdev = wc->dev->bdev;
|
|
to.sector = read_original_sector(wc, e);
|
|
to.count = n_sectors;
|
|
|
|
c = mempool_alloc(&wc->copy_pool, GFP_NOIO);
|
|
c->wc = wc;
|
|
c->e = e;
|
|
c->n_entries = e->wc_list_contiguous;
|
|
|
|
while ((n_sectors -= wc->block_size >> SECTOR_SHIFT)) {
|
|
wbl->size--;
|
|
f = container_of(wbl->list.prev, struct wc_entry, lru);
|
|
BUG_ON(f != e + 1);
|
|
list_del(&f->lru);
|
|
e = f;
|
|
}
|
|
|
|
dm_kcopyd_copy(wc->dm_kcopyd, &from, 1, &to, 0, writecache_copy_endio, c);
|
|
|
|
__writeback_throttle(wc, wbl);
|
|
}
|
|
}
|
|
|
|
static void writecache_writeback(struct work_struct *work)
|
|
{
|
|
struct dm_writecache *wc = container_of(work, struct dm_writecache, writeback_work);
|
|
struct blk_plug plug;
|
|
struct wc_entry *e, *f, *g;
|
|
struct rb_node *node, *next_node;
|
|
struct list_head skipped;
|
|
struct writeback_list wbl;
|
|
unsigned long n_walked;
|
|
|
|
wc_lock(wc);
|
|
restart:
|
|
if (writecache_has_error(wc)) {
|
|
wc_unlock(wc);
|
|
return;
|
|
}
|
|
|
|
if (unlikely(wc->writeback_all)) {
|
|
if (writecache_wait_for_writeback(wc))
|
|
goto restart;
|
|
}
|
|
|
|
if (wc->overwrote_committed) {
|
|
writecache_wait_for_ios(wc, WRITE);
|
|
}
|
|
|
|
n_walked = 0;
|
|
INIT_LIST_HEAD(&skipped);
|
|
INIT_LIST_HEAD(&wbl.list);
|
|
wbl.size = 0;
|
|
while (!list_empty(&wc->lru) &&
|
|
(wc->writeback_all ||
|
|
wc->freelist_size + wc->writeback_size <= wc->freelist_low_watermark)) {
|
|
|
|
n_walked++;
|
|
if (unlikely(n_walked > WRITEBACK_LATENCY) &&
|
|
likely(!wc->writeback_all) && likely(!dm_suspended(wc->ti))) {
|
|
queue_work(wc->writeback_wq, &wc->writeback_work);
|
|
break;
|
|
}
|
|
|
|
e = container_of(wc->lru.prev, struct wc_entry, lru);
|
|
BUG_ON(e->write_in_progress);
|
|
if (unlikely(!writecache_entry_is_committed(wc, e))) {
|
|
writecache_flush(wc);
|
|
}
|
|
node = rb_prev(&e->rb_node);
|
|
if (node) {
|
|
f = container_of(node, struct wc_entry, rb_node);
|
|
if (unlikely(read_original_sector(wc, f) ==
|
|
read_original_sector(wc, e))) {
|
|
BUG_ON(!f->write_in_progress);
|
|
list_del(&e->lru);
|
|
list_add(&e->lru, &skipped);
|
|
cond_resched();
|
|
continue;
|
|
}
|
|
}
|
|
wc->writeback_size++;
|
|
list_del(&e->lru);
|
|
list_add(&e->lru, &wbl.list);
|
|
wbl.size++;
|
|
e->write_in_progress = true;
|
|
e->wc_list_contiguous = 1;
|
|
|
|
f = e;
|
|
|
|
while (1) {
|
|
next_node = rb_next(&f->rb_node);
|
|
if (unlikely(!next_node))
|
|
break;
|
|
g = container_of(next_node, struct wc_entry, rb_node);
|
|
if (read_original_sector(wc, g) ==
|
|
read_original_sector(wc, f)) {
|
|
f = g;
|
|
continue;
|
|
}
|
|
if (read_original_sector(wc, g) !=
|
|
read_original_sector(wc, f) + (wc->block_size >> SECTOR_SHIFT))
|
|
break;
|
|
if (unlikely(g->write_in_progress))
|
|
break;
|
|
if (unlikely(!writecache_entry_is_committed(wc, g)))
|
|
break;
|
|
|
|
if (!WC_MODE_PMEM(wc)) {
|
|
if (g != f + 1)
|
|
break;
|
|
}
|
|
|
|
n_walked++;
|
|
//if (unlikely(n_walked > WRITEBACK_LATENCY) && likely(!wc->writeback_all))
|
|
// break;
|
|
|
|
wc->writeback_size++;
|
|
list_del(&g->lru);
|
|
list_add(&g->lru, &wbl.list);
|
|
wbl.size++;
|
|
g->write_in_progress = true;
|
|
g->wc_list_contiguous = BIO_MAX_PAGES;
|
|
f = g;
|
|
e->wc_list_contiguous++;
|
|
if (unlikely(e->wc_list_contiguous == BIO_MAX_PAGES))
|
|
break;
|
|
}
|
|
cond_resched();
|
|
}
|
|
|
|
if (!list_empty(&skipped)) {
|
|
list_splice_tail(&skipped, &wc->lru);
|
|
/*
|
|
* If we didn't do any progress, we must wait until some
|
|
* writeback finishes to avoid burning CPU in a loop
|
|
*/
|
|
if (unlikely(!wbl.size))
|
|
writecache_wait_for_writeback(wc);
|
|
}
|
|
|
|
wc_unlock(wc);
|
|
|
|
blk_start_plug(&plug);
|
|
|
|
if (WC_MODE_PMEM(wc))
|
|
__writecache_writeback_pmem(wc, &wbl);
|
|
else
|
|
__writecache_writeback_ssd(wc, &wbl);
|
|
|
|
blk_finish_plug(&plug);
|
|
|
|
if (unlikely(wc->writeback_all)) {
|
|
wc_lock(wc);
|
|
while (writecache_wait_for_writeback(wc));
|
|
wc_unlock(wc);
|
|
}
|
|
}
|
|
|
|
static int calculate_memory_size(uint64_t device_size, unsigned block_size,
|
|
size_t *n_blocks_p, size_t *n_metadata_blocks_p)
|
|
{
|
|
uint64_t n_blocks, offset;
|
|
struct wc_entry e;
|
|
|
|
n_blocks = device_size;
|
|
do_div(n_blocks, block_size + sizeof(struct wc_memory_entry));
|
|
|
|
while (1) {
|
|
if (!n_blocks)
|
|
return -ENOSPC;
|
|
/* Verify the following entries[n_blocks] won't overflow */
|
|
if (n_blocks >= ((size_t)-sizeof(struct wc_memory_superblock) /
|
|
sizeof(struct wc_memory_entry)))
|
|
return -EFBIG;
|
|
offset = offsetof(struct wc_memory_superblock, entries[n_blocks]);
|
|
offset = (offset + block_size - 1) & ~(uint64_t)(block_size - 1);
|
|
if (offset + n_blocks * block_size <= device_size)
|
|
break;
|
|
n_blocks--;
|
|
}
|
|
|
|
/* check if the bit field overflows */
|
|
e.index = n_blocks;
|
|
if (e.index != n_blocks)
|
|
return -EFBIG;
|
|
|
|
if (n_blocks_p)
|
|
*n_blocks_p = n_blocks;
|
|
if (n_metadata_blocks_p)
|
|
*n_metadata_blocks_p = offset >> __ffs(block_size);
|
|
return 0;
|
|
}
|
|
|
|
static int init_memory(struct dm_writecache *wc)
|
|
{
|
|
size_t b;
|
|
int r;
|
|
|
|
r = calculate_memory_size(wc->memory_map_size, wc->block_size, &wc->n_blocks, NULL);
|
|
if (r)
|
|
return r;
|
|
|
|
r = writecache_alloc_entries(wc);
|
|
if (r)
|
|
return r;
|
|
|
|
for (b = 0; b < ARRAY_SIZE(sb(wc)->padding); b++)
|
|
pmem_assign(sb(wc)->padding[b], cpu_to_le64(0));
|
|
pmem_assign(sb(wc)->version, cpu_to_le32(MEMORY_SUPERBLOCK_VERSION));
|
|
pmem_assign(sb(wc)->block_size, cpu_to_le32(wc->block_size));
|
|
pmem_assign(sb(wc)->n_blocks, cpu_to_le64(wc->n_blocks));
|
|
pmem_assign(sb(wc)->seq_count, cpu_to_le64(0));
|
|
|
|
for (b = 0; b < wc->n_blocks; b++)
|
|
write_original_sector_seq_count(wc, &wc->entries[b], -1, -1);
|
|
|
|
writecache_flush_all_metadata(wc);
|
|
writecache_commit_flushed(wc);
|
|
pmem_assign(sb(wc)->magic, cpu_to_le32(MEMORY_SUPERBLOCK_MAGIC));
|
|
writecache_flush_region(wc, &sb(wc)->magic, sizeof sb(wc)->magic);
|
|
writecache_commit_flushed(wc);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void writecache_dtr(struct dm_target *ti)
|
|
{
|
|
struct dm_writecache *wc = ti->private;
|
|
|
|
if (!wc)
|
|
return;
|
|
|
|
if (wc->endio_thread)
|
|
kthread_stop(wc->endio_thread);
|
|
|
|
if (wc->flush_thread)
|
|
kthread_stop(wc->flush_thread);
|
|
|
|
bioset_exit(&wc->bio_set);
|
|
|
|
mempool_exit(&wc->copy_pool);
|
|
|
|
if (wc->writeback_wq)
|
|
destroy_workqueue(wc->writeback_wq);
|
|
|
|
if (wc->dev)
|
|
dm_put_device(ti, wc->dev);
|
|
|
|
if (wc->ssd_dev)
|
|
dm_put_device(ti, wc->ssd_dev);
|
|
|
|
if (wc->entries)
|
|
vfree(wc->entries);
|
|
|
|
if (wc->memory_map) {
|
|
if (WC_MODE_PMEM(wc))
|
|
persistent_memory_release(wc);
|
|
else
|
|
vfree(wc->memory_map);
|
|
}
|
|
|
|
if (wc->dm_kcopyd)
|
|
dm_kcopyd_client_destroy(wc->dm_kcopyd);
|
|
|
|
if (wc->dm_io)
|
|
dm_io_client_destroy(wc->dm_io);
|
|
|
|
if (wc->dirty_bitmap)
|
|
vfree(wc->dirty_bitmap);
|
|
|
|
kfree(wc);
|
|
}
|
|
|
|
static int writecache_ctr(struct dm_target *ti, unsigned argc, char **argv)
|
|
{
|
|
struct dm_writecache *wc;
|
|
struct dm_arg_set as;
|
|
const char *string;
|
|
unsigned opt_params;
|
|
size_t offset, data_size;
|
|
int i, r;
|
|
char dummy;
|
|
int high_wm_percent = HIGH_WATERMARK;
|
|
int low_wm_percent = LOW_WATERMARK;
|
|
uint64_t x;
|
|
struct wc_memory_superblock s;
|
|
|
|
static struct dm_arg _args[] = {
|
|
{0, 10, "Invalid number of feature args"},
|
|
};
|
|
|
|
as.argc = argc;
|
|
as.argv = argv;
|
|
|
|
wc = kzalloc(sizeof(struct dm_writecache), GFP_KERNEL);
|
|
if (!wc) {
|
|
ti->error = "Cannot allocate writecache structure";
|
|
r = -ENOMEM;
|
|
goto bad;
|
|
}
|
|
ti->private = wc;
|
|
wc->ti = ti;
|
|
|
|
mutex_init(&wc->lock);
|
|
writecache_poison_lists(wc);
|
|
init_waitqueue_head(&wc->freelist_wait);
|
|
timer_setup(&wc->autocommit_timer, writecache_autocommit_timer, 0);
|
|
|
|
for (i = 0; i < 2; i++) {
|
|
atomic_set(&wc->bio_in_progress[i], 0);
|
|
init_waitqueue_head(&wc->bio_in_progress_wait[i]);
|
|
}
|
|
|
|
wc->dm_io = dm_io_client_create();
|
|
if (IS_ERR(wc->dm_io)) {
|
|
r = PTR_ERR(wc->dm_io);
|
|
ti->error = "Unable to allocate dm-io client";
|
|
wc->dm_io = NULL;
|
|
goto bad;
|
|
}
|
|
|
|
wc->writeback_wq = alloc_workqueue("writecache-writeabck", WQ_MEM_RECLAIM, 1);
|
|
if (!wc->writeback_wq) {
|
|
r = -ENOMEM;
|
|
ti->error = "Could not allocate writeback workqueue";
|
|
goto bad;
|
|
}
|
|
INIT_WORK(&wc->writeback_work, writecache_writeback);
|
|
INIT_WORK(&wc->flush_work, writecache_flush_work);
|
|
|
|
raw_spin_lock_init(&wc->endio_list_lock);
|
|
INIT_LIST_HEAD(&wc->endio_list);
|
|
wc->endio_thread = kthread_create(writecache_endio_thread, wc, "writecache_endio");
|
|
if (IS_ERR(wc->endio_thread)) {
|
|
r = PTR_ERR(wc->endio_thread);
|
|
wc->endio_thread = NULL;
|
|
ti->error = "Couldn't spawn endio thread";
|
|
goto bad;
|
|
}
|
|
wake_up_process(wc->endio_thread);
|
|
|
|
/*
|
|
* Parse the mode (pmem or ssd)
|
|
*/
|
|
string = dm_shift_arg(&as);
|
|
if (!string)
|
|
goto bad_arguments;
|
|
|
|
if (!strcasecmp(string, "s")) {
|
|
wc->pmem_mode = false;
|
|
} else if (!strcasecmp(string, "p")) {
|
|
#ifdef DM_WRITECACHE_HAS_PMEM
|
|
wc->pmem_mode = true;
|
|
wc->writeback_fua = true;
|
|
#else
|
|
/*
|
|
* If the architecture doesn't support persistent memory or
|
|
* the kernel doesn't support any DAX drivers, this driver can
|
|
* only be used in SSD-only mode.
|
|
*/
|
|
r = -EOPNOTSUPP;
|
|
ti->error = "Persistent memory or DAX not supported on this system";
|
|
goto bad;
|
|
#endif
|
|
} else {
|
|
goto bad_arguments;
|
|
}
|
|
|
|
if (WC_MODE_PMEM(wc)) {
|
|
r = bioset_init(&wc->bio_set, BIO_POOL_SIZE,
|
|
offsetof(struct writeback_struct, bio),
|
|
BIOSET_NEED_BVECS);
|
|
if (r) {
|
|
ti->error = "Could not allocate bio set";
|
|
goto bad;
|
|
}
|
|
} else {
|
|
r = mempool_init_kmalloc_pool(&wc->copy_pool, 1, sizeof(struct copy_struct));
|
|
if (r) {
|
|
ti->error = "Could not allocate mempool";
|
|
goto bad;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Parse the origin data device
|
|
*/
|
|
string = dm_shift_arg(&as);
|
|
if (!string)
|
|
goto bad_arguments;
|
|
r = dm_get_device(ti, string, dm_table_get_mode(ti->table), &wc->dev);
|
|
if (r) {
|
|
ti->error = "Origin data device lookup failed";
|
|
goto bad;
|
|
}
|
|
|
|
/*
|
|
* Parse cache data device (be it pmem or ssd)
|
|
*/
|
|
string = dm_shift_arg(&as);
|
|
if (!string)
|
|
goto bad_arguments;
|
|
|
|
r = dm_get_device(ti, string, dm_table_get_mode(ti->table), &wc->ssd_dev);
|
|
if (r) {
|
|
ti->error = "Cache data device lookup failed";
|
|
goto bad;
|
|
}
|
|
wc->memory_map_size = i_size_read(wc->ssd_dev->bdev->bd_inode);
|
|
|
|
/*
|
|
* Parse the cache block size
|
|
*/
|
|
string = dm_shift_arg(&as);
|
|
if (!string)
|
|
goto bad_arguments;
|
|
if (sscanf(string, "%u%c", &wc->block_size, &dummy) != 1 ||
|
|
wc->block_size < 512 || wc->block_size > PAGE_SIZE ||
|
|
(wc->block_size & (wc->block_size - 1))) {
|
|
r = -EINVAL;
|
|
ti->error = "Invalid block size";
|
|
goto bad;
|
|
}
|
|
wc->block_size_bits = __ffs(wc->block_size);
|
|
|
|
wc->max_writeback_jobs = MAX_WRITEBACK_JOBS;
|
|
wc->autocommit_blocks = !WC_MODE_PMEM(wc) ? AUTOCOMMIT_BLOCKS_SSD : AUTOCOMMIT_BLOCKS_PMEM;
|
|
wc->autocommit_jiffies = msecs_to_jiffies(AUTOCOMMIT_MSEC);
|
|
|
|
/*
|
|
* Parse optional arguments
|
|
*/
|
|
r = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
|
|
if (r)
|
|
goto bad;
|
|
|
|
while (opt_params) {
|
|
string = dm_shift_arg(&as), opt_params--;
|
|
if (!strcasecmp(string, "start_sector") && opt_params >= 1) {
|
|
unsigned long long start_sector;
|
|
string = dm_shift_arg(&as), opt_params--;
|
|
if (sscanf(string, "%llu%c", &start_sector, &dummy) != 1)
|
|
goto invalid_optional;
|
|
wc->start_sector = start_sector;
|
|
if (wc->start_sector != start_sector ||
|
|
wc->start_sector >= wc->memory_map_size >> SECTOR_SHIFT)
|
|
goto invalid_optional;
|
|
} else if (!strcasecmp(string, "high_watermark") && opt_params >= 1) {
|
|
string = dm_shift_arg(&as), opt_params--;
|
|
if (sscanf(string, "%d%c", &high_wm_percent, &dummy) != 1)
|
|
goto invalid_optional;
|
|
if (high_wm_percent < 0 || high_wm_percent > 100)
|
|
goto invalid_optional;
|
|
wc->high_wm_percent_set = true;
|
|
} else if (!strcasecmp(string, "low_watermark") && opt_params >= 1) {
|
|
string = dm_shift_arg(&as), opt_params--;
|
|
if (sscanf(string, "%d%c", &low_wm_percent, &dummy) != 1)
|
|
goto invalid_optional;
|
|
if (low_wm_percent < 0 || low_wm_percent > 100)
|
|
goto invalid_optional;
|
|
wc->low_wm_percent_set = true;
|
|
} else if (!strcasecmp(string, "writeback_jobs") && opt_params >= 1) {
|
|
string = dm_shift_arg(&as), opt_params--;
|
|
if (sscanf(string, "%u%c", &wc->max_writeback_jobs, &dummy) != 1)
|
|
goto invalid_optional;
|
|
wc->max_writeback_jobs_set = true;
|
|
} else if (!strcasecmp(string, "autocommit_blocks") && opt_params >= 1) {
|
|
string = dm_shift_arg(&as), opt_params--;
|
|
if (sscanf(string, "%u%c", &wc->autocommit_blocks, &dummy) != 1)
|
|
goto invalid_optional;
|
|
wc->autocommit_blocks_set = true;
|
|
} else if (!strcasecmp(string, "autocommit_time") && opt_params >= 1) {
|
|
unsigned autocommit_msecs;
|
|
string = dm_shift_arg(&as), opt_params--;
|
|
if (sscanf(string, "%u%c", &autocommit_msecs, &dummy) != 1)
|
|
goto invalid_optional;
|
|
if (autocommit_msecs > 3600000)
|
|
goto invalid_optional;
|
|
wc->autocommit_jiffies = msecs_to_jiffies(autocommit_msecs);
|
|
wc->autocommit_time_set = true;
|
|
} else if (!strcasecmp(string, "fua")) {
|
|
if (WC_MODE_PMEM(wc)) {
|
|
wc->writeback_fua = true;
|
|
wc->writeback_fua_set = true;
|
|
} else goto invalid_optional;
|
|
} else if (!strcasecmp(string, "nofua")) {
|
|
if (WC_MODE_PMEM(wc)) {
|
|
wc->writeback_fua = false;
|
|
wc->writeback_fua_set = true;
|
|
} else goto invalid_optional;
|
|
} else {
|
|
invalid_optional:
|
|
r = -EINVAL;
|
|
ti->error = "Invalid optional argument";
|
|
goto bad;
|
|
}
|
|
}
|
|
|
|
if (high_wm_percent < low_wm_percent) {
|
|
r = -EINVAL;
|
|
ti->error = "High watermark must be greater than or equal to low watermark";
|
|
goto bad;
|
|
}
|
|
|
|
if (WC_MODE_PMEM(wc)) {
|
|
r = persistent_memory_claim(wc);
|
|
if (r) {
|
|
ti->error = "Unable to map persistent memory for cache";
|
|
goto bad;
|
|
}
|
|
} else {
|
|
struct dm_io_region region;
|
|
struct dm_io_request req;
|
|
size_t n_blocks, n_metadata_blocks;
|
|
uint64_t n_bitmap_bits;
|
|
|
|
wc->memory_map_size -= (uint64_t)wc->start_sector << SECTOR_SHIFT;
|
|
|
|
bio_list_init(&wc->flush_list);
|
|
wc->flush_thread = kthread_create(writecache_flush_thread, wc, "dm_writecache_flush");
|
|
if (IS_ERR(wc->flush_thread)) {
|
|
r = PTR_ERR(wc->flush_thread);
|
|
wc->flush_thread = NULL;
|
|
ti->error = "Couldn't spawn endio thread";
|
|
goto bad;
|
|
}
|
|
wake_up_process(wc->flush_thread);
|
|
|
|
r = calculate_memory_size(wc->memory_map_size, wc->block_size,
|
|
&n_blocks, &n_metadata_blocks);
|
|
if (r) {
|
|
ti->error = "Invalid device size";
|
|
goto bad;
|
|
}
|
|
|
|
n_bitmap_bits = (((uint64_t)n_metadata_blocks << wc->block_size_bits) +
|
|
BITMAP_GRANULARITY - 1) / BITMAP_GRANULARITY;
|
|
/* this is limitation of test_bit functions */
|
|
if (n_bitmap_bits > 1U << 31) {
|
|
r = -EFBIG;
|
|
ti->error = "Invalid device size";
|
|
goto bad;
|
|
}
|
|
|
|
wc->memory_map = vmalloc(n_metadata_blocks << wc->block_size_bits);
|
|
if (!wc->memory_map) {
|
|
r = -ENOMEM;
|
|
ti->error = "Unable to allocate memory for metadata";
|
|
goto bad;
|
|
}
|
|
|
|
wc->dm_kcopyd = dm_kcopyd_client_create(&dm_kcopyd_throttle);
|
|
if (IS_ERR(wc->dm_kcopyd)) {
|
|
r = PTR_ERR(wc->dm_kcopyd);
|
|
ti->error = "Unable to allocate dm-kcopyd client";
|
|
wc->dm_kcopyd = NULL;
|
|
goto bad;
|
|
}
|
|
|
|
wc->metadata_sectors = n_metadata_blocks << (wc->block_size_bits - SECTOR_SHIFT);
|
|
wc->dirty_bitmap_size = (n_bitmap_bits + BITS_PER_LONG - 1) /
|
|
BITS_PER_LONG * sizeof(unsigned long);
|
|
wc->dirty_bitmap = vzalloc(wc->dirty_bitmap_size);
|
|
if (!wc->dirty_bitmap) {
|
|
r = -ENOMEM;
|
|
ti->error = "Unable to allocate dirty bitmap";
|
|
goto bad;
|
|
}
|
|
|
|
region.bdev = wc->ssd_dev->bdev;
|
|
region.sector = wc->start_sector;
|
|
region.count = wc->metadata_sectors;
|
|
req.bi_op = REQ_OP_READ;
|
|
req.bi_op_flags = REQ_SYNC;
|
|
req.mem.type = DM_IO_VMA;
|
|
req.mem.ptr.vma = (char *)wc->memory_map;
|
|
req.client = wc->dm_io;
|
|
req.notify.fn = NULL;
|
|
|
|
r = dm_io(&req, 1, ®ion, NULL);
|
|
if (r) {
|
|
ti->error = "Unable to read metadata";
|
|
goto bad;
|
|
}
|
|
}
|
|
|
|
r = memcpy_mcsafe(&s, sb(wc), sizeof(struct wc_memory_superblock));
|
|
if (r) {
|
|
ti->error = "Hardware memory error when reading superblock";
|
|
goto bad;
|
|
}
|
|
if (!le32_to_cpu(s.magic) && !le32_to_cpu(s.version)) {
|
|
r = init_memory(wc);
|
|
if (r) {
|
|
ti->error = "Unable to initialize device";
|
|
goto bad;
|
|
}
|
|
r = memcpy_mcsafe(&s, sb(wc), sizeof(struct wc_memory_superblock));
|
|
if (r) {
|
|
ti->error = "Hardware memory error when reading superblock";
|
|
goto bad;
|
|
}
|
|
}
|
|
|
|
if (le32_to_cpu(s.magic) != MEMORY_SUPERBLOCK_MAGIC) {
|
|
ti->error = "Invalid magic in the superblock";
|
|
r = -EINVAL;
|
|
goto bad;
|
|
}
|
|
|
|
if (le32_to_cpu(s.version) != MEMORY_SUPERBLOCK_VERSION) {
|
|
ti->error = "Invalid version in the superblock";
|
|
r = -EINVAL;
|
|
goto bad;
|
|
}
|
|
|
|
if (le32_to_cpu(s.block_size) != wc->block_size) {
|
|
ti->error = "Block size does not match superblock";
|
|
r = -EINVAL;
|
|
goto bad;
|
|
}
|
|
|
|
wc->n_blocks = le64_to_cpu(s.n_blocks);
|
|
|
|
offset = wc->n_blocks * sizeof(struct wc_memory_entry);
|
|
if (offset / sizeof(struct wc_memory_entry) != le64_to_cpu(sb(wc)->n_blocks)) {
|
|
overflow:
|
|
ti->error = "Overflow in size calculation";
|
|
r = -EINVAL;
|
|
goto bad;
|
|
}
|
|
offset += sizeof(struct wc_memory_superblock);
|
|
if (offset < sizeof(struct wc_memory_superblock))
|
|
goto overflow;
|
|
offset = (offset + wc->block_size - 1) & ~(size_t)(wc->block_size - 1);
|
|
data_size = wc->n_blocks * (size_t)wc->block_size;
|
|
if (!offset || (data_size / wc->block_size != wc->n_blocks) ||
|
|
(offset + data_size < offset))
|
|
goto overflow;
|
|
if (offset + data_size > wc->memory_map_size) {
|
|
ti->error = "Memory area is too small";
|
|
r = -EINVAL;
|
|
goto bad;
|
|
}
|
|
|
|
wc->metadata_sectors = offset >> SECTOR_SHIFT;
|
|
wc->block_start = (char *)sb(wc) + offset;
|
|
|
|
x = (uint64_t)wc->n_blocks * (100 - high_wm_percent);
|
|
x += 50;
|
|
do_div(x, 100);
|
|
wc->freelist_high_watermark = x;
|
|
x = (uint64_t)wc->n_blocks * (100 - low_wm_percent);
|
|
x += 50;
|
|
do_div(x, 100);
|
|
wc->freelist_low_watermark = x;
|
|
|
|
r = writecache_alloc_entries(wc);
|
|
if (r) {
|
|
ti->error = "Cannot allocate memory";
|
|
goto bad;
|
|
}
|
|
|
|
ti->num_flush_bios = 1;
|
|
ti->flush_supported = true;
|
|
ti->num_discard_bios = 1;
|
|
|
|
if (WC_MODE_PMEM(wc))
|
|
persistent_memory_flush_cache(wc->memory_map, wc->memory_map_size);
|
|
|
|
return 0;
|
|
|
|
bad_arguments:
|
|
r = -EINVAL;
|
|
ti->error = "Bad arguments";
|
|
bad:
|
|
writecache_dtr(ti);
|
|
return r;
|
|
}
|
|
|
|
static void writecache_status(struct dm_target *ti, status_type_t type,
|
|
unsigned status_flags, char *result, unsigned maxlen)
|
|
{
|
|
struct dm_writecache *wc = ti->private;
|
|
unsigned extra_args;
|
|
unsigned sz = 0;
|
|
uint64_t x;
|
|
|
|
switch (type) {
|
|
case STATUSTYPE_INFO:
|
|
DMEMIT("%ld %llu %llu %llu", writecache_has_error(wc),
|
|
(unsigned long long)wc->n_blocks, (unsigned long long)wc->freelist_size,
|
|
(unsigned long long)wc->writeback_size);
|
|
break;
|
|
case STATUSTYPE_TABLE:
|
|
DMEMIT("%c %s %s %u ", WC_MODE_PMEM(wc) ? 'p' : 's',
|
|
wc->dev->name, wc->ssd_dev->name, wc->block_size);
|
|
extra_args = 0;
|
|
if (wc->start_sector)
|
|
extra_args += 2;
|
|
if (wc->high_wm_percent_set)
|
|
extra_args += 2;
|
|
if (wc->low_wm_percent_set)
|
|
extra_args += 2;
|
|
if (wc->max_writeback_jobs_set)
|
|
extra_args += 2;
|
|
if (wc->autocommit_blocks_set)
|
|
extra_args += 2;
|
|
if (wc->autocommit_time_set)
|
|
extra_args += 2;
|
|
if (wc->writeback_fua_set)
|
|
extra_args++;
|
|
|
|
DMEMIT("%u", extra_args);
|
|
if (wc->start_sector)
|
|
DMEMIT(" start_sector %llu", (unsigned long long)wc->start_sector);
|
|
if (wc->high_wm_percent_set) {
|
|
x = (uint64_t)wc->freelist_high_watermark * 100;
|
|
x += wc->n_blocks / 2;
|
|
do_div(x, (size_t)wc->n_blocks);
|
|
DMEMIT(" high_watermark %u", 100 - (unsigned)x);
|
|
}
|
|
if (wc->low_wm_percent_set) {
|
|
x = (uint64_t)wc->freelist_low_watermark * 100;
|
|
x += wc->n_blocks / 2;
|
|
do_div(x, (size_t)wc->n_blocks);
|
|
DMEMIT(" low_watermark %u", 100 - (unsigned)x);
|
|
}
|
|
if (wc->max_writeback_jobs_set)
|
|
DMEMIT(" writeback_jobs %u", wc->max_writeback_jobs);
|
|
if (wc->autocommit_blocks_set)
|
|
DMEMIT(" autocommit_blocks %u", wc->autocommit_blocks);
|
|
if (wc->autocommit_time_set)
|
|
DMEMIT(" autocommit_time %u", jiffies_to_msecs(wc->autocommit_jiffies));
|
|
if (wc->writeback_fua_set)
|
|
DMEMIT(" %sfua", wc->writeback_fua ? "" : "no");
|
|
break;
|
|
}
|
|
}
|
|
|
|
static struct target_type writecache_target = {
|
|
.name = "writecache",
|
|
.version = {1, 1, 1},
|
|
.module = THIS_MODULE,
|
|
.ctr = writecache_ctr,
|
|
.dtr = writecache_dtr,
|
|
.status = writecache_status,
|
|
.postsuspend = writecache_suspend,
|
|
.resume = writecache_resume,
|
|
.message = writecache_message,
|
|
.map = writecache_map,
|
|
.end_io = writecache_end_io,
|
|
.iterate_devices = writecache_iterate_devices,
|
|
.io_hints = writecache_io_hints,
|
|
};
|
|
|
|
static int __init dm_writecache_init(void)
|
|
{
|
|
int r;
|
|
|
|
r = dm_register_target(&writecache_target);
|
|
if (r < 0) {
|
|
DMERR("register failed %d", r);
|
|
return r;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void __exit dm_writecache_exit(void)
|
|
{
|
|
dm_unregister_target(&writecache_target);
|
|
}
|
|
|
|
module_init(dm_writecache_init);
|
|
module_exit(dm_writecache_exit);
|
|
|
|
MODULE_DESCRIPTION(DM_NAME " writecache target");
|
|
MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>");
|
|
MODULE_LICENSE("GPL");
|