mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-05 10:16:49 +07:00
519d8b1a9d
This patch enables the DCP crypto functionality on imx28. Currently, only aes-128-cbc is supported. Moreover, the dcpboot misc-device, which is used by Freescale's SDK tools and uses a non-software-readable OTP-key, is added. Changes of v2: - ring buffer for hardware-descriptors - use of ablkcipher walk - OTP key encryption/decryption via misc-device (compatible to Freescale-SDK) - overall cleanup The DCP is also capable of sha1/sha256 but I won't be able to add that anytime soon. Tested with built-in runtime-self-test, tcrypt and openssl via cryptodev 1.6 on imx28-evk and a custom built imx28-board. Signed-off-by: Tobias Rauter <tobias.rauter@gmail.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
400 lines
11 KiB
Plaintext
400 lines
11 KiB
Plaintext
|
|
menuconfig CRYPTO_HW
|
|
bool "Hardware crypto devices"
|
|
default y
|
|
---help---
|
|
Say Y here to get to see options for hardware crypto devices and
|
|
processors. This option alone does not add any kernel code.
|
|
|
|
If you say N, all options in this submenu will be skipped and disabled.
|
|
|
|
if CRYPTO_HW
|
|
|
|
config CRYPTO_DEV_PADLOCK
|
|
tristate "Support for VIA PadLock ACE"
|
|
depends on X86 && !UML
|
|
help
|
|
Some VIA processors come with an integrated crypto engine
|
|
(so called VIA PadLock ACE, Advanced Cryptography Engine)
|
|
that provides instructions for very fast cryptographic
|
|
operations with supported algorithms.
|
|
|
|
The instructions are used only when the CPU supports them.
|
|
Otherwise software encryption is used.
|
|
|
|
config CRYPTO_DEV_PADLOCK_AES
|
|
tristate "PadLock driver for AES algorithm"
|
|
depends on CRYPTO_DEV_PADLOCK
|
|
select CRYPTO_BLKCIPHER
|
|
select CRYPTO_AES
|
|
help
|
|
Use VIA PadLock for AES algorithm.
|
|
|
|
Available in VIA C3 and newer CPUs.
|
|
|
|
If unsure say M. The compiled module will be
|
|
called padlock-aes.
|
|
|
|
config CRYPTO_DEV_PADLOCK_SHA
|
|
tristate "PadLock driver for SHA1 and SHA256 algorithms"
|
|
depends on CRYPTO_DEV_PADLOCK
|
|
select CRYPTO_HASH
|
|
select CRYPTO_SHA1
|
|
select CRYPTO_SHA256
|
|
help
|
|
Use VIA PadLock for SHA1/SHA256 algorithms.
|
|
|
|
Available in VIA C7 and newer processors.
|
|
|
|
If unsure say M. The compiled module will be
|
|
called padlock-sha.
|
|
|
|
config CRYPTO_DEV_GEODE
|
|
tristate "Support for the Geode LX AES engine"
|
|
depends on X86_32 && PCI
|
|
select CRYPTO_ALGAPI
|
|
select CRYPTO_BLKCIPHER
|
|
help
|
|
Say 'Y' here to use the AMD Geode LX processor on-board AES
|
|
engine for the CryptoAPI AES algorithm.
|
|
|
|
To compile this driver as a module, choose M here: the module
|
|
will be called geode-aes.
|
|
|
|
config ZCRYPT
|
|
tristate "Support for PCI-attached cryptographic adapters"
|
|
depends on S390
|
|
select HW_RANDOM
|
|
help
|
|
Select this option if you want to use a PCI-attached cryptographic
|
|
adapter like:
|
|
+ PCI Cryptographic Accelerator (PCICA)
|
|
+ PCI Cryptographic Coprocessor (PCICC)
|
|
+ PCI-X Cryptographic Coprocessor (PCIXCC)
|
|
+ Crypto Express2 Coprocessor (CEX2C)
|
|
+ Crypto Express2 Accelerator (CEX2A)
|
|
+ Crypto Express3 Coprocessor (CEX3C)
|
|
+ Crypto Express3 Accelerator (CEX3A)
|
|
|
|
config CRYPTO_SHA1_S390
|
|
tristate "SHA1 digest algorithm"
|
|
depends on S390
|
|
select CRYPTO_HASH
|
|
help
|
|
This is the s390 hardware accelerated implementation of the
|
|
SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
|
|
|
|
It is available as of z990.
|
|
|
|
config CRYPTO_SHA256_S390
|
|
tristate "SHA256 digest algorithm"
|
|
depends on S390
|
|
select CRYPTO_HASH
|
|
help
|
|
This is the s390 hardware accelerated implementation of the
|
|
SHA256 secure hash standard (DFIPS 180-2).
|
|
|
|
It is available as of z9.
|
|
|
|
config CRYPTO_SHA512_S390
|
|
tristate "SHA384 and SHA512 digest algorithm"
|
|
depends on S390
|
|
select CRYPTO_HASH
|
|
help
|
|
This is the s390 hardware accelerated implementation of the
|
|
SHA512 secure hash standard.
|
|
|
|
It is available as of z10.
|
|
|
|
config CRYPTO_DES_S390
|
|
tristate "DES and Triple DES cipher algorithms"
|
|
depends on S390
|
|
select CRYPTO_ALGAPI
|
|
select CRYPTO_BLKCIPHER
|
|
select CRYPTO_DES
|
|
help
|
|
This is the s390 hardware accelerated implementation of the
|
|
DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
|
|
|
|
As of z990 the ECB and CBC mode are hardware accelerated.
|
|
As of z196 the CTR mode is hardware accelerated.
|
|
|
|
config CRYPTO_AES_S390
|
|
tristate "AES cipher algorithms"
|
|
depends on S390
|
|
select CRYPTO_ALGAPI
|
|
select CRYPTO_BLKCIPHER
|
|
help
|
|
This is the s390 hardware accelerated implementation of the
|
|
AES cipher algorithms (FIPS-197).
|
|
|
|
As of z9 the ECB and CBC modes are hardware accelerated
|
|
for 128 bit keys.
|
|
As of z10 the ECB and CBC modes are hardware accelerated
|
|
for all AES key sizes.
|
|
As of z196 the CTR mode is hardware accelerated for all AES
|
|
key sizes and XTS mode is hardware accelerated for 256 and
|
|
512 bit keys.
|
|
|
|
config S390_PRNG
|
|
tristate "Pseudo random number generator device driver"
|
|
depends on S390
|
|
default "m"
|
|
help
|
|
Select this option if you want to use the s390 pseudo random number
|
|
generator. The PRNG is part of the cryptographic processor functions
|
|
and uses triple-DES to generate secure random numbers like the
|
|
ANSI X9.17 standard. User-space programs access the
|
|
pseudo-random-number device through the char device /dev/prandom.
|
|
|
|
It is available as of z9.
|
|
|
|
config CRYPTO_GHASH_S390
|
|
tristate "GHASH digest algorithm"
|
|
depends on S390
|
|
select CRYPTO_HASH
|
|
help
|
|
This is the s390 hardware accelerated implementation of the
|
|
GHASH message digest algorithm for GCM (Galois/Counter Mode).
|
|
|
|
It is available as of z196.
|
|
|
|
config CRYPTO_DEV_MV_CESA
|
|
tristate "Marvell's Cryptographic Engine"
|
|
depends on PLAT_ORION
|
|
select CRYPTO_ALGAPI
|
|
select CRYPTO_AES
|
|
select CRYPTO_BLKCIPHER2
|
|
select CRYPTO_HASH
|
|
help
|
|
This driver allows you to utilize the Cryptographic Engines and
|
|
Security Accelerator (CESA) which can be found on the Marvell Orion
|
|
and Kirkwood SoCs, such as QNAP's TS-209.
|
|
|
|
Currently the driver supports AES in ECB and CBC mode without DMA.
|
|
|
|
config CRYPTO_DEV_NIAGARA2
|
|
tristate "Niagara2 Stream Processing Unit driver"
|
|
select CRYPTO_DES
|
|
select CRYPTO_ALGAPI
|
|
depends on SPARC64
|
|
help
|
|
Each core of a Niagara2 processor contains a Stream
|
|
Processing Unit, which itself contains several cryptographic
|
|
sub-units. One set provides the Modular Arithmetic Unit,
|
|
used for SSL offload. The other set provides the Cipher
|
|
Group, which can perform encryption, decryption, hashing,
|
|
checksumming, and raw copies.
|
|
|
|
config CRYPTO_DEV_HIFN_795X
|
|
tristate "Driver HIFN 795x crypto accelerator chips"
|
|
select CRYPTO_DES
|
|
select CRYPTO_ALGAPI
|
|
select CRYPTO_BLKCIPHER
|
|
select HW_RANDOM if CRYPTO_DEV_HIFN_795X_RNG
|
|
depends on PCI
|
|
depends on !ARCH_DMA_ADDR_T_64BIT
|
|
help
|
|
This option allows you to have support for HIFN 795x crypto adapters.
|
|
|
|
config CRYPTO_DEV_HIFN_795X_RNG
|
|
bool "HIFN 795x random number generator"
|
|
depends on CRYPTO_DEV_HIFN_795X
|
|
help
|
|
Select this option if you want to enable the random number generator
|
|
on the HIFN 795x crypto adapters.
|
|
|
|
source drivers/crypto/caam/Kconfig
|
|
|
|
config CRYPTO_DEV_TALITOS
|
|
tristate "Talitos Freescale Security Engine (SEC)"
|
|
select CRYPTO_ALGAPI
|
|
select CRYPTO_AUTHENC
|
|
select HW_RANDOM
|
|
depends on FSL_SOC
|
|
help
|
|
Say 'Y' here to use the Freescale Security Engine (SEC)
|
|
to offload cryptographic algorithm computation.
|
|
|
|
The Freescale SEC is present on PowerQUICC 'E' processors, such
|
|
as the MPC8349E and MPC8548E.
|
|
|
|
To compile this driver as a module, choose M here: the module
|
|
will be called talitos.
|
|
|
|
config CRYPTO_DEV_IXP4XX
|
|
tristate "Driver for IXP4xx crypto hardware acceleration"
|
|
depends on ARCH_IXP4XX && IXP4XX_QMGR && IXP4XX_NPE
|
|
select CRYPTO_DES
|
|
select CRYPTO_ALGAPI
|
|
select CRYPTO_AUTHENC
|
|
select CRYPTO_BLKCIPHER
|
|
help
|
|
Driver for the IXP4xx NPE crypto engine.
|
|
|
|
config CRYPTO_DEV_PPC4XX
|
|
tristate "Driver AMCC PPC4xx crypto accelerator"
|
|
depends on PPC && 4xx
|
|
select CRYPTO_HASH
|
|
select CRYPTO_ALGAPI
|
|
select CRYPTO_BLKCIPHER
|
|
help
|
|
This option allows you to have support for AMCC crypto acceleration.
|
|
|
|
config CRYPTO_DEV_OMAP_SHAM
|
|
tristate "Support for OMAP SHA1/MD5 hw accelerator"
|
|
depends on ARCH_OMAP2 || ARCH_OMAP3
|
|
select CRYPTO_SHA1
|
|
select CRYPTO_MD5
|
|
help
|
|
OMAP processors have SHA1/MD5 hw accelerator. Select this if you
|
|
want to use the OMAP module for SHA1/MD5 algorithms.
|
|
|
|
config CRYPTO_DEV_OMAP_AES
|
|
tristate "Support for OMAP AES hw engine"
|
|
depends on ARCH_OMAP2 || ARCH_OMAP3
|
|
select CRYPTO_AES
|
|
select CRYPTO_BLKCIPHER2
|
|
help
|
|
OMAP processors have AES module accelerator. Select this if you
|
|
want to use the OMAP module for AES algorithms.
|
|
|
|
config CRYPTO_DEV_PICOXCELL
|
|
tristate "Support for picoXcell IPSEC and Layer2 crypto engines"
|
|
depends on ARCH_PICOXCELL && HAVE_CLK
|
|
select CRYPTO_AES
|
|
select CRYPTO_AUTHENC
|
|
select CRYPTO_ALGAPI
|
|
select CRYPTO_DES
|
|
select CRYPTO_CBC
|
|
select CRYPTO_ECB
|
|
select CRYPTO_SEQIV
|
|
help
|
|
This option enables support for the hardware offload engines in the
|
|
Picochip picoXcell SoC devices. Select this for IPSEC ESP offload
|
|
and for 3gpp Layer 2 ciphering support.
|
|
|
|
Saying m here will build a module named pipcoxcell_crypto.
|
|
|
|
config CRYPTO_DEV_SAHARA
|
|
tristate "Support for SAHARA crypto accelerator"
|
|
depends on ARCH_MXC && OF
|
|
select CRYPTO_BLKCIPHER
|
|
select CRYPTO_AES
|
|
select CRYPTO_ECB
|
|
help
|
|
This option enables support for the SAHARA HW crypto accelerator
|
|
found in some Freescale i.MX chips.
|
|
|
|
config CRYPTO_DEV_DCP
|
|
tristate "Support for the DCP engine"
|
|
depends on ARCH_MXS && OF
|
|
select CRYPTO_BLKCIPHER
|
|
select CRYPTO_AES
|
|
select CRYPTO_CBC
|
|
help
|
|
This options enables support for the hardware crypto-acceleration
|
|
capabilities of the DCP co-processor
|
|
|
|
config CRYPTO_DEV_S5P
|
|
tristate "Support for Samsung S5PV210 crypto accelerator"
|
|
depends on ARCH_S5PV210
|
|
select CRYPTO_AES
|
|
select CRYPTO_ALGAPI
|
|
select CRYPTO_BLKCIPHER
|
|
help
|
|
This option allows you to have support for S5P crypto acceleration.
|
|
Select this to offload Samsung S5PV210 or S5PC110 from AES
|
|
algorithms execution.
|
|
|
|
config CRYPTO_DEV_TEGRA_AES
|
|
tristate "Support for TEGRA AES hw engine"
|
|
depends on ARCH_TEGRA
|
|
select CRYPTO_AES
|
|
help
|
|
TEGRA processors have AES module accelerator. Select this if you
|
|
want to use the TEGRA module for AES algorithms.
|
|
|
|
To compile this driver as a module, choose M here: the module
|
|
will be called tegra-aes.
|
|
|
|
config CRYPTO_DEV_NX
|
|
bool "Support for IBM Power7+ in-Nest cryptographic acceleration"
|
|
depends on PPC64 && IBMVIO
|
|
default n
|
|
help
|
|
Support for Power7+ in-Nest cryptographic acceleration.
|
|
|
|
if CRYPTO_DEV_NX
|
|
source "drivers/crypto/nx/Kconfig"
|
|
endif
|
|
|
|
config CRYPTO_DEV_UX500
|
|
tristate "Driver for ST-Ericsson UX500 crypto hardware acceleration"
|
|
depends on ARCH_U8500
|
|
select CRYPTO_ALGAPI
|
|
help
|
|
Driver for ST-Ericsson UX500 crypto engine.
|
|
|
|
if CRYPTO_DEV_UX500
|
|
source "drivers/crypto/ux500/Kconfig"
|
|
endif # if CRYPTO_DEV_UX500
|
|
|
|
config CRYPTO_DEV_BFIN_CRC
|
|
tristate "Support for Blackfin CRC hardware"
|
|
depends on BF60x
|
|
help
|
|
Newer Blackfin processors have CRC hardware. Select this if you
|
|
want to use the Blackfin CRC module.
|
|
|
|
config CRYPTO_DEV_ATMEL_AES
|
|
tristate "Support for Atmel AES hw accelerator"
|
|
depends on ARCH_AT91
|
|
select CRYPTO_CBC
|
|
select CRYPTO_ECB
|
|
select CRYPTO_AES
|
|
select CRYPTO_ALGAPI
|
|
select CRYPTO_BLKCIPHER
|
|
select AT_HDMAC
|
|
help
|
|
Some Atmel processors have AES hw accelerator.
|
|
Select this if you want to use the Atmel module for
|
|
AES algorithms.
|
|
|
|
To compile this driver as a module, choose M here: the module
|
|
will be called atmel-aes.
|
|
|
|
config CRYPTO_DEV_ATMEL_TDES
|
|
tristate "Support for Atmel DES/TDES hw accelerator"
|
|
depends on ARCH_AT91
|
|
select CRYPTO_DES
|
|
select CRYPTO_CBC
|
|
select CRYPTO_ECB
|
|
select CRYPTO_ALGAPI
|
|
select CRYPTO_BLKCIPHER
|
|
help
|
|
Some Atmel processors have DES/TDES hw accelerator.
|
|
Select this if you want to use the Atmel module for
|
|
DES/TDES algorithms.
|
|
|
|
To compile this driver as a module, choose M here: the module
|
|
will be called atmel-tdes.
|
|
|
|
config CRYPTO_DEV_ATMEL_SHA
|
|
tristate "Support for Atmel SHA hw accelerator"
|
|
depends on ARCH_AT91
|
|
select CRYPTO_SHA1
|
|
select CRYPTO_SHA256
|
|
select CRYPTO_SHA512
|
|
select CRYPTO_ALGAPI
|
|
help
|
|
Some Atmel processors have SHA1/SHA224/SHA256/SHA384/SHA512
|
|
hw accelerator.
|
|
Select this if you want to use the Atmel module for
|
|
SHA1/SHA224/SHA256/SHA384/SHA512 algorithms.
|
|
|
|
To compile this driver as a module, choose M here: the module
|
|
will be called atmel-sha.
|
|
|
|
endif # CRYPTO_HW
|