mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-25 17:10:06 +07:00
b24413180f
Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
284 lines
7.4 KiB
C
284 lines
7.4 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
#include <linux/kernel.h>
|
|
#include <linux/init.h>
|
|
|
|
#include "common.h"
|
|
|
|
#include "voltage.h"
|
|
#include "vp.h"
|
|
#include "prm-regbits-34xx.h"
|
|
#include "prm-regbits-44xx.h"
|
|
#include "prm44xx.h"
|
|
|
|
static u32 _vp_set_init_voltage(struct voltagedomain *voltdm, u32 volt)
|
|
{
|
|
struct omap_vp_instance *vp = voltdm->vp;
|
|
u32 vpconfig;
|
|
char vsel;
|
|
|
|
vsel = voltdm->pmic->uv_to_vsel(volt);
|
|
|
|
vpconfig = voltdm->read(vp->vpconfig);
|
|
vpconfig &= ~(vp->common->vpconfig_initvoltage_mask |
|
|
vp->common->vpconfig_forceupdate |
|
|
vp->common->vpconfig_initvdd);
|
|
vpconfig |= vsel << __ffs(vp->common->vpconfig_initvoltage_mask);
|
|
voltdm->write(vpconfig, vp->vpconfig);
|
|
|
|
/* Trigger initVDD value copy to voltage processor */
|
|
voltdm->write((vpconfig | vp->common->vpconfig_initvdd),
|
|
vp->vpconfig);
|
|
|
|
/* Clear initVDD copy trigger bit */
|
|
voltdm->write(vpconfig, vp->vpconfig);
|
|
|
|
return vpconfig;
|
|
}
|
|
|
|
/* Generic voltage init functions */
|
|
void __init omap_vp_init(struct voltagedomain *voltdm)
|
|
{
|
|
struct omap_vp_instance *vp = voltdm->vp;
|
|
u32 val, sys_clk_rate, timeout, waittime;
|
|
u32 vddmin, vddmax, vstepmin, vstepmax;
|
|
|
|
if (!voltdm->pmic || !voltdm->pmic->uv_to_vsel) {
|
|
pr_err("%s: No PMIC info for vdd_%s\n", __func__, voltdm->name);
|
|
return;
|
|
}
|
|
|
|
if (!voltdm->read || !voltdm->write) {
|
|
pr_err("%s: No read/write API for accessing vdd_%s regs\n",
|
|
__func__, voltdm->name);
|
|
return;
|
|
}
|
|
|
|
vp->enabled = false;
|
|
|
|
/* Divide to avoid overflow */
|
|
sys_clk_rate = voltdm->sys_clk.rate / 1000;
|
|
|
|
timeout = (sys_clk_rate * voltdm->pmic->vp_timeout_us) / 1000;
|
|
vddmin = max(voltdm->vp_param->vddmin, voltdm->pmic->vddmin);
|
|
vddmax = min(voltdm->vp_param->vddmax, voltdm->pmic->vddmax);
|
|
vddmin = voltdm->pmic->uv_to_vsel(vddmin);
|
|
vddmax = voltdm->pmic->uv_to_vsel(vddmax);
|
|
|
|
waittime = DIV_ROUND_UP(voltdm->pmic->step_size * sys_clk_rate,
|
|
1000 * voltdm->pmic->slew_rate);
|
|
vstepmin = voltdm->pmic->vp_vstepmin;
|
|
vstepmax = voltdm->pmic->vp_vstepmax;
|
|
|
|
/*
|
|
* VP_CONFIG: error gain is not set here, it will be updated
|
|
* on each scale, based on OPP.
|
|
*/
|
|
val = (voltdm->pmic->vp_erroroffset <<
|
|
__ffs(voltdm->vp->common->vpconfig_erroroffset_mask)) |
|
|
vp->common->vpconfig_timeouten;
|
|
voltdm->write(val, vp->vpconfig);
|
|
|
|
/* VSTEPMIN */
|
|
val = (waittime << vp->common->vstepmin_smpswaittimemin_shift) |
|
|
(vstepmin << vp->common->vstepmin_stepmin_shift);
|
|
voltdm->write(val, vp->vstepmin);
|
|
|
|
/* VSTEPMAX */
|
|
val = (vstepmax << vp->common->vstepmax_stepmax_shift) |
|
|
(waittime << vp->common->vstepmax_smpswaittimemax_shift);
|
|
voltdm->write(val, vp->vstepmax);
|
|
|
|
/* VLIMITTO */
|
|
val = (vddmax << vp->common->vlimitto_vddmax_shift) |
|
|
(vddmin << vp->common->vlimitto_vddmin_shift) |
|
|
(timeout << vp->common->vlimitto_timeout_shift);
|
|
voltdm->write(val, vp->vlimitto);
|
|
}
|
|
|
|
int omap_vp_update_errorgain(struct voltagedomain *voltdm,
|
|
unsigned long target_volt)
|
|
{
|
|
struct omap_volt_data *volt_data;
|
|
|
|
if (!voltdm->vp)
|
|
return -EINVAL;
|
|
|
|
/* Get volt_data corresponding to target_volt */
|
|
volt_data = omap_voltage_get_voltdata(voltdm, target_volt);
|
|
if (IS_ERR(volt_data))
|
|
return -EINVAL;
|
|
|
|
/* Setting vp errorgain based on the voltage */
|
|
voltdm->rmw(voltdm->vp->common->vpconfig_errorgain_mask,
|
|
volt_data->vp_errgain <<
|
|
__ffs(voltdm->vp->common->vpconfig_errorgain_mask),
|
|
voltdm->vp->vpconfig);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* VP force update method of voltage scaling */
|
|
int omap_vp_forceupdate_scale(struct voltagedomain *voltdm,
|
|
unsigned long target_volt)
|
|
{
|
|
struct omap_vp_instance *vp = voltdm->vp;
|
|
u32 vpconfig;
|
|
u8 target_vsel, current_vsel;
|
|
int ret, timeout = 0;
|
|
|
|
ret = omap_vc_pre_scale(voltdm, target_volt, &target_vsel, ¤t_vsel);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* Clear all pending TransactionDone interrupt/status. Typical latency
|
|
* is <3us
|
|
*/
|
|
while (timeout++ < VP_TRANXDONE_TIMEOUT) {
|
|
vp->common->ops->clear_txdone(vp->id);
|
|
if (!vp->common->ops->check_txdone(vp->id))
|
|
break;
|
|
udelay(1);
|
|
}
|
|
if (timeout >= VP_TRANXDONE_TIMEOUT) {
|
|
pr_warn("%s: vdd_%s TRANXDONE timeout exceeded. Voltage change aborted\n",
|
|
__func__, voltdm->name);
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
vpconfig = _vp_set_init_voltage(voltdm, target_volt);
|
|
|
|
/* Force update of voltage */
|
|
voltdm->write(vpconfig | vp->common->vpconfig_forceupdate,
|
|
voltdm->vp->vpconfig);
|
|
|
|
/*
|
|
* Wait for TransactionDone. Typical latency is <200us.
|
|
* Depends on SMPSWAITTIMEMIN/MAX and voltage change
|
|
*/
|
|
timeout = 0;
|
|
omap_test_timeout(vp->common->ops->check_txdone(vp->id),
|
|
VP_TRANXDONE_TIMEOUT, timeout);
|
|
if (timeout >= VP_TRANXDONE_TIMEOUT)
|
|
pr_err("%s: vdd_%s TRANXDONE timeout exceeded. TRANXDONE never got set after the voltage update\n",
|
|
__func__, voltdm->name);
|
|
|
|
omap_vc_post_scale(voltdm, target_volt, target_vsel, current_vsel);
|
|
|
|
/*
|
|
* Disable TransactionDone interrupt , clear all status, clear
|
|
* control registers
|
|
*/
|
|
timeout = 0;
|
|
while (timeout++ < VP_TRANXDONE_TIMEOUT) {
|
|
vp->common->ops->clear_txdone(vp->id);
|
|
if (!vp->common->ops->check_txdone(vp->id))
|
|
break;
|
|
udelay(1);
|
|
}
|
|
|
|
if (timeout >= VP_TRANXDONE_TIMEOUT)
|
|
pr_warn("%s: vdd_%s TRANXDONE timeout exceeded while trying to clear the TRANXDONE status\n",
|
|
__func__, voltdm->name);
|
|
|
|
/* Clear force bit */
|
|
voltdm->write(vpconfig, vp->vpconfig);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* omap_vp_enable() - API to enable a particular VP
|
|
* @voltdm: pointer to the VDD whose VP is to be enabled.
|
|
*
|
|
* This API enables a particular voltage processor. Needed by the smartreflex
|
|
* class drivers.
|
|
*/
|
|
void omap_vp_enable(struct voltagedomain *voltdm)
|
|
{
|
|
struct omap_vp_instance *vp;
|
|
u32 vpconfig, volt;
|
|
|
|
if (!voltdm || IS_ERR(voltdm)) {
|
|
pr_warn("%s: VDD specified does not exist!\n", __func__);
|
|
return;
|
|
}
|
|
|
|
vp = voltdm->vp;
|
|
if (!voltdm->read || !voltdm->write) {
|
|
pr_err("%s: No read/write API for accessing vdd_%s regs\n",
|
|
__func__, voltdm->name);
|
|
return;
|
|
}
|
|
|
|
/* If VP is already enabled, do nothing. Return */
|
|
if (vp->enabled)
|
|
return;
|
|
|
|
volt = voltdm_get_voltage(voltdm);
|
|
if (!volt) {
|
|
pr_warn("%s: unable to find current voltage for %s\n",
|
|
__func__, voltdm->name);
|
|
return;
|
|
}
|
|
|
|
vpconfig = _vp_set_init_voltage(voltdm, volt);
|
|
|
|
/* Enable VP */
|
|
vpconfig |= vp->common->vpconfig_vpenable;
|
|
voltdm->write(vpconfig, vp->vpconfig);
|
|
|
|
vp->enabled = true;
|
|
}
|
|
|
|
/**
|
|
* omap_vp_disable() - API to disable a particular VP
|
|
* @voltdm: pointer to the VDD whose VP is to be disabled.
|
|
*
|
|
* This API disables a particular voltage processor. Needed by the smartreflex
|
|
* class drivers.
|
|
*/
|
|
void omap_vp_disable(struct voltagedomain *voltdm)
|
|
{
|
|
struct omap_vp_instance *vp;
|
|
u32 vpconfig;
|
|
int timeout;
|
|
|
|
if (!voltdm || IS_ERR(voltdm)) {
|
|
pr_warn("%s: VDD specified does not exist!\n", __func__);
|
|
return;
|
|
}
|
|
|
|
vp = voltdm->vp;
|
|
if (!voltdm->read || !voltdm->write) {
|
|
pr_err("%s: No read/write API for accessing vdd_%s regs\n",
|
|
__func__, voltdm->name);
|
|
return;
|
|
}
|
|
|
|
/* If VP is already disabled, do nothing. Return */
|
|
if (!vp->enabled) {
|
|
pr_warn("%s: Trying to disable VP for vdd_%s when it is already disabled\n",
|
|
__func__, voltdm->name);
|
|
return;
|
|
}
|
|
|
|
/* Disable VP */
|
|
vpconfig = voltdm->read(vp->vpconfig);
|
|
vpconfig &= ~vp->common->vpconfig_vpenable;
|
|
voltdm->write(vpconfig, vp->vpconfig);
|
|
|
|
/*
|
|
* Wait for VP idle Typical latency is <2us. Maximum latency is ~100us
|
|
*/
|
|
omap_test_timeout((voltdm->read(vp->vstatus)),
|
|
VP_IDLE_TIMEOUT, timeout);
|
|
|
|
if (timeout >= VP_IDLE_TIMEOUT)
|
|
pr_warn("%s: vdd_%s idle timedout\n", __func__, voltdm->name);
|
|
|
|
vp->enabled = false;
|
|
|
|
return;
|
|
}
|