mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-28 11:18:45 +07:00
074cf65670
Remove the cpu_table: - move detection of whether c0_config[OD] is read-only and should be set to fix various chip errata to au1000 headers. - move detection of write-only sys_cpupll to au1000 headers. - remove the BCLK switching code: Activation of this features should be left to the boards using the chips since it also affects external devices tied to BCLK, and only the board designers know whether it is safe to enable. Signed-off-by: Manuel Lauss <mano@roarinelk.homelinux.net> Signed-off-by: Ralf Baechle <ralf@linux-mips.org> delete mode 100644 arch/mips/alchemy/common/cputable.c
266 lines
7.4 KiB
C
266 lines
7.4 KiB
C
/*
|
|
*
|
|
* Copyright (C) 2001, 2006, 2008 MontaVista Software, <source@mvista.com>
|
|
* Copied and modified Carsten Langgaard's time.c
|
|
*
|
|
* Carsten Langgaard, carstenl@mips.com
|
|
* Copyright (C) 1999,2000 MIPS Technologies, Inc. All rights reserved.
|
|
*
|
|
* ########################################################################
|
|
*
|
|
* This program is free software; you can distribute it and/or modify it
|
|
* under the terms of the GNU General Public License (Version 2) as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with this program; if not, write to the Free Software Foundation, Inc.,
|
|
* 59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
|
|
*
|
|
* ########################################################################
|
|
*
|
|
* Setting up the clock on the MIPS boards.
|
|
*
|
|
* We provide the clock interrupt processing and the timer offset compute
|
|
* functions. If CONFIG_PM is selected, we also ensure the 32KHz timer is
|
|
* available. -- Dan
|
|
*/
|
|
|
|
#include <linux/types.h>
|
|
#include <linux/init.h>
|
|
#include <linux/spinlock.h>
|
|
|
|
#include <asm/mipsregs.h>
|
|
#include <asm/time.h>
|
|
#include <asm/mach-au1x00/au1000.h>
|
|
|
|
static int no_au1xxx_32khz;
|
|
extern int allow_au1k_wait; /* default off for CP0 Counter */
|
|
|
|
#ifdef CONFIG_PM
|
|
#if HZ < 100 || HZ > 1000
|
|
#error "unsupported HZ value! Must be in [100,1000]"
|
|
#endif
|
|
#define MATCH20_INC (328 * 100 / HZ) /* magic number 328 is for HZ=100... */
|
|
static unsigned long last_pc0, last_match20;
|
|
#endif
|
|
|
|
static DEFINE_SPINLOCK(time_lock);
|
|
|
|
unsigned long wtimer;
|
|
|
|
#ifdef CONFIG_PM
|
|
static irqreturn_t counter0_irq(int irq, void *dev_id)
|
|
{
|
|
unsigned long pc0;
|
|
int time_elapsed;
|
|
static int jiffie_drift;
|
|
|
|
if (au_readl(SYS_COUNTER_CNTRL) & SYS_CNTRL_M20) {
|
|
/* should never happen! */
|
|
printk(KERN_WARNING "counter 0 w status error\n");
|
|
return IRQ_NONE;
|
|
}
|
|
|
|
pc0 = au_readl(SYS_TOYREAD);
|
|
if (pc0 < last_match20)
|
|
/* counter overflowed */
|
|
time_elapsed = (0xffffffff - last_match20) + pc0;
|
|
else
|
|
time_elapsed = pc0 - last_match20;
|
|
|
|
while (time_elapsed > 0) {
|
|
do_timer(1);
|
|
#ifndef CONFIG_SMP
|
|
update_process_times(user_mode(get_irq_regs()));
|
|
#endif
|
|
time_elapsed -= MATCH20_INC;
|
|
last_match20 += MATCH20_INC;
|
|
jiffie_drift++;
|
|
}
|
|
|
|
last_pc0 = pc0;
|
|
au_writel(last_match20 + MATCH20_INC, SYS_TOYMATCH2);
|
|
au_sync();
|
|
|
|
/*
|
|
* Our counter ticks at 10.009765625 ms/tick, we we're running
|
|
* almost 10 uS too slow per tick.
|
|
*/
|
|
|
|
if (jiffie_drift >= 999) {
|
|
jiffie_drift -= 999;
|
|
do_timer(1); /* increment jiffies by one */
|
|
#ifndef CONFIG_SMP
|
|
update_process_times(user_mode(get_irq_regs()));
|
|
#endif
|
|
}
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
struct irqaction counter0_action = {
|
|
.handler = counter0_irq,
|
|
.flags = IRQF_DISABLED,
|
|
.name = "alchemy-toy",
|
|
.dev_id = NULL,
|
|
};
|
|
|
|
/* When we wakeup from sleep, we have to "catch up" on all of the
|
|
* timer ticks we have missed.
|
|
*/
|
|
void wakeup_counter0_adjust(void)
|
|
{
|
|
unsigned long pc0;
|
|
int time_elapsed;
|
|
|
|
pc0 = au_readl(SYS_TOYREAD);
|
|
if (pc0 < last_match20)
|
|
/* counter overflowed */
|
|
time_elapsed = (0xffffffff - last_match20) + pc0;
|
|
else
|
|
time_elapsed = pc0 - last_match20;
|
|
|
|
while (time_elapsed > 0) {
|
|
time_elapsed -= MATCH20_INC;
|
|
last_match20 += MATCH20_INC;
|
|
}
|
|
|
|
last_pc0 = pc0;
|
|
au_writel(last_match20 + MATCH20_INC, SYS_TOYMATCH2);
|
|
au_sync();
|
|
|
|
}
|
|
|
|
/* This is just for debugging to set the timer for a sleep delay. */
|
|
void wakeup_counter0_set(int ticks)
|
|
{
|
|
unsigned long pc0;
|
|
|
|
pc0 = au_readl(SYS_TOYREAD);
|
|
last_pc0 = pc0;
|
|
au_writel(last_match20 + (MATCH20_INC * ticks), SYS_TOYMATCH2);
|
|
au_sync();
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* I haven't found anyone that doesn't use a 12 MHz source clock,
|
|
* but just in case.....
|
|
*/
|
|
#define AU1000_SRC_CLK 12000000
|
|
|
|
/*
|
|
* We read the real processor speed from the PLL. This is important
|
|
* because it is more accurate than computing it from the 32 KHz
|
|
* counter, if it exists. If we don't have an accurate processor
|
|
* speed, all of the peripherals that derive their clocks based on
|
|
* this advertised speed will introduce error and sometimes not work
|
|
* properly. This function is futher convoluted to still allow configurations
|
|
* to do that in case they have really, really old silicon with a
|
|
* write-only PLL register, that we need the 32 KHz when power management
|
|
* "wait" is enabled, and we need to detect if the 32 KHz isn't present
|
|
* but requested......got it? :-) -- Dan
|
|
*/
|
|
unsigned long calc_clock(void)
|
|
{
|
|
unsigned long cpu_speed;
|
|
unsigned long flags;
|
|
unsigned long counter;
|
|
|
|
spin_lock_irqsave(&time_lock, flags);
|
|
|
|
/* Power management cares if we don't have a 32 KHz counter. */
|
|
no_au1xxx_32khz = 0;
|
|
counter = au_readl(SYS_COUNTER_CNTRL);
|
|
if (counter & SYS_CNTRL_E0) {
|
|
int trim_divide = 16;
|
|
|
|
au_writel(counter | SYS_CNTRL_EN1, SYS_COUNTER_CNTRL);
|
|
|
|
while (au_readl(SYS_COUNTER_CNTRL) & SYS_CNTRL_T1S);
|
|
/* RTC now ticks at 32.768/16 kHz */
|
|
au_writel(trim_divide - 1, SYS_RTCTRIM);
|
|
while (au_readl(SYS_COUNTER_CNTRL) & SYS_CNTRL_T1S);
|
|
|
|
while (au_readl(SYS_COUNTER_CNTRL) & SYS_CNTRL_C1S);
|
|
au_writel(0, SYS_TOYWRITE);
|
|
while (au_readl(SYS_COUNTER_CNTRL) & SYS_CNTRL_C1S);
|
|
} else
|
|
no_au1xxx_32khz = 1;
|
|
|
|
/*
|
|
* On early Au1000, sys_cpupll was write-only. Since these
|
|
* silicon versions of Au1000 are not sold by AMD, we don't bend
|
|
* over backwards trying to determine the frequency.
|
|
*/
|
|
if (au1xxx_cpu_has_pll_wo())
|
|
#ifdef CONFIG_SOC_AU1000_FREQUENCY
|
|
cpu_speed = CONFIG_SOC_AU1000_FREQUENCY;
|
|
#else
|
|
cpu_speed = 396000000;
|
|
#endif
|
|
else
|
|
cpu_speed = (au_readl(SYS_CPUPLL) & 0x0000003f) * AU1000_SRC_CLK;
|
|
/* On Alchemy CPU:counter ratio is 1:1 */
|
|
mips_hpt_frequency = cpu_speed;
|
|
/* Equation: Baudrate = CPU / (SD * 2 * CLKDIV * 16) */
|
|
set_au1x00_uart_baud_base(cpu_speed / (2 * ((int)(au_readl(SYS_POWERCTRL)
|
|
& 0x03) + 2) * 16));
|
|
spin_unlock_irqrestore(&time_lock, flags);
|
|
return cpu_speed;
|
|
}
|
|
|
|
void __init plat_time_init(void)
|
|
{
|
|
unsigned int est_freq = calc_clock();
|
|
|
|
est_freq += 5000; /* round */
|
|
est_freq -= est_freq%10000;
|
|
printk(KERN_INFO "(PRId %08x) @ %u.%02u MHz\n", read_c0_prid(),
|
|
est_freq / 1000000, ((est_freq % 1000000) * 100) / 1000000);
|
|
set_au1x00_speed(est_freq);
|
|
|
|
#ifdef CONFIG_PM
|
|
/*
|
|
* setup counter 0, since it keeps ticking after a
|
|
* 'wait' instruction has been executed. The CP0 timer and
|
|
* counter 1 do NOT continue running after 'wait'
|
|
*
|
|
* It's too early to call request_irq() here, so we handle
|
|
* counter 0 interrupt as a special irq and it doesn't show
|
|
* up under /proc/interrupts.
|
|
*
|
|
* Check to ensure we really have a 32 KHz oscillator before
|
|
* we do this.
|
|
*/
|
|
if (no_au1xxx_32khz)
|
|
printk(KERN_WARNING "WARNING: no 32KHz clock found.\n");
|
|
else {
|
|
while (au_readl(SYS_COUNTER_CNTRL) & SYS_CNTRL_C0S);
|
|
au_writel(0, SYS_TOYWRITE);
|
|
while (au_readl(SYS_COUNTER_CNTRL) & SYS_CNTRL_C0S);
|
|
|
|
au_writel(au_readl(SYS_WAKEMSK) | (1 << 8), SYS_WAKEMSK);
|
|
au_writel(~0, SYS_WAKESRC);
|
|
au_sync();
|
|
while (au_readl(SYS_COUNTER_CNTRL) & SYS_CNTRL_M20);
|
|
|
|
/* Setup match20 to interrupt once every HZ */
|
|
last_pc0 = last_match20 = au_readl(SYS_TOYREAD);
|
|
au_writel(last_match20 + MATCH20_INC, SYS_TOYMATCH2);
|
|
au_sync();
|
|
while (au_readl(SYS_COUNTER_CNTRL) & SYS_CNTRL_M20);
|
|
setup_irq(AU1000_TOY_MATCH2_INT, &counter0_action);
|
|
|
|
/* We can use the real 'wait' instruction. */
|
|
allow_au1k_wait = 1;
|
|
}
|
|
|
|
#endif
|
|
}
|