mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-28 11:18:45 +07:00
92d124f531
This patch adds a possibility to dynamically switch UBI self-checks on and off, instead of toggling them compile-time from the configuration menu. This is much more flexible, and consistent with UBIFS, and this also simplifies UBI Kconfig menu and the code. This patch introduces two levels of self-checks - general, which includes all self-checks which are relatively fast, and I/O, which includes write-verify checks and erase-verify checks, which are relatively slow and involve flash I/O. Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
1606 lines
44 KiB
C
1606 lines
44 KiB
C
/*
|
|
* Copyright (c) International Business Machines Corp., 2006
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
|
|
* the GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*
|
|
* Author: Artem Bityutskiy (Битюцкий Артём)
|
|
*/
|
|
|
|
/*
|
|
* UBI scanning sub-system.
|
|
*
|
|
* This sub-system is responsible for scanning the flash media, checking UBI
|
|
* headers and providing complete information about the UBI flash image.
|
|
*
|
|
* The scanning information is represented by a &struct ubi_scan_info' object.
|
|
* Information about found volumes is represented by &struct ubi_scan_volume
|
|
* objects which are kept in volume RB-tree with root at the @volumes field.
|
|
* The RB-tree is indexed by the volume ID.
|
|
*
|
|
* Scanned logical eraseblocks are represented by &struct ubi_scan_leb objects.
|
|
* These objects are kept in per-volume RB-trees with the root at the
|
|
* corresponding &struct ubi_scan_volume object. To put it differently, we keep
|
|
* an RB-tree of per-volume objects and each of these objects is the root of
|
|
* RB-tree of per-eraseblock objects.
|
|
*
|
|
* Corrupted physical eraseblocks are put to the @corr list, free physical
|
|
* eraseblocks are put to the @free list and the physical eraseblock to be
|
|
* erased are put to the @erase list.
|
|
*
|
|
* About corruptions
|
|
* ~~~~~~~~~~~~~~~~~
|
|
*
|
|
* UBI protects EC and VID headers with CRC-32 checksums, so it can detect
|
|
* whether the headers are corrupted or not. Sometimes UBI also protects the
|
|
* data with CRC-32, e.g., when it executes the atomic LEB change operation, or
|
|
* when it moves the contents of a PEB for wear-leveling purposes.
|
|
*
|
|
* UBI tries to distinguish between 2 types of corruptions.
|
|
*
|
|
* 1. Corruptions caused by power cuts. These are expected corruptions and UBI
|
|
* tries to handle them gracefully, without printing too many warnings and
|
|
* error messages. The idea is that we do not lose important data in these case
|
|
* - we may lose only the data which was being written to the media just before
|
|
* the power cut happened, and the upper layers (e.g., UBIFS) are supposed to
|
|
* handle such data losses (e.g., by using the FS journal).
|
|
*
|
|
* When UBI detects a corruption (CRC-32 mismatch) in a PEB, and it looks like
|
|
* the reason is a power cut, UBI puts this PEB to the @erase list, and all
|
|
* PEBs in the @erase list are scheduled for erasure later.
|
|
*
|
|
* 2. Unexpected corruptions which are not caused by power cuts. During
|
|
* scanning, such PEBs are put to the @corr list and UBI preserves them.
|
|
* Obviously, this lessens the amount of available PEBs, and if at some point
|
|
* UBI runs out of free PEBs, it switches to R/O mode. UBI also loudly informs
|
|
* about such PEBs every time the MTD device is attached.
|
|
*
|
|
* However, it is difficult to reliably distinguish between these types of
|
|
* corruptions and UBI's strategy is as follows. UBI assumes corruption type 2
|
|
* if the VID header is corrupted and the data area does not contain all 0xFFs,
|
|
* and there were no bit-flips or integrity errors while reading the data area.
|
|
* Otherwise UBI assumes corruption type 1. So the decision criteria are as
|
|
* follows.
|
|
* o If the data area contains only 0xFFs, there is no data, and it is safe
|
|
* to just erase this PEB - this is corruption type 1.
|
|
* o If the data area has bit-flips or data integrity errors (ECC errors on
|
|
* NAND), it is probably a PEB which was being erased when power cut
|
|
* happened, so this is corruption type 1. However, this is just a guess,
|
|
* which might be wrong.
|
|
* o Otherwise this it corruption type 2.
|
|
*/
|
|
|
|
#include <linux/err.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/crc32.h>
|
|
#include <linux/math64.h>
|
|
#include <linux/random.h>
|
|
#include "ubi.h"
|
|
|
|
#ifdef CONFIG_MTD_UBI_DEBUG
|
|
static int paranoid_check_si(struct ubi_device *ubi, struct ubi_scan_info *si);
|
|
#else
|
|
#define paranoid_check_si(ubi, si) 0
|
|
#endif
|
|
|
|
/* Temporary variables used during scanning */
|
|
static struct ubi_ec_hdr *ech;
|
|
static struct ubi_vid_hdr *vidh;
|
|
|
|
/**
|
|
* add_to_list - add physical eraseblock to a list.
|
|
* @si: scanning information
|
|
* @pnum: physical eraseblock number to add
|
|
* @ec: erase counter of the physical eraseblock
|
|
* @to_head: if not zero, add to the head of the list
|
|
* @list: the list to add to
|
|
*
|
|
* This function adds physical eraseblock @pnum to free, erase, or alien lists.
|
|
* If @to_head is not zero, PEB will be added to the head of the list, which
|
|
* basically means it will be processed first later. E.g., we add corrupted
|
|
* PEBs (corrupted due to power cuts) to the head of the erase list to make
|
|
* sure we erase them first and get rid of corruptions ASAP. This function
|
|
* returns zero in case of success and a negative error code in case of
|
|
* failure.
|
|
*/
|
|
static int add_to_list(struct ubi_scan_info *si, int pnum, int ec, int to_head,
|
|
struct list_head *list)
|
|
{
|
|
struct ubi_scan_leb *seb;
|
|
|
|
if (list == &si->free) {
|
|
dbg_bld("add to free: PEB %d, EC %d", pnum, ec);
|
|
} else if (list == &si->erase) {
|
|
dbg_bld("add to erase: PEB %d, EC %d", pnum, ec);
|
|
} else if (list == &si->alien) {
|
|
dbg_bld("add to alien: PEB %d, EC %d", pnum, ec);
|
|
si->alien_peb_count += 1;
|
|
} else
|
|
BUG();
|
|
|
|
seb = kmem_cache_alloc(si->scan_leb_slab, GFP_KERNEL);
|
|
if (!seb)
|
|
return -ENOMEM;
|
|
|
|
seb->pnum = pnum;
|
|
seb->ec = ec;
|
|
if (to_head)
|
|
list_add(&seb->u.list, list);
|
|
else
|
|
list_add_tail(&seb->u.list, list);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* add_corrupted - add a corrupted physical eraseblock.
|
|
* @si: scanning information
|
|
* @pnum: physical eraseblock number to add
|
|
* @ec: erase counter of the physical eraseblock
|
|
*
|
|
* This function adds corrupted physical eraseblock @pnum to the 'corr' list.
|
|
* The corruption was presumably not caused by a power cut. Returns zero in
|
|
* case of success and a negative error code in case of failure.
|
|
*/
|
|
static int add_corrupted(struct ubi_scan_info *si, int pnum, int ec)
|
|
{
|
|
struct ubi_scan_leb *seb;
|
|
|
|
dbg_bld("add to corrupted: PEB %d, EC %d", pnum, ec);
|
|
|
|
seb = kmem_cache_alloc(si->scan_leb_slab, GFP_KERNEL);
|
|
if (!seb)
|
|
return -ENOMEM;
|
|
|
|
si->corr_peb_count += 1;
|
|
seb->pnum = pnum;
|
|
seb->ec = ec;
|
|
list_add(&seb->u.list, &si->corr);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* validate_vid_hdr - check volume identifier header.
|
|
* @vid_hdr: the volume identifier header to check
|
|
* @sv: information about the volume this logical eraseblock belongs to
|
|
* @pnum: physical eraseblock number the VID header came from
|
|
*
|
|
* This function checks that data stored in @vid_hdr is consistent. Returns
|
|
* non-zero if an inconsistency was found and zero if not.
|
|
*
|
|
* Note, UBI does sanity check of everything it reads from the flash media.
|
|
* Most of the checks are done in the I/O sub-system. Here we check that the
|
|
* information in the VID header is consistent to the information in other VID
|
|
* headers of the same volume.
|
|
*/
|
|
static int validate_vid_hdr(const struct ubi_vid_hdr *vid_hdr,
|
|
const struct ubi_scan_volume *sv, int pnum)
|
|
{
|
|
int vol_type = vid_hdr->vol_type;
|
|
int vol_id = be32_to_cpu(vid_hdr->vol_id);
|
|
int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
|
|
int data_pad = be32_to_cpu(vid_hdr->data_pad);
|
|
|
|
if (sv->leb_count != 0) {
|
|
int sv_vol_type;
|
|
|
|
/*
|
|
* This is not the first logical eraseblock belonging to this
|
|
* volume. Ensure that the data in its VID header is consistent
|
|
* to the data in previous logical eraseblock headers.
|
|
*/
|
|
|
|
if (vol_id != sv->vol_id) {
|
|
dbg_err("inconsistent vol_id");
|
|
goto bad;
|
|
}
|
|
|
|
if (sv->vol_type == UBI_STATIC_VOLUME)
|
|
sv_vol_type = UBI_VID_STATIC;
|
|
else
|
|
sv_vol_type = UBI_VID_DYNAMIC;
|
|
|
|
if (vol_type != sv_vol_type) {
|
|
dbg_err("inconsistent vol_type");
|
|
goto bad;
|
|
}
|
|
|
|
if (used_ebs != sv->used_ebs) {
|
|
dbg_err("inconsistent used_ebs");
|
|
goto bad;
|
|
}
|
|
|
|
if (data_pad != sv->data_pad) {
|
|
dbg_err("inconsistent data_pad");
|
|
goto bad;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
|
|
bad:
|
|
ubi_err("inconsistent VID header at PEB %d", pnum);
|
|
ubi_dbg_dump_vid_hdr(vid_hdr);
|
|
ubi_dbg_dump_sv(sv);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/**
|
|
* add_volume - add volume to the scanning information.
|
|
* @si: scanning information
|
|
* @vol_id: ID of the volume to add
|
|
* @pnum: physical eraseblock number
|
|
* @vid_hdr: volume identifier header
|
|
*
|
|
* If the volume corresponding to the @vid_hdr logical eraseblock is already
|
|
* present in the scanning information, this function does nothing. Otherwise
|
|
* it adds corresponding volume to the scanning information. Returns a pointer
|
|
* to the scanning volume object in case of success and a negative error code
|
|
* in case of failure.
|
|
*/
|
|
static struct ubi_scan_volume *add_volume(struct ubi_scan_info *si, int vol_id,
|
|
int pnum,
|
|
const struct ubi_vid_hdr *vid_hdr)
|
|
{
|
|
struct ubi_scan_volume *sv;
|
|
struct rb_node **p = &si->volumes.rb_node, *parent = NULL;
|
|
|
|
ubi_assert(vol_id == be32_to_cpu(vid_hdr->vol_id));
|
|
|
|
/* Walk the volume RB-tree to look if this volume is already present */
|
|
while (*p) {
|
|
parent = *p;
|
|
sv = rb_entry(parent, struct ubi_scan_volume, rb);
|
|
|
|
if (vol_id == sv->vol_id)
|
|
return sv;
|
|
|
|
if (vol_id > sv->vol_id)
|
|
p = &(*p)->rb_left;
|
|
else
|
|
p = &(*p)->rb_right;
|
|
}
|
|
|
|
/* The volume is absent - add it */
|
|
sv = kmalloc(sizeof(struct ubi_scan_volume), GFP_KERNEL);
|
|
if (!sv)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
sv->highest_lnum = sv->leb_count = 0;
|
|
sv->vol_id = vol_id;
|
|
sv->root = RB_ROOT;
|
|
sv->used_ebs = be32_to_cpu(vid_hdr->used_ebs);
|
|
sv->data_pad = be32_to_cpu(vid_hdr->data_pad);
|
|
sv->compat = vid_hdr->compat;
|
|
sv->vol_type = vid_hdr->vol_type == UBI_VID_DYNAMIC ? UBI_DYNAMIC_VOLUME
|
|
: UBI_STATIC_VOLUME;
|
|
if (vol_id > si->highest_vol_id)
|
|
si->highest_vol_id = vol_id;
|
|
|
|
rb_link_node(&sv->rb, parent, p);
|
|
rb_insert_color(&sv->rb, &si->volumes);
|
|
si->vols_found += 1;
|
|
dbg_bld("added volume %d", vol_id);
|
|
return sv;
|
|
}
|
|
|
|
/**
|
|
* compare_lebs - find out which logical eraseblock is newer.
|
|
* @ubi: UBI device description object
|
|
* @seb: first logical eraseblock to compare
|
|
* @pnum: physical eraseblock number of the second logical eraseblock to
|
|
* compare
|
|
* @vid_hdr: volume identifier header of the second logical eraseblock
|
|
*
|
|
* This function compares 2 copies of a LEB and informs which one is newer. In
|
|
* case of success this function returns a positive value, in case of failure, a
|
|
* negative error code is returned. The success return codes use the following
|
|
* bits:
|
|
* o bit 0 is cleared: the first PEB (described by @seb) is newer than the
|
|
* second PEB (described by @pnum and @vid_hdr);
|
|
* o bit 0 is set: the second PEB is newer;
|
|
* o bit 1 is cleared: no bit-flips were detected in the newer LEB;
|
|
* o bit 1 is set: bit-flips were detected in the newer LEB;
|
|
* o bit 2 is cleared: the older LEB is not corrupted;
|
|
* o bit 2 is set: the older LEB is corrupted.
|
|
*/
|
|
static int compare_lebs(struct ubi_device *ubi, const struct ubi_scan_leb *seb,
|
|
int pnum, const struct ubi_vid_hdr *vid_hdr)
|
|
{
|
|
void *buf;
|
|
int len, err, second_is_newer, bitflips = 0, corrupted = 0;
|
|
uint32_t data_crc, crc;
|
|
struct ubi_vid_hdr *vh = NULL;
|
|
unsigned long long sqnum2 = be64_to_cpu(vid_hdr->sqnum);
|
|
|
|
if (sqnum2 == seb->sqnum) {
|
|
/*
|
|
* This must be a really ancient UBI image which has been
|
|
* created before sequence numbers support has been added. At
|
|
* that times we used 32-bit LEB versions stored in logical
|
|
* eraseblocks. That was before UBI got into mainline. We do not
|
|
* support these images anymore. Well, those images still work,
|
|
* but only if no unclean reboots happened.
|
|
*/
|
|
ubi_err("unsupported on-flash UBI format\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Obviously the LEB with lower sequence counter is older */
|
|
second_is_newer = !!(sqnum2 > seb->sqnum);
|
|
|
|
/*
|
|
* Now we know which copy is newer. If the copy flag of the PEB with
|
|
* newer version is not set, then we just return, otherwise we have to
|
|
* check data CRC. For the second PEB we already have the VID header,
|
|
* for the first one - we'll need to re-read it from flash.
|
|
*
|
|
* Note: this may be optimized so that we wouldn't read twice.
|
|
*/
|
|
|
|
if (second_is_newer) {
|
|
if (!vid_hdr->copy_flag) {
|
|
/* It is not a copy, so it is newer */
|
|
dbg_bld("second PEB %d is newer, copy_flag is unset",
|
|
pnum);
|
|
return 1;
|
|
}
|
|
} else {
|
|
if (!seb->copy_flag) {
|
|
/* It is not a copy, so it is newer */
|
|
dbg_bld("first PEB %d is newer, copy_flag is unset",
|
|
pnum);
|
|
return bitflips << 1;
|
|
}
|
|
|
|
vh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
|
|
if (!vh)
|
|
return -ENOMEM;
|
|
|
|
pnum = seb->pnum;
|
|
err = ubi_io_read_vid_hdr(ubi, pnum, vh, 0);
|
|
if (err) {
|
|
if (err == UBI_IO_BITFLIPS)
|
|
bitflips = 1;
|
|
else {
|
|
dbg_err("VID of PEB %d header is bad, but it "
|
|
"was OK earlier, err %d", pnum, err);
|
|
if (err > 0)
|
|
err = -EIO;
|
|
|
|
goto out_free_vidh;
|
|
}
|
|
}
|
|
|
|
vid_hdr = vh;
|
|
}
|
|
|
|
/* Read the data of the copy and check the CRC */
|
|
|
|
len = be32_to_cpu(vid_hdr->data_size);
|
|
buf = vmalloc(len);
|
|
if (!buf) {
|
|
err = -ENOMEM;
|
|
goto out_free_vidh;
|
|
}
|
|
|
|
err = ubi_io_read_data(ubi, buf, pnum, 0, len);
|
|
if (err && err != UBI_IO_BITFLIPS && err != -EBADMSG)
|
|
goto out_free_buf;
|
|
|
|
data_crc = be32_to_cpu(vid_hdr->data_crc);
|
|
crc = crc32(UBI_CRC32_INIT, buf, len);
|
|
if (crc != data_crc) {
|
|
dbg_bld("PEB %d CRC error: calculated %#08x, must be %#08x",
|
|
pnum, crc, data_crc);
|
|
corrupted = 1;
|
|
bitflips = 0;
|
|
second_is_newer = !second_is_newer;
|
|
} else {
|
|
dbg_bld("PEB %d CRC is OK", pnum);
|
|
bitflips = !!err;
|
|
}
|
|
|
|
vfree(buf);
|
|
ubi_free_vid_hdr(ubi, vh);
|
|
|
|
if (second_is_newer)
|
|
dbg_bld("second PEB %d is newer, copy_flag is set", pnum);
|
|
else
|
|
dbg_bld("first PEB %d is newer, copy_flag is set", pnum);
|
|
|
|
return second_is_newer | (bitflips << 1) | (corrupted << 2);
|
|
|
|
out_free_buf:
|
|
vfree(buf);
|
|
out_free_vidh:
|
|
ubi_free_vid_hdr(ubi, vh);
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* ubi_scan_add_used - add physical eraseblock to the scanning information.
|
|
* @ubi: UBI device description object
|
|
* @si: scanning information
|
|
* @pnum: the physical eraseblock number
|
|
* @ec: erase counter
|
|
* @vid_hdr: the volume identifier header
|
|
* @bitflips: if bit-flips were detected when this physical eraseblock was read
|
|
*
|
|
* This function adds information about a used physical eraseblock to the
|
|
* 'used' tree of the corresponding volume. The function is rather complex
|
|
* because it has to handle cases when this is not the first physical
|
|
* eraseblock belonging to the same logical eraseblock, and the newer one has
|
|
* to be picked, while the older one has to be dropped. This function returns
|
|
* zero in case of success and a negative error code in case of failure.
|
|
*/
|
|
int ubi_scan_add_used(struct ubi_device *ubi, struct ubi_scan_info *si,
|
|
int pnum, int ec, const struct ubi_vid_hdr *vid_hdr,
|
|
int bitflips)
|
|
{
|
|
int err, vol_id, lnum;
|
|
unsigned long long sqnum;
|
|
struct ubi_scan_volume *sv;
|
|
struct ubi_scan_leb *seb;
|
|
struct rb_node **p, *parent = NULL;
|
|
|
|
vol_id = be32_to_cpu(vid_hdr->vol_id);
|
|
lnum = be32_to_cpu(vid_hdr->lnum);
|
|
sqnum = be64_to_cpu(vid_hdr->sqnum);
|
|
|
|
dbg_bld("PEB %d, LEB %d:%d, EC %d, sqnum %llu, bitflips %d",
|
|
pnum, vol_id, lnum, ec, sqnum, bitflips);
|
|
|
|
sv = add_volume(si, vol_id, pnum, vid_hdr);
|
|
if (IS_ERR(sv))
|
|
return PTR_ERR(sv);
|
|
|
|
if (si->max_sqnum < sqnum)
|
|
si->max_sqnum = sqnum;
|
|
|
|
/*
|
|
* Walk the RB-tree of logical eraseblocks of volume @vol_id to look
|
|
* if this is the first instance of this logical eraseblock or not.
|
|
*/
|
|
p = &sv->root.rb_node;
|
|
while (*p) {
|
|
int cmp_res;
|
|
|
|
parent = *p;
|
|
seb = rb_entry(parent, struct ubi_scan_leb, u.rb);
|
|
if (lnum != seb->lnum) {
|
|
if (lnum < seb->lnum)
|
|
p = &(*p)->rb_left;
|
|
else
|
|
p = &(*p)->rb_right;
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* There is already a physical eraseblock describing the same
|
|
* logical eraseblock present.
|
|
*/
|
|
|
|
dbg_bld("this LEB already exists: PEB %d, sqnum %llu, "
|
|
"EC %d", seb->pnum, seb->sqnum, seb->ec);
|
|
|
|
/*
|
|
* Make sure that the logical eraseblocks have different
|
|
* sequence numbers. Otherwise the image is bad.
|
|
*
|
|
* However, if the sequence number is zero, we assume it must
|
|
* be an ancient UBI image from the era when UBI did not have
|
|
* sequence numbers. We still can attach these images, unless
|
|
* there is a need to distinguish between old and new
|
|
* eraseblocks, in which case we'll refuse the image in
|
|
* 'compare_lebs()'. In other words, we attach old clean
|
|
* images, but refuse attaching old images with duplicated
|
|
* logical eraseblocks because there was an unclean reboot.
|
|
*/
|
|
if (seb->sqnum == sqnum && sqnum != 0) {
|
|
ubi_err("two LEBs with same sequence number %llu",
|
|
sqnum);
|
|
ubi_dbg_dump_seb(seb, 0);
|
|
ubi_dbg_dump_vid_hdr(vid_hdr);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* Now we have to drop the older one and preserve the newer
|
|
* one.
|
|
*/
|
|
cmp_res = compare_lebs(ubi, seb, pnum, vid_hdr);
|
|
if (cmp_res < 0)
|
|
return cmp_res;
|
|
|
|
if (cmp_res & 1) {
|
|
/*
|
|
* This logical eraseblock is newer than the one
|
|
* found earlier.
|
|
*/
|
|
err = validate_vid_hdr(vid_hdr, sv, pnum);
|
|
if (err)
|
|
return err;
|
|
|
|
err = add_to_list(si, seb->pnum, seb->ec, cmp_res & 4,
|
|
&si->erase);
|
|
if (err)
|
|
return err;
|
|
|
|
seb->ec = ec;
|
|
seb->pnum = pnum;
|
|
seb->scrub = ((cmp_res & 2) || bitflips);
|
|
seb->copy_flag = vid_hdr->copy_flag;
|
|
seb->sqnum = sqnum;
|
|
|
|
if (sv->highest_lnum == lnum)
|
|
sv->last_data_size =
|
|
be32_to_cpu(vid_hdr->data_size);
|
|
|
|
return 0;
|
|
} else {
|
|
/*
|
|
* This logical eraseblock is older than the one found
|
|
* previously.
|
|
*/
|
|
return add_to_list(si, pnum, ec, cmp_res & 4,
|
|
&si->erase);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* We've met this logical eraseblock for the first time, add it to the
|
|
* scanning information.
|
|
*/
|
|
|
|
err = validate_vid_hdr(vid_hdr, sv, pnum);
|
|
if (err)
|
|
return err;
|
|
|
|
seb = kmem_cache_alloc(si->scan_leb_slab, GFP_KERNEL);
|
|
if (!seb)
|
|
return -ENOMEM;
|
|
|
|
seb->ec = ec;
|
|
seb->pnum = pnum;
|
|
seb->lnum = lnum;
|
|
seb->scrub = bitflips;
|
|
seb->copy_flag = vid_hdr->copy_flag;
|
|
seb->sqnum = sqnum;
|
|
|
|
if (sv->highest_lnum <= lnum) {
|
|
sv->highest_lnum = lnum;
|
|
sv->last_data_size = be32_to_cpu(vid_hdr->data_size);
|
|
}
|
|
|
|
sv->leb_count += 1;
|
|
rb_link_node(&seb->u.rb, parent, p);
|
|
rb_insert_color(&seb->u.rb, &sv->root);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ubi_scan_find_sv - find volume in the scanning information.
|
|
* @si: scanning information
|
|
* @vol_id: the requested volume ID
|
|
*
|
|
* This function returns a pointer to the volume description or %NULL if there
|
|
* are no data about this volume in the scanning information.
|
|
*/
|
|
struct ubi_scan_volume *ubi_scan_find_sv(const struct ubi_scan_info *si,
|
|
int vol_id)
|
|
{
|
|
struct ubi_scan_volume *sv;
|
|
struct rb_node *p = si->volumes.rb_node;
|
|
|
|
while (p) {
|
|
sv = rb_entry(p, struct ubi_scan_volume, rb);
|
|
|
|
if (vol_id == sv->vol_id)
|
|
return sv;
|
|
|
|
if (vol_id > sv->vol_id)
|
|
p = p->rb_left;
|
|
else
|
|
p = p->rb_right;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* ubi_scan_find_seb - find LEB in the volume scanning information.
|
|
* @sv: a pointer to the volume scanning information
|
|
* @lnum: the requested logical eraseblock
|
|
*
|
|
* This function returns a pointer to the scanning logical eraseblock or %NULL
|
|
* if there are no data about it in the scanning volume information.
|
|
*/
|
|
struct ubi_scan_leb *ubi_scan_find_seb(const struct ubi_scan_volume *sv,
|
|
int lnum)
|
|
{
|
|
struct ubi_scan_leb *seb;
|
|
struct rb_node *p = sv->root.rb_node;
|
|
|
|
while (p) {
|
|
seb = rb_entry(p, struct ubi_scan_leb, u.rb);
|
|
|
|
if (lnum == seb->lnum)
|
|
return seb;
|
|
|
|
if (lnum > seb->lnum)
|
|
p = p->rb_left;
|
|
else
|
|
p = p->rb_right;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* ubi_scan_rm_volume - delete scanning information about a volume.
|
|
* @si: scanning information
|
|
* @sv: the volume scanning information to delete
|
|
*/
|
|
void ubi_scan_rm_volume(struct ubi_scan_info *si, struct ubi_scan_volume *sv)
|
|
{
|
|
struct rb_node *rb;
|
|
struct ubi_scan_leb *seb;
|
|
|
|
dbg_bld("remove scanning information about volume %d", sv->vol_id);
|
|
|
|
while ((rb = rb_first(&sv->root))) {
|
|
seb = rb_entry(rb, struct ubi_scan_leb, u.rb);
|
|
rb_erase(&seb->u.rb, &sv->root);
|
|
list_add_tail(&seb->u.list, &si->erase);
|
|
}
|
|
|
|
rb_erase(&sv->rb, &si->volumes);
|
|
kfree(sv);
|
|
si->vols_found -= 1;
|
|
}
|
|
|
|
/**
|
|
* ubi_scan_erase_peb - erase a physical eraseblock.
|
|
* @ubi: UBI device description object
|
|
* @si: scanning information
|
|
* @pnum: physical eraseblock number to erase;
|
|
* @ec: erase counter value to write (%UBI_SCAN_UNKNOWN_EC if it is unknown)
|
|
*
|
|
* This function erases physical eraseblock 'pnum', and writes the erase
|
|
* counter header to it. This function should only be used on UBI device
|
|
* initialization stages, when the EBA sub-system had not been yet initialized.
|
|
* This function returns zero in case of success and a negative error code in
|
|
* case of failure.
|
|
*/
|
|
int ubi_scan_erase_peb(struct ubi_device *ubi, const struct ubi_scan_info *si,
|
|
int pnum, int ec)
|
|
{
|
|
int err;
|
|
struct ubi_ec_hdr *ec_hdr;
|
|
|
|
if ((long long)ec >= UBI_MAX_ERASECOUNTER) {
|
|
/*
|
|
* Erase counter overflow. Upgrade UBI and use 64-bit
|
|
* erase counters internally.
|
|
*/
|
|
ubi_err("erase counter overflow at PEB %d, EC %d", pnum, ec);
|
|
return -EINVAL;
|
|
}
|
|
|
|
ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
|
|
if (!ec_hdr)
|
|
return -ENOMEM;
|
|
|
|
ec_hdr->ec = cpu_to_be64(ec);
|
|
|
|
err = ubi_io_sync_erase(ubi, pnum, 0);
|
|
if (err < 0)
|
|
goto out_free;
|
|
|
|
err = ubi_io_write_ec_hdr(ubi, pnum, ec_hdr);
|
|
|
|
out_free:
|
|
kfree(ec_hdr);
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* ubi_scan_get_free_peb - get a free physical eraseblock.
|
|
* @ubi: UBI device description object
|
|
* @si: scanning information
|
|
*
|
|
* This function returns a free physical eraseblock. It is supposed to be
|
|
* called on the UBI initialization stages when the wear-leveling sub-system is
|
|
* not initialized yet. This function picks a physical eraseblocks from one of
|
|
* the lists, writes the EC header if it is needed, and removes it from the
|
|
* list.
|
|
*
|
|
* This function returns scanning physical eraseblock information in case of
|
|
* success and an error code in case of failure.
|
|
*/
|
|
struct ubi_scan_leb *ubi_scan_get_free_peb(struct ubi_device *ubi,
|
|
struct ubi_scan_info *si)
|
|
{
|
|
int err = 0;
|
|
struct ubi_scan_leb *seb, *tmp_seb;
|
|
|
|
if (!list_empty(&si->free)) {
|
|
seb = list_entry(si->free.next, struct ubi_scan_leb, u.list);
|
|
list_del(&seb->u.list);
|
|
dbg_bld("return free PEB %d, EC %d", seb->pnum, seb->ec);
|
|
return seb;
|
|
}
|
|
|
|
/*
|
|
* We try to erase the first physical eraseblock from the erase list
|
|
* and pick it if we succeed, or try to erase the next one if not. And
|
|
* so forth. We don't want to take care about bad eraseblocks here -
|
|
* they'll be handled later.
|
|
*/
|
|
list_for_each_entry_safe(seb, tmp_seb, &si->erase, u.list) {
|
|
if (seb->ec == UBI_SCAN_UNKNOWN_EC)
|
|
seb->ec = si->mean_ec;
|
|
|
|
err = ubi_scan_erase_peb(ubi, si, seb->pnum, seb->ec+1);
|
|
if (err)
|
|
continue;
|
|
|
|
seb->ec += 1;
|
|
list_del(&seb->u.list);
|
|
dbg_bld("return PEB %d, EC %d", seb->pnum, seb->ec);
|
|
return seb;
|
|
}
|
|
|
|
ubi_err("no free eraseblocks");
|
|
return ERR_PTR(-ENOSPC);
|
|
}
|
|
|
|
/**
|
|
* check_corruption - check the data area of PEB.
|
|
* @ubi: UBI device description object
|
|
* @vid_hrd: the (corrupted) VID header of this PEB
|
|
* @pnum: the physical eraseblock number to check
|
|
*
|
|
* This is a helper function which is used to distinguish between VID header
|
|
* corruptions caused by power cuts and other reasons. If the PEB contains only
|
|
* 0xFF bytes in the data area, the VID header is most probably corrupted
|
|
* because of a power cut (%0 is returned in this case). Otherwise, it was
|
|
* probably corrupted for some other reasons (%1 is returned in this case). A
|
|
* negative error code is returned if a read error occurred.
|
|
*
|
|
* If the corruption reason was a power cut, UBI can safely erase this PEB.
|
|
* Otherwise, it should preserve it to avoid possibly destroying important
|
|
* information.
|
|
*/
|
|
static int check_corruption(struct ubi_device *ubi, struct ubi_vid_hdr *vid_hdr,
|
|
int pnum)
|
|
{
|
|
int err;
|
|
|
|
mutex_lock(&ubi->buf_mutex);
|
|
memset(ubi->peb_buf1, 0x00, ubi->leb_size);
|
|
|
|
err = ubi_io_read(ubi, ubi->peb_buf1, pnum, ubi->leb_start,
|
|
ubi->leb_size);
|
|
if (err == UBI_IO_BITFLIPS || err == -EBADMSG) {
|
|
/*
|
|
* Bit-flips or integrity errors while reading the data area.
|
|
* It is difficult to say for sure what type of corruption is
|
|
* this, but presumably a power cut happened while this PEB was
|
|
* erased, so it became unstable and corrupted, and should be
|
|
* erased.
|
|
*/
|
|
err = 0;
|
|
goto out_unlock;
|
|
}
|
|
|
|
if (err)
|
|
goto out_unlock;
|
|
|
|
if (ubi_check_pattern(ubi->peb_buf1, 0xFF, ubi->leb_size))
|
|
goto out_unlock;
|
|
|
|
ubi_err("PEB %d contains corrupted VID header, and the data does not "
|
|
"contain all 0xFF, this may be a non-UBI PEB or a severe VID "
|
|
"header corruption which requires manual inspection", pnum);
|
|
ubi_dbg_dump_vid_hdr(vid_hdr);
|
|
dbg_msg("hexdump of PEB %d offset %d, length %d",
|
|
pnum, ubi->leb_start, ubi->leb_size);
|
|
ubi_dbg_print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
|
|
ubi->peb_buf1, ubi->leb_size, 1);
|
|
err = 1;
|
|
|
|
out_unlock:
|
|
mutex_unlock(&ubi->buf_mutex);
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* process_eb - read, check UBI headers, and add them to scanning information.
|
|
* @ubi: UBI device description object
|
|
* @si: scanning information
|
|
* @pnum: the physical eraseblock number
|
|
*
|
|
* This function returns a zero if the physical eraseblock was successfully
|
|
* handled and a negative error code in case of failure.
|
|
*/
|
|
static int process_eb(struct ubi_device *ubi, struct ubi_scan_info *si,
|
|
int pnum)
|
|
{
|
|
long long uninitialized_var(ec);
|
|
int err, bitflips = 0, vol_id, ec_err = 0;
|
|
|
|
dbg_bld("scan PEB %d", pnum);
|
|
|
|
/* Skip bad physical eraseblocks */
|
|
err = ubi_io_is_bad(ubi, pnum);
|
|
if (err < 0)
|
|
return err;
|
|
else if (err) {
|
|
/*
|
|
* FIXME: this is actually duty of the I/O sub-system to
|
|
* initialize this, but MTD does not provide enough
|
|
* information.
|
|
*/
|
|
si->bad_peb_count += 1;
|
|
return 0;
|
|
}
|
|
|
|
err = ubi_io_read_ec_hdr(ubi, pnum, ech, 0);
|
|
if (err < 0)
|
|
return err;
|
|
switch (err) {
|
|
case 0:
|
|
break;
|
|
case UBI_IO_BITFLIPS:
|
|
bitflips = 1;
|
|
break;
|
|
case UBI_IO_FF:
|
|
si->empty_peb_count += 1;
|
|
return add_to_list(si, pnum, UBI_SCAN_UNKNOWN_EC, 0,
|
|
&si->erase);
|
|
case UBI_IO_FF_BITFLIPS:
|
|
si->empty_peb_count += 1;
|
|
return add_to_list(si, pnum, UBI_SCAN_UNKNOWN_EC, 1,
|
|
&si->erase);
|
|
case UBI_IO_BAD_HDR_EBADMSG:
|
|
case UBI_IO_BAD_HDR:
|
|
/*
|
|
* We have to also look at the VID header, possibly it is not
|
|
* corrupted. Set %bitflips flag in order to make this PEB be
|
|
* moved and EC be re-created.
|
|
*/
|
|
ec_err = err;
|
|
ec = UBI_SCAN_UNKNOWN_EC;
|
|
bitflips = 1;
|
|
break;
|
|
default:
|
|
ubi_err("'ubi_io_read_ec_hdr()' returned unknown code %d", err);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!ec_err) {
|
|
int image_seq;
|
|
|
|
/* Make sure UBI version is OK */
|
|
if (ech->version != UBI_VERSION) {
|
|
ubi_err("this UBI version is %d, image version is %d",
|
|
UBI_VERSION, (int)ech->version);
|
|
return -EINVAL;
|
|
}
|
|
|
|
ec = be64_to_cpu(ech->ec);
|
|
if (ec > UBI_MAX_ERASECOUNTER) {
|
|
/*
|
|
* Erase counter overflow. The EC headers have 64 bits
|
|
* reserved, but we anyway make use of only 31 bit
|
|
* values, as this seems to be enough for any existing
|
|
* flash. Upgrade UBI and use 64-bit erase counters
|
|
* internally.
|
|
*/
|
|
ubi_err("erase counter overflow, max is %d",
|
|
UBI_MAX_ERASECOUNTER);
|
|
ubi_dbg_dump_ec_hdr(ech);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* Make sure that all PEBs have the same image sequence number.
|
|
* This allows us to detect situations when users flash UBI
|
|
* images incorrectly, so that the flash has the new UBI image
|
|
* and leftovers from the old one. This feature was added
|
|
* relatively recently, and the sequence number was always
|
|
* zero, because old UBI implementations always set it to zero.
|
|
* For this reasons, we do not panic if some PEBs have zero
|
|
* sequence number, while other PEBs have non-zero sequence
|
|
* number.
|
|
*/
|
|
image_seq = be32_to_cpu(ech->image_seq);
|
|
if (!ubi->image_seq && image_seq)
|
|
ubi->image_seq = image_seq;
|
|
if (ubi->image_seq && image_seq &&
|
|
ubi->image_seq != image_seq) {
|
|
ubi_err("bad image sequence number %d in PEB %d, "
|
|
"expected %d", image_seq, pnum, ubi->image_seq);
|
|
ubi_dbg_dump_ec_hdr(ech);
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
/* OK, we've done with the EC header, let's look at the VID header */
|
|
|
|
err = ubi_io_read_vid_hdr(ubi, pnum, vidh, 0);
|
|
if (err < 0)
|
|
return err;
|
|
switch (err) {
|
|
case 0:
|
|
break;
|
|
case UBI_IO_BITFLIPS:
|
|
bitflips = 1;
|
|
break;
|
|
case UBI_IO_BAD_HDR_EBADMSG:
|
|
if (ec_err == UBI_IO_BAD_HDR_EBADMSG)
|
|
/*
|
|
* Both EC and VID headers are corrupted and were read
|
|
* with data integrity error, probably this is a bad
|
|
* PEB, bit it is not marked as bad yet. This may also
|
|
* be a result of power cut during erasure.
|
|
*/
|
|
si->maybe_bad_peb_count += 1;
|
|
case UBI_IO_BAD_HDR:
|
|
if (ec_err)
|
|
/*
|
|
* Both headers are corrupted. There is a possibility
|
|
* that this a valid UBI PEB which has corresponding
|
|
* LEB, but the headers are corrupted. However, it is
|
|
* impossible to distinguish it from a PEB which just
|
|
* contains garbage because of a power cut during erase
|
|
* operation. So we just schedule this PEB for erasure.
|
|
*
|
|
* Besides, in case of NOR flash, we deliberatly
|
|
* corrupt both headers because NOR flash erasure is
|
|
* slow and can start from the end.
|
|
*/
|
|
err = 0;
|
|
else
|
|
/*
|
|
* The EC was OK, but the VID header is corrupted. We
|
|
* have to check what is in the data area.
|
|
*/
|
|
err = check_corruption(ubi, vidh, pnum);
|
|
|
|
if (err < 0)
|
|
return err;
|
|
else if (!err)
|
|
/* This corruption is caused by a power cut */
|
|
err = add_to_list(si, pnum, ec, 1, &si->erase);
|
|
else
|
|
/* This is an unexpected corruption */
|
|
err = add_corrupted(si, pnum, ec);
|
|
if (err)
|
|
return err;
|
|
goto adjust_mean_ec;
|
|
case UBI_IO_FF_BITFLIPS:
|
|
err = add_to_list(si, pnum, ec, 1, &si->erase);
|
|
if (err)
|
|
return err;
|
|
goto adjust_mean_ec;
|
|
case UBI_IO_FF:
|
|
if (ec_err)
|
|
err = add_to_list(si, pnum, ec, 1, &si->erase);
|
|
else
|
|
err = add_to_list(si, pnum, ec, 0, &si->free);
|
|
if (err)
|
|
return err;
|
|
goto adjust_mean_ec;
|
|
default:
|
|
ubi_err("'ubi_io_read_vid_hdr()' returned unknown code %d",
|
|
err);
|
|
return -EINVAL;
|
|
}
|
|
|
|
vol_id = be32_to_cpu(vidh->vol_id);
|
|
if (vol_id > UBI_MAX_VOLUMES && vol_id != UBI_LAYOUT_VOLUME_ID) {
|
|
int lnum = be32_to_cpu(vidh->lnum);
|
|
|
|
/* Unsupported internal volume */
|
|
switch (vidh->compat) {
|
|
case UBI_COMPAT_DELETE:
|
|
ubi_msg("\"delete\" compatible internal volume %d:%d"
|
|
" found, will remove it", vol_id, lnum);
|
|
err = add_to_list(si, pnum, ec, 1, &si->erase);
|
|
if (err)
|
|
return err;
|
|
return 0;
|
|
|
|
case UBI_COMPAT_RO:
|
|
ubi_msg("read-only compatible internal volume %d:%d"
|
|
" found, switch to read-only mode",
|
|
vol_id, lnum);
|
|
ubi->ro_mode = 1;
|
|
break;
|
|
|
|
case UBI_COMPAT_PRESERVE:
|
|
ubi_msg("\"preserve\" compatible internal volume %d:%d"
|
|
" found", vol_id, lnum);
|
|
err = add_to_list(si, pnum, ec, 0, &si->alien);
|
|
if (err)
|
|
return err;
|
|
return 0;
|
|
|
|
case UBI_COMPAT_REJECT:
|
|
ubi_err("incompatible internal volume %d:%d found",
|
|
vol_id, lnum);
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
if (ec_err)
|
|
ubi_warn("valid VID header but corrupted EC header at PEB %d",
|
|
pnum);
|
|
err = ubi_scan_add_used(ubi, si, pnum, ec, vidh, bitflips);
|
|
if (err)
|
|
return err;
|
|
|
|
adjust_mean_ec:
|
|
if (!ec_err) {
|
|
si->ec_sum += ec;
|
|
si->ec_count += 1;
|
|
if (ec > si->max_ec)
|
|
si->max_ec = ec;
|
|
if (ec < si->min_ec)
|
|
si->min_ec = ec;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* check_what_we_have - check what PEB were found by scanning.
|
|
* @ubi: UBI device description object
|
|
* @si: scanning information
|
|
*
|
|
* This is a helper function which takes a look what PEBs were found by
|
|
* scanning, and decides whether the flash is empty and should be formatted and
|
|
* whether there are too many corrupted PEBs and we should not attach this
|
|
* MTD device. Returns zero if we should proceed with attaching the MTD device,
|
|
* and %-EINVAL if we should not.
|
|
*/
|
|
static int check_what_we_have(struct ubi_device *ubi, struct ubi_scan_info *si)
|
|
{
|
|
struct ubi_scan_leb *seb;
|
|
int max_corr, peb_count;
|
|
|
|
peb_count = ubi->peb_count - si->bad_peb_count - si->alien_peb_count;
|
|
max_corr = peb_count / 20 ?: 8;
|
|
|
|
/*
|
|
* Few corrupted PEBs is not a problem and may be just a result of
|
|
* unclean reboots. However, many of them may indicate some problems
|
|
* with the flash HW or driver.
|
|
*/
|
|
if (si->corr_peb_count) {
|
|
ubi_err("%d PEBs are corrupted and preserved",
|
|
si->corr_peb_count);
|
|
printk(KERN_ERR "Corrupted PEBs are:");
|
|
list_for_each_entry(seb, &si->corr, u.list)
|
|
printk(KERN_CONT " %d", seb->pnum);
|
|
printk(KERN_CONT "\n");
|
|
|
|
/*
|
|
* If too many PEBs are corrupted, we refuse attaching,
|
|
* otherwise, only print a warning.
|
|
*/
|
|
if (si->corr_peb_count >= max_corr) {
|
|
ubi_err("too many corrupted PEBs, refusing this device");
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
if (si->empty_peb_count + si->maybe_bad_peb_count == peb_count) {
|
|
/*
|
|
* All PEBs are empty, or almost all - a couple PEBs look like
|
|
* they may be bad PEBs which were not marked as bad yet.
|
|
*
|
|
* This piece of code basically tries to distinguish between
|
|
* the following situations:
|
|
*
|
|
* 1. Flash is empty, but there are few bad PEBs, which are not
|
|
* marked as bad so far, and which were read with error. We
|
|
* want to go ahead and format this flash. While formatting,
|
|
* the faulty PEBs will probably be marked as bad.
|
|
*
|
|
* 2. Flash contains non-UBI data and we do not want to format
|
|
* it and destroy possibly important information.
|
|
*/
|
|
if (si->maybe_bad_peb_count <= 2) {
|
|
si->is_empty = 1;
|
|
ubi_msg("empty MTD device detected");
|
|
get_random_bytes(&ubi->image_seq,
|
|
sizeof(ubi->image_seq));
|
|
} else {
|
|
ubi_err("MTD device is not UBI-formatted and possibly "
|
|
"contains non-UBI data - refusing it");
|
|
return -EINVAL;
|
|
}
|
|
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ubi_scan - scan an MTD device.
|
|
* @ubi: UBI device description object
|
|
*
|
|
* This function does full scanning of an MTD device and returns complete
|
|
* information about it. In case of failure, an error code is returned.
|
|
*/
|
|
struct ubi_scan_info *ubi_scan(struct ubi_device *ubi)
|
|
{
|
|
int err, pnum;
|
|
struct rb_node *rb1, *rb2;
|
|
struct ubi_scan_volume *sv;
|
|
struct ubi_scan_leb *seb;
|
|
struct ubi_scan_info *si;
|
|
|
|
si = kzalloc(sizeof(struct ubi_scan_info), GFP_KERNEL);
|
|
if (!si)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
INIT_LIST_HEAD(&si->corr);
|
|
INIT_LIST_HEAD(&si->free);
|
|
INIT_LIST_HEAD(&si->erase);
|
|
INIT_LIST_HEAD(&si->alien);
|
|
si->volumes = RB_ROOT;
|
|
|
|
err = -ENOMEM;
|
|
si->scan_leb_slab = kmem_cache_create("ubi_scan_leb_slab",
|
|
sizeof(struct ubi_scan_leb),
|
|
0, 0, NULL);
|
|
if (!si->scan_leb_slab)
|
|
goto out_si;
|
|
|
|
ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
|
|
if (!ech)
|
|
goto out_slab;
|
|
|
|
vidh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
|
|
if (!vidh)
|
|
goto out_ech;
|
|
|
|
for (pnum = 0; pnum < ubi->peb_count; pnum++) {
|
|
cond_resched();
|
|
|
|
dbg_gen("process PEB %d", pnum);
|
|
err = process_eb(ubi, si, pnum);
|
|
if (err < 0)
|
|
goto out_vidh;
|
|
}
|
|
|
|
dbg_msg("scanning is finished");
|
|
|
|
/* Calculate mean erase counter */
|
|
if (si->ec_count)
|
|
si->mean_ec = div_u64(si->ec_sum, si->ec_count);
|
|
|
|
err = check_what_we_have(ubi, si);
|
|
if (err)
|
|
goto out_vidh;
|
|
|
|
/*
|
|
* In case of unknown erase counter we use the mean erase counter
|
|
* value.
|
|
*/
|
|
ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) {
|
|
ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb)
|
|
if (seb->ec == UBI_SCAN_UNKNOWN_EC)
|
|
seb->ec = si->mean_ec;
|
|
}
|
|
|
|
list_for_each_entry(seb, &si->free, u.list) {
|
|
if (seb->ec == UBI_SCAN_UNKNOWN_EC)
|
|
seb->ec = si->mean_ec;
|
|
}
|
|
|
|
list_for_each_entry(seb, &si->corr, u.list)
|
|
if (seb->ec == UBI_SCAN_UNKNOWN_EC)
|
|
seb->ec = si->mean_ec;
|
|
|
|
list_for_each_entry(seb, &si->erase, u.list)
|
|
if (seb->ec == UBI_SCAN_UNKNOWN_EC)
|
|
seb->ec = si->mean_ec;
|
|
|
|
err = paranoid_check_si(ubi, si);
|
|
if (err)
|
|
goto out_vidh;
|
|
|
|
ubi_free_vid_hdr(ubi, vidh);
|
|
kfree(ech);
|
|
|
|
return si;
|
|
|
|
out_vidh:
|
|
ubi_free_vid_hdr(ubi, vidh);
|
|
out_ech:
|
|
kfree(ech);
|
|
out_slab:
|
|
kmem_cache_destroy(si->scan_leb_slab);
|
|
out_si:
|
|
ubi_scan_destroy_si(si);
|
|
return ERR_PTR(err);
|
|
}
|
|
|
|
/**
|
|
* destroy_sv - free the scanning volume information
|
|
* @sv: scanning volume information
|
|
* @si: scanning information
|
|
*
|
|
* This function destroys the volume RB-tree (@sv->root) and the scanning
|
|
* volume information.
|
|
*/
|
|
static void destroy_sv(struct ubi_scan_info *si, struct ubi_scan_volume *sv)
|
|
{
|
|
struct ubi_scan_leb *seb;
|
|
struct rb_node *this = sv->root.rb_node;
|
|
|
|
while (this) {
|
|
if (this->rb_left)
|
|
this = this->rb_left;
|
|
else if (this->rb_right)
|
|
this = this->rb_right;
|
|
else {
|
|
seb = rb_entry(this, struct ubi_scan_leb, u.rb);
|
|
this = rb_parent(this);
|
|
if (this) {
|
|
if (this->rb_left == &seb->u.rb)
|
|
this->rb_left = NULL;
|
|
else
|
|
this->rb_right = NULL;
|
|
}
|
|
|
|
kmem_cache_free(si->scan_leb_slab, seb);
|
|
}
|
|
}
|
|
kfree(sv);
|
|
}
|
|
|
|
/**
|
|
* ubi_scan_destroy_si - destroy scanning information.
|
|
* @si: scanning information
|
|
*/
|
|
void ubi_scan_destroy_si(struct ubi_scan_info *si)
|
|
{
|
|
struct ubi_scan_leb *seb, *seb_tmp;
|
|
struct ubi_scan_volume *sv;
|
|
struct rb_node *rb;
|
|
|
|
list_for_each_entry_safe(seb, seb_tmp, &si->alien, u.list) {
|
|
list_del(&seb->u.list);
|
|
kmem_cache_free(si->scan_leb_slab, seb);
|
|
}
|
|
list_for_each_entry_safe(seb, seb_tmp, &si->erase, u.list) {
|
|
list_del(&seb->u.list);
|
|
kmem_cache_free(si->scan_leb_slab, seb);
|
|
}
|
|
list_for_each_entry_safe(seb, seb_tmp, &si->corr, u.list) {
|
|
list_del(&seb->u.list);
|
|
kmem_cache_free(si->scan_leb_slab, seb);
|
|
}
|
|
list_for_each_entry_safe(seb, seb_tmp, &si->free, u.list) {
|
|
list_del(&seb->u.list);
|
|
kmem_cache_free(si->scan_leb_slab, seb);
|
|
}
|
|
|
|
/* Destroy the volume RB-tree */
|
|
rb = si->volumes.rb_node;
|
|
while (rb) {
|
|
if (rb->rb_left)
|
|
rb = rb->rb_left;
|
|
else if (rb->rb_right)
|
|
rb = rb->rb_right;
|
|
else {
|
|
sv = rb_entry(rb, struct ubi_scan_volume, rb);
|
|
|
|
rb = rb_parent(rb);
|
|
if (rb) {
|
|
if (rb->rb_left == &sv->rb)
|
|
rb->rb_left = NULL;
|
|
else
|
|
rb->rb_right = NULL;
|
|
}
|
|
|
|
destroy_sv(si, sv);
|
|
}
|
|
}
|
|
|
|
kmem_cache_destroy(si->scan_leb_slab);
|
|
kfree(si);
|
|
}
|
|
|
|
#ifdef CONFIG_MTD_UBI_DEBUG
|
|
|
|
/**
|
|
* paranoid_check_si - check the scanning information.
|
|
* @ubi: UBI device description object
|
|
* @si: scanning information
|
|
*
|
|
* This function returns zero if the scanning information is all right, and a
|
|
* negative error code if not or if an error occurred.
|
|
*/
|
|
static int paranoid_check_si(struct ubi_device *ubi, struct ubi_scan_info *si)
|
|
{
|
|
int pnum, err, vols_found = 0;
|
|
struct rb_node *rb1, *rb2;
|
|
struct ubi_scan_volume *sv;
|
|
struct ubi_scan_leb *seb, *last_seb;
|
|
uint8_t *buf;
|
|
|
|
if (!(ubi_chk_flags & UBI_CHK_GEN))
|
|
return 0;
|
|
|
|
/*
|
|
* At first, check that scanning information is OK.
|
|
*/
|
|
ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) {
|
|
int leb_count = 0;
|
|
|
|
cond_resched();
|
|
|
|
vols_found += 1;
|
|
|
|
if (si->is_empty) {
|
|
ubi_err("bad is_empty flag");
|
|
goto bad_sv;
|
|
}
|
|
|
|
if (sv->vol_id < 0 || sv->highest_lnum < 0 ||
|
|
sv->leb_count < 0 || sv->vol_type < 0 || sv->used_ebs < 0 ||
|
|
sv->data_pad < 0 || sv->last_data_size < 0) {
|
|
ubi_err("negative values");
|
|
goto bad_sv;
|
|
}
|
|
|
|
if (sv->vol_id >= UBI_MAX_VOLUMES &&
|
|
sv->vol_id < UBI_INTERNAL_VOL_START) {
|
|
ubi_err("bad vol_id");
|
|
goto bad_sv;
|
|
}
|
|
|
|
if (sv->vol_id > si->highest_vol_id) {
|
|
ubi_err("highest_vol_id is %d, but vol_id %d is there",
|
|
si->highest_vol_id, sv->vol_id);
|
|
goto out;
|
|
}
|
|
|
|
if (sv->vol_type != UBI_DYNAMIC_VOLUME &&
|
|
sv->vol_type != UBI_STATIC_VOLUME) {
|
|
ubi_err("bad vol_type");
|
|
goto bad_sv;
|
|
}
|
|
|
|
if (sv->data_pad > ubi->leb_size / 2) {
|
|
ubi_err("bad data_pad");
|
|
goto bad_sv;
|
|
}
|
|
|
|
last_seb = NULL;
|
|
ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) {
|
|
cond_resched();
|
|
|
|
last_seb = seb;
|
|
leb_count += 1;
|
|
|
|
if (seb->pnum < 0 || seb->ec < 0) {
|
|
ubi_err("negative values");
|
|
goto bad_seb;
|
|
}
|
|
|
|
if (seb->ec < si->min_ec) {
|
|
ubi_err("bad si->min_ec (%d), %d found",
|
|
si->min_ec, seb->ec);
|
|
goto bad_seb;
|
|
}
|
|
|
|
if (seb->ec > si->max_ec) {
|
|
ubi_err("bad si->max_ec (%d), %d found",
|
|
si->max_ec, seb->ec);
|
|
goto bad_seb;
|
|
}
|
|
|
|
if (seb->pnum >= ubi->peb_count) {
|
|
ubi_err("too high PEB number %d, total PEBs %d",
|
|
seb->pnum, ubi->peb_count);
|
|
goto bad_seb;
|
|
}
|
|
|
|
if (sv->vol_type == UBI_STATIC_VOLUME) {
|
|
if (seb->lnum >= sv->used_ebs) {
|
|
ubi_err("bad lnum or used_ebs");
|
|
goto bad_seb;
|
|
}
|
|
} else {
|
|
if (sv->used_ebs != 0) {
|
|
ubi_err("non-zero used_ebs");
|
|
goto bad_seb;
|
|
}
|
|
}
|
|
|
|
if (seb->lnum > sv->highest_lnum) {
|
|
ubi_err("incorrect highest_lnum or lnum");
|
|
goto bad_seb;
|
|
}
|
|
}
|
|
|
|
if (sv->leb_count != leb_count) {
|
|
ubi_err("bad leb_count, %d objects in the tree",
|
|
leb_count);
|
|
goto bad_sv;
|
|
}
|
|
|
|
if (!last_seb)
|
|
continue;
|
|
|
|
seb = last_seb;
|
|
|
|
if (seb->lnum != sv->highest_lnum) {
|
|
ubi_err("bad highest_lnum");
|
|
goto bad_seb;
|
|
}
|
|
}
|
|
|
|
if (vols_found != si->vols_found) {
|
|
ubi_err("bad si->vols_found %d, should be %d",
|
|
si->vols_found, vols_found);
|
|
goto out;
|
|
}
|
|
|
|
/* Check that scanning information is correct */
|
|
ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) {
|
|
last_seb = NULL;
|
|
ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) {
|
|
int vol_type;
|
|
|
|
cond_resched();
|
|
|
|
last_seb = seb;
|
|
|
|
err = ubi_io_read_vid_hdr(ubi, seb->pnum, vidh, 1);
|
|
if (err && err != UBI_IO_BITFLIPS) {
|
|
ubi_err("VID header is not OK (%d)", err);
|
|
if (err > 0)
|
|
err = -EIO;
|
|
return err;
|
|
}
|
|
|
|
vol_type = vidh->vol_type == UBI_VID_DYNAMIC ?
|
|
UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME;
|
|
if (sv->vol_type != vol_type) {
|
|
ubi_err("bad vol_type");
|
|
goto bad_vid_hdr;
|
|
}
|
|
|
|
if (seb->sqnum != be64_to_cpu(vidh->sqnum)) {
|
|
ubi_err("bad sqnum %llu", seb->sqnum);
|
|
goto bad_vid_hdr;
|
|
}
|
|
|
|
if (sv->vol_id != be32_to_cpu(vidh->vol_id)) {
|
|
ubi_err("bad vol_id %d", sv->vol_id);
|
|
goto bad_vid_hdr;
|
|
}
|
|
|
|
if (sv->compat != vidh->compat) {
|
|
ubi_err("bad compat %d", vidh->compat);
|
|
goto bad_vid_hdr;
|
|
}
|
|
|
|
if (seb->lnum != be32_to_cpu(vidh->lnum)) {
|
|
ubi_err("bad lnum %d", seb->lnum);
|
|
goto bad_vid_hdr;
|
|
}
|
|
|
|
if (sv->used_ebs != be32_to_cpu(vidh->used_ebs)) {
|
|
ubi_err("bad used_ebs %d", sv->used_ebs);
|
|
goto bad_vid_hdr;
|
|
}
|
|
|
|
if (sv->data_pad != be32_to_cpu(vidh->data_pad)) {
|
|
ubi_err("bad data_pad %d", sv->data_pad);
|
|
goto bad_vid_hdr;
|
|
}
|
|
}
|
|
|
|
if (!last_seb)
|
|
continue;
|
|
|
|
if (sv->highest_lnum != be32_to_cpu(vidh->lnum)) {
|
|
ubi_err("bad highest_lnum %d", sv->highest_lnum);
|
|
goto bad_vid_hdr;
|
|
}
|
|
|
|
if (sv->last_data_size != be32_to_cpu(vidh->data_size)) {
|
|
ubi_err("bad last_data_size %d", sv->last_data_size);
|
|
goto bad_vid_hdr;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Make sure that all the physical eraseblocks are in one of the lists
|
|
* or trees.
|
|
*/
|
|
buf = kzalloc(ubi->peb_count, GFP_KERNEL);
|
|
if (!buf)
|
|
return -ENOMEM;
|
|
|
|
for (pnum = 0; pnum < ubi->peb_count; pnum++) {
|
|
err = ubi_io_is_bad(ubi, pnum);
|
|
if (err < 0) {
|
|
kfree(buf);
|
|
return err;
|
|
} else if (err)
|
|
buf[pnum] = 1;
|
|
}
|
|
|
|
ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb)
|
|
ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb)
|
|
buf[seb->pnum] = 1;
|
|
|
|
list_for_each_entry(seb, &si->free, u.list)
|
|
buf[seb->pnum] = 1;
|
|
|
|
list_for_each_entry(seb, &si->corr, u.list)
|
|
buf[seb->pnum] = 1;
|
|
|
|
list_for_each_entry(seb, &si->erase, u.list)
|
|
buf[seb->pnum] = 1;
|
|
|
|
list_for_each_entry(seb, &si->alien, u.list)
|
|
buf[seb->pnum] = 1;
|
|
|
|
err = 0;
|
|
for (pnum = 0; pnum < ubi->peb_count; pnum++)
|
|
if (!buf[pnum]) {
|
|
ubi_err("PEB %d is not referred", pnum);
|
|
err = 1;
|
|
}
|
|
|
|
kfree(buf);
|
|
if (err)
|
|
goto out;
|
|
return 0;
|
|
|
|
bad_seb:
|
|
ubi_err("bad scanning information about LEB %d", seb->lnum);
|
|
ubi_dbg_dump_seb(seb, 0);
|
|
ubi_dbg_dump_sv(sv);
|
|
goto out;
|
|
|
|
bad_sv:
|
|
ubi_err("bad scanning information about volume %d", sv->vol_id);
|
|
ubi_dbg_dump_sv(sv);
|
|
goto out;
|
|
|
|
bad_vid_hdr:
|
|
ubi_err("bad scanning information about volume %d", sv->vol_id);
|
|
ubi_dbg_dump_sv(sv);
|
|
ubi_dbg_dump_vid_hdr(vidh);
|
|
|
|
out:
|
|
ubi_dbg_dump_stack();
|
|
return -EINVAL;
|
|
}
|
|
|
|
#endif /* CONFIG_MTD_UBI_DEBUG */
|