mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-01 17:46:48 +07:00
e3f1caeef9
Set the node_possible_map at runtime on x86_64. On a non NUMA system, num_possible_nodes() will now say '1'. Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com> Signed-off-by: Andi Kleen <ak@suse.de> Cc: Andi Kleen <andi@firstfloor.org> Cc: Eric Dumazet <dada1@cosmosbay.com> Cc: David Rientjes <rientjes@google.com> Cc: Christoph Lameter <clameter@engr.sgi.com>
648 lines
16 KiB
C
648 lines
16 KiB
C
/*
|
|
* Generic VM initialization for x86-64 NUMA setups.
|
|
* Copyright 2002,2003 Andi Kleen, SuSE Labs.
|
|
*/
|
|
#include <linux/kernel.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/string.h>
|
|
#include <linux/init.h>
|
|
#include <linux/bootmem.h>
|
|
#include <linux/mmzone.h>
|
|
#include <linux/ctype.h>
|
|
#include <linux/module.h>
|
|
#include <linux/nodemask.h>
|
|
|
|
#include <asm/e820.h>
|
|
#include <asm/proto.h>
|
|
#include <asm/dma.h>
|
|
#include <asm/numa.h>
|
|
#include <asm/acpi.h>
|
|
|
|
#ifndef Dprintk
|
|
#define Dprintk(x...)
|
|
#endif
|
|
|
|
struct pglist_data *node_data[MAX_NUMNODES] __read_mostly;
|
|
bootmem_data_t plat_node_bdata[MAX_NUMNODES];
|
|
|
|
struct memnode memnode;
|
|
|
|
unsigned char cpu_to_node[NR_CPUS] __read_mostly = {
|
|
[0 ... NR_CPUS-1] = NUMA_NO_NODE
|
|
};
|
|
unsigned char apicid_to_node[MAX_LOCAL_APIC] __cpuinitdata = {
|
|
[0 ... MAX_LOCAL_APIC-1] = NUMA_NO_NODE
|
|
};
|
|
cpumask_t node_to_cpumask[MAX_NUMNODES] __read_mostly;
|
|
|
|
int numa_off __initdata;
|
|
unsigned long __initdata nodemap_addr;
|
|
unsigned long __initdata nodemap_size;
|
|
|
|
|
|
/*
|
|
* Given a shift value, try to populate memnodemap[]
|
|
* Returns :
|
|
* 1 if OK
|
|
* 0 if memnodmap[] too small (of shift too small)
|
|
* -1 if node overlap or lost ram (shift too big)
|
|
*/
|
|
static int __init
|
|
populate_memnodemap(const struct bootnode *nodes, int numnodes, int shift)
|
|
{
|
|
int i;
|
|
int res = -1;
|
|
unsigned long addr, end;
|
|
|
|
memset(memnodemap, 0xff, memnodemapsize);
|
|
for (i = 0; i < numnodes; i++) {
|
|
addr = nodes[i].start;
|
|
end = nodes[i].end;
|
|
if (addr >= end)
|
|
continue;
|
|
if ((end >> shift) >= memnodemapsize)
|
|
return 0;
|
|
do {
|
|
if (memnodemap[addr >> shift] != 0xff)
|
|
return -1;
|
|
memnodemap[addr >> shift] = i;
|
|
addr += (1UL << shift);
|
|
} while (addr < end);
|
|
res = 1;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
static int __init allocate_cachealigned_memnodemap(void)
|
|
{
|
|
unsigned long pad, pad_addr;
|
|
|
|
memnodemap = memnode.embedded_map;
|
|
if (memnodemapsize <= 48)
|
|
return 0;
|
|
|
|
pad = L1_CACHE_BYTES - 1;
|
|
pad_addr = 0x8000;
|
|
nodemap_size = pad + memnodemapsize;
|
|
nodemap_addr = find_e820_area(pad_addr, end_pfn<<PAGE_SHIFT,
|
|
nodemap_size);
|
|
if (nodemap_addr == -1UL) {
|
|
printk(KERN_ERR
|
|
"NUMA: Unable to allocate Memory to Node hash map\n");
|
|
nodemap_addr = nodemap_size = 0;
|
|
return -1;
|
|
}
|
|
pad_addr = (nodemap_addr + pad) & ~pad;
|
|
memnodemap = phys_to_virt(pad_addr);
|
|
|
|
printk(KERN_DEBUG "NUMA: Allocated memnodemap from %lx - %lx\n",
|
|
nodemap_addr, nodemap_addr + nodemap_size);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* The LSB of all start and end addresses in the node map is the value of the
|
|
* maximum possible shift.
|
|
*/
|
|
static int __init
|
|
extract_lsb_from_nodes (const struct bootnode *nodes, int numnodes)
|
|
{
|
|
int i, nodes_used = 0;
|
|
unsigned long start, end;
|
|
unsigned long bitfield = 0, memtop = 0;
|
|
|
|
for (i = 0; i < numnodes; i++) {
|
|
start = nodes[i].start;
|
|
end = nodes[i].end;
|
|
if (start >= end)
|
|
continue;
|
|
bitfield |= start;
|
|
nodes_used++;
|
|
if (end > memtop)
|
|
memtop = end;
|
|
}
|
|
if (nodes_used <= 1)
|
|
i = 63;
|
|
else
|
|
i = find_first_bit(&bitfield, sizeof(unsigned long)*8);
|
|
memnodemapsize = (memtop >> i)+1;
|
|
return i;
|
|
}
|
|
|
|
int __init compute_hash_shift(struct bootnode *nodes, int numnodes)
|
|
{
|
|
int shift;
|
|
|
|
shift = extract_lsb_from_nodes(nodes, numnodes);
|
|
if (allocate_cachealigned_memnodemap())
|
|
return -1;
|
|
printk(KERN_DEBUG "NUMA: Using %d for the hash shift.\n",
|
|
shift);
|
|
|
|
if (populate_memnodemap(nodes, numnodes, shift) != 1) {
|
|
printk(KERN_INFO
|
|
"Your memory is not aligned you need to rebuild your kernel "
|
|
"with a bigger NODEMAPSIZE shift=%d\n",
|
|
shift);
|
|
return -1;
|
|
}
|
|
return shift;
|
|
}
|
|
|
|
#ifdef CONFIG_SPARSEMEM
|
|
int early_pfn_to_nid(unsigned long pfn)
|
|
{
|
|
return phys_to_nid(pfn << PAGE_SHIFT);
|
|
}
|
|
#endif
|
|
|
|
static void * __init
|
|
early_node_mem(int nodeid, unsigned long start, unsigned long end,
|
|
unsigned long size)
|
|
{
|
|
unsigned long mem = find_e820_area(start, end, size);
|
|
void *ptr;
|
|
if (mem != -1L)
|
|
return __va(mem);
|
|
ptr = __alloc_bootmem_nopanic(size,
|
|
SMP_CACHE_BYTES, __pa(MAX_DMA_ADDRESS));
|
|
if (ptr == 0) {
|
|
printk(KERN_ERR "Cannot find %lu bytes in node %d\n",
|
|
size, nodeid);
|
|
return NULL;
|
|
}
|
|
return ptr;
|
|
}
|
|
|
|
/* Initialize bootmem allocator for a node */
|
|
void __init setup_node_bootmem(int nodeid, unsigned long start, unsigned long end)
|
|
{
|
|
unsigned long start_pfn, end_pfn, bootmap_pages, bootmap_size, bootmap_start;
|
|
unsigned long nodedata_phys;
|
|
void *bootmap;
|
|
const int pgdat_size = round_up(sizeof(pg_data_t), PAGE_SIZE);
|
|
|
|
start = round_up(start, ZONE_ALIGN);
|
|
|
|
printk(KERN_INFO "Bootmem setup node %d %016lx-%016lx\n", nodeid, start, end);
|
|
|
|
start_pfn = start >> PAGE_SHIFT;
|
|
end_pfn = end >> PAGE_SHIFT;
|
|
|
|
node_data[nodeid] = early_node_mem(nodeid, start, end, pgdat_size);
|
|
if (node_data[nodeid] == NULL)
|
|
return;
|
|
nodedata_phys = __pa(node_data[nodeid]);
|
|
|
|
memset(NODE_DATA(nodeid), 0, sizeof(pg_data_t));
|
|
NODE_DATA(nodeid)->bdata = &plat_node_bdata[nodeid];
|
|
NODE_DATA(nodeid)->node_start_pfn = start_pfn;
|
|
NODE_DATA(nodeid)->node_spanned_pages = end_pfn - start_pfn;
|
|
|
|
/* Find a place for the bootmem map */
|
|
bootmap_pages = bootmem_bootmap_pages(end_pfn - start_pfn);
|
|
bootmap_start = round_up(nodedata_phys + pgdat_size, PAGE_SIZE);
|
|
bootmap = early_node_mem(nodeid, bootmap_start, end,
|
|
bootmap_pages<<PAGE_SHIFT);
|
|
if (bootmap == NULL) {
|
|
if (nodedata_phys < start || nodedata_phys >= end)
|
|
free_bootmem((unsigned long)node_data[nodeid],pgdat_size);
|
|
node_data[nodeid] = NULL;
|
|
return;
|
|
}
|
|
bootmap_start = __pa(bootmap);
|
|
Dprintk("bootmap start %lu pages %lu\n", bootmap_start, bootmap_pages);
|
|
|
|
bootmap_size = init_bootmem_node(NODE_DATA(nodeid),
|
|
bootmap_start >> PAGE_SHIFT,
|
|
start_pfn, end_pfn);
|
|
|
|
free_bootmem_with_active_regions(nodeid, end);
|
|
|
|
reserve_bootmem_node(NODE_DATA(nodeid), nodedata_phys, pgdat_size);
|
|
reserve_bootmem_node(NODE_DATA(nodeid), bootmap_start, bootmap_pages<<PAGE_SHIFT);
|
|
#ifdef CONFIG_ACPI_NUMA
|
|
srat_reserve_add_area(nodeid);
|
|
#endif
|
|
node_set_online(nodeid);
|
|
}
|
|
|
|
/* Initialize final allocator for a zone */
|
|
void __init setup_node_zones(int nodeid)
|
|
{
|
|
unsigned long start_pfn, end_pfn, memmapsize, limit;
|
|
|
|
start_pfn = node_start_pfn(nodeid);
|
|
end_pfn = node_end_pfn(nodeid);
|
|
|
|
Dprintk(KERN_INFO "Setting up memmap for node %d %lx-%lx\n",
|
|
nodeid, start_pfn, end_pfn);
|
|
|
|
/* Try to allocate mem_map at end to not fill up precious <4GB
|
|
memory. */
|
|
memmapsize = sizeof(struct page) * (end_pfn-start_pfn);
|
|
limit = end_pfn << PAGE_SHIFT;
|
|
#ifdef CONFIG_FLAT_NODE_MEM_MAP
|
|
NODE_DATA(nodeid)->node_mem_map =
|
|
__alloc_bootmem_core(NODE_DATA(nodeid)->bdata,
|
|
memmapsize, SMP_CACHE_BYTES,
|
|
round_down(limit - memmapsize, PAGE_SIZE),
|
|
limit);
|
|
#endif
|
|
}
|
|
|
|
void __init numa_init_array(void)
|
|
{
|
|
int rr, i;
|
|
/* There are unfortunately some poorly designed mainboards around
|
|
that only connect memory to a single CPU. This breaks the 1:1 cpu->node
|
|
mapping. To avoid this fill in the mapping for all possible
|
|
CPUs, as the number of CPUs is not known yet.
|
|
We round robin the existing nodes. */
|
|
rr = first_node(node_online_map);
|
|
for (i = 0; i < NR_CPUS; i++) {
|
|
if (cpu_to_node[i] != NUMA_NO_NODE)
|
|
continue;
|
|
numa_set_node(i, rr);
|
|
rr = next_node(rr, node_online_map);
|
|
if (rr == MAX_NUMNODES)
|
|
rr = first_node(node_online_map);
|
|
}
|
|
|
|
}
|
|
|
|
#ifdef CONFIG_NUMA_EMU
|
|
/* Numa emulation */
|
|
#define E820_ADDR_HOLE_SIZE(start, end) \
|
|
(e820_hole_size((start) >> PAGE_SHIFT, (end) >> PAGE_SHIFT) << \
|
|
PAGE_SHIFT)
|
|
char *cmdline __initdata;
|
|
|
|
/*
|
|
* Setups up nid to range from addr to addr + size. If the end boundary is
|
|
* greater than max_addr, then max_addr is used instead. The return value is 0
|
|
* if there is additional memory left for allocation past addr and -1 otherwise.
|
|
* addr is adjusted to be at the end of the node.
|
|
*/
|
|
static int __init setup_node_range(int nid, struct bootnode *nodes, u64 *addr,
|
|
u64 size, u64 max_addr)
|
|
{
|
|
int ret = 0;
|
|
nodes[nid].start = *addr;
|
|
*addr += size;
|
|
if (*addr >= max_addr) {
|
|
*addr = max_addr;
|
|
ret = -1;
|
|
}
|
|
nodes[nid].end = *addr;
|
|
node_set(nid, node_possible_map);
|
|
printk(KERN_INFO "Faking node %d at %016Lx-%016Lx (%LuMB)\n", nid,
|
|
nodes[nid].start, nodes[nid].end,
|
|
(nodes[nid].end - nodes[nid].start) >> 20);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Splits num_nodes nodes up equally starting at node_start. The return value
|
|
* is the number of nodes split up and addr is adjusted to be at the end of the
|
|
* last node allocated.
|
|
*/
|
|
static int __init split_nodes_equally(struct bootnode *nodes, u64 *addr,
|
|
u64 max_addr, int node_start,
|
|
int num_nodes)
|
|
{
|
|
unsigned int big;
|
|
u64 size;
|
|
int i;
|
|
|
|
if (num_nodes <= 0)
|
|
return -1;
|
|
if (num_nodes > MAX_NUMNODES)
|
|
num_nodes = MAX_NUMNODES;
|
|
size = (max_addr - *addr - E820_ADDR_HOLE_SIZE(*addr, max_addr)) /
|
|
num_nodes;
|
|
/*
|
|
* Calculate the number of big nodes that can be allocated as a result
|
|
* of consolidating the leftovers.
|
|
*/
|
|
big = ((size & ~FAKE_NODE_MIN_HASH_MASK) * num_nodes) /
|
|
FAKE_NODE_MIN_SIZE;
|
|
|
|
/* Round down to nearest FAKE_NODE_MIN_SIZE. */
|
|
size &= FAKE_NODE_MIN_HASH_MASK;
|
|
if (!size) {
|
|
printk(KERN_ERR "Not enough memory for each node. "
|
|
"NUMA emulation disabled.\n");
|
|
return -1;
|
|
}
|
|
|
|
for (i = node_start; i < num_nodes + node_start; i++) {
|
|
u64 end = *addr + size;
|
|
if (i < big)
|
|
end += FAKE_NODE_MIN_SIZE;
|
|
/*
|
|
* The final node can have the remaining system RAM. Other
|
|
* nodes receive roughly the same amount of available pages.
|
|
*/
|
|
if (i == num_nodes + node_start - 1)
|
|
end = max_addr;
|
|
else
|
|
while (end - *addr - E820_ADDR_HOLE_SIZE(*addr, end) <
|
|
size) {
|
|
end += FAKE_NODE_MIN_SIZE;
|
|
if (end > max_addr) {
|
|
end = max_addr;
|
|
break;
|
|
}
|
|
}
|
|
if (setup_node_range(i, nodes, addr, end - *addr, max_addr) < 0)
|
|
break;
|
|
}
|
|
return i - node_start + 1;
|
|
}
|
|
|
|
/*
|
|
* Splits the remaining system RAM into chunks of size. The remaining memory is
|
|
* always assigned to a final node and can be asymmetric. Returns the number of
|
|
* nodes split.
|
|
*/
|
|
static int __init split_nodes_by_size(struct bootnode *nodes, u64 *addr,
|
|
u64 max_addr, int node_start, u64 size)
|
|
{
|
|
int i = node_start;
|
|
size = (size << 20) & FAKE_NODE_MIN_HASH_MASK;
|
|
while (!setup_node_range(i++, nodes, addr, size, max_addr))
|
|
;
|
|
return i - node_start;
|
|
}
|
|
|
|
/*
|
|
* Sets up the system RAM area from start_pfn to end_pfn according to the
|
|
* numa=fake command-line option.
|
|
*/
|
|
static int __init numa_emulation(unsigned long start_pfn, unsigned long end_pfn)
|
|
{
|
|
struct bootnode nodes[MAX_NUMNODES];
|
|
u64 addr = start_pfn << PAGE_SHIFT;
|
|
u64 max_addr = end_pfn << PAGE_SHIFT;
|
|
int num_nodes = 0;
|
|
int coeff_flag;
|
|
int coeff = -1;
|
|
int num = 0;
|
|
u64 size;
|
|
int i;
|
|
|
|
memset(&nodes, 0, sizeof(nodes));
|
|
/*
|
|
* If the numa=fake command-line is just a single number N, split the
|
|
* system RAM into N fake nodes.
|
|
*/
|
|
if (!strchr(cmdline, '*') && !strchr(cmdline, ',')) {
|
|
num_nodes = split_nodes_equally(nodes, &addr, max_addr, 0,
|
|
simple_strtol(cmdline, NULL, 0));
|
|
if (num_nodes < 0)
|
|
return num_nodes;
|
|
goto out;
|
|
}
|
|
|
|
/* Parse the command line. */
|
|
for (coeff_flag = 0; ; cmdline++) {
|
|
if (*cmdline && isdigit(*cmdline)) {
|
|
num = num * 10 + *cmdline - '0';
|
|
continue;
|
|
}
|
|
if (*cmdline == '*') {
|
|
if (num > 0)
|
|
coeff = num;
|
|
coeff_flag = 1;
|
|
}
|
|
if (!*cmdline || *cmdline == ',') {
|
|
if (!coeff_flag)
|
|
coeff = 1;
|
|
/*
|
|
* Round down to the nearest FAKE_NODE_MIN_SIZE.
|
|
* Command-line coefficients are in megabytes.
|
|
*/
|
|
size = ((u64)num << 20) & FAKE_NODE_MIN_HASH_MASK;
|
|
if (size)
|
|
for (i = 0; i < coeff; i++, num_nodes++)
|
|
if (setup_node_range(num_nodes, nodes,
|
|
&addr, size, max_addr) < 0)
|
|
goto done;
|
|
if (!*cmdline)
|
|
break;
|
|
coeff_flag = 0;
|
|
coeff = -1;
|
|
}
|
|
num = 0;
|
|
}
|
|
done:
|
|
if (!num_nodes)
|
|
return -1;
|
|
/* Fill remainder of system RAM, if appropriate. */
|
|
if (addr < max_addr) {
|
|
if (coeff_flag && coeff < 0) {
|
|
/* Split remaining nodes into num-sized chunks */
|
|
num_nodes += split_nodes_by_size(nodes, &addr, max_addr,
|
|
num_nodes, num);
|
|
goto out;
|
|
}
|
|
switch (*(cmdline - 1)) {
|
|
case '*':
|
|
/* Split remaining nodes into coeff chunks */
|
|
if (coeff <= 0)
|
|
break;
|
|
num_nodes += split_nodes_equally(nodes, &addr, max_addr,
|
|
num_nodes, coeff);
|
|
break;
|
|
case ',':
|
|
/* Do not allocate remaining system RAM */
|
|
break;
|
|
default:
|
|
/* Give one final node */
|
|
setup_node_range(num_nodes, nodes, &addr,
|
|
max_addr - addr, max_addr);
|
|
num_nodes++;
|
|
}
|
|
}
|
|
out:
|
|
memnode_shift = compute_hash_shift(nodes, num_nodes);
|
|
if (memnode_shift < 0) {
|
|
memnode_shift = 0;
|
|
printk(KERN_ERR "No NUMA hash function found. NUMA emulation "
|
|
"disabled.\n");
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* We need to vacate all active ranges that may have been registered by
|
|
* SRAT.
|
|
*/
|
|
remove_all_active_ranges();
|
|
for_each_node_mask(i, node_possible_map) {
|
|
e820_register_active_regions(i, nodes[i].start >> PAGE_SHIFT,
|
|
nodes[i].end >> PAGE_SHIFT);
|
|
setup_node_bootmem(i, nodes[i].start, nodes[i].end);
|
|
}
|
|
numa_init_array();
|
|
return 0;
|
|
}
|
|
#undef E820_ADDR_HOLE_SIZE
|
|
#endif /* CONFIG_NUMA_EMU */
|
|
|
|
void __init numa_initmem_init(unsigned long start_pfn, unsigned long end_pfn)
|
|
{
|
|
int i;
|
|
|
|
nodes_clear(node_possible_map);
|
|
|
|
#ifdef CONFIG_NUMA_EMU
|
|
if (cmdline && !numa_emulation(start_pfn, end_pfn))
|
|
return;
|
|
nodes_clear(node_possible_map);
|
|
#endif
|
|
|
|
#ifdef CONFIG_ACPI_NUMA
|
|
if (!numa_off && !acpi_scan_nodes(start_pfn << PAGE_SHIFT,
|
|
end_pfn << PAGE_SHIFT))
|
|
return;
|
|
nodes_clear(node_possible_map);
|
|
#endif
|
|
|
|
#ifdef CONFIG_K8_NUMA
|
|
if (!numa_off && !k8_scan_nodes(start_pfn<<PAGE_SHIFT, end_pfn<<PAGE_SHIFT))
|
|
return;
|
|
nodes_clear(node_possible_map);
|
|
#endif
|
|
printk(KERN_INFO "%s\n",
|
|
numa_off ? "NUMA turned off" : "No NUMA configuration found");
|
|
|
|
printk(KERN_INFO "Faking a node at %016lx-%016lx\n",
|
|
start_pfn << PAGE_SHIFT,
|
|
end_pfn << PAGE_SHIFT);
|
|
/* setup dummy node covering all memory */
|
|
memnode_shift = 63;
|
|
memnodemap = memnode.embedded_map;
|
|
memnodemap[0] = 0;
|
|
nodes_clear(node_online_map);
|
|
node_set_online(0);
|
|
node_set(0, node_possible_map);
|
|
for (i = 0; i < NR_CPUS; i++)
|
|
numa_set_node(i, 0);
|
|
node_to_cpumask[0] = cpumask_of_cpu(0);
|
|
e820_register_active_regions(0, start_pfn, end_pfn);
|
|
setup_node_bootmem(0, start_pfn << PAGE_SHIFT, end_pfn << PAGE_SHIFT);
|
|
}
|
|
|
|
__cpuinit void numa_add_cpu(int cpu)
|
|
{
|
|
set_bit(cpu, &node_to_cpumask[cpu_to_node(cpu)]);
|
|
}
|
|
|
|
void __cpuinit numa_set_node(int cpu, int node)
|
|
{
|
|
cpu_pda(cpu)->nodenumber = node;
|
|
cpu_to_node[cpu] = node;
|
|
}
|
|
|
|
unsigned long __init numa_free_all_bootmem(void)
|
|
{
|
|
int i;
|
|
unsigned long pages = 0;
|
|
for_each_online_node(i) {
|
|
pages += free_all_bootmem_node(NODE_DATA(i));
|
|
}
|
|
return pages;
|
|
}
|
|
|
|
void __init paging_init(void)
|
|
{
|
|
int i;
|
|
unsigned long max_zone_pfns[MAX_NR_ZONES];
|
|
memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
|
|
max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
|
|
max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
|
|
max_zone_pfns[ZONE_NORMAL] = end_pfn;
|
|
|
|
sparse_memory_present_with_active_regions(MAX_NUMNODES);
|
|
sparse_init();
|
|
|
|
for_each_online_node(i) {
|
|
setup_node_zones(i);
|
|
}
|
|
|
|
free_area_init_nodes(max_zone_pfns);
|
|
}
|
|
|
|
static __init int numa_setup(char *opt)
|
|
{
|
|
if (!opt)
|
|
return -EINVAL;
|
|
if (!strncmp(opt,"off",3))
|
|
numa_off = 1;
|
|
#ifdef CONFIG_NUMA_EMU
|
|
if (!strncmp(opt, "fake=", 5))
|
|
cmdline = opt + 5;
|
|
#endif
|
|
#ifdef CONFIG_ACPI_NUMA
|
|
if (!strncmp(opt,"noacpi",6))
|
|
acpi_numa = -1;
|
|
if (!strncmp(opt,"hotadd=", 7))
|
|
hotadd_percent = simple_strtoul(opt+7, NULL, 10);
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
early_param("numa", numa_setup);
|
|
|
|
/*
|
|
* Setup early cpu_to_node.
|
|
*
|
|
* Populate cpu_to_node[] only if x86_cpu_to_apicid[],
|
|
* and apicid_to_node[] tables have valid entries for a CPU.
|
|
* This means we skip cpu_to_node[] initialisation for NUMA
|
|
* emulation and faking node case (when running a kernel compiled
|
|
* for NUMA on a non NUMA box), which is OK as cpu_to_node[]
|
|
* is already initialized in a round robin manner at numa_init_array,
|
|
* prior to this call, and this initialization is good enough
|
|
* for the fake NUMA cases.
|
|
*/
|
|
void __init init_cpu_to_node(void)
|
|
{
|
|
int i;
|
|
for (i = 0; i < NR_CPUS; i++) {
|
|
u8 apicid = x86_cpu_to_apicid[i];
|
|
if (apicid == BAD_APICID)
|
|
continue;
|
|
if (apicid_to_node[apicid] == NUMA_NO_NODE)
|
|
continue;
|
|
numa_set_node(i,apicid_to_node[apicid]);
|
|
}
|
|
}
|
|
|
|
EXPORT_SYMBOL(cpu_to_node);
|
|
EXPORT_SYMBOL(node_to_cpumask);
|
|
EXPORT_SYMBOL(memnode);
|
|
EXPORT_SYMBOL(node_data);
|
|
|
|
#ifdef CONFIG_DISCONTIGMEM
|
|
/*
|
|
* Functions to convert PFNs from/to per node page addresses.
|
|
* These are out of line because they are quite big.
|
|
* They could be all tuned by pre caching more state.
|
|
* Should do that.
|
|
*/
|
|
|
|
int pfn_valid(unsigned long pfn)
|
|
{
|
|
unsigned nid;
|
|
if (pfn >= num_physpages)
|
|
return 0;
|
|
nid = pfn_to_nid(pfn);
|
|
if (nid == 0xff)
|
|
return 0;
|
|
return pfn >= node_start_pfn(nid) && (pfn) < node_end_pfn(nid);
|
|
}
|
|
EXPORT_SYMBOL(pfn_valid);
|
|
#endif
|