linux_dsm_epyc7002/fs/ext4/namei.c
Linus Torvalds d895cb1af1 Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull vfs pile (part one) from Al Viro:
 "Assorted stuff - cleaning namei.c up a bit, fixing ->d_name/->d_parent
  locking violations, etc.

  The most visible changes here are death of FS_REVAL_DOT (replaced with
  "has ->d_weak_revalidate()") and a new helper getting from struct file
  to inode.  Some bits of preparation to xattr method interface changes.

  Misc patches by various people sent this cycle *and* ocfs2 fixes from
  several cycles ago that should've been upstream right then.

  PS: the next vfs pile will be xattr stuff."

* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (46 commits)
  saner proc_get_inode() calling conventions
  proc: avoid extra pde_put() in proc_fill_super()
  fs: change return values from -EACCES to -EPERM
  fs/exec.c: make bprm_mm_init() static
  ocfs2/dlm: use GFP_ATOMIC inside a spin_lock
  ocfs2: fix possible use-after-free with AIO
  ocfs2: Fix oops in ocfs2_fast_symlink_readpage() code path
  get_empty_filp()/alloc_file() leave both ->f_pos and ->f_version zero
  target: writev() on single-element vector is pointless
  export kernel_write(), convert open-coded instances
  fs: encode_fh: return FILEID_INVALID if invalid fid_type
  kill f_vfsmnt
  vfs: kill FS_REVAL_DOT by adding a d_weak_revalidate dentry op
  nfsd: handle vfs_getattr errors in acl protocol
  switch vfs_getattr() to struct path
  default SET_PERSONALITY() in linux/elf.h
  ceph: prepopulate inodes only when request is aborted
  d_hash_and_lookup(): export, switch open-coded instances
  9p: switch v9fs_set_create_acl() to inode+fid, do it before d_instantiate()
  9p: split dropping the acls from v9fs_set_create_acl()
  ...
2013-02-26 20:16:07 -08:00

3203 lines
85 KiB
C

/*
* linux/fs/ext4/namei.c
*
* Copyright (C) 1992, 1993, 1994, 1995
* Remy Card (card@masi.ibp.fr)
* Laboratoire MASI - Institut Blaise Pascal
* Universite Pierre et Marie Curie (Paris VI)
*
* from
*
* linux/fs/minix/namei.c
*
* Copyright (C) 1991, 1992 Linus Torvalds
*
* Big-endian to little-endian byte-swapping/bitmaps by
* David S. Miller (davem@caip.rutgers.edu), 1995
* Directory entry file type support and forward compatibility hooks
* for B-tree directories by Theodore Ts'o (tytso@mit.edu), 1998
* Hash Tree Directory indexing (c)
* Daniel Phillips, 2001
* Hash Tree Directory indexing porting
* Christopher Li, 2002
* Hash Tree Directory indexing cleanup
* Theodore Ts'o, 2002
*/
#include <linux/fs.h>
#include <linux/pagemap.h>
#include <linux/jbd2.h>
#include <linux/time.h>
#include <linux/fcntl.h>
#include <linux/stat.h>
#include <linux/string.h>
#include <linux/quotaops.h>
#include <linux/buffer_head.h>
#include <linux/bio.h>
#include "ext4.h"
#include "ext4_jbd2.h"
#include "xattr.h"
#include "acl.h"
#include <trace/events/ext4.h>
/*
* define how far ahead to read directories while searching them.
*/
#define NAMEI_RA_CHUNKS 2
#define NAMEI_RA_BLOCKS 4
#define NAMEI_RA_SIZE (NAMEI_RA_CHUNKS * NAMEI_RA_BLOCKS)
static struct buffer_head *ext4_append(handle_t *handle,
struct inode *inode,
ext4_lblk_t *block)
{
struct buffer_head *bh;
int err = 0;
if (unlikely(EXT4_SB(inode->i_sb)->s_max_dir_size_kb &&
((inode->i_size >> 10) >=
EXT4_SB(inode->i_sb)->s_max_dir_size_kb)))
return ERR_PTR(-ENOSPC);
*block = inode->i_size >> inode->i_sb->s_blocksize_bits;
bh = ext4_bread(handle, inode, *block, 1, &err);
if (!bh)
return ERR_PTR(err);
inode->i_size += inode->i_sb->s_blocksize;
EXT4_I(inode)->i_disksize = inode->i_size;
err = ext4_journal_get_write_access(handle, bh);
if (err) {
brelse(bh);
ext4_std_error(inode->i_sb, err);
return ERR_PTR(err);
}
return bh;
}
static int ext4_dx_csum_verify(struct inode *inode,
struct ext4_dir_entry *dirent);
typedef enum {
EITHER, INDEX, DIRENT
} dirblock_type_t;
#define ext4_read_dirblock(inode, block, type) \
__ext4_read_dirblock((inode), (block), (type), __LINE__)
static struct buffer_head *__ext4_read_dirblock(struct inode *inode,
ext4_lblk_t block,
dirblock_type_t type,
unsigned int line)
{
struct buffer_head *bh;
struct ext4_dir_entry *dirent;
int err = 0, is_dx_block = 0;
bh = ext4_bread(NULL, inode, block, 0, &err);
if (!bh) {
if (err == 0) {
ext4_error_inode(inode, __func__, line, block,
"Directory hole found");
return ERR_PTR(-EIO);
}
__ext4_warning(inode->i_sb, __func__, line,
"error reading directory block "
"(ino %lu, block %lu)", inode->i_ino,
(unsigned long) block);
return ERR_PTR(err);
}
dirent = (struct ext4_dir_entry *) bh->b_data;
/* Determine whether or not we have an index block */
if (is_dx(inode)) {
if (block == 0)
is_dx_block = 1;
else if (ext4_rec_len_from_disk(dirent->rec_len,
inode->i_sb->s_blocksize) ==
inode->i_sb->s_blocksize)
is_dx_block = 1;
}
if (!is_dx_block && type == INDEX) {
ext4_error_inode(inode, __func__, line, block,
"directory leaf block found instead of index block");
return ERR_PTR(-EIO);
}
if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) ||
buffer_verified(bh))
return bh;
/*
* An empty leaf block can get mistaken for a index block; for
* this reason, we can only check the index checksum when the
* caller is sure it should be an index block.
*/
if (is_dx_block && type == INDEX) {
if (ext4_dx_csum_verify(inode, dirent))
set_buffer_verified(bh);
else {
ext4_error_inode(inode, __func__, line, block,
"Directory index failed checksum");
brelse(bh);
return ERR_PTR(-EIO);
}
}
if (!is_dx_block) {
if (ext4_dirent_csum_verify(inode, dirent))
set_buffer_verified(bh);
else {
ext4_error_inode(inode, __func__, line, block,
"Directory block failed checksum");
brelse(bh);
return ERR_PTR(-EIO);
}
}
return bh;
}
#ifndef assert
#define assert(test) J_ASSERT(test)
#endif
#ifdef DX_DEBUG
#define dxtrace(command) command
#else
#define dxtrace(command)
#endif
struct fake_dirent
{
__le32 inode;
__le16 rec_len;
u8 name_len;
u8 file_type;
};
struct dx_countlimit
{
__le16 limit;
__le16 count;
};
struct dx_entry
{
__le32 hash;
__le32 block;
};
/*
* dx_root_info is laid out so that if it should somehow get overlaid by a
* dirent the two low bits of the hash version will be zero. Therefore, the
* hash version mod 4 should never be 0. Sincerely, the paranoia department.
*/
struct dx_root
{
struct fake_dirent dot;
char dot_name[4];
struct fake_dirent dotdot;
char dotdot_name[4];
struct dx_root_info
{
__le32 reserved_zero;
u8 hash_version;
u8 info_length; /* 8 */
u8 indirect_levels;
u8 unused_flags;
}
info;
struct dx_entry entries[0];
};
struct dx_node
{
struct fake_dirent fake;
struct dx_entry entries[0];
};
struct dx_frame
{
struct buffer_head *bh;
struct dx_entry *entries;
struct dx_entry *at;
};
struct dx_map_entry
{
u32 hash;
u16 offs;
u16 size;
};
/*
* This goes at the end of each htree block.
*/
struct dx_tail {
u32 dt_reserved;
__le32 dt_checksum; /* crc32c(uuid+inum+dirblock) */
};
static inline ext4_lblk_t dx_get_block(struct dx_entry *entry);
static void dx_set_block(struct dx_entry *entry, ext4_lblk_t value);
static inline unsigned dx_get_hash(struct dx_entry *entry);
static void dx_set_hash(struct dx_entry *entry, unsigned value);
static unsigned dx_get_count(struct dx_entry *entries);
static unsigned dx_get_limit(struct dx_entry *entries);
static void dx_set_count(struct dx_entry *entries, unsigned value);
static void dx_set_limit(struct dx_entry *entries, unsigned value);
static unsigned dx_root_limit(struct inode *dir, unsigned infosize);
static unsigned dx_node_limit(struct inode *dir);
static struct dx_frame *dx_probe(const struct qstr *d_name,
struct inode *dir,
struct dx_hash_info *hinfo,
struct dx_frame *frame,
int *err);
static void dx_release(struct dx_frame *frames);
static int dx_make_map(struct ext4_dir_entry_2 *de, unsigned blocksize,
struct dx_hash_info *hinfo, struct dx_map_entry map[]);
static void dx_sort_map(struct dx_map_entry *map, unsigned count);
static struct ext4_dir_entry_2 *dx_move_dirents(char *from, char *to,
struct dx_map_entry *offsets, int count, unsigned blocksize);
static struct ext4_dir_entry_2* dx_pack_dirents(char *base, unsigned blocksize);
static void dx_insert_block(struct dx_frame *frame,
u32 hash, ext4_lblk_t block);
static int ext4_htree_next_block(struct inode *dir, __u32 hash,
struct dx_frame *frame,
struct dx_frame *frames,
__u32 *start_hash);
static struct buffer_head * ext4_dx_find_entry(struct inode *dir,
const struct qstr *d_name,
struct ext4_dir_entry_2 **res_dir,
int *err);
static int ext4_dx_add_entry(handle_t *handle, struct dentry *dentry,
struct inode *inode);
/* checksumming functions */
void initialize_dirent_tail(struct ext4_dir_entry_tail *t,
unsigned int blocksize)
{
memset(t, 0, sizeof(struct ext4_dir_entry_tail));
t->det_rec_len = ext4_rec_len_to_disk(
sizeof(struct ext4_dir_entry_tail), blocksize);
t->det_reserved_ft = EXT4_FT_DIR_CSUM;
}
/* Walk through a dirent block to find a checksum "dirent" at the tail */
static struct ext4_dir_entry_tail *get_dirent_tail(struct inode *inode,
struct ext4_dir_entry *de)
{
struct ext4_dir_entry_tail *t;
#ifdef PARANOID
struct ext4_dir_entry *d, *top;
d = de;
top = (struct ext4_dir_entry *)(((void *)de) +
(EXT4_BLOCK_SIZE(inode->i_sb) -
sizeof(struct ext4_dir_entry_tail)));
while (d < top && d->rec_len)
d = (struct ext4_dir_entry *)(((void *)d) +
le16_to_cpu(d->rec_len));
if (d != top)
return NULL;
t = (struct ext4_dir_entry_tail *)d;
#else
t = EXT4_DIRENT_TAIL(de, EXT4_BLOCK_SIZE(inode->i_sb));
#endif
if (t->det_reserved_zero1 ||
le16_to_cpu(t->det_rec_len) != sizeof(struct ext4_dir_entry_tail) ||
t->det_reserved_zero2 ||
t->det_reserved_ft != EXT4_FT_DIR_CSUM)
return NULL;
return t;
}
static __le32 ext4_dirent_csum(struct inode *inode,
struct ext4_dir_entry *dirent, int size)
{
struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
struct ext4_inode_info *ei = EXT4_I(inode);
__u32 csum;
csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)dirent, size);
return cpu_to_le32(csum);
}
static void warn_no_space_for_csum(struct inode *inode)
{
ext4_warning(inode->i_sb, "no space in directory inode %lu leaf for "
"checksum. Please run e2fsck -D.", inode->i_ino);
}
int ext4_dirent_csum_verify(struct inode *inode, struct ext4_dir_entry *dirent)
{
struct ext4_dir_entry_tail *t;
if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
return 1;
t = get_dirent_tail(inode, dirent);
if (!t) {
warn_no_space_for_csum(inode);
return 0;
}
if (t->det_checksum != ext4_dirent_csum(inode, dirent,
(void *)t - (void *)dirent))
return 0;
return 1;
}
static void ext4_dirent_csum_set(struct inode *inode,
struct ext4_dir_entry *dirent)
{
struct ext4_dir_entry_tail *t;
if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
return;
t = get_dirent_tail(inode, dirent);
if (!t) {
warn_no_space_for_csum(inode);
return;
}
t->det_checksum = ext4_dirent_csum(inode, dirent,
(void *)t - (void *)dirent);
}
int ext4_handle_dirty_dirent_node(handle_t *handle,
struct inode *inode,
struct buffer_head *bh)
{
ext4_dirent_csum_set(inode, (struct ext4_dir_entry *)bh->b_data);
return ext4_handle_dirty_metadata(handle, inode, bh);
}
static struct dx_countlimit *get_dx_countlimit(struct inode *inode,
struct ext4_dir_entry *dirent,
int *offset)
{
struct ext4_dir_entry *dp;
struct dx_root_info *root;
int count_offset;
if (le16_to_cpu(dirent->rec_len) == EXT4_BLOCK_SIZE(inode->i_sb))
count_offset = 8;
else if (le16_to_cpu(dirent->rec_len) == 12) {
dp = (struct ext4_dir_entry *)(((void *)dirent) + 12);
if (le16_to_cpu(dp->rec_len) !=
EXT4_BLOCK_SIZE(inode->i_sb) - 12)
return NULL;
root = (struct dx_root_info *)(((void *)dp + 12));
if (root->reserved_zero ||
root->info_length != sizeof(struct dx_root_info))
return NULL;
count_offset = 32;
} else
return NULL;
if (offset)
*offset = count_offset;
return (struct dx_countlimit *)(((void *)dirent) + count_offset);
}
static __le32 ext4_dx_csum(struct inode *inode, struct ext4_dir_entry *dirent,
int count_offset, int count, struct dx_tail *t)
{
struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
struct ext4_inode_info *ei = EXT4_I(inode);
__u32 csum, old_csum;
int size;
size = count_offset + (count * sizeof(struct dx_entry));
old_csum = t->dt_checksum;
t->dt_checksum = 0;
csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)dirent, size);
csum = ext4_chksum(sbi, csum, (__u8 *)t, sizeof(struct dx_tail));
t->dt_checksum = old_csum;
return cpu_to_le32(csum);
}
static int ext4_dx_csum_verify(struct inode *inode,
struct ext4_dir_entry *dirent)
{
struct dx_countlimit *c;
struct dx_tail *t;
int count_offset, limit, count;
if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
return 1;
c = get_dx_countlimit(inode, dirent, &count_offset);
if (!c) {
EXT4_ERROR_INODE(inode, "dir seems corrupt? Run e2fsck -D.");
return 1;
}
limit = le16_to_cpu(c->limit);
count = le16_to_cpu(c->count);
if (count_offset + (limit * sizeof(struct dx_entry)) >
EXT4_BLOCK_SIZE(inode->i_sb) - sizeof(struct dx_tail)) {
warn_no_space_for_csum(inode);
return 1;
}
t = (struct dx_tail *)(((struct dx_entry *)c) + limit);
if (t->dt_checksum != ext4_dx_csum(inode, dirent, count_offset,
count, t))
return 0;
return 1;
}
static void ext4_dx_csum_set(struct inode *inode, struct ext4_dir_entry *dirent)
{
struct dx_countlimit *c;
struct dx_tail *t;
int count_offset, limit, count;
if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
return;
c = get_dx_countlimit(inode, dirent, &count_offset);
if (!c) {
EXT4_ERROR_INODE(inode, "dir seems corrupt? Run e2fsck -D.");
return;
}
limit = le16_to_cpu(c->limit);
count = le16_to_cpu(c->count);
if (count_offset + (limit * sizeof(struct dx_entry)) >
EXT4_BLOCK_SIZE(inode->i_sb) - sizeof(struct dx_tail)) {
warn_no_space_for_csum(inode);
return;
}
t = (struct dx_tail *)(((struct dx_entry *)c) + limit);
t->dt_checksum = ext4_dx_csum(inode, dirent, count_offset, count, t);
}
static inline int ext4_handle_dirty_dx_node(handle_t *handle,
struct inode *inode,
struct buffer_head *bh)
{
ext4_dx_csum_set(inode, (struct ext4_dir_entry *)bh->b_data);
return ext4_handle_dirty_metadata(handle, inode, bh);
}
/*
* p is at least 6 bytes before the end of page
*/
static inline struct ext4_dir_entry_2 *
ext4_next_entry(struct ext4_dir_entry_2 *p, unsigned long blocksize)
{
return (struct ext4_dir_entry_2 *)((char *)p +
ext4_rec_len_from_disk(p->rec_len, blocksize));
}
/*
* Future: use high four bits of block for coalesce-on-delete flags
* Mask them off for now.
*/
static inline ext4_lblk_t dx_get_block(struct dx_entry *entry)
{
return le32_to_cpu(entry->block) & 0x00ffffff;
}
static inline void dx_set_block(struct dx_entry *entry, ext4_lblk_t value)
{
entry->block = cpu_to_le32(value);
}
static inline unsigned dx_get_hash(struct dx_entry *entry)
{
return le32_to_cpu(entry->hash);
}
static inline void dx_set_hash(struct dx_entry *entry, unsigned value)
{
entry->hash = cpu_to_le32(value);
}
static inline unsigned dx_get_count(struct dx_entry *entries)
{
return le16_to_cpu(((struct dx_countlimit *) entries)->count);
}
static inline unsigned dx_get_limit(struct dx_entry *entries)
{
return le16_to_cpu(((struct dx_countlimit *) entries)->limit);
}
static inline void dx_set_count(struct dx_entry *entries, unsigned value)
{
((struct dx_countlimit *) entries)->count = cpu_to_le16(value);
}
static inline void dx_set_limit(struct dx_entry *entries, unsigned value)
{
((struct dx_countlimit *) entries)->limit = cpu_to_le16(value);
}
static inline unsigned dx_root_limit(struct inode *dir, unsigned infosize)
{
unsigned entry_space = dir->i_sb->s_blocksize - EXT4_DIR_REC_LEN(1) -
EXT4_DIR_REC_LEN(2) - infosize;
if (EXT4_HAS_RO_COMPAT_FEATURE(dir->i_sb,
EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
entry_space -= sizeof(struct dx_tail);
return entry_space / sizeof(struct dx_entry);
}
static inline unsigned dx_node_limit(struct inode *dir)
{
unsigned entry_space = dir->i_sb->s_blocksize - EXT4_DIR_REC_LEN(0);
if (EXT4_HAS_RO_COMPAT_FEATURE(dir->i_sb,
EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
entry_space -= sizeof(struct dx_tail);
return entry_space / sizeof(struct dx_entry);
}
/*
* Debug
*/
#ifdef DX_DEBUG
static void dx_show_index(char * label, struct dx_entry *entries)
{
int i, n = dx_get_count (entries);
printk(KERN_DEBUG "%s index ", label);
for (i = 0; i < n; i++) {
printk("%x->%lu ", i ? dx_get_hash(entries + i) :
0, (unsigned long)dx_get_block(entries + i));
}
printk("\n");
}
struct stats
{
unsigned names;
unsigned space;
unsigned bcount;
};
static struct stats dx_show_leaf(struct dx_hash_info *hinfo, struct ext4_dir_entry_2 *de,
int size, int show_names)
{
unsigned names = 0, space = 0;
char *base = (char *) de;
struct dx_hash_info h = *hinfo;
printk("names: ");
while ((char *) de < base + size)
{
if (de->inode)
{
if (show_names)
{
int len = de->name_len;
char *name = de->name;
while (len--) printk("%c", *name++);
ext4fs_dirhash(de->name, de->name_len, &h);
printk(":%x.%u ", h.hash,
(unsigned) ((char *) de - base));
}
space += EXT4_DIR_REC_LEN(de->name_len);
names++;
}
de = ext4_next_entry(de, size);
}
printk("(%i)\n", names);
return (struct stats) { names, space, 1 };
}
struct stats dx_show_entries(struct dx_hash_info *hinfo, struct inode *dir,
struct dx_entry *entries, int levels)
{
unsigned blocksize = dir->i_sb->s_blocksize;
unsigned count = dx_get_count(entries), names = 0, space = 0, i;
unsigned bcount = 0;
struct buffer_head *bh;
int err;
printk("%i indexed blocks...\n", count);
for (i = 0; i < count; i++, entries++)
{
ext4_lblk_t block = dx_get_block(entries);
ext4_lblk_t hash = i ? dx_get_hash(entries): 0;
u32 range = i < count - 1? (dx_get_hash(entries + 1) - hash): ~hash;
struct stats stats;
printk("%s%3u:%03u hash %8x/%8x ",levels?"":" ", i, block, hash, range);
if (!(bh = ext4_bread (NULL,dir, block, 0,&err))) continue;
stats = levels?
dx_show_entries(hinfo, dir, ((struct dx_node *) bh->b_data)->entries, levels - 1):
dx_show_leaf(hinfo, (struct ext4_dir_entry_2 *) bh->b_data, blocksize, 0);
names += stats.names;
space += stats.space;
bcount += stats.bcount;
brelse(bh);
}
if (bcount)
printk(KERN_DEBUG "%snames %u, fullness %u (%u%%)\n",
levels ? "" : " ", names, space/bcount,
(space/bcount)*100/blocksize);
return (struct stats) { names, space, bcount};
}
#endif /* DX_DEBUG */
/*
* Probe for a directory leaf block to search.
*
* dx_probe can return ERR_BAD_DX_DIR, which means there was a format
* error in the directory index, and the caller should fall back to
* searching the directory normally. The callers of dx_probe **MUST**
* check for this error code, and make sure it never gets reflected
* back to userspace.
*/
static struct dx_frame *
dx_probe(const struct qstr *d_name, struct inode *dir,
struct dx_hash_info *hinfo, struct dx_frame *frame_in, int *err)
{
unsigned count, indirect;
struct dx_entry *at, *entries, *p, *q, *m;
struct dx_root *root;
struct buffer_head *bh;
struct dx_frame *frame = frame_in;
u32 hash;
frame->bh = NULL;
bh = ext4_read_dirblock(dir, 0, INDEX);
if (IS_ERR(bh)) {
*err = PTR_ERR(bh);
goto fail;
}
root = (struct dx_root *) bh->b_data;
if (root->info.hash_version != DX_HASH_TEA &&
root->info.hash_version != DX_HASH_HALF_MD4 &&
root->info.hash_version != DX_HASH_LEGACY) {
ext4_warning(dir->i_sb, "Unrecognised inode hash code %d",
root->info.hash_version);
brelse(bh);
*err = ERR_BAD_DX_DIR;
goto fail;
}
hinfo->hash_version = root->info.hash_version;
if (hinfo->hash_version <= DX_HASH_TEA)
hinfo->hash_version += EXT4_SB(dir->i_sb)->s_hash_unsigned;
hinfo->seed = EXT4_SB(dir->i_sb)->s_hash_seed;
if (d_name)
ext4fs_dirhash(d_name->name, d_name->len, hinfo);
hash = hinfo->hash;
if (root->info.unused_flags & 1) {
ext4_warning(dir->i_sb, "Unimplemented inode hash flags: %#06x",
root->info.unused_flags);
brelse(bh);
*err = ERR_BAD_DX_DIR;
goto fail;
}
if ((indirect = root->info.indirect_levels) > 1) {
ext4_warning(dir->i_sb, "Unimplemented inode hash depth: %#06x",
root->info.indirect_levels);
brelse(bh);
*err = ERR_BAD_DX_DIR;
goto fail;
}
entries = (struct dx_entry *) (((char *)&root->info) +
root->info.info_length);
if (dx_get_limit(entries) != dx_root_limit(dir,
root->info.info_length)) {
ext4_warning(dir->i_sb, "dx entry: limit != root limit");
brelse(bh);
*err = ERR_BAD_DX_DIR;
goto fail;
}
dxtrace(printk("Look up %x", hash));
while (1)
{
count = dx_get_count(entries);
if (!count || count > dx_get_limit(entries)) {
ext4_warning(dir->i_sb,
"dx entry: no count or count > limit");
brelse(bh);
*err = ERR_BAD_DX_DIR;
goto fail2;
}
p = entries + 1;
q = entries + count - 1;
while (p <= q)
{
m = p + (q - p)/2;
dxtrace(printk("."));
if (dx_get_hash(m) > hash)
q = m - 1;
else
p = m + 1;
}
if (0) // linear search cross check
{
unsigned n = count - 1;
at = entries;
while (n--)
{
dxtrace(printk(","));
if (dx_get_hash(++at) > hash)
{
at--;
break;
}
}
assert (at == p - 1);
}
at = p - 1;
dxtrace(printk(" %x->%u\n", at == entries? 0: dx_get_hash(at), dx_get_block(at)));
frame->bh = bh;
frame->entries = entries;
frame->at = at;
if (!indirect--) return frame;
bh = ext4_read_dirblock(dir, dx_get_block(at), INDEX);
if (IS_ERR(bh)) {
*err = PTR_ERR(bh);
goto fail2;
}
entries = ((struct dx_node *) bh->b_data)->entries;
if (dx_get_limit(entries) != dx_node_limit (dir)) {
ext4_warning(dir->i_sb,
"dx entry: limit != node limit");
brelse(bh);
*err = ERR_BAD_DX_DIR;
goto fail2;
}
frame++;
frame->bh = NULL;
}
fail2:
while (frame >= frame_in) {
brelse(frame->bh);
frame--;
}
fail:
if (*err == ERR_BAD_DX_DIR)
ext4_warning(dir->i_sb,
"Corrupt dir inode %lu, running e2fsck is "
"recommended.", dir->i_ino);
return NULL;
}
static void dx_release (struct dx_frame *frames)
{
if (frames[0].bh == NULL)
return;
if (((struct dx_root *) frames[0].bh->b_data)->info.indirect_levels)
brelse(frames[1].bh);
brelse(frames[0].bh);
}
/*
* This function increments the frame pointer to search the next leaf
* block, and reads in the necessary intervening nodes if the search
* should be necessary. Whether or not the search is necessary is
* controlled by the hash parameter. If the hash value is even, then
* the search is only continued if the next block starts with that
* hash value. This is used if we are searching for a specific file.
*
* If the hash value is HASH_NB_ALWAYS, then always go to the next block.
*
* This function returns 1 if the caller should continue to search,
* or 0 if it should not. If there is an error reading one of the
* index blocks, it will a negative error code.
*
* If start_hash is non-null, it will be filled in with the starting
* hash of the next page.
*/
static int ext4_htree_next_block(struct inode *dir, __u32 hash,
struct dx_frame *frame,
struct dx_frame *frames,
__u32 *start_hash)
{
struct dx_frame *p;
struct buffer_head *bh;
int num_frames = 0;
__u32 bhash;
p = frame;
/*
* Find the next leaf page by incrementing the frame pointer.
* If we run out of entries in the interior node, loop around and
* increment pointer in the parent node. When we break out of
* this loop, num_frames indicates the number of interior
* nodes need to be read.
*/
while (1) {
if (++(p->at) < p->entries + dx_get_count(p->entries))
break;
if (p == frames)
return 0;
num_frames++;
p--;
}
/*
* If the hash is 1, then continue only if the next page has a
* continuation hash of any value. This is used for readdir
* handling. Otherwise, check to see if the hash matches the
* desired contiuation hash. If it doesn't, return since
* there's no point to read in the successive index pages.
*/
bhash = dx_get_hash(p->at);
if (start_hash)
*start_hash = bhash;
if ((hash & 1) == 0) {
if ((bhash & ~1) != hash)
return 0;
}
/*
* If the hash is HASH_NB_ALWAYS, we always go to the next
* block so no check is necessary
*/
while (num_frames--) {
bh = ext4_read_dirblock(dir, dx_get_block(p->at), INDEX);
if (IS_ERR(bh))
return PTR_ERR(bh);
p++;
brelse(p->bh);
p->bh = bh;
p->at = p->entries = ((struct dx_node *) bh->b_data)->entries;
}
return 1;
}
/*
* This function fills a red-black tree with information from a
* directory block. It returns the number directory entries loaded
* into the tree. If there is an error it is returned in err.
*/
static int htree_dirblock_to_tree(struct file *dir_file,
struct inode *dir, ext4_lblk_t block,
struct dx_hash_info *hinfo,
__u32 start_hash, __u32 start_minor_hash)
{
struct buffer_head *bh;
struct ext4_dir_entry_2 *de, *top;
int err = 0, count = 0;
dxtrace(printk(KERN_INFO "In htree dirblock_to_tree: block %lu\n",
(unsigned long)block));
bh = ext4_read_dirblock(dir, block, DIRENT);
if (IS_ERR(bh))
return PTR_ERR(bh);
de = (struct ext4_dir_entry_2 *) bh->b_data;
top = (struct ext4_dir_entry_2 *) ((char *) de +
dir->i_sb->s_blocksize -
EXT4_DIR_REC_LEN(0));
for (; de < top; de = ext4_next_entry(de, dir->i_sb->s_blocksize)) {
if (ext4_check_dir_entry(dir, NULL, de, bh,
bh->b_data, bh->b_size,
(block<<EXT4_BLOCK_SIZE_BITS(dir->i_sb))
+ ((char *)de - bh->b_data))) {
/* On error, skip the f_pos to the next block. */
dir_file->f_pos = (dir_file->f_pos |
(dir->i_sb->s_blocksize - 1)) + 1;
brelse(bh);
return count;
}
ext4fs_dirhash(de->name, de->name_len, hinfo);
if ((hinfo->hash < start_hash) ||
((hinfo->hash == start_hash) &&
(hinfo->minor_hash < start_minor_hash)))
continue;
if (de->inode == 0)
continue;
if ((err = ext4_htree_store_dirent(dir_file,
hinfo->hash, hinfo->minor_hash, de)) != 0) {
brelse(bh);
return err;
}
count++;
}
brelse(bh);
return count;
}
/*
* This function fills a red-black tree with information from a
* directory. We start scanning the directory in hash order, starting
* at start_hash and start_minor_hash.
*
* This function returns the number of entries inserted into the tree,
* or a negative error code.
*/
int ext4_htree_fill_tree(struct file *dir_file, __u32 start_hash,
__u32 start_minor_hash, __u32 *next_hash)
{
struct dx_hash_info hinfo;
struct ext4_dir_entry_2 *de;
struct dx_frame frames[2], *frame;
struct inode *dir;
ext4_lblk_t block;
int count = 0;
int ret, err;
__u32 hashval;
dxtrace(printk(KERN_DEBUG "In htree_fill_tree, start hash: %x:%x\n",
start_hash, start_minor_hash));
dir = file_inode(dir_file);
if (!(ext4_test_inode_flag(dir, EXT4_INODE_INDEX))) {
hinfo.hash_version = EXT4_SB(dir->i_sb)->s_def_hash_version;
if (hinfo.hash_version <= DX_HASH_TEA)
hinfo.hash_version +=
EXT4_SB(dir->i_sb)->s_hash_unsigned;
hinfo.seed = EXT4_SB(dir->i_sb)->s_hash_seed;
count = htree_dirblock_to_tree(dir_file, dir, 0, &hinfo,
start_hash, start_minor_hash);
*next_hash = ~0;
return count;
}
hinfo.hash = start_hash;
hinfo.minor_hash = 0;
frame = dx_probe(NULL, dir, &hinfo, frames, &err);
if (!frame)
return err;
/* Add '.' and '..' from the htree header */
if (!start_hash && !start_minor_hash) {
de = (struct ext4_dir_entry_2 *) frames[0].bh->b_data;
if ((err = ext4_htree_store_dirent(dir_file, 0, 0, de)) != 0)
goto errout;
count++;
}
if (start_hash < 2 || (start_hash ==2 && start_minor_hash==0)) {
de = (struct ext4_dir_entry_2 *) frames[0].bh->b_data;
de = ext4_next_entry(de, dir->i_sb->s_blocksize);
if ((err = ext4_htree_store_dirent(dir_file, 2, 0, de)) != 0)
goto errout;
count++;
}
while (1) {
block = dx_get_block(frame->at);
ret = htree_dirblock_to_tree(dir_file, dir, block, &hinfo,
start_hash, start_minor_hash);
if (ret < 0) {
err = ret;
goto errout;
}
count += ret;
hashval = ~0;
ret = ext4_htree_next_block(dir, HASH_NB_ALWAYS,
frame, frames, &hashval);
*next_hash = hashval;
if (ret < 0) {
err = ret;
goto errout;
}
/*
* Stop if: (a) there are no more entries, or
* (b) we have inserted at least one entry and the
* next hash value is not a continuation
*/
if ((ret == 0) ||
(count && ((hashval & 1) == 0)))
break;
}
dx_release(frames);
dxtrace(printk(KERN_DEBUG "Fill tree: returned %d entries, "
"next hash: %x\n", count, *next_hash));
return count;
errout:
dx_release(frames);
return (err);
}
static inline int search_dirblock(struct buffer_head *bh,
struct inode *dir,
const struct qstr *d_name,
unsigned int offset,
struct ext4_dir_entry_2 **res_dir)
{
return search_dir(bh, bh->b_data, dir->i_sb->s_blocksize, dir,
d_name, offset, res_dir);
}
/*
* Directory block splitting, compacting
*/
/*
* Create map of hash values, offsets, and sizes, stored at end of block.
* Returns number of entries mapped.
*/
static int dx_make_map(struct ext4_dir_entry_2 *de, unsigned blocksize,
struct dx_hash_info *hinfo,
struct dx_map_entry *map_tail)
{
int count = 0;
char *base = (char *) de;
struct dx_hash_info h = *hinfo;
while ((char *) de < base + blocksize) {
if (de->name_len && de->inode) {
ext4fs_dirhash(de->name, de->name_len, &h);
map_tail--;
map_tail->hash = h.hash;
map_tail->offs = ((char *) de - base)>>2;
map_tail->size = le16_to_cpu(de->rec_len);
count++;
cond_resched();
}
/* XXX: do we need to check rec_len == 0 case? -Chris */
de = ext4_next_entry(de, blocksize);
}
return count;
}
/* Sort map by hash value */
static void dx_sort_map (struct dx_map_entry *map, unsigned count)
{
struct dx_map_entry *p, *q, *top = map + count - 1;
int more;
/* Combsort until bubble sort doesn't suck */
while (count > 2) {
count = count*10/13;
if (count - 9 < 2) /* 9, 10 -> 11 */
count = 11;
for (p = top, q = p - count; q >= map; p--, q--)
if (p->hash < q->hash)
swap(*p, *q);
}
/* Garden variety bubble sort */
do {
more = 0;
q = top;
while (q-- > map) {
if (q[1].hash >= q[0].hash)
continue;
swap(*(q+1), *q);
more = 1;
}
} while(more);
}
static void dx_insert_block(struct dx_frame *frame, u32 hash, ext4_lblk_t block)
{
struct dx_entry *entries = frame->entries;
struct dx_entry *old = frame->at, *new = old + 1;
int count = dx_get_count(entries);
assert(count < dx_get_limit(entries));
assert(old < entries + count);
memmove(new + 1, new, (char *)(entries + count) - (char *)(new));
dx_set_hash(new, hash);
dx_set_block(new, block);
dx_set_count(entries, count + 1);
}
/*
* NOTE! unlike strncmp, ext4_match returns 1 for success, 0 for failure.
*
* `len <= EXT4_NAME_LEN' is guaranteed by caller.
* `de != NULL' is guaranteed by caller.
*/
static inline int ext4_match (int len, const char * const name,
struct ext4_dir_entry_2 * de)
{
if (len != de->name_len)
return 0;
if (!de->inode)
return 0;
return !memcmp(name, de->name, len);
}
/*
* Returns 0 if not found, -1 on failure, and 1 on success
*/
int search_dir(struct buffer_head *bh,
char *search_buf,
int buf_size,
struct inode *dir,
const struct qstr *d_name,
unsigned int offset,
struct ext4_dir_entry_2 **res_dir)
{
struct ext4_dir_entry_2 * de;
char * dlimit;
int de_len;
const char *name = d_name->name;
int namelen = d_name->len;
de = (struct ext4_dir_entry_2 *)search_buf;
dlimit = search_buf + buf_size;
while ((char *) de < dlimit) {
/* this code is executed quadratically often */
/* do minimal checking `by hand' */
if ((char *) de + namelen <= dlimit &&
ext4_match (namelen, name, de)) {
/* found a match - just to be sure, do a full check */
if (ext4_check_dir_entry(dir, NULL, de, bh, bh->b_data,
bh->b_size, offset))
return -1;
*res_dir = de;
return 1;
}
/* prevent looping on a bad block */
de_len = ext4_rec_len_from_disk(de->rec_len,
dir->i_sb->s_blocksize);
if (de_len <= 0)
return -1;
offset += de_len;
de = (struct ext4_dir_entry_2 *) ((char *) de + de_len);
}
return 0;
}
static int is_dx_internal_node(struct inode *dir, ext4_lblk_t block,
struct ext4_dir_entry *de)
{
struct super_block *sb = dir->i_sb;
if (!is_dx(dir))
return 0;
if (block == 0)
return 1;
if (de->inode == 0 &&
ext4_rec_len_from_disk(de->rec_len, sb->s_blocksize) ==
sb->s_blocksize)
return 1;
return 0;
}
/*
* ext4_find_entry()
*
* finds an entry in the specified directory with the wanted name. It
* returns the cache buffer in which the entry was found, and the entry
* itself (as a parameter - res_dir). It does NOT read the inode of the
* entry - you'll have to do that yourself if you want to.
*
* The returned buffer_head has ->b_count elevated. The caller is expected
* to brelse() it when appropriate.
*/
static struct buffer_head * ext4_find_entry (struct inode *dir,
const struct qstr *d_name,
struct ext4_dir_entry_2 **res_dir,
int *inlined)
{
struct super_block *sb;
struct buffer_head *bh_use[NAMEI_RA_SIZE];
struct buffer_head *bh, *ret = NULL;
ext4_lblk_t start, block, b;
const u8 *name = d_name->name;
int ra_max = 0; /* Number of bh's in the readahead
buffer, bh_use[] */
int ra_ptr = 0; /* Current index into readahead
buffer */
int num = 0;
ext4_lblk_t nblocks;
int i, err;
int namelen;
*res_dir = NULL;
sb = dir->i_sb;
namelen = d_name->len;
if (namelen > EXT4_NAME_LEN)
return NULL;
if (ext4_has_inline_data(dir)) {
int has_inline_data = 1;
ret = ext4_find_inline_entry(dir, d_name, res_dir,
&has_inline_data);
if (has_inline_data) {
if (inlined)
*inlined = 1;
return ret;
}
}
if ((namelen <= 2) && (name[0] == '.') &&
(name[1] == '.' || name[1] == '\0')) {
/*
* "." or ".." will only be in the first block
* NFS may look up ".."; "." should be handled by the VFS
*/
block = start = 0;
nblocks = 1;
goto restart;
}
if (is_dx(dir)) {
bh = ext4_dx_find_entry(dir, d_name, res_dir, &err);
/*
* On success, or if the error was file not found,
* return. Otherwise, fall back to doing a search the
* old fashioned way.
*/
if (bh || (err != ERR_BAD_DX_DIR))
return bh;
dxtrace(printk(KERN_DEBUG "ext4_find_entry: dx failed, "
"falling back\n"));
}
nblocks = dir->i_size >> EXT4_BLOCK_SIZE_BITS(sb);
start = EXT4_I(dir)->i_dir_start_lookup;
if (start >= nblocks)
start = 0;
block = start;
restart:
do {
/*
* We deal with the read-ahead logic here.
*/
if (ra_ptr >= ra_max) {
/* Refill the readahead buffer */
ra_ptr = 0;
b = block;
for (ra_max = 0; ra_max < NAMEI_RA_SIZE; ra_max++) {
/*
* Terminate if we reach the end of the
* directory and must wrap, or if our
* search has finished at this block.
*/
if (b >= nblocks || (num && block == start)) {
bh_use[ra_max] = NULL;
break;
}
num++;
bh = ext4_getblk(NULL, dir, b++, 0, &err);
bh_use[ra_max] = bh;
if (bh)
ll_rw_block(READ | REQ_META | REQ_PRIO,
1, &bh);
}
}
if ((bh = bh_use[ra_ptr++]) == NULL)
goto next;
wait_on_buffer(bh);
if (!buffer_uptodate(bh)) {
/* read error, skip block & hope for the best */
EXT4_ERROR_INODE(dir, "reading directory lblock %lu",
(unsigned long) block);
brelse(bh);
goto next;
}
if (!buffer_verified(bh) &&
!is_dx_internal_node(dir, block,
(struct ext4_dir_entry *)bh->b_data) &&
!ext4_dirent_csum_verify(dir,
(struct ext4_dir_entry *)bh->b_data)) {
EXT4_ERROR_INODE(dir, "checksumming directory "
"block %lu", (unsigned long)block);
brelse(bh);
goto next;
}
set_buffer_verified(bh);
i = search_dirblock(bh, dir, d_name,
block << EXT4_BLOCK_SIZE_BITS(sb), res_dir);
if (i == 1) {
EXT4_I(dir)->i_dir_start_lookup = block;
ret = bh;
goto cleanup_and_exit;
} else {
brelse(bh);
if (i < 0)
goto cleanup_and_exit;
}
next:
if (++block >= nblocks)
block = 0;
} while (block != start);
/*
* If the directory has grown while we were searching, then
* search the last part of the directory before giving up.
*/
block = nblocks;
nblocks = dir->i_size >> EXT4_BLOCK_SIZE_BITS(sb);
if (block < nblocks) {
start = 0;
goto restart;
}
cleanup_and_exit:
/* Clean up the read-ahead blocks */
for (; ra_ptr < ra_max; ra_ptr++)
brelse(bh_use[ra_ptr]);
return ret;
}
static struct buffer_head * ext4_dx_find_entry(struct inode *dir, const struct qstr *d_name,
struct ext4_dir_entry_2 **res_dir, int *err)
{
struct super_block * sb = dir->i_sb;
struct dx_hash_info hinfo;
struct dx_frame frames[2], *frame;
struct buffer_head *bh;
ext4_lblk_t block;
int retval;
if (!(frame = dx_probe(d_name, dir, &hinfo, frames, err)))
return NULL;
do {
block = dx_get_block(frame->at);
bh = ext4_read_dirblock(dir, block, DIRENT);
if (IS_ERR(bh)) {
*err = PTR_ERR(bh);
goto errout;
}
retval = search_dirblock(bh, dir, d_name,
block << EXT4_BLOCK_SIZE_BITS(sb),
res_dir);
if (retval == 1) { /* Success! */
dx_release(frames);
return bh;
}
brelse(bh);
if (retval == -1) {
*err = ERR_BAD_DX_DIR;
goto errout;
}
/* Check to see if we should continue to search */
retval = ext4_htree_next_block(dir, hinfo.hash, frame,
frames, NULL);
if (retval < 0) {
ext4_warning(sb,
"error reading index page in directory #%lu",
dir->i_ino);
*err = retval;
goto errout;
}
} while (retval == 1);
*err = -ENOENT;
errout:
dxtrace(printk(KERN_DEBUG "%s not found\n", d_name->name));
dx_release (frames);
return NULL;
}
static struct dentry *ext4_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
{
struct inode *inode;
struct ext4_dir_entry_2 *de;
struct buffer_head *bh;
if (dentry->d_name.len > EXT4_NAME_LEN)
return ERR_PTR(-ENAMETOOLONG);
bh = ext4_find_entry(dir, &dentry->d_name, &de, NULL);
inode = NULL;
if (bh) {
__u32 ino = le32_to_cpu(de->inode);
brelse(bh);
if (!ext4_valid_inum(dir->i_sb, ino)) {
EXT4_ERROR_INODE(dir, "bad inode number: %u", ino);
return ERR_PTR(-EIO);
}
if (unlikely(ino == dir->i_ino)) {
EXT4_ERROR_INODE(dir, "'%.*s' linked to parent dir",
dentry->d_name.len,
dentry->d_name.name);
return ERR_PTR(-EIO);
}
inode = ext4_iget(dir->i_sb, ino);
if (inode == ERR_PTR(-ESTALE)) {
EXT4_ERROR_INODE(dir,
"deleted inode referenced: %u",
ino);
return ERR_PTR(-EIO);
}
}
return d_splice_alias(inode, dentry);
}
struct dentry *ext4_get_parent(struct dentry *child)
{
__u32 ino;
static const struct qstr dotdot = QSTR_INIT("..", 2);
struct ext4_dir_entry_2 * de;
struct buffer_head *bh;
bh = ext4_find_entry(child->d_inode, &dotdot, &de, NULL);
if (!bh)
return ERR_PTR(-ENOENT);
ino = le32_to_cpu(de->inode);
brelse(bh);
if (!ext4_valid_inum(child->d_inode->i_sb, ino)) {
EXT4_ERROR_INODE(child->d_inode,
"bad parent inode number: %u", ino);
return ERR_PTR(-EIO);
}
return d_obtain_alias(ext4_iget(child->d_inode->i_sb, ino));
}
#define S_SHIFT 12
static unsigned char ext4_type_by_mode[S_IFMT >> S_SHIFT] = {
[S_IFREG >> S_SHIFT] = EXT4_FT_REG_FILE,
[S_IFDIR >> S_SHIFT] = EXT4_FT_DIR,
[S_IFCHR >> S_SHIFT] = EXT4_FT_CHRDEV,
[S_IFBLK >> S_SHIFT] = EXT4_FT_BLKDEV,
[S_IFIFO >> S_SHIFT] = EXT4_FT_FIFO,
[S_IFSOCK >> S_SHIFT] = EXT4_FT_SOCK,
[S_IFLNK >> S_SHIFT] = EXT4_FT_SYMLINK,
};
static inline void ext4_set_de_type(struct super_block *sb,
struct ext4_dir_entry_2 *de,
umode_t mode) {
if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FILETYPE))
de->file_type = ext4_type_by_mode[(mode & S_IFMT)>>S_SHIFT];
}
/*
* Move count entries from end of map between two memory locations.
* Returns pointer to last entry moved.
*/
static struct ext4_dir_entry_2 *
dx_move_dirents(char *from, char *to, struct dx_map_entry *map, int count,
unsigned blocksize)
{
unsigned rec_len = 0;
while (count--) {
struct ext4_dir_entry_2 *de = (struct ext4_dir_entry_2 *)
(from + (map->offs<<2));
rec_len = EXT4_DIR_REC_LEN(de->name_len);
memcpy (to, de, rec_len);
((struct ext4_dir_entry_2 *) to)->rec_len =
ext4_rec_len_to_disk(rec_len, blocksize);
de->inode = 0;
map++;
to += rec_len;
}
return (struct ext4_dir_entry_2 *) (to - rec_len);
}
/*
* Compact each dir entry in the range to the minimal rec_len.
* Returns pointer to last entry in range.
*/
static struct ext4_dir_entry_2* dx_pack_dirents(char *base, unsigned blocksize)
{
struct ext4_dir_entry_2 *next, *to, *prev, *de = (struct ext4_dir_entry_2 *) base;
unsigned rec_len = 0;
prev = to = de;
while ((char*)de < base + blocksize) {
next = ext4_next_entry(de, blocksize);
if (de->inode && de->name_len) {
rec_len = EXT4_DIR_REC_LEN(de->name_len);
if (de > to)
memmove(to, de, rec_len);
to->rec_len = ext4_rec_len_to_disk(rec_len, blocksize);
prev = to;
to = (struct ext4_dir_entry_2 *) (((char *) to) + rec_len);
}
de = next;
}
return prev;
}
/*
* Split a full leaf block to make room for a new dir entry.
* Allocate a new block, and move entries so that they are approx. equally full.
* Returns pointer to de in block into which the new entry will be inserted.
*/
static struct ext4_dir_entry_2 *do_split(handle_t *handle, struct inode *dir,
struct buffer_head **bh,struct dx_frame *frame,
struct dx_hash_info *hinfo, int *error)
{
unsigned blocksize = dir->i_sb->s_blocksize;
unsigned count, continued;
struct buffer_head *bh2;
ext4_lblk_t newblock;
u32 hash2;
struct dx_map_entry *map;
char *data1 = (*bh)->b_data, *data2;
unsigned split, move, size;
struct ext4_dir_entry_2 *de = NULL, *de2;
struct ext4_dir_entry_tail *t;
int csum_size = 0;
int err = 0, i;
if (EXT4_HAS_RO_COMPAT_FEATURE(dir->i_sb,
EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
csum_size = sizeof(struct ext4_dir_entry_tail);
bh2 = ext4_append(handle, dir, &newblock);
if (IS_ERR(bh2)) {
brelse(*bh);
*bh = NULL;
*error = PTR_ERR(bh2);
return NULL;
}
BUFFER_TRACE(*bh, "get_write_access");
err = ext4_journal_get_write_access(handle, *bh);
if (err)
goto journal_error;
BUFFER_TRACE(frame->bh, "get_write_access");
err = ext4_journal_get_write_access(handle, frame->bh);
if (err)
goto journal_error;
data2 = bh2->b_data;
/* create map in the end of data2 block */
map = (struct dx_map_entry *) (data2 + blocksize);
count = dx_make_map((struct ext4_dir_entry_2 *) data1,
blocksize, hinfo, map);
map -= count;
dx_sort_map(map, count);
/* Split the existing block in the middle, size-wise */
size = 0;
move = 0;
for (i = count-1; i >= 0; i--) {
/* is more than half of this entry in 2nd half of the block? */
if (size + map[i].size/2 > blocksize/2)
break;
size += map[i].size;
move++;
}
/* map index at which we will split */
split = count - move;
hash2 = map[split].hash;
continued = hash2 == map[split - 1].hash;
dxtrace(printk(KERN_INFO "Split block %lu at %x, %i/%i\n",
(unsigned long)dx_get_block(frame->at),
hash2, split, count-split));
/* Fancy dance to stay within two buffers */
de2 = dx_move_dirents(data1, data2, map + split, count - split, blocksize);
de = dx_pack_dirents(data1, blocksize);
de->rec_len = ext4_rec_len_to_disk(data1 + (blocksize - csum_size) -
(char *) de,
blocksize);
de2->rec_len = ext4_rec_len_to_disk(data2 + (blocksize - csum_size) -
(char *) de2,
blocksize);
if (csum_size) {
t = EXT4_DIRENT_TAIL(data2, blocksize);
initialize_dirent_tail(t, blocksize);
t = EXT4_DIRENT_TAIL(data1, blocksize);
initialize_dirent_tail(t, blocksize);
}
dxtrace(dx_show_leaf (hinfo, (struct ext4_dir_entry_2 *) data1, blocksize, 1));
dxtrace(dx_show_leaf (hinfo, (struct ext4_dir_entry_2 *) data2, blocksize, 1));
/* Which block gets the new entry? */
if (hinfo->hash >= hash2)
{
swap(*bh, bh2);
de = de2;
}
dx_insert_block(frame, hash2 + continued, newblock);
err = ext4_handle_dirty_dirent_node(handle, dir, bh2);
if (err)
goto journal_error;
err = ext4_handle_dirty_dx_node(handle, dir, frame->bh);
if (err)
goto journal_error;
brelse(bh2);
dxtrace(dx_show_index("frame", frame->entries));
return de;
journal_error:
brelse(*bh);
brelse(bh2);
*bh = NULL;
ext4_std_error(dir->i_sb, err);
*error = err;
return NULL;
}
int ext4_find_dest_de(struct inode *dir, struct inode *inode,
struct buffer_head *bh,
void *buf, int buf_size,
const char *name, int namelen,
struct ext4_dir_entry_2 **dest_de)
{
struct ext4_dir_entry_2 *de;
unsigned short reclen = EXT4_DIR_REC_LEN(namelen);
int nlen, rlen;
unsigned int offset = 0;
char *top;
de = (struct ext4_dir_entry_2 *)buf;
top = buf + buf_size - reclen;
while ((char *) de <= top) {
if (ext4_check_dir_entry(dir, NULL, de, bh,
buf, buf_size, offset))
return -EIO;
if (ext4_match(namelen, name, de))
return -EEXIST;
nlen = EXT4_DIR_REC_LEN(de->name_len);
rlen = ext4_rec_len_from_disk(de->rec_len, buf_size);
if ((de->inode ? rlen - nlen : rlen) >= reclen)
break;
de = (struct ext4_dir_entry_2 *)((char *)de + rlen);
offset += rlen;
}
if ((char *) de > top)
return -ENOSPC;
*dest_de = de;
return 0;
}
void ext4_insert_dentry(struct inode *inode,
struct ext4_dir_entry_2 *de,
int buf_size,
const char *name, int namelen)
{
int nlen, rlen;
nlen = EXT4_DIR_REC_LEN(de->name_len);
rlen = ext4_rec_len_from_disk(de->rec_len, buf_size);
if (de->inode) {
struct ext4_dir_entry_2 *de1 =
(struct ext4_dir_entry_2 *)((char *)de + nlen);
de1->rec_len = ext4_rec_len_to_disk(rlen - nlen, buf_size);
de->rec_len = ext4_rec_len_to_disk(nlen, buf_size);
de = de1;
}
de->file_type = EXT4_FT_UNKNOWN;
de->inode = cpu_to_le32(inode->i_ino);
ext4_set_de_type(inode->i_sb, de, inode->i_mode);
de->name_len = namelen;
memcpy(de->name, name, namelen);
}
/*
* Add a new entry into a directory (leaf) block. If de is non-NULL,
* it points to a directory entry which is guaranteed to be large
* enough for new directory entry. If de is NULL, then
* add_dirent_to_buf will attempt search the directory block for
* space. It will return -ENOSPC if no space is available, and -EIO
* and -EEXIST if directory entry already exists.
*/
static int add_dirent_to_buf(handle_t *handle, struct dentry *dentry,
struct inode *inode, struct ext4_dir_entry_2 *de,
struct buffer_head *bh)
{
struct inode *dir = dentry->d_parent->d_inode;
const char *name = dentry->d_name.name;
int namelen = dentry->d_name.len;
unsigned int blocksize = dir->i_sb->s_blocksize;
int csum_size = 0;
int err;
if (EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
csum_size = sizeof(struct ext4_dir_entry_tail);
if (!de) {
err = ext4_find_dest_de(dir, inode,
bh, bh->b_data, blocksize - csum_size,
name, namelen, &de);
if (err)
return err;
}
BUFFER_TRACE(bh, "get_write_access");
err = ext4_journal_get_write_access(handle, bh);
if (err) {
ext4_std_error(dir->i_sb, err);
return err;
}
/* By now the buffer is marked for journaling */
ext4_insert_dentry(inode, de, blocksize, name, namelen);
/*
* XXX shouldn't update any times until successful
* completion of syscall, but too many callers depend
* on this.
*
* XXX similarly, too many callers depend on
* ext4_new_inode() setting the times, but error
* recovery deletes the inode, so the worst that can
* happen is that the times are slightly out of date
* and/or different from the directory change time.
*/
dir->i_mtime = dir->i_ctime = ext4_current_time(dir);
ext4_update_dx_flag(dir);
dir->i_version++;
ext4_mark_inode_dirty(handle, dir);
BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
err = ext4_handle_dirty_dirent_node(handle, dir, bh);
if (err)
ext4_std_error(dir->i_sb, err);
return 0;
}
/*
* This converts a one block unindexed directory to a 3 block indexed
* directory, and adds the dentry to the indexed directory.
*/
static int make_indexed_dir(handle_t *handle, struct dentry *dentry,
struct inode *inode, struct buffer_head *bh)
{
struct inode *dir = dentry->d_parent->d_inode;
const char *name = dentry->d_name.name;
int namelen = dentry->d_name.len;
struct buffer_head *bh2;
struct dx_root *root;
struct dx_frame frames[2], *frame;
struct dx_entry *entries;
struct ext4_dir_entry_2 *de, *de2;
struct ext4_dir_entry_tail *t;
char *data1, *top;
unsigned len;
int retval;
unsigned blocksize;
struct dx_hash_info hinfo;
ext4_lblk_t block;
struct fake_dirent *fde;
int csum_size = 0;
if (EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
csum_size = sizeof(struct ext4_dir_entry_tail);
blocksize = dir->i_sb->s_blocksize;
dxtrace(printk(KERN_DEBUG "Creating index: inode %lu\n", dir->i_ino));
retval = ext4_journal_get_write_access(handle, bh);
if (retval) {
ext4_std_error(dir->i_sb, retval);
brelse(bh);
return retval;
}
root = (struct dx_root *) bh->b_data;
/* The 0th block becomes the root, move the dirents out */
fde = &root->dotdot;
de = (struct ext4_dir_entry_2 *)((char *)fde +
ext4_rec_len_from_disk(fde->rec_len, blocksize));
if ((char *) de >= (((char *) root) + blocksize)) {
EXT4_ERROR_INODE(dir, "invalid rec_len for '..'");
brelse(bh);
return -EIO;
}
len = ((char *) root) + (blocksize - csum_size) - (char *) de;
/* Allocate new block for the 0th block's dirents */
bh2 = ext4_append(handle, dir, &block);
if (IS_ERR(bh2)) {
brelse(bh);
return PTR_ERR(bh2);
}
ext4_set_inode_flag(dir, EXT4_INODE_INDEX);
data1 = bh2->b_data;
memcpy (data1, de, len);
de = (struct ext4_dir_entry_2 *) data1;
top = data1 + len;
while ((char *)(de2 = ext4_next_entry(de, blocksize)) < top)
de = de2;
de->rec_len = ext4_rec_len_to_disk(data1 + (blocksize - csum_size) -
(char *) de,
blocksize);
if (csum_size) {
t = EXT4_DIRENT_TAIL(data1, blocksize);
initialize_dirent_tail(t, blocksize);
}
/* Initialize the root; the dot dirents already exist */
de = (struct ext4_dir_entry_2 *) (&root->dotdot);
de->rec_len = ext4_rec_len_to_disk(blocksize - EXT4_DIR_REC_LEN(2),
blocksize);
memset (&root->info, 0, sizeof(root->info));
root->info.info_length = sizeof(root->info);
root->info.hash_version = EXT4_SB(dir->i_sb)->s_def_hash_version;
entries = root->entries;
dx_set_block(entries, 1);
dx_set_count(entries, 1);
dx_set_limit(entries, dx_root_limit(dir, sizeof(root->info)));
/* Initialize as for dx_probe */
hinfo.hash_version = root->info.hash_version;
if (hinfo.hash_version <= DX_HASH_TEA)
hinfo.hash_version += EXT4_SB(dir->i_sb)->s_hash_unsigned;
hinfo.seed = EXT4_SB(dir->i_sb)->s_hash_seed;
ext4fs_dirhash(name, namelen, &hinfo);
frame = frames;
frame->entries = entries;
frame->at = entries;
frame->bh = bh;
bh = bh2;
ext4_handle_dirty_dx_node(handle, dir, frame->bh);
ext4_handle_dirty_dirent_node(handle, dir, bh);
de = do_split(handle,dir, &bh, frame, &hinfo, &retval);
if (!de) {
/*
* Even if the block split failed, we have to properly write
* out all the changes we did so far. Otherwise we can end up
* with corrupted filesystem.
*/
ext4_mark_inode_dirty(handle, dir);
dx_release(frames);
return retval;
}
dx_release(frames);
retval = add_dirent_to_buf(handle, dentry, inode, de, bh);
brelse(bh);
return retval;
}
/*
* ext4_add_entry()
*
* adds a file entry to the specified directory, using the same
* semantics as ext4_find_entry(). It returns NULL if it failed.
*
* NOTE!! The inode part of 'de' is left at 0 - which means you
* may not sleep between calling this and putting something into
* the entry, as someone else might have used it while you slept.
*/
static int ext4_add_entry(handle_t *handle, struct dentry *dentry,
struct inode *inode)
{
struct inode *dir = dentry->d_parent->d_inode;
struct buffer_head *bh;
struct ext4_dir_entry_2 *de;
struct ext4_dir_entry_tail *t;
struct super_block *sb;
int retval;
int dx_fallback=0;
unsigned blocksize;
ext4_lblk_t block, blocks;
int csum_size = 0;
if (EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
csum_size = sizeof(struct ext4_dir_entry_tail);
sb = dir->i_sb;
blocksize = sb->s_blocksize;
if (!dentry->d_name.len)
return -EINVAL;
if (ext4_has_inline_data(dir)) {
retval = ext4_try_add_inline_entry(handle, dentry, inode);
if (retval < 0)
return retval;
if (retval == 1) {
retval = 0;
return retval;
}
}
if (is_dx(dir)) {
retval = ext4_dx_add_entry(handle, dentry, inode);
if (!retval || (retval != ERR_BAD_DX_DIR))
return retval;
ext4_clear_inode_flag(dir, EXT4_INODE_INDEX);
dx_fallback++;
ext4_mark_inode_dirty(handle, dir);
}
blocks = dir->i_size >> sb->s_blocksize_bits;
for (block = 0; block < blocks; block++) {
bh = ext4_read_dirblock(dir, block, DIRENT);
if (IS_ERR(bh))
return PTR_ERR(bh);
retval = add_dirent_to_buf(handle, dentry, inode, NULL, bh);
if (retval != -ENOSPC) {
brelse(bh);
return retval;
}
if (blocks == 1 && !dx_fallback &&
EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_DIR_INDEX))
return make_indexed_dir(handle, dentry, inode, bh);
brelse(bh);
}
bh = ext4_append(handle, dir, &block);
if (IS_ERR(bh))
return PTR_ERR(bh);
de = (struct ext4_dir_entry_2 *) bh->b_data;
de->inode = 0;
de->rec_len = ext4_rec_len_to_disk(blocksize - csum_size, blocksize);
if (csum_size) {
t = EXT4_DIRENT_TAIL(bh->b_data, blocksize);
initialize_dirent_tail(t, blocksize);
}
retval = add_dirent_to_buf(handle, dentry, inode, de, bh);
brelse(bh);
if (retval == 0)
ext4_set_inode_state(inode, EXT4_STATE_NEWENTRY);
return retval;
}
/*
* Returns 0 for success, or a negative error value
*/
static int ext4_dx_add_entry(handle_t *handle, struct dentry *dentry,
struct inode *inode)
{
struct dx_frame frames[2], *frame;
struct dx_entry *entries, *at;
struct dx_hash_info hinfo;
struct buffer_head *bh;
struct inode *dir = dentry->d_parent->d_inode;
struct super_block *sb = dir->i_sb;
struct ext4_dir_entry_2 *de;
int err;
frame = dx_probe(&dentry->d_name, dir, &hinfo, frames, &err);
if (!frame)
return err;
entries = frame->entries;
at = frame->at;
bh = ext4_read_dirblock(dir, dx_get_block(frame->at), DIRENT);
if (IS_ERR(bh)) {
err = PTR_ERR(bh);
bh = NULL;
goto cleanup;
}
BUFFER_TRACE(bh, "get_write_access");
err = ext4_journal_get_write_access(handle, bh);
if (err)
goto journal_error;
err = add_dirent_to_buf(handle, dentry, inode, NULL, bh);
if (err != -ENOSPC)
goto cleanup;
/* Block full, should compress but for now just split */
dxtrace(printk(KERN_DEBUG "using %u of %u node entries\n",
dx_get_count(entries), dx_get_limit(entries)));
/* Need to split index? */
if (dx_get_count(entries) == dx_get_limit(entries)) {
ext4_lblk_t newblock;
unsigned icount = dx_get_count(entries);
int levels = frame - frames;
struct dx_entry *entries2;
struct dx_node *node2;
struct buffer_head *bh2;
if (levels && (dx_get_count(frames->entries) ==
dx_get_limit(frames->entries))) {
ext4_warning(sb, "Directory index full!");
err = -ENOSPC;
goto cleanup;
}
bh2 = ext4_append(handle, dir, &newblock);
if (IS_ERR(bh2)) {
err = PTR_ERR(bh2);
goto cleanup;
}
node2 = (struct dx_node *)(bh2->b_data);
entries2 = node2->entries;
memset(&node2->fake, 0, sizeof(struct fake_dirent));
node2->fake.rec_len = ext4_rec_len_to_disk(sb->s_blocksize,
sb->s_blocksize);
BUFFER_TRACE(frame->bh, "get_write_access");
err = ext4_journal_get_write_access(handle, frame->bh);
if (err)
goto journal_error;
if (levels) {
unsigned icount1 = icount/2, icount2 = icount - icount1;
unsigned hash2 = dx_get_hash(entries + icount1);
dxtrace(printk(KERN_DEBUG "Split index %i/%i\n",
icount1, icount2));
BUFFER_TRACE(frame->bh, "get_write_access"); /* index root */
err = ext4_journal_get_write_access(handle,
frames[0].bh);
if (err)
goto journal_error;
memcpy((char *) entries2, (char *) (entries + icount1),
icount2 * sizeof(struct dx_entry));
dx_set_count(entries, icount1);
dx_set_count(entries2, icount2);
dx_set_limit(entries2, dx_node_limit(dir));
/* Which index block gets the new entry? */
if (at - entries >= icount1) {
frame->at = at = at - entries - icount1 + entries2;
frame->entries = entries = entries2;
swap(frame->bh, bh2);
}
dx_insert_block(frames + 0, hash2, newblock);
dxtrace(dx_show_index("node", frames[1].entries));
dxtrace(dx_show_index("node",
((struct dx_node *) bh2->b_data)->entries));
err = ext4_handle_dirty_dx_node(handle, dir, bh2);
if (err)
goto journal_error;
brelse (bh2);
} else {
dxtrace(printk(KERN_DEBUG
"Creating second level index...\n"));
memcpy((char *) entries2, (char *) entries,
icount * sizeof(struct dx_entry));
dx_set_limit(entries2, dx_node_limit(dir));
/* Set up root */
dx_set_count(entries, 1);
dx_set_block(entries + 0, newblock);
((struct dx_root *) frames[0].bh->b_data)->info.indirect_levels = 1;
/* Add new access path frame */
frame = frames + 1;
frame->at = at = at - entries + entries2;
frame->entries = entries = entries2;
frame->bh = bh2;
err = ext4_journal_get_write_access(handle,
frame->bh);
if (err)
goto journal_error;
}
err = ext4_handle_dirty_dx_node(handle, dir, frames[0].bh);
if (err) {
ext4_std_error(inode->i_sb, err);
goto cleanup;
}
}
de = do_split(handle, dir, &bh, frame, &hinfo, &err);
if (!de)
goto cleanup;
err = add_dirent_to_buf(handle, dentry, inode, de, bh);
goto cleanup;
journal_error:
ext4_std_error(dir->i_sb, err);
cleanup:
brelse(bh);
dx_release(frames);
return err;
}
/*
* ext4_generic_delete_entry deletes a directory entry by merging it
* with the previous entry
*/
int ext4_generic_delete_entry(handle_t *handle,
struct inode *dir,
struct ext4_dir_entry_2 *de_del,
struct buffer_head *bh,
void *entry_buf,
int buf_size,
int csum_size)
{
struct ext4_dir_entry_2 *de, *pde;
unsigned int blocksize = dir->i_sb->s_blocksize;
int i;
i = 0;
pde = NULL;
de = (struct ext4_dir_entry_2 *)entry_buf;
while (i < buf_size - csum_size) {
if (ext4_check_dir_entry(dir, NULL, de, bh,
bh->b_data, bh->b_size, i))
return -EIO;
if (de == de_del) {
if (pde)
pde->rec_len = ext4_rec_len_to_disk(
ext4_rec_len_from_disk(pde->rec_len,
blocksize) +
ext4_rec_len_from_disk(de->rec_len,
blocksize),
blocksize);
else
de->inode = 0;
dir->i_version++;
return 0;
}
i += ext4_rec_len_from_disk(de->rec_len, blocksize);
pde = de;
de = ext4_next_entry(de, blocksize);
}
return -ENOENT;
}
static int ext4_delete_entry(handle_t *handle,
struct inode *dir,
struct ext4_dir_entry_2 *de_del,
struct buffer_head *bh)
{
int err, csum_size = 0;
if (ext4_has_inline_data(dir)) {
int has_inline_data = 1;
err = ext4_delete_inline_entry(handle, dir, de_del, bh,
&has_inline_data);
if (has_inline_data)
return err;
}
if (EXT4_HAS_RO_COMPAT_FEATURE(dir->i_sb,
EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
csum_size = sizeof(struct ext4_dir_entry_tail);
BUFFER_TRACE(bh, "get_write_access");
err = ext4_journal_get_write_access(handle, bh);
if (unlikely(err))
goto out;
err = ext4_generic_delete_entry(handle, dir, de_del,
bh, bh->b_data,
dir->i_sb->s_blocksize, csum_size);
if (err)
goto out;
BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
err = ext4_handle_dirty_dirent_node(handle, dir, bh);
if (unlikely(err))
goto out;
return 0;
out:
if (err != -ENOENT)
ext4_std_error(dir->i_sb, err);
return err;
}
/*
* DIR_NLINK feature is set if 1) nlinks > EXT4_LINK_MAX or 2) nlinks == 2,
* since this indicates that nlinks count was previously 1.
*/
static void ext4_inc_count(handle_t *handle, struct inode *inode)
{
inc_nlink(inode);
if (is_dx(inode) && inode->i_nlink > 1) {
/* limit is 16-bit i_links_count */
if (inode->i_nlink >= EXT4_LINK_MAX || inode->i_nlink == 2) {
set_nlink(inode, 1);
EXT4_SET_RO_COMPAT_FEATURE(inode->i_sb,
EXT4_FEATURE_RO_COMPAT_DIR_NLINK);
}
}
}
/*
* If a directory had nlink == 1, then we should let it be 1. This indicates
* directory has >EXT4_LINK_MAX subdirs.
*/
static void ext4_dec_count(handle_t *handle, struct inode *inode)
{
if (!S_ISDIR(inode->i_mode) || inode->i_nlink > 2)
drop_nlink(inode);
}
static int ext4_add_nondir(handle_t *handle,
struct dentry *dentry, struct inode *inode)
{
int err = ext4_add_entry(handle, dentry, inode);
if (!err) {
ext4_mark_inode_dirty(handle, inode);
unlock_new_inode(inode);
d_instantiate(dentry, inode);
return 0;
}
drop_nlink(inode);
unlock_new_inode(inode);
iput(inode);
return err;
}
/*
* By the time this is called, we already have created
* the directory cache entry for the new file, but it
* is so far negative - it has no inode.
*
* If the create succeeds, we fill in the inode information
* with d_instantiate().
*/
static int ext4_create(struct inode *dir, struct dentry *dentry, umode_t mode,
bool excl)
{
handle_t *handle;
struct inode *inode;
int err, credits, retries = 0;
dquot_initialize(dir);
credits = (EXT4_DATA_TRANS_BLOCKS(dir->i_sb) +
EXT4_INDEX_EXTRA_TRANS_BLOCKS + 3 +
EXT4_MAXQUOTAS_INIT_BLOCKS(dir->i_sb));
retry:
inode = ext4_new_inode_start_handle(dir, mode, &dentry->d_name, 0,
NULL, EXT4_HT_DIR, credits);
handle = ext4_journal_current_handle();
err = PTR_ERR(inode);
if (!IS_ERR(inode)) {
inode->i_op = &ext4_file_inode_operations;
inode->i_fop = &ext4_file_operations;
ext4_set_aops(inode);
err = ext4_add_nondir(handle, dentry, inode);
if (!err && IS_DIRSYNC(dir))
ext4_handle_sync(handle);
}
if (handle)
ext4_journal_stop(handle);
if (err == -ENOSPC && ext4_should_retry_alloc(dir->i_sb, &retries))
goto retry;
return err;
}
static int ext4_mknod(struct inode *dir, struct dentry *dentry,
umode_t mode, dev_t rdev)
{
handle_t *handle;
struct inode *inode;
int err, credits, retries = 0;
if (!new_valid_dev(rdev))
return -EINVAL;
dquot_initialize(dir);
credits = (EXT4_DATA_TRANS_BLOCKS(dir->i_sb) +
EXT4_INDEX_EXTRA_TRANS_BLOCKS + 3 +
EXT4_MAXQUOTAS_INIT_BLOCKS(dir->i_sb));
retry:
inode = ext4_new_inode_start_handle(dir, mode, &dentry->d_name, 0,
NULL, EXT4_HT_DIR, credits);
handle = ext4_journal_current_handle();
err = PTR_ERR(inode);
if (!IS_ERR(inode)) {
init_special_inode(inode, inode->i_mode, rdev);
inode->i_op = &ext4_special_inode_operations;
err = ext4_add_nondir(handle, dentry, inode);
if (!err && IS_DIRSYNC(dir))
ext4_handle_sync(handle);
}
if (handle)
ext4_journal_stop(handle);
if (err == -ENOSPC && ext4_should_retry_alloc(dir->i_sb, &retries))
goto retry;
return err;
}
struct ext4_dir_entry_2 *ext4_init_dot_dotdot(struct inode *inode,
struct ext4_dir_entry_2 *de,
int blocksize, int csum_size,
unsigned int parent_ino, int dotdot_real_len)
{
de->inode = cpu_to_le32(inode->i_ino);
de->name_len = 1;
de->rec_len = ext4_rec_len_to_disk(EXT4_DIR_REC_LEN(de->name_len),
blocksize);
strcpy(de->name, ".");
ext4_set_de_type(inode->i_sb, de, S_IFDIR);
de = ext4_next_entry(de, blocksize);
de->inode = cpu_to_le32(parent_ino);
de->name_len = 2;
if (!dotdot_real_len)
de->rec_len = ext4_rec_len_to_disk(blocksize -
(csum_size + EXT4_DIR_REC_LEN(1)),
blocksize);
else
de->rec_len = ext4_rec_len_to_disk(
EXT4_DIR_REC_LEN(de->name_len), blocksize);
strcpy(de->name, "..");
ext4_set_de_type(inode->i_sb, de, S_IFDIR);
return ext4_next_entry(de, blocksize);
}
static int ext4_init_new_dir(handle_t *handle, struct inode *dir,
struct inode *inode)
{
struct buffer_head *dir_block = NULL;
struct ext4_dir_entry_2 *de;
struct ext4_dir_entry_tail *t;
ext4_lblk_t block = 0;
unsigned int blocksize = dir->i_sb->s_blocksize;
int csum_size = 0;
int err;
if (EXT4_HAS_RO_COMPAT_FEATURE(dir->i_sb,
EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
csum_size = sizeof(struct ext4_dir_entry_tail);
if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
err = ext4_try_create_inline_dir(handle, dir, inode);
if (err < 0 && err != -ENOSPC)
goto out;
if (!err)
goto out;
}
inode->i_size = 0;
dir_block = ext4_append(handle, inode, &block);
if (IS_ERR(dir_block))
return PTR_ERR(dir_block);
BUFFER_TRACE(dir_block, "get_write_access");
err = ext4_journal_get_write_access(handle, dir_block);
if (err)
goto out;
de = (struct ext4_dir_entry_2 *)dir_block->b_data;
ext4_init_dot_dotdot(inode, de, blocksize, csum_size, dir->i_ino, 0);
set_nlink(inode, 2);
if (csum_size) {
t = EXT4_DIRENT_TAIL(dir_block->b_data, blocksize);
initialize_dirent_tail(t, blocksize);
}
BUFFER_TRACE(dir_block, "call ext4_handle_dirty_metadata");
err = ext4_handle_dirty_dirent_node(handle, inode, dir_block);
if (err)
goto out;
set_buffer_verified(dir_block);
out:
brelse(dir_block);
return err;
}
static int ext4_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
{
handle_t *handle;
struct inode *inode;
int err, credits, retries = 0;
if (EXT4_DIR_LINK_MAX(dir))
return -EMLINK;
dquot_initialize(dir);
credits = (EXT4_DATA_TRANS_BLOCKS(dir->i_sb) +
EXT4_INDEX_EXTRA_TRANS_BLOCKS + 3 +
EXT4_MAXQUOTAS_INIT_BLOCKS(dir->i_sb));
retry:
inode = ext4_new_inode_start_handle(dir, S_IFDIR | mode,
&dentry->d_name,
0, NULL, EXT4_HT_DIR, credits);
handle = ext4_journal_current_handle();
err = PTR_ERR(inode);
if (IS_ERR(inode))
goto out_stop;
inode->i_op = &ext4_dir_inode_operations;
inode->i_fop = &ext4_dir_operations;
err = ext4_init_new_dir(handle, dir, inode);
if (err)
goto out_clear_inode;
err = ext4_mark_inode_dirty(handle, inode);
if (!err)
err = ext4_add_entry(handle, dentry, inode);
if (err) {
out_clear_inode:
clear_nlink(inode);
unlock_new_inode(inode);
ext4_mark_inode_dirty(handle, inode);
iput(inode);
goto out_stop;
}
ext4_inc_count(handle, dir);
ext4_update_dx_flag(dir);
err = ext4_mark_inode_dirty(handle, dir);
if (err)
goto out_clear_inode;
unlock_new_inode(inode);
d_instantiate(dentry, inode);
if (IS_DIRSYNC(dir))
ext4_handle_sync(handle);
out_stop:
if (handle)
ext4_journal_stop(handle);
if (err == -ENOSPC && ext4_should_retry_alloc(dir->i_sb, &retries))
goto retry;
return err;
}
/*
* routine to check that the specified directory is empty (for rmdir)
*/
static int empty_dir(struct inode *inode)
{
unsigned int offset;
struct buffer_head *bh;
struct ext4_dir_entry_2 *de, *de1;
struct super_block *sb;
int err = 0;
if (ext4_has_inline_data(inode)) {
int has_inline_data = 1;
err = empty_inline_dir(inode, &has_inline_data);
if (has_inline_data)
return err;
}
sb = inode->i_sb;
if (inode->i_size < EXT4_DIR_REC_LEN(1) + EXT4_DIR_REC_LEN(2)) {
EXT4_ERROR_INODE(inode, "invalid size");
return 1;
}
bh = ext4_read_dirblock(inode, 0, EITHER);
if (IS_ERR(bh))
return 1;
de = (struct ext4_dir_entry_2 *) bh->b_data;
de1 = ext4_next_entry(de, sb->s_blocksize);
if (le32_to_cpu(de->inode) != inode->i_ino ||
!le32_to_cpu(de1->inode) ||
strcmp(".", de->name) ||
strcmp("..", de1->name)) {
ext4_warning(inode->i_sb,
"bad directory (dir #%lu) - no `.' or `..'",
inode->i_ino);
brelse(bh);
return 1;
}
offset = ext4_rec_len_from_disk(de->rec_len, sb->s_blocksize) +
ext4_rec_len_from_disk(de1->rec_len, sb->s_blocksize);
de = ext4_next_entry(de1, sb->s_blocksize);
while (offset < inode->i_size) {
if (!bh ||
(void *) de >= (void *) (bh->b_data+sb->s_blocksize)) {
unsigned int lblock;
err = 0;
brelse(bh);
lblock = offset >> EXT4_BLOCK_SIZE_BITS(sb);
bh = ext4_read_dirblock(inode, lblock, EITHER);
if (IS_ERR(bh))
return 1;
de = (struct ext4_dir_entry_2 *) bh->b_data;
}
if (ext4_check_dir_entry(inode, NULL, de, bh,
bh->b_data, bh->b_size, offset)) {
de = (struct ext4_dir_entry_2 *)(bh->b_data +
sb->s_blocksize);
offset = (offset | (sb->s_blocksize - 1)) + 1;
continue;
}
if (le32_to_cpu(de->inode)) {
brelse(bh);
return 0;
}
offset += ext4_rec_len_from_disk(de->rec_len, sb->s_blocksize);
de = ext4_next_entry(de, sb->s_blocksize);
}
brelse(bh);
return 1;
}
/* ext4_orphan_add() links an unlinked or truncated inode into a list of
* such inodes, starting at the superblock, in case we crash before the
* file is closed/deleted, or in case the inode truncate spans multiple
* transactions and the last transaction is not recovered after a crash.
*
* At filesystem recovery time, we walk this list deleting unlinked
* inodes and truncating linked inodes in ext4_orphan_cleanup().
*/
int ext4_orphan_add(handle_t *handle, struct inode *inode)
{
struct super_block *sb = inode->i_sb;
struct ext4_iloc iloc;
int err = 0, rc;
if (!EXT4_SB(sb)->s_journal)
return 0;
mutex_lock(&EXT4_SB(sb)->s_orphan_lock);
if (!list_empty(&EXT4_I(inode)->i_orphan))
goto out_unlock;
/*
* Orphan handling is only valid for files with data blocks
* being truncated, or files being unlinked. Note that we either
* hold i_mutex, or the inode can not be referenced from outside,
* so i_nlink should not be bumped due to race
*/
J_ASSERT((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
S_ISLNK(inode->i_mode)) || inode->i_nlink == 0);
BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get_write_access");
err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
if (err)
goto out_unlock;
err = ext4_reserve_inode_write(handle, inode, &iloc);
if (err)
goto out_unlock;
/*
* Due to previous errors inode may be already a part of on-disk
* orphan list. If so skip on-disk list modification.
*/
if (NEXT_ORPHAN(inode) && NEXT_ORPHAN(inode) <=
(le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)))
goto mem_insert;
/* Insert this inode at the head of the on-disk orphan list... */
NEXT_ORPHAN(inode) = le32_to_cpu(EXT4_SB(sb)->s_es->s_last_orphan);
EXT4_SB(sb)->s_es->s_last_orphan = cpu_to_le32(inode->i_ino);
err = ext4_handle_dirty_super(handle, sb);
rc = ext4_mark_iloc_dirty(handle, inode, &iloc);
if (!err)
err = rc;
/* Only add to the head of the in-memory list if all the
* previous operations succeeded. If the orphan_add is going to
* fail (possibly taking the journal offline), we can't risk
* leaving the inode on the orphan list: stray orphan-list
* entries can cause panics at unmount time.
*
* This is safe: on error we're going to ignore the orphan list
* anyway on the next recovery. */
mem_insert:
if (!err)
list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
jbd_debug(4, "superblock will point to %lu\n", inode->i_ino);
jbd_debug(4, "orphan inode %lu will point to %d\n",
inode->i_ino, NEXT_ORPHAN(inode));
out_unlock:
mutex_unlock(&EXT4_SB(sb)->s_orphan_lock);
ext4_std_error(inode->i_sb, err);
return err;
}
/*
* ext4_orphan_del() removes an unlinked or truncated inode from the list
* of such inodes stored on disk, because it is finally being cleaned up.
*/
int ext4_orphan_del(handle_t *handle, struct inode *inode)
{
struct list_head *prev;
struct ext4_inode_info *ei = EXT4_I(inode);
struct ext4_sb_info *sbi;
__u32 ino_next;
struct ext4_iloc iloc;
int err = 0;
if ((!EXT4_SB(inode->i_sb)->s_journal) &&
!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS))
return 0;
mutex_lock(&EXT4_SB(inode->i_sb)->s_orphan_lock);
if (list_empty(&ei->i_orphan))
goto out;
ino_next = NEXT_ORPHAN(inode);
prev = ei->i_orphan.prev;
sbi = EXT4_SB(inode->i_sb);
jbd_debug(4, "remove inode %lu from orphan list\n", inode->i_ino);
list_del_init(&ei->i_orphan);
/* If we're on an error path, we may not have a valid
* transaction handle with which to update the orphan list on
* disk, but we still need to remove the inode from the linked
* list in memory. */
if (!handle)
goto out;
err = ext4_reserve_inode_write(handle, inode, &iloc);
if (err)
goto out_err;
if (prev == &sbi->s_orphan) {
jbd_debug(4, "superblock will point to %u\n", ino_next);
BUFFER_TRACE(sbi->s_sbh, "get_write_access");
err = ext4_journal_get_write_access(handle, sbi->s_sbh);
if (err)
goto out_brelse;
sbi->s_es->s_last_orphan = cpu_to_le32(ino_next);
err = ext4_handle_dirty_super(handle, inode->i_sb);
} else {
struct ext4_iloc iloc2;
struct inode *i_prev =
&list_entry(prev, struct ext4_inode_info, i_orphan)->vfs_inode;
jbd_debug(4, "orphan inode %lu will point to %u\n",
i_prev->i_ino, ino_next);
err = ext4_reserve_inode_write(handle, i_prev, &iloc2);
if (err)
goto out_brelse;
NEXT_ORPHAN(i_prev) = ino_next;
err = ext4_mark_iloc_dirty(handle, i_prev, &iloc2);
}
if (err)
goto out_brelse;
NEXT_ORPHAN(inode) = 0;
err = ext4_mark_iloc_dirty(handle, inode, &iloc);
out_err:
ext4_std_error(inode->i_sb, err);
out:
mutex_unlock(&EXT4_SB(inode->i_sb)->s_orphan_lock);
return err;
out_brelse:
brelse(iloc.bh);
goto out_err;
}
static int ext4_rmdir(struct inode *dir, struct dentry *dentry)
{
int retval;
struct inode *inode;
struct buffer_head *bh;
struct ext4_dir_entry_2 *de;
handle_t *handle = NULL;
/* Initialize quotas before so that eventual writes go in
* separate transaction */
dquot_initialize(dir);
dquot_initialize(dentry->d_inode);
retval = -ENOENT;
bh = ext4_find_entry(dir, &dentry->d_name, &de, NULL);
if (!bh)
goto end_rmdir;
inode = dentry->d_inode;
retval = -EIO;
if (le32_to_cpu(de->inode) != inode->i_ino)
goto end_rmdir;
retval = -ENOTEMPTY;
if (!empty_dir(inode))
goto end_rmdir;
handle = ext4_journal_start(dir, EXT4_HT_DIR,
EXT4_DATA_TRANS_BLOCKS(dir->i_sb));
if (IS_ERR(handle)) {
retval = PTR_ERR(handle);
handle = NULL;
goto end_rmdir;
}
if (IS_DIRSYNC(dir))
ext4_handle_sync(handle);
retval = ext4_delete_entry(handle, dir, de, bh);
if (retval)
goto end_rmdir;
if (!EXT4_DIR_LINK_EMPTY(inode))
ext4_warning(inode->i_sb,
"empty directory has too many links (%d)",
inode->i_nlink);
inode->i_version++;
clear_nlink(inode);
/* There's no need to set i_disksize: the fact that i_nlink is
* zero will ensure that the right thing happens during any
* recovery. */
inode->i_size = 0;
ext4_orphan_add(handle, inode);
inode->i_ctime = dir->i_ctime = dir->i_mtime = ext4_current_time(inode);
ext4_mark_inode_dirty(handle, inode);
ext4_dec_count(handle, dir);
ext4_update_dx_flag(dir);
ext4_mark_inode_dirty(handle, dir);
end_rmdir:
brelse(bh);
if (handle)
ext4_journal_stop(handle);
return retval;
}
static int ext4_unlink(struct inode *dir, struct dentry *dentry)
{
int retval;
struct inode *inode;
struct buffer_head *bh;
struct ext4_dir_entry_2 *de;
handle_t *handle = NULL;
trace_ext4_unlink_enter(dir, dentry);
/* Initialize quotas before so that eventual writes go
* in separate transaction */
dquot_initialize(dir);
dquot_initialize(dentry->d_inode);
retval = -ENOENT;
bh = ext4_find_entry(dir, &dentry->d_name, &de, NULL);
if (!bh)
goto end_unlink;
inode = dentry->d_inode;
retval = -EIO;
if (le32_to_cpu(de->inode) != inode->i_ino)
goto end_unlink;
handle = ext4_journal_start(dir, EXT4_HT_DIR,
EXT4_DATA_TRANS_BLOCKS(dir->i_sb));
if (IS_ERR(handle)) {
retval = PTR_ERR(handle);
handle = NULL;
goto end_unlink;
}
if (IS_DIRSYNC(dir))
ext4_handle_sync(handle);
if (!inode->i_nlink) {
ext4_warning(inode->i_sb,
"Deleting nonexistent file (%lu), %d",
inode->i_ino, inode->i_nlink);
set_nlink(inode, 1);
}
retval = ext4_delete_entry(handle, dir, de, bh);
if (retval)
goto end_unlink;
dir->i_ctime = dir->i_mtime = ext4_current_time(dir);
ext4_update_dx_flag(dir);
ext4_mark_inode_dirty(handle, dir);
drop_nlink(inode);
if (!inode->i_nlink)
ext4_orphan_add(handle, inode);
inode->i_ctime = ext4_current_time(inode);
ext4_mark_inode_dirty(handle, inode);
retval = 0;
end_unlink:
brelse(bh);
if (handle)
ext4_journal_stop(handle);
trace_ext4_unlink_exit(dentry, retval);
return retval;
}
static int ext4_symlink(struct inode *dir,
struct dentry *dentry, const char *symname)
{
handle_t *handle;
struct inode *inode;
int l, err, retries = 0;
int credits;
l = strlen(symname)+1;
if (l > dir->i_sb->s_blocksize)
return -ENAMETOOLONG;
dquot_initialize(dir);
if (l > EXT4_N_BLOCKS * 4) {
/*
* For non-fast symlinks, we just allocate inode and put it on
* orphan list in the first transaction => we need bitmap,
* group descriptor, sb, inode block, quota blocks, and
* possibly selinux xattr blocks.
*/
credits = 4 + EXT4_MAXQUOTAS_INIT_BLOCKS(dir->i_sb) +
EXT4_XATTR_TRANS_BLOCKS;
} else {
/*
* Fast symlink. We have to add entry to directory
* (EXT4_DATA_TRANS_BLOCKS + EXT4_INDEX_EXTRA_TRANS_BLOCKS),
* allocate new inode (bitmap, group descriptor, inode block,
* quota blocks, sb is already counted in previous macros).
*/
credits = EXT4_DATA_TRANS_BLOCKS(dir->i_sb) +
EXT4_INDEX_EXTRA_TRANS_BLOCKS + 3 +
EXT4_MAXQUOTAS_INIT_BLOCKS(dir->i_sb);
}
retry:
inode = ext4_new_inode_start_handle(dir, S_IFLNK|S_IRWXUGO,
&dentry->d_name, 0, NULL,
EXT4_HT_DIR, credits);
handle = ext4_journal_current_handle();
err = PTR_ERR(inode);
if (IS_ERR(inode))
goto out_stop;
if (l > EXT4_N_BLOCKS * 4) {
inode->i_op = &ext4_symlink_inode_operations;
ext4_set_aops(inode);
/*
* We cannot call page_symlink() with transaction started
* because it calls into ext4_write_begin() which can wait
* for transaction commit if we are running out of space
* and thus we deadlock. So we have to stop transaction now
* and restart it when symlink contents is written.
*
* To keep fs consistent in case of crash, we have to put inode
* to orphan list in the mean time.
*/
drop_nlink(inode);
err = ext4_orphan_add(handle, inode);
ext4_journal_stop(handle);
if (err)
goto err_drop_inode;
err = __page_symlink(inode, symname, l, 1);
if (err)
goto err_drop_inode;
/*
* Now inode is being linked into dir (EXT4_DATA_TRANS_BLOCKS
* + EXT4_INDEX_EXTRA_TRANS_BLOCKS), inode is also modified
*/
handle = ext4_journal_start(dir, EXT4_HT_DIR,
EXT4_DATA_TRANS_BLOCKS(dir->i_sb) +
EXT4_INDEX_EXTRA_TRANS_BLOCKS + 1);
if (IS_ERR(handle)) {
err = PTR_ERR(handle);
goto err_drop_inode;
}
set_nlink(inode, 1);
err = ext4_orphan_del(handle, inode);
if (err) {
ext4_journal_stop(handle);
clear_nlink(inode);
goto err_drop_inode;
}
} else {
/* clear the extent format for fast symlink */
ext4_clear_inode_flag(inode, EXT4_INODE_EXTENTS);
inode->i_op = &ext4_fast_symlink_inode_operations;
memcpy((char *)&EXT4_I(inode)->i_data, symname, l);
inode->i_size = l-1;
}
EXT4_I(inode)->i_disksize = inode->i_size;
err = ext4_add_nondir(handle, dentry, inode);
if (!err && IS_DIRSYNC(dir))
ext4_handle_sync(handle);
out_stop:
if (handle)
ext4_journal_stop(handle);
if (err == -ENOSPC && ext4_should_retry_alloc(dir->i_sb, &retries))
goto retry;
return err;
err_drop_inode:
unlock_new_inode(inode);
iput(inode);
return err;
}
static int ext4_link(struct dentry *old_dentry,
struct inode *dir, struct dentry *dentry)
{
handle_t *handle;
struct inode *inode = old_dentry->d_inode;
int err, retries = 0;
if (inode->i_nlink >= EXT4_LINK_MAX)
return -EMLINK;
dquot_initialize(dir);
retry:
handle = ext4_journal_start(dir, EXT4_HT_DIR,
(EXT4_DATA_TRANS_BLOCKS(dir->i_sb) +
EXT4_INDEX_EXTRA_TRANS_BLOCKS));
if (IS_ERR(handle))
return PTR_ERR(handle);
if (IS_DIRSYNC(dir))
ext4_handle_sync(handle);
inode->i_ctime = ext4_current_time(inode);
ext4_inc_count(handle, inode);
ihold(inode);
err = ext4_add_entry(handle, dentry, inode);
if (!err) {
ext4_mark_inode_dirty(handle, inode);
d_instantiate(dentry, inode);
} else {
drop_nlink(inode);
iput(inode);
}
ext4_journal_stop(handle);
if (err == -ENOSPC && ext4_should_retry_alloc(dir->i_sb, &retries))
goto retry;
return err;
}
/*
* Try to find buffer head where contains the parent block.
* It should be the inode block if it is inlined or the 1st block
* if it is a normal dir.
*/
static struct buffer_head *ext4_get_first_dir_block(handle_t *handle,
struct inode *inode,
int *retval,
struct ext4_dir_entry_2 **parent_de,
int *inlined)
{
struct buffer_head *bh;
if (!ext4_has_inline_data(inode)) {
bh = ext4_read_dirblock(inode, 0, EITHER);
if (IS_ERR(bh)) {
*retval = PTR_ERR(bh);
return NULL;
}
*parent_de = ext4_next_entry(
(struct ext4_dir_entry_2 *)bh->b_data,
inode->i_sb->s_blocksize);
return bh;
}
*inlined = 1;
return ext4_get_first_inline_block(inode, parent_de, retval);
}
/*
* Anybody can rename anything with this: the permission checks are left to the
* higher-level routines.
*/
static int ext4_rename(struct inode *old_dir, struct dentry *old_dentry,
struct inode *new_dir, struct dentry *new_dentry)
{
handle_t *handle;
struct inode *old_inode, *new_inode;
struct buffer_head *old_bh, *new_bh, *dir_bh;
struct ext4_dir_entry_2 *old_de, *new_de;
int retval, force_da_alloc = 0;
int inlined = 0, new_inlined = 0;
struct ext4_dir_entry_2 *parent_de;
dquot_initialize(old_dir);
dquot_initialize(new_dir);
old_bh = new_bh = dir_bh = NULL;
/* Initialize quotas before so that eventual writes go
* in separate transaction */
if (new_dentry->d_inode)
dquot_initialize(new_dentry->d_inode);
handle = ext4_journal_start(old_dir, EXT4_HT_DIR,
(2 * EXT4_DATA_TRANS_BLOCKS(old_dir->i_sb) +
EXT4_INDEX_EXTRA_TRANS_BLOCKS + 2));
if (IS_ERR(handle))
return PTR_ERR(handle);
if (IS_DIRSYNC(old_dir) || IS_DIRSYNC(new_dir))
ext4_handle_sync(handle);
old_bh = ext4_find_entry(old_dir, &old_dentry->d_name, &old_de, NULL);
/*
* Check for inode number is _not_ due to possible IO errors.
* We might rmdir the source, keep it as pwd of some process
* and merrily kill the link to whatever was created under the
* same name. Goodbye sticky bit ;-<
*/
old_inode = old_dentry->d_inode;
retval = -ENOENT;
if (!old_bh || le32_to_cpu(old_de->inode) != old_inode->i_ino)
goto end_rename;
new_inode = new_dentry->d_inode;
new_bh = ext4_find_entry(new_dir, &new_dentry->d_name,
&new_de, &new_inlined);
if (new_bh) {
if (!new_inode) {
brelse(new_bh);
new_bh = NULL;
}
}
if (S_ISDIR(old_inode->i_mode)) {
if (new_inode) {
retval = -ENOTEMPTY;
if (!empty_dir(new_inode))
goto end_rename;
}
retval = -EIO;
dir_bh = ext4_get_first_dir_block(handle, old_inode,
&retval, &parent_de,
&inlined);
if (!dir_bh)
goto end_rename;
if (le32_to_cpu(parent_de->inode) != old_dir->i_ino)
goto end_rename;
retval = -EMLINK;
if (!new_inode && new_dir != old_dir &&
EXT4_DIR_LINK_MAX(new_dir))
goto end_rename;
BUFFER_TRACE(dir_bh, "get_write_access");
retval = ext4_journal_get_write_access(handle, dir_bh);
if (retval)
goto end_rename;
}
if (!new_bh) {
retval = ext4_add_entry(handle, new_dentry, old_inode);
if (retval)
goto end_rename;
} else {
BUFFER_TRACE(new_bh, "get write access");
retval = ext4_journal_get_write_access(handle, new_bh);
if (retval)
goto end_rename;
new_de->inode = cpu_to_le32(old_inode->i_ino);
if (EXT4_HAS_INCOMPAT_FEATURE(new_dir->i_sb,
EXT4_FEATURE_INCOMPAT_FILETYPE))
new_de->file_type = old_de->file_type;
new_dir->i_version++;
new_dir->i_ctime = new_dir->i_mtime =
ext4_current_time(new_dir);
ext4_mark_inode_dirty(handle, new_dir);
BUFFER_TRACE(new_bh, "call ext4_handle_dirty_metadata");
if (!new_inlined) {
retval = ext4_handle_dirty_dirent_node(handle,
new_dir, new_bh);
if (unlikely(retval)) {
ext4_std_error(new_dir->i_sb, retval);
goto end_rename;
}
}
brelse(new_bh);
new_bh = NULL;
}
/*
* Like most other Unix systems, set the ctime for inodes on a
* rename.
*/
old_inode->i_ctime = ext4_current_time(old_inode);
ext4_mark_inode_dirty(handle, old_inode);
/*
* ok, that's it
*/
if (le32_to_cpu(old_de->inode) != old_inode->i_ino ||
old_de->name_len != old_dentry->d_name.len ||
strncmp(old_de->name, old_dentry->d_name.name, old_de->name_len) ||
(retval = ext4_delete_entry(handle, old_dir,
old_de, old_bh)) == -ENOENT) {
/* old_de could have moved from under us during htree split, so
* make sure that we are deleting the right entry. We might
* also be pointing to a stale entry in the unused part of
* old_bh so just checking inum and the name isn't enough. */
struct buffer_head *old_bh2;
struct ext4_dir_entry_2 *old_de2;
old_bh2 = ext4_find_entry(old_dir, &old_dentry->d_name,
&old_de2, NULL);
if (old_bh2) {
retval = ext4_delete_entry(handle, old_dir,
old_de2, old_bh2);
brelse(old_bh2);
}
}
if (retval) {
ext4_warning(old_dir->i_sb,
"Deleting old file (%lu), %d, error=%d",
old_dir->i_ino, old_dir->i_nlink, retval);
}
if (new_inode) {
ext4_dec_count(handle, new_inode);
new_inode->i_ctime = ext4_current_time(new_inode);
}
old_dir->i_ctime = old_dir->i_mtime = ext4_current_time(old_dir);
ext4_update_dx_flag(old_dir);
if (dir_bh) {
parent_de->inode = cpu_to_le32(new_dir->i_ino);
BUFFER_TRACE(dir_bh, "call ext4_handle_dirty_metadata");
if (!inlined) {
if (is_dx(old_inode)) {
retval = ext4_handle_dirty_dx_node(handle,
old_inode,
dir_bh);
} else {
retval = ext4_handle_dirty_dirent_node(handle,
old_inode, dir_bh);
}
} else {
retval = ext4_mark_inode_dirty(handle, old_inode);
}
if (retval) {
ext4_std_error(old_dir->i_sb, retval);
goto end_rename;
}
ext4_dec_count(handle, old_dir);
if (new_inode) {
/* checked empty_dir above, can't have another parent,
* ext4_dec_count() won't work for many-linked dirs */
clear_nlink(new_inode);
} else {
ext4_inc_count(handle, new_dir);
ext4_update_dx_flag(new_dir);
ext4_mark_inode_dirty(handle, new_dir);
}
}
ext4_mark_inode_dirty(handle, old_dir);
if (new_inode) {
ext4_mark_inode_dirty(handle, new_inode);
if (!new_inode->i_nlink)
ext4_orphan_add(handle, new_inode);
if (!test_opt(new_dir->i_sb, NO_AUTO_DA_ALLOC))
force_da_alloc = 1;
}
retval = 0;
end_rename:
brelse(dir_bh);
brelse(old_bh);
brelse(new_bh);
ext4_journal_stop(handle);
if (retval == 0 && force_da_alloc)
ext4_alloc_da_blocks(old_inode);
return retval;
}
/*
* directories can handle most operations...
*/
const struct inode_operations ext4_dir_inode_operations = {
.create = ext4_create,
.lookup = ext4_lookup,
.link = ext4_link,
.unlink = ext4_unlink,
.symlink = ext4_symlink,
.mkdir = ext4_mkdir,
.rmdir = ext4_rmdir,
.mknod = ext4_mknod,
.rename = ext4_rename,
.setattr = ext4_setattr,
.setxattr = generic_setxattr,
.getxattr = generic_getxattr,
.listxattr = ext4_listxattr,
.removexattr = generic_removexattr,
.get_acl = ext4_get_acl,
.fiemap = ext4_fiemap,
};
const struct inode_operations ext4_special_inode_operations = {
.setattr = ext4_setattr,
.setxattr = generic_setxattr,
.getxattr = generic_getxattr,
.listxattr = ext4_listxattr,
.removexattr = generic_removexattr,
.get_acl = ext4_get_acl,
};