mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-15 23:56:45 +07:00
c57753d454
Offending Commit: 6e94119
"mtd: nand: return consistent error codes in
ecc.correct() implementations"
The new error code was not being handled properly in double bit error
detection.
Signed-off-by: Jorge Ramirez-Ortiz <jorge.ramirez-ortiz@linaro.org>
Reviewed-by: Boris Brezillon <boris.brezillon@free-electrons.com>
Tested-by: Franklin S Cooper Jr <fcooper@ti.com>
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
323 lines
7.9 KiB
C
323 lines
7.9 KiB
C
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/list.h>
|
|
#include <linux/random.h>
|
|
#include <linux/string.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/mtd/nand_ecc.h>
|
|
|
|
#include "mtd_test.h"
|
|
|
|
/*
|
|
* Test the implementation for software ECC
|
|
*
|
|
* No actual MTD device is needed, So we don't need to warry about losing
|
|
* important data by human error.
|
|
*
|
|
* This covers possible patterns of corruption which can be reliably corrected
|
|
* or detected.
|
|
*/
|
|
|
|
#if IS_ENABLED(CONFIG_MTD_NAND)
|
|
|
|
struct nand_ecc_test {
|
|
const char *name;
|
|
void (*prepare)(void *, void *, void *, void *, const size_t);
|
|
int (*verify)(void *, void *, void *, const size_t);
|
|
};
|
|
|
|
/*
|
|
* The reason for this __change_bit_le() instead of __change_bit() is to inject
|
|
* bit error properly within the region which is not a multiple of
|
|
* sizeof(unsigned long) on big-endian systems
|
|
*/
|
|
#ifdef __LITTLE_ENDIAN
|
|
#define __change_bit_le(nr, addr) __change_bit(nr, addr)
|
|
#elif defined(__BIG_ENDIAN)
|
|
#define __change_bit_le(nr, addr) \
|
|
__change_bit((nr) ^ ((BITS_PER_LONG - 1) & ~0x7), addr)
|
|
#else
|
|
#error "Unknown byte order"
|
|
#endif
|
|
|
|
static void single_bit_error_data(void *error_data, void *correct_data,
|
|
size_t size)
|
|
{
|
|
unsigned int offset = prandom_u32() % (size * BITS_PER_BYTE);
|
|
|
|
memcpy(error_data, correct_data, size);
|
|
__change_bit_le(offset, error_data);
|
|
}
|
|
|
|
static void double_bit_error_data(void *error_data, void *correct_data,
|
|
size_t size)
|
|
{
|
|
unsigned int offset[2];
|
|
|
|
offset[0] = prandom_u32() % (size * BITS_PER_BYTE);
|
|
do {
|
|
offset[1] = prandom_u32() % (size * BITS_PER_BYTE);
|
|
} while (offset[0] == offset[1]);
|
|
|
|
memcpy(error_data, correct_data, size);
|
|
|
|
__change_bit_le(offset[0], error_data);
|
|
__change_bit_le(offset[1], error_data);
|
|
}
|
|
|
|
static unsigned int random_ecc_bit(size_t size)
|
|
{
|
|
unsigned int offset = prandom_u32() % (3 * BITS_PER_BYTE);
|
|
|
|
if (size == 256) {
|
|
/*
|
|
* Don't inject a bit error into the insignificant bits (16th
|
|
* and 17th bit) in ECC code for 256 byte data block
|
|
*/
|
|
while (offset == 16 || offset == 17)
|
|
offset = prandom_u32() % (3 * BITS_PER_BYTE);
|
|
}
|
|
|
|
return offset;
|
|
}
|
|
|
|
static void single_bit_error_ecc(void *error_ecc, void *correct_ecc,
|
|
size_t size)
|
|
{
|
|
unsigned int offset = random_ecc_bit(size);
|
|
|
|
memcpy(error_ecc, correct_ecc, 3);
|
|
__change_bit_le(offset, error_ecc);
|
|
}
|
|
|
|
static void double_bit_error_ecc(void *error_ecc, void *correct_ecc,
|
|
size_t size)
|
|
{
|
|
unsigned int offset[2];
|
|
|
|
offset[0] = random_ecc_bit(size);
|
|
do {
|
|
offset[1] = random_ecc_bit(size);
|
|
} while (offset[0] == offset[1]);
|
|
|
|
memcpy(error_ecc, correct_ecc, 3);
|
|
__change_bit_le(offset[0], error_ecc);
|
|
__change_bit_le(offset[1], error_ecc);
|
|
}
|
|
|
|
static void no_bit_error(void *error_data, void *error_ecc,
|
|
void *correct_data, void *correct_ecc, const size_t size)
|
|
{
|
|
memcpy(error_data, correct_data, size);
|
|
memcpy(error_ecc, correct_ecc, 3);
|
|
}
|
|
|
|
static int no_bit_error_verify(void *error_data, void *error_ecc,
|
|
void *correct_data, const size_t size)
|
|
{
|
|
unsigned char calc_ecc[3];
|
|
int ret;
|
|
|
|
__nand_calculate_ecc(error_data, size, calc_ecc);
|
|
ret = __nand_correct_data(error_data, error_ecc, calc_ecc, size);
|
|
if (ret == 0 && !memcmp(correct_data, error_data, size))
|
|
return 0;
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
static void single_bit_error_in_data(void *error_data, void *error_ecc,
|
|
void *correct_data, void *correct_ecc, const size_t size)
|
|
{
|
|
single_bit_error_data(error_data, correct_data, size);
|
|
memcpy(error_ecc, correct_ecc, 3);
|
|
}
|
|
|
|
static void single_bit_error_in_ecc(void *error_data, void *error_ecc,
|
|
void *correct_data, void *correct_ecc, const size_t size)
|
|
{
|
|
memcpy(error_data, correct_data, size);
|
|
single_bit_error_ecc(error_ecc, correct_ecc, size);
|
|
}
|
|
|
|
static int single_bit_error_correct(void *error_data, void *error_ecc,
|
|
void *correct_data, const size_t size)
|
|
{
|
|
unsigned char calc_ecc[3];
|
|
int ret;
|
|
|
|
__nand_calculate_ecc(error_data, size, calc_ecc);
|
|
ret = __nand_correct_data(error_data, error_ecc, calc_ecc, size);
|
|
if (ret == 1 && !memcmp(correct_data, error_data, size))
|
|
return 0;
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
static void double_bit_error_in_data(void *error_data, void *error_ecc,
|
|
void *correct_data, void *correct_ecc, const size_t size)
|
|
{
|
|
double_bit_error_data(error_data, correct_data, size);
|
|
memcpy(error_ecc, correct_ecc, 3);
|
|
}
|
|
|
|
static void single_bit_error_in_data_and_ecc(void *error_data, void *error_ecc,
|
|
void *correct_data, void *correct_ecc, const size_t size)
|
|
{
|
|
single_bit_error_data(error_data, correct_data, size);
|
|
single_bit_error_ecc(error_ecc, correct_ecc, size);
|
|
}
|
|
|
|
static void double_bit_error_in_ecc(void *error_data, void *error_ecc,
|
|
void *correct_data, void *correct_ecc, const size_t size)
|
|
{
|
|
memcpy(error_data, correct_data, size);
|
|
double_bit_error_ecc(error_ecc, correct_ecc, size);
|
|
}
|
|
|
|
static int double_bit_error_detect(void *error_data, void *error_ecc,
|
|
void *correct_data, const size_t size)
|
|
{
|
|
unsigned char calc_ecc[3];
|
|
int ret;
|
|
|
|
__nand_calculate_ecc(error_data, size, calc_ecc);
|
|
ret = __nand_correct_data(error_data, error_ecc, calc_ecc, size);
|
|
|
|
return (ret == -EBADMSG) ? 0 : -EINVAL;
|
|
}
|
|
|
|
static const struct nand_ecc_test nand_ecc_test[] = {
|
|
{
|
|
.name = "no-bit-error",
|
|
.prepare = no_bit_error,
|
|
.verify = no_bit_error_verify,
|
|
},
|
|
{
|
|
.name = "single-bit-error-in-data-correct",
|
|
.prepare = single_bit_error_in_data,
|
|
.verify = single_bit_error_correct,
|
|
},
|
|
{
|
|
.name = "single-bit-error-in-ecc-correct",
|
|
.prepare = single_bit_error_in_ecc,
|
|
.verify = single_bit_error_correct,
|
|
},
|
|
{
|
|
.name = "double-bit-error-in-data-detect",
|
|
.prepare = double_bit_error_in_data,
|
|
.verify = double_bit_error_detect,
|
|
},
|
|
{
|
|
.name = "single-bit-error-in-data-and-ecc-detect",
|
|
.prepare = single_bit_error_in_data_and_ecc,
|
|
.verify = double_bit_error_detect,
|
|
},
|
|
{
|
|
.name = "double-bit-error-in-ecc-detect",
|
|
.prepare = double_bit_error_in_ecc,
|
|
.verify = double_bit_error_detect,
|
|
},
|
|
};
|
|
|
|
static void dump_data_ecc(void *error_data, void *error_ecc, void *correct_data,
|
|
void *correct_ecc, const size_t size)
|
|
{
|
|
pr_info("hexdump of error data:\n");
|
|
print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET, 16, 4,
|
|
error_data, size, false);
|
|
print_hex_dump(KERN_INFO, "hexdump of error ecc: ",
|
|
DUMP_PREFIX_NONE, 16, 1, error_ecc, 3, false);
|
|
|
|
pr_info("hexdump of correct data:\n");
|
|
print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET, 16, 4,
|
|
correct_data, size, false);
|
|
print_hex_dump(KERN_INFO, "hexdump of correct ecc: ",
|
|
DUMP_PREFIX_NONE, 16, 1, correct_ecc, 3, false);
|
|
}
|
|
|
|
static int nand_ecc_test_run(const size_t size)
|
|
{
|
|
int i;
|
|
int err = 0;
|
|
void *error_data;
|
|
void *error_ecc;
|
|
void *correct_data;
|
|
void *correct_ecc;
|
|
|
|
error_data = kmalloc(size, GFP_KERNEL);
|
|
error_ecc = kmalloc(3, GFP_KERNEL);
|
|
correct_data = kmalloc(size, GFP_KERNEL);
|
|
correct_ecc = kmalloc(3, GFP_KERNEL);
|
|
|
|
if (!error_data || !error_ecc || !correct_data || !correct_ecc) {
|
|
err = -ENOMEM;
|
|
goto error;
|
|
}
|
|
|
|
prandom_bytes(correct_data, size);
|
|
__nand_calculate_ecc(correct_data, size, correct_ecc);
|
|
|
|
for (i = 0; i < ARRAY_SIZE(nand_ecc_test); i++) {
|
|
nand_ecc_test[i].prepare(error_data, error_ecc,
|
|
correct_data, correct_ecc, size);
|
|
err = nand_ecc_test[i].verify(error_data, error_ecc,
|
|
correct_data, size);
|
|
|
|
if (err) {
|
|
pr_err("not ok - %s-%zd\n",
|
|
nand_ecc_test[i].name, size);
|
|
dump_data_ecc(error_data, error_ecc,
|
|
correct_data, correct_ecc, size);
|
|
break;
|
|
}
|
|
pr_info("ok - %s-%zd\n",
|
|
nand_ecc_test[i].name, size);
|
|
|
|
err = mtdtest_relax();
|
|
if (err)
|
|
break;
|
|
}
|
|
error:
|
|
kfree(error_data);
|
|
kfree(error_ecc);
|
|
kfree(correct_data);
|
|
kfree(correct_ecc);
|
|
|
|
return err;
|
|
}
|
|
|
|
#else
|
|
|
|
static int nand_ecc_test_run(const size_t size)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
#endif
|
|
|
|
static int __init ecc_test_init(void)
|
|
{
|
|
int err;
|
|
|
|
err = nand_ecc_test_run(256);
|
|
if (err)
|
|
return err;
|
|
|
|
return nand_ecc_test_run(512);
|
|
}
|
|
|
|
static void __exit ecc_test_exit(void)
|
|
{
|
|
}
|
|
|
|
module_init(ecc_test_init);
|
|
module_exit(ecc_test_exit);
|
|
|
|
MODULE_DESCRIPTION("NAND ECC function test module");
|
|
MODULE_AUTHOR("Akinobu Mita");
|
|
MODULE_LICENSE("GPL");
|