mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-22 04:16:33 +07:00
79f5f8fab4
This patch changes the way we set and handle in-use poisoned pages. Until now, poisoned pages were released to the buddy allocator, trusting that the checks that take place at allocation time would act as a safe net and would skip that page. This has proved to be wrong, as we got some pfn walkers out there, like compaction, that all they care is the page to be in a buddy freelist. Although this might not be the only user, having poisoned pages in the buddy allocator seems a bad idea as we should only have free pages that are ready and meant to be used as such. Before explaining the taken approach, let us break down the kind of pages we can soft offline. - Anonymous THP (after the split, they end up being 4K pages) - Hugetlb - Order-0 pages (that can be either migrated or invalited) * Normal pages (order-0 and anon-THP) - If they are clean and unmapped page cache pages, we invalidate then by means of invalidate_inode_page(). - If they are mapped/dirty, we do the isolate-and-migrate dance. Either way, do not call put_page directly from those paths. Instead, we keep the page and send it to page_handle_poison to perform the right handling. page_handle_poison sets the HWPoison flag and does the last put_page. Down the chain, we placed a check for HWPoison page in free_pages_prepare, that just skips any poisoned page, so those pages do not end up in any pcplist/freelist. After that, we set the refcount on the page to 1 and we increment the poisoned pages counter. If we see that the check in free_pages_prepare creates trouble, we can always do what we do for free pages: - wait until the page hits buddy's freelists - take it off, and flag it The downside of the above approach is that we could race with an allocation, so by the time we want to take the page off the buddy, the page has been already allocated so we cannot soft offline it. But the user could always retry it. * Hugetlb pages - We isolate-and-migrate them After the migration has been successful, we call dissolve_free_huge_page, and we set HWPoison on the page if we succeed. Hugetlb has a slightly different handling though. While for non-hugetlb pages we cared about closing the race with an allocation, doing so for hugetlb pages requires quite some additional and intrusive code (we would need to hook in free_huge_page and some other places). So I decided to not make the code overly complicated and just fail normally if the page we allocated in the meantime. We can always build on top of this. As a bonus, because of the way we handle now in-use pages, we no longer need the put-as-isolation-migratetype dance, that was guarding for poisoned pages to end up in pcplists. Signed-off-by: Oscar Salvador <osalvador@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.ibm.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: Aristeu Rozanski <aris@ruivo.org> Cc: Dave Hansen <dave.hansen@intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: Dmitry Yakunin <zeil@yandex-team.ru> Cc: Michal Hocko <mhocko@kernel.org> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Oscar Salvador <osalvador@suse.com> Cc: Qian Cai <cai@lca.pw> Cc: Tony Luck <tony.luck@intel.com> Link: https://lkml.kernel.org/r/20200922135650.1634-10-osalvador@suse.de Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
870 lines
28 KiB
C
870 lines
28 KiB
C
/* SPDX-License-Identifier: GPL-2.0 */
|
|
/*
|
|
* Macros for manipulating and testing page->flags
|
|
*/
|
|
|
|
#ifndef PAGE_FLAGS_H
|
|
#define PAGE_FLAGS_H
|
|
|
|
#include <linux/types.h>
|
|
#include <linux/bug.h>
|
|
#include <linux/mmdebug.h>
|
|
#ifndef __GENERATING_BOUNDS_H
|
|
#include <linux/mm_types.h>
|
|
#include <generated/bounds.h>
|
|
#endif /* !__GENERATING_BOUNDS_H */
|
|
|
|
/*
|
|
* Various page->flags bits:
|
|
*
|
|
* PG_reserved is set for special pages. The "struct page" of such a page
|
|
* should in general not be touched (e.g. set dirty) except by its owner.
|
|
* Pages marked as PG_reserved include:
|
|
* - Pages part of the kernel image (including vDSO) and similar (e.g. BIOS,
|
|
* initrd, HW tables)
|
|
* - Pages reserved or allocated early during boot (before the page allocator
|
|
* was initialized). This includes (depending on the architecture) the
|
|
* initial vmemmap, initial page tables, crashkernel, elfcorehdr, and much
|
|
* much more. Once (if ever) freed, PG_reserved is cleared and they will
|
|
* be given to the page allocator.
|
|
* - Pages falling into physical memory gaps - not IORESOURCE_SYSRAM. Trying
|
|
* to read/write these pages might end badly. Don't touch!
|
|
* - The zero page(s)
|
|
* - Pages not added to the page allocator when onlining a section because
|
|
* they were excluded via the online_page_callback() or because they are
|
|
* PG_hwpoison.
|
|
* - Pages allocated in the context of kexec/kdump (loaded kernel image,
|
|
* control pages, vmcoreinfo)
|
|
* - MMIO/DMA pages. Some architectures don't allow to ioremap pages that are
|
|
* not marked PG_reserved (as they might be in use by somebody else who does
|
|
* not respect the caching strategy).
|
|
* - Pages part of an offline section (struct pages of offline sections should
|
|
* not be trusted as they will be initialized when first onlined).
|
|
* - MCA pages on ia64
|
|
* - Pages holding CPU notes for POWER Firmware Assisted Dump
|
|
* - Device memory (e.g. PMEM, DAX, HMM)
|
|
* Some PG_reserved pages will be excluded from the hibernation image.
|
|
* PG_reserved does in general not hinder anybody from dumping or swapping
|
|
* and is no longer required for remap_pfn_range(). ioremap might require it.
|
|
* Consequently, PG_reserved for a page mapped into user space can indicate
|
|
* the zero page, the vDSO, MMIO pages or device memory.
|
|
*
|
|
* The PG_private bitflag is set on pagecache pages if they contain filesystem
|
|
* specific data (which is normally at page->private). It can be used by
|
|
* private allocations for its own usage.
|
|
*
|
|
* During initiation of disk I/O, PG_locked is set. This bit is set before I/O
|
|
* and cleared when writeback _starts_ or when read _completes_. PG_writeback
|
|
* is set before writeback starts and cleared when it finishes.
|
|
*
|
|
* PG_locked also pins a page in pagecache, and blocks truncation of the file
|
|
* while it is held.
|
|
*
|
|
* page_waitqueue(page) is a wait queue of all tasks waiting for the page
|
|
* to become unlocked.
|
|
*
|
|
* PG_swapbacked is set when a page uses swap as a backing storage. This are
|
|
* usually PageAnon or shmem pages but please note that even anonymous pages
|
|
* might lose their PG_swapbacked flag when they simply can be dropped (e.g. as
|
|
* a result of MADV_FREE).
|
|
*
|
|
* PG_uptodate tells whether the page's contents is valid. When a read
|
|
* completes, the page becomes uptodate, unless a disk I/O error happened.
|
|
*
|
|
* PG_referenced, PG_reclaim are used for page reclaim for anonymous and
|
|
* file-backed pagecache (see mm/vmscan.c).
|
|
*
|
|
* PG_error is set to indicate that an I/O error occurred on this page.
|
|
*
|
|
* PG_arch_1 is an architecture specific page state bit. The generic code
|
|
* guarantees that this bit is cleared for a page when it first is entered into
|
|
* the page cache.
|
|
*
|
|
* PG_hwpoison indicates that a page got corrupted in hardware and contains
|
|
* data with incorrect ECC bits that triggered a machine check. Accessing is
|
|
* not safe since it may cause another machine check. Don't touch!
|
|
*/
|
|
|
|
/*
|
|
* Don't use the *_dontuse flags. Use the macros. Otherwise you'll break
|
|
* locked- and dirty-page accounting.
|
|
*
|
|
* The page flags field is split into two parts, the main flags area
|
|
* which extends from the low bits upwards, and the fields area which
|
|
* extends from the high bits downwards.
|
|
*
|
|
* | FIELD | ... | FLAGS |
|
|
* N-1 ^ 0
|
|
* (NR_PAGEFLAGS)
|
|
*
|
|
* The fields area is reserved for fields mapping zone, node (for NUMA) and
|
|
* SPARSEMEM section (for variants of SPARSEMEM that require section ids like
|
|
* SPARSEMEM_EXTREME with !SPARSEMEM_VMEMMAP).
|
|
*/
|
|
enum pageflags {
|
|
PG_locked, /* Page is locked. Don't touch. */
|
|
PG_referenced,
|
|
PG_uptodate,
|
|
PG_dirty,
|
|
PG_lru,
|
|
PG_active,
|
|
PG_workingset,
|
|
PG_waiters, /* Page has waiters, check its waitqueue. Must be bit #7 and in the same byte as "PG_locked" */
|
|
PG_error,
|
|
PG_slab,
|
|
PG_owner_priv_1, /* Owner use. If pagecache, fs may use*/
|
|
PG_arch_1,
|
|
PG_reserved,
|
|
PG_private, /* If pagecache, has fs-private data */
|
|
PG_private_2, /* If pagecache, has fs aux data */
|
|
PG_writeback, /* Page is under writeback */
|
|
PG_head, /* A head page */
|
|
PG_mappedtodisk, /* Has blocks allocated on-disk */
|
|
PG_reclaim, /* To be reclaimed asap */
|
|
PG_swapbacked, /* Page is backed by RAM/swap */
|
|
PG_unevictable, /* Page is "unevictable" */
|
|
#ifdef CONFIG_MMU
|
|
PG_mlocked, /* Page is vma mlocked */
|
|
#endif
|
|
#ifdef CONFIG_ARCH_USES_PG_UNCACHED
|
|
PG_uncached, /* Page has been mapped as uncached */
|
|
#endif
|
|
#ifdef CONFIG_MEMORY_FAILURE
|
|
PG_hwpoison, /* hardware poisoned page. Don't touch */
|
|
#endif
|
|
#if defined(CONFIG_IDLE_PAGE_TRACKING) && defined(CONFIG_64BIT)
|
|
PG_young,
|
|
PG_idle,
|
|
#endif
|
|
#ifdef CONFIG_64BIT
|
|
PG_arch_2,
|
|
#endif
|
|
__NR_PAGEFLAGS,
|
|
|
|
/* Filesystems */
|
|
PG_checked = PG_owner_priv_1,
|
|
|
|
/* SwapBacked */
|
|
PG_swapcache = PG_owner_priv_1, /* Swap page: swp_entry_t in private */
|
|
|
|
/* Two page bits are conscripted by FS-Cache to maintain local caching
|
|
* state. These bits are set on pages belonging to the netfs's inodes
|
|
* when those inodes are being locally cached.
|
|
*/
|
|
PG_fscache = PG_private_2, /* page backed by cache */
|
|
|
|
/* XEN */
|
|
/* Pinned in Xen as a read-only pagetable page. */
|
|
PG_pinned = PG_owner_priv_1,
|
|
/* Pinned as part of domain save (see xen_mm_pin_all()). */
|
|
PG_savepinned = PG_dirty,
|
|
/* Has a grant mapping of another (foreign) domain's page. */
|
|
PG_foreign = PG_owner_priv_1,
|
|
/* Remapped by swiotlb-xen. */
|
|
PG_xen_remapped = PG_owner_priv_1,
|
|
|
|
/* SLOB */
|
|
PG_slob_free = PG_private,
|
|
|
|
/* Compound pages. Stored in first tail page's flags */
|
|
PG_double_map = PG_workingset,
|
|
|
|
/* non-lru isolated movable page */
|
|
PG_isolated = PG_reclaim,
|
|
|
|
/* Only valid for buddy pages. Used to track pages that are reported */
|
|
PG_reported = PG_uptodate,
|
|
};
|
|
|
|
#ifndef __GENERATING_BOUNDS_H
|
|
|
|
struct page; /* forward declaration */
|
|
|
|
static inline struct page *compound_head(struct page *page)
|
|
{
|
|
unsigned long head = READ_ONCE(page->compound_head);
|
|
|
|
if (unlikely(head & 1))
|
|
return (struct page *) (head - 1);
|
|
return page;
|
|
}
|
|
|
|
static __always_inline int PageTail(struct page *page)
|
|
{
|
|
return READ_ONCE(page->compound_head) & 1;
|
|
}
|
|
|
|
static __always_inline int PageCompound(struct page *page)
|
|
{
|
|
return test_bit(PG_head, &page->flags) || PageTail(page);
|
|
}
|
|
|
|
#define PAGE_POISON_PATTERN -1l
|
|
static inline int PagePoisoned(const struct page *page)
|
|
{
|
|
return page->flags == PAGE_POISON_PATTERN;
|
|
}
|
|
|
|
#ifdef CONFIG_DEBUG_VM
|
|
void page_init_poison(struct page *page, size_t size);
|
|
#else
|
|
static inline void page_init_poison(struct page *page, size_t size)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Page flags policies wrt compound pages
|
|
*
|
|
* PF_POISONED_CHECK
|
|
* check if this struct page poisoned/uninitialized
|
|
*
|
|
* PF_ANY:
|
|
* the page flag is relevant for small, head and tail pages.
|
|
*
|
|
* PF_HEAD:
|
|
* for compound page all operations related to the page flag applied to
|
|
* head page.
|
|
*
|
|
* PF_ONLY_HEAD:
|
|
* for compound page, callers only ever operate on the head page.
|
|
*
|
|
* PF_NO_TAIL:
|
|
* modifications of the page flag must be done on small or head pages,
|
|
* checks can be done on tail pages too.
|
|
*
|
|
* PF_NO_COMPOUND:
|
|
* the page flag is not relevant for compound pages.
|
|
*
|
|
* PF_SECOND:
|
|
* the page flag is stored in the first tail page.
|
|
*/
|
|
#define PF_POISONED_CHECK(page) ({ \
|
|
VM_BUG_ON_PGFLAGS(PagePoisoned(page), page); \
|
|
page; })
|
|
#define PF_ANY(page, enforce) PF_POISONED_CHECK(page)
|
|
#define PF_HEAD(page, enforce) PF_POISONED_CHECK(compound_head(page))
|
|
#define PF_ONLY_HEAD(page, enforce) ({ \
|
|
VM_BUG_ON_PGFLAGS(PageTail(page), page); \
|
|
PF_POISONED_CHECK(page); })
|
|
#define PF_NO_TAIL(page, enforce) ({ \
|
|
VM_BUG_ON_PGFLAGS(enforce && PageTail(page), page); \
|
|
PF_POISONED_CHECK(compound_head(page)); })
|
|
#define PF_NO_COMPOUND(page, enforce) ({ \
|
|
VM_BUG_ON_PGFLAGS(enforce && PageCompound(page), page); \
|
|
PF_POISONED_CHECK(page); })
|
|
#define PF_SECOND(page, enforce) ({ \
|
|
VM_BUG_ON_PGFLAGS(!PageHead(page), page); \
|
|
PF_POISONED_CHECK(&page[1]); })
|
|
|
|
/*
|
|
* Macros to create function definitions for page flags
|
|
*/
|
|
#define TESTPAGEFLAG(uname, lname, policy) \
|
|
static __always_inline int Page##uname(struct page *page) \
|
|
{ return test_bit(PG_##lname, &policy(page, 0)->flags); }
|
|
|
|
#define SETPAGEFLAG(uname, lname, policy) \
|
|
static __always_inline void SetPage##uname(struct page *page) \
|
|
{ set_bit(PG_##lname, &policy(page, 1)->flags); }
|
|
|
|
#define CLEARPAGEFLAG(uname, lname, policy) \
|
|
static __always_inline void ClearPage##uname(struct page *page) \
|
|
{ clear_bit(PG_##lname, &policy(page, 1)->flags); }
|
|
|
|
#define __SETPAGEFLAG(uname, lname, policy) \
|
|
static __always_inline void __SetPage##uname(struct page *page) \
|
|
{ __set_bit(PG_##lname, &policy(page, 1)->flags); }
|
|
|
|
#define __CLEARPAGEFLAG(uname, lname, policy) \
|
|
static __always_inline void __ClearPage##uname(struct page *page) \
|
|
{ __clear_bit(PG_##lname, &policy(page, 1)->flags); }
|
|
|
|
#define TESTSETFLAG(uname, lname, policy) \
|
|
static __always_inline int TestSetPage##uname(struct page *page) \
|
|
{ return test_and_set_bit(PG_##lname, &policy(page, 1)->flags); }
|
|
|
|
#define TESTCLEARFLAG(uname, lname, policy) \
|
|
static __always_inline int TestClearPage##uname(struct page *page) \
|
|
{ return test_and_clear_bit(PG_##lname, &policy(page, 1)->flags); }
|
|
|
|
#define PAGEFLAG(uname, lname, policy) \
|
|
TESTPAGEFLAG(uname, lname, policy) \
|
|
SETPAGEFLAG(uname, lname, policy) \
|
|
CLEARPAGEFLAG(uname, lname, policy)
|
|
|
|
#define __PAGEFLAG(uname, lname, policy) \
|
|
TESTPAGEFLAG(uname, lname, policy) \
|
|
__SETPAGEFLAG(uname, lname, policy) \
|
|
__CLEARPAGEFLAG(uname, lname, policy)
|
|
|
|
#define TESTSCFLAG(uname, lname, policy) \
|
|
TESTSETFLAG(uname, lname, policy) \
|
|
TESTCLEARFLAG(uname, lname, policy)
|
|
|
|
#define TESTPAGEFLAG_FALSE(uname) \
|
|
static inline int Page##uname(const struct page *page) { return 0; }
|
|
|
|
#define SETPAGEFLAG_NOOP(uname) \
|
|
static inline void SetPage##uname(struct page *page) { }
|
|
|
|
#define CLEARPAGEFLAG_NOOP(uname) \
|
|
static inline void ClearPage##uname(struct page *page) { }
|
|
|
|
#define __CLEARPAGEFLAG_NOOP(uname) \
|
|
static inline void __ClearPage##uname(struct page *page) { }
|
|
|
|
#define TESTSETFLAG_FALSE(uname) \
|
|
static inline int TestSetPage##uname(struct page *page) { return 0; }
|
|
|
|
#define TESTCLEARFLAG_FALSE(uname) \
|
|
static inline int TestClearPage##uname(struct page *page) { return 0; }
|
|
|
|
#define PAGEFLAG_FALSE(uname) TESTPAGEFLAG_FALSE(uname) \
|
|
SETPAGEFLAG_NOOP(uname) CLEARPAGEFLAG_NOOP(uname)
|
|
|
|
#define TESTSCFLAG_FALSE(uname) \
|
|
TESTSETFLAG_FALSE(uname) TESTCLEARFLAG_FALSE(uname)
|
|
|
|
__PAGEFLAG(Locked, locked, PF_NO_TAIL)
|
|
PAGEFLAG(Waiters, waiters, PF_ONLY_HEAD) __CLEARPAGEFLAG(Waiters, waiters, PF_ONLY_HEAD)
|
|
PAGEFLAG(Error, error, PF_NO_TAIL) TESTCLEARFLAG(Error, error, PF_NO_TAIL)
|
|
PAGEFLAG(Referenced, referenced, PF_HEAD)
|
|
TESTCLEARFLAG(Referenced, referenced, PF_HEAD)
|
|
__SETPAGEFLAG(Referenced, referenced, PF_HEAD)
|
|
PAGEFLAG(Dirty, dirty, PF_HEAD) TESTSCFLAG(Dirty, dirty, PF_HEAD)
|
|
__CLEARPAGEFLAG(Dirty, dirty, PF_HEAD)
|
|
PAGEFLAG(LRU, lru, PF_HEAD) __CLEARPAGEFLAG(LRU, lru, PF_HEAD)
|
|
PAGEFLAG(Active, active, PF_HEAD) __CLEARPAGEFLAG(Active, active, PF_HEAD)
|
|
TESTCLEARFLAG(Active, active, PF_HEAD)
|
|
PAGEFLAG(Workingset, workingset, PF_HEAD)
|
|
TESTCLEARFLAG(Workingset, workingset, PF_HEAD)
|
|
__PAGEFLAG(Slab, slab, PF_NO_TAIL)
|
|
__PAGEFLAG(SlobFree, slob_free, PF_NO_TAIL)
|
|
PAGEFLAG(Checked, checked, PF_NO_COMPOUND) /* Used by some filesystems */
|
|
|
|
/* Xen */
|
|
PAGEFLAG(Pinned, pinned, PF_NO_COMPOUND)
|
|
TESTSCFLAG(Pinned, pinned, PF_NO_COMPOUND)
|
|
PAGEFLAG(SavePinned, savepinned, PF_NO_COMPOUND);
|
|
PAGEFLAG(Foreign, foreign, PF_NO_COMPOUND);
|
|
PAGEFLAG(XenRemapped, xen_remapped, PF_NO_COMPOUND)
|
|
TESTCLEARFLAG(XenRemapped, xen_remapped, PF_NO_COMPOUND)
|
|
|
|
PAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
|
|
__CLEARPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
|
|
__SETPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
|
|
PAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
|
|
__CLEARPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
|
|
__SETPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
|
|
|
|
/*
|
|
* Private page markings that may be used by the filesystem that owns the page
|
|
* for its own purposes.
|
|
* - PG_private and PG_private_2 cause releasepage() and co to be invoked
|
|
*/
|
|
PAGEFLAG(Private, private, PF_ANY) __SETPAGEFLAG(Private, private, PF_ANY)
|
|
__CLEARPAGEFLAG(Private, private, PF_ANY)
|
|
PAGEFLAG(Private2, private_2, PF_ANY) TESTSCFLAG(Private2, private_2, PF_ANY)
|
|
PAGEFLAG(OwnerPriv1, owner_priv_1, PF_ANY)
|
|
TESTCLEARFLAG(OwnerPriv1, owner_priv_1, PF_ANY)
|
|
|
|
/*
|
|
* Only test-and-set exist for PG_writeback. The unconditional operators are
|
|
* risky: they bypass page accounting.
|
|
*/
|
|
TESTPAGEFLAG(Writeback, writeback, PF_NO_TAIL)
|
|
TESTSCFLAG(Writeback, writeback, PF_NO_TAIL)
|
|
PAGEFLAG(MappedToDisk, mappedtodisk, PF_NO_TAIL)
|
|
|
|
/* PG_readahead is only used for reads; PG_reclaim is only for writes */
|
|
PAGEFLAG(Reclaim, reclaim, PF_NO_TAIL)
|
|
TESTCLEARFLAG(Reclaim, reclaim, PF_NO_TAIL)
|
|
PAGEFLAG(Readahead, reclaim, PF_NO_COMPOUND)
|
|
TESTCLEARFLAG(Readahead, reclaim, PF_NO_COMPOUND)
|
|
|
|
#ifdef CONFIG_HIGHMEM
|
|
/*
|
|
* Must use a macro here due to header dependency issues. page_zone() is not
|
|
* available at this point.
|
|
*/
|
|
#define PageHighMem(__p) is_highmem_idx(page_zonenum(__p))
|
|
#else
|
|
PAGEFLAG_FALSE(HighMem)
|
|
#endif
|
|
|
|
#ifdef CONFIG_SWAP
|
|
static __always_inline int PageSwapCache(struct page *page)
|
|
{
|
|
#ifdef CONFIG_THP_SWAP
|
|
page = compound_head(page);
|
|
#endif
|
|
return PageSwapBacked(page) && test_bit(PG_swapcache, &page->flags);
|
|
|
|
}
|
|
SETPAGEFLAG(SwapCache, swapcache, PF_NO_TAIL)
|
|
CLEARPAGEFLAG(SwapCache, swapcache, PF_NO_TAIL)
|
|
#else
|
|
PAGEFLAG_FALSE(SwapCache)
|
|
#endif
|
|
|
|
PAGEFLAG(Unevictable, unevictable, PF_HEAD)
|
|
__CLEARPAGEFLAG(Unevictable, unevictable, PF_HEAD)
|
|
TESTCLEARFLAG(Unevictable, unevictable, PF_HEAD)
|
|
|
|
#ifdef CONFIG_MMU
|
|
PAGEFLAG(Mlocked, mlocked, PF_NO_TAIL)
|
|
__CLEARPAGEFLAG(Mlocked, mlocked, PF_NO_TAIL)
|
|
TESTSCFLAG(Mlocked, mlocked, PF_NO_TAIL)
|
|
#else
|
|
PAGEFLAG_FALSE(Mlocked) __CLEARPAGEFLAG_NOOP(Mlocked)
|
|
TESTSCFLAG_FALSE(Mlocked)
|
|
#endif
|
|
|
|
#ifdef CONFIG_ARCH_USES_PG_UNCACHED
|
|
PAGEFLAG(Uncached, uncached, PF_NO_COMPOUND)
|
|
#else
|
|
PAGEFLAG_FALSE(Uncached)
|
|
#endif
|
|
|
|
#ifdef CONFIG_MEMORY_FAILURE
|
|
PAGEFLAG(HWPoison, hwpoison, PF_ANY)
|
|
TESTSCFLAG(HWPoison, hwpoison, PF_ANY)
|
|
#define __PG_HWPOISON (1UL << PG_hwpoison)
|
|
extern bool take_page_off_buddy(struct page *page);
|
|
#else
|
|
PAGEFLAG_FALSE(HWPoison)
|
|
#define __PG_HWPOISON 0
|
|
#endif
|
|
|
|
#if defined(CONFIG_IDLE_PAGE_TRACKING) && defined(CONFIG_64BIT)
|
|
TESTPAGEFLAG(Young, young, PF_ANY)
|
|
SETPAGEFLAG(Young, young, PF_ANY)
|
|
TESTCLEARFLAG(Young, young, PF_ANY)
|
|
PAGEFLAG(Idle, idle, PF_ANY)
|
|
#endif
|
|
|
|
/*
|
|
* PageReported() is used to track reported free pages within the Buddy
|
|
* allocator. We can use the non-atomic version of the test and set
|
|
* operations as both should be shielded with the zone lock to prevent
|
|
* any possible races on the setting or clearing of the bit.
|
|
*/
|
|
__PAGEFLAG(Reported, reported, PF_NO_COMPOUND)
|
|
|
|
/*
|
|
* On an anonymous page mapped into a user virtual memory area,
|
|
* page->mapping points to its anon_vma, not to a struct address_space;
|
|
* with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
|
|
*
|
|
* On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
|
|
* the PAGE_MAPPING_MOVABLE bit may be set along with the PAGE_MAPPING_ANON
|
|
* bit; and then page->mapping points, not to an anon_vma, but to a private
|
|
* structure which KSM associates with that merged page. See ksm.h.
|
|
*
|
|
* PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is used for non-lru movable
|
|
* page and then page->mapping points a struct address_space.
|
|
*
|
|
* Please note that, confusingly, "page_mapping" refers to the inode
|
|
* address_space which maps the page from disk; whereas "page_mapped"
|
|
* refers to user virtual address space into which the page is mapped.
|
|
*/
|
|
#define PAGE_MAPPING_ANON 0x1
|
|
#define PAGE_MAPPING_MOVABLE 0x2
|
|
#define PAGE_MAPPING_KSM (PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE)
|
|
#define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE)
|
|
|
|
static __always_inline int PageMappingFlags(struct page *page)
|
|
{
|
|
return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) != 0;
|
|
}
|
|
|
|
static __always_inline int PageAnon(struct page *page)
|
|
{
|
|
page = compound_head(page);
|
|
return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
|
|
}
|
|
|
|
static __always_inline int __PageMovable(struct page *page)
|
|
{
|
|
return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) ==
|
|
PAGE_MAPPING_MOVABLE;
|
|
}
|
|
|
|
#ifdef CONFIG_KSM
|
|
/*
|
|
* A KSM page is one of those write-protected "shared pages" or "merged pages"
|
|
* which KSM maps into multiple mms, wherever identical anonymous page content
|
|
* is found in VM_MERGEABLE vmas. It's a PageAnon page, pointing not to any
|
|
* anon_vma, but to that page's node of the stable tree.
|
|
*/
|
|
static __always_inline int PageKsm(struct page *page)
|
|
{
|
|
page = compound_head(page);
|
|
return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) ==
|
|
PAGE_MAPPING_KSM;
|
|
}
|
|
#else
|
|
TESTPAGEFLAG_FALSE(Ksm)
|
|
#endif
|
|
|
|
u64 stable_page_flags(struct page *page);
|
|
|
|
static inline int PageUptodate(struct page *page)
|
|
{
|
|
int ret;
|
|
page = compound_head(page);
|
|
ret = test_bit(PG_uptodate, &(page)->flags);
|
|
/*
|
|
* Must ensure that the data we read out of the page is loaded
|
|
* _after_ we've loaded page->flags to check for PageUptodate.
|
|
* We can skip the barrier if the page is not uptodate, because
|
|
* we wouldn't be reading anything from it.
|
|
*
|
|
* See SetPageUptodate() for the other side of the story.
|
|
*/
|
|
if (ret)
|
|
smp_rmb();
|
|
|
|
return ret;
|
|
}
|
|
|
|
static __always_inline void __SetPageUptodate(struct page *page)
|
|
{
|
|
VM_BUG_ON_PAGE(PageTail(page), page);
|
|
smp_wmb();
|
|
__set_bit(PG_uptodate, &page->flags);
|
|
}
|
|
|
|
static __always_inline void SetPageUptodate(struct page *page)
|
|
{
|
|
VM_BUG_ON_PAGE(PageTail(page), page);
|
|
/*
|
|
* Memory barrier must be issued before setting the PG_uptodate bit,
|
|
* so that all previous stores issued in order to bring the page
|
|
* uptodate are actually visible before PageUptodate becomes true.
|
|
*/
|
|
smp_wmb();
|
|
set_bit(PG_uptodate, &page->flags);
|
|
}
|
|
|
|
CLEARPAGEFLAG(Uptodate, uptodate, PF_NO_TAIL)
|
|
|
|
int test_clear_page_writeback(struct page *page);
|
|
int __test_set_page_writeback(struct page *page, bool keep_write);
|
|
|
|
#define test_set_page_writeback(page) \
|
|
__test_set_page_writeback(page, false)
|
|
#define test_set_page_writeback_keepwrite(page) \
|
|
__test_set_page_writeback(page, true)
|
|
|
|
static inline void set_page_writeback(struct page *page)
|
|
{
|
|
test_set_page_writeback(page);
|
|
}
|
|
|
|
static inline void set_page_writeback_keepwrite(struct page *page)
|
|
{
|
|
test_set_page_writeback_keepwrite(page);
|
|
}
|
|
|
|
__PAGEFLAG(Head, head, PF_ANY) CLEARPAGEFLAG(Head, head, PF_ANY)
|
|
|
|
static __always_inline void set_compound_head(struct page *page, struct page *head)
|
|
{
|
|
WRITE_ONCE(page->compound_head, (unsigned long)head + 1);
|
|
}
|
|
|
|
static __always_inline void clear_compound_head(struct page *page)
|
|
{
|
|
WRITE_ONCE(page->compound_head, 0);
|
|
}
|
|
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
static inline void ClearPageCompound(struct page *page)
|
|
{
|
|
BUG_ON(!PageHead(page));
|
|
ClearPageHead(page);
|
|
}
|
|
#endif
|
|
|
|
#define PG_head_mask ((1UL << PG_head))
|
|
|
|
#ifdef CONFIG_HUGETLB_PAGE
|
|
int PageHuge(struct page *page);
|
|
int PageHeadHuge(struct page *page);
|
|
bool page_huge_active(struct page *page);
|
|
#else
|
|
TESTPAGEFLAG_FALSE(Huge)
|
|
TESTPAGEFLAG_FALSE(HeadHuge)
|
|
|
|
static inline bool page_huge_active(struct page *page)
|
|
{
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
/*
|
|
* PageHuge() only returns true for hugetlbfs pages, but not for
|
|
* normal or transparent huge pages.
|
|
*
|
|
* PageTransHuge() returns true for both transparent huge and
|
|
* hugetlbfs pages, but not normal pages. PageTransHuge() can only be
|
|
* called only in the core VM paths where hugetlbfs pages can't exist.
|
|
*/
|
|
static inline int PageTransHuge(struct page *page)
|
|
{
|
|
VM_BUG_ON_PAGE(PageTail(page), page);
|
|
return PageHead(page);
|
|
}
|
|
|
|
/*
|
|
* PageTransCompound returns true for both transparent huge pages
|
|
* and hugetlbfs pages, so it should only be called when it's known
|
|
* that hugetlbfs pages aren't involved.
|
|
*/
|
|
static inline int PageTransCompound(struct page *page)
|
|
{
|
|
return PageCompound(page);
|
|
}
|
|
|
|
/*
|
|
* PageTransCompoundMap is the same as PageTransCompound, but it also
|
|
* guarantees the primary MMU has the entire compound page mapped
|
|
* through pmd_trans_huge, which in turn guarantees the secondary MMUs
|
|
* can also map the entire compound page. This allows the secondary
|
|
* MMUs to call get_user_pages() only once for each compound page and
|
|
* to immediately map the entire compound page with a single secondary
|
|
* MMU fault. If there will be a pmd split later, the secondary MMUs
|
|
* will get an update through the MMU notifier invalidation through
|
|
* split_huge_pmd().
|
|
*
|
|
* Unlike PageTransCompound, this is safe to be called only while
|
|
* split_huge_pmd() cannot run from under us, like if protected by the
|
|
* MMU notifier, otherwise it may result in page->_mapcount check false
|
|
* positives.
|
|
*
|
|
* We have to treat page cache THP differently since every subpage of it
|
|
* would get _mapcount inc'ed once it is PMD mapped. But, it may be PTE
|
|
* mapped in the current process so comparing subpage's _mapcount to
|
|
* compound_mapcount to filter out PTE mapped case.
|
|
*/
|
|
static inline int PageTransCompoundMap(struct page *page)
|
|
{
|
|
struct page *head;
|
|
|
|
if (!PageTransCompound(page))
|
|
return 0;
|
|
|
|
if (PageAnon(page))
|
|
return atomic_read(&page->_mapcount) < 0;
|
|
|
|
head = compound_head(page);
|
|
/* File THP is PMD mapped and not PTE mapped */
|
|
return atomic_read(&page->_mapcount) ==
|
|
atomic_read(compound_mapcount_ptr(head));
|
|
}
|
|
|
|
/*
|
|
* PageTransTail returns true for both transparent huge pages
|
|
* and hugetlbfs pages, so it should only be called when it's known
|
|
* that hugetlbfs pages aren't involved.
|
|
*/
|
|
static inline int PageTransTail(struct page *page)
|
|
{
|
|
return PageTail(page);
|
|
}
|
|
|
|
/*
|
|
* PageDoubleMap indicates that the compound page is mapped with PTEs as well
|
|
* as PMDs.
|
|
*
|
|
* This is required for optimization of rmap operations for THP: we can postpone
|
|
* per small page mapcount accounting (and its overhead from atomic operations)
|
|
* until the first PMD split.
|
|
*
|
|
* For the page PageDoubleMap means ->_mapcount in all sub-pages is offset up
|
|
* by one. This reference will go away with last compound_mapcount.
|
|
*
|
|
* See also __split_huge_pmd_locked() and page_remove_anon_compound_rmap().
|
|
*/
|
|
PAGEFLAG(DoubleMap, double_map, PF_SECOND)
|
|
TESTSCFLAG(DoubleMap, double_map, PF_SECOND)
|
|
#else
|
|
TESTPAGEFLAG_FALSE(TransHuge)
|
|
TESTPAGEFLAG_FALSE(TransCompound)
|
|
TESTPAGEFLAG_FALSE(TransCompoundMap)
|
|
TESTPAGEFLAG_FALSE(TransTail)
|
|
PAGEFLAG_FALSE(DoubleMap)
|
|
TESTSCFLAG_FALSE(DoubleMap)
|
|
#endif
|
|
|
|
/*
|
|
* For pages that are never mapped to userspace (and aren't PageSlab),
|
|
* page_type may be used. Because it is initialised to -1, we invert the
|
|
* sense of the bit, so __SetPageFoo *clears* the bit used for PageFoo, and
|
|
* __ClearPageFoo *sets* the bit used for PageFoo. We reserve a few high and
|
|
* low bits so that an underflow or overflow of page_mapcount() won't be
|
|
* mistaken for a page type value.
|
|
*/
|
|
|
|
#define PAGE_TYPE_BASE 0xf0000000
|
|
/* Reserve 0x0000007f to catch underflows of page_mapcount */
|
|
#define PAGE_MAPCOUNT_RESERVE -128
|
|
#define PG_buddy 0x00000080
|
|
#define PG_offline 0x00000100
|
|
#define PG_kmemcg 0x00000200
|
|
#define PG_table 0x00000400
|
|
#define PG_guard 0x00000800
|
|
|
|
#define PageType(page, flag) \
|
|
((page->page_type & (PAGE_TYPE_BASE | flag)) == PAGE_TYPE_BASE)
|
|
|
|
static inline int page_has_type(struct page *page)
|
|
{
|
|
return (int)page->page_type < PAGE_MAPCOUNT_RESERVE;
|
|
}
|
|
|
|
#define PAGE_TYPE_OPS(uname, lname) \
|
|
static __always_inline int Page##uname(struct page *page) \
|
|
{ \
|
|
return PageType(page, PG_##lname); \
|
|
} \
|
|
static __always_inline void __SetPage##uname(struct page *page) \
|
|
{ \
|
|
VM_BUG_ON_PAGE(!PageType(page, 0), page); \
|
|
page->page_type &= ~PG_##lname; \
|
|
} \
|
|
static __always_inline void __ClearPage##uname(struct page *page) \
|
|
{ \
|
|
VM_BUG_ON_PAGE(!Page##uname(page), page); \
|
|
page->page_type |= PG_##lname; \
|
|
}
|
|
|
|
/*
|
|
* PageBuddy() indicates that the page is free and in the buddy system
|
|
* (see mm/page_alloc.c).
|
|
*/
|
|
PAGE_TYPE_OPS(Buddy, buddy)
|
|
|
|
/*
|
|
* PageOffline() indicates that the page is logically offline although the
|
|
* containing section is online. (e.g. inflated in a balloon driver or
|
|
* not onlined when onlining the section).
|
|
* The content of these pages is effectively stale. Such pages should not
|
|
* be touched (read/write/dump/save) except by their owner.
|
|
*
|
|
* If a driver wants to allow to offline unmovable PageOffline() pages without
|
|
* putting them back to the buddy, it can do so via the memory notifier by
|
|
* decrementing the reference count in MEM_GOING_OFFLINE and incrementing the
|
|
* reference count in MEM_CANCEL_OFFLINE. When offlining, the PageOffline()
|
|
* pages (now with a reference count of zero) are treated like free pages,
|
|
* allowing the containing memory block to get offlined. A driver that
|
|
* relies on this feature is aware that re-onlining the memory block will
|
|
* require to re-set the pages PageOffline() and not giving them to the
|
|
* buddy via online_page_callback_t.
|
|
*/
|
|
PAGE_TYPE_OPS(Offline, offline)
|
|
|
|
/*
|
|
* If kmemcg is enabled, the buddy allocator will set PageKmemcg() on
|
|
* pages allocated with __GFP_ACCOUNT. It gets cleared on page free.
|
|
*/
|
|
PAGE_TYPE_OPS(Kmemcg, kmemcg)
|
|
|
|
/*
|
|
* Marks pages in use as page tables.
|
|
*/
|
|
PAGE_TYPE_OPS(Table, table)
|
|
|
|
/*
|
|
* Marks guardpages used with debug_pagealloc.
|
|
*/
|
|
PAGE_TYPE_OPS(Guard, guard)
|
|
|
|
extern bool is_free_buddy_page(struct page *page);
|
|
|
|
__PAGEFLAG(Isolated, isolated, PF_ANY);
|
|
|
|
/*
|
|
* If network-based swap is enabled, sl*b must keep track of whether pages
|
|
* were allocated from pfmemalloc reserves.
|
|
*/
|
|
static inline int PageSlabPfmemalloc(struct page *page)
|
|
{
|
|
VM_BUG_ON_PAGE(!PageSlab(page), page);
|
|
return PageActive(page);
|
|
}
|
|
|
|
static inline void SetPageSlabPfmemalloc(struct page *page)
|
|
{
|
|
VM_BUG_ON_PAGE(!PageSlab(page), page);
|
|
SetPageActive(page);
|
|
}
|
|
|
|
static inline void __ClearPageSlabPfmemalloc(struct page *page)
|
|
{
|
|
VM_BUG_ON_PAGE(!PageSlab(page), page);
|
|
__ClearPageActive(page);
|
|
}
|
|
|
|
static inline void ClearPageSlabPfmemalloc(struct page *page)
|
|
{
|
|
VM_BUG_ON_PAGE(!PageSlab(page), page);
|
|
ClearPageActive(page);
|
|
}
|
|
|
|
#ifdef CONFIG_MMU
|
|
#define __PG_MLOCKED (1UL << PG_mlocked)
|
|
#else
|
|
#define __PG_MLOCKED 0
|
|
#endif
|
|
|
|
/*
|
|
* Flags checked when a page is freed. Pages being freed should not have
|
|
* these flags set. It they are, there is a problem.
|
|
*/
|
|
#define PAGE_FLAGS_CHECK_AT_FREE \
|
|
(1UL << PG_lru | 1UL << PG_locked | \
|
|
1UL << PG_private | 1UL << PG_private_2 | \
|
|
1UL << PG_writeback | 1UL << PG_reserved | \
|
|
1UL << PG_slab | 1UL << PG_active | \
|
|
1UL << PG_unevictable | __PG_MLOCKED)
|
|
|
|
/*
|
|
* Flags checked when a page is prepped for return by the page allocator.
|
|
* Pages being prepped should not have these flags set. It they are set,
|
|
* there has been a kernel bug or struct page corruption.
|
|
*
|
|
* __PG_HWPOISON is exceptional because it needs to be kept beyond page's
|
|
* alloc-free cycle to prevent from reusing the page.
|
|
*/
|
|
#define PAGE_FLAGS_CHECK_AT_PREP \
|
|
(((1UL << NR_PAGEFLAGS) - 1) & ~__PG_HWPOISON)
|
|
|
|
#define PAGE_FLAGS_PRIVATE \
|
|
(1UL << PG_private | 1UL << PG_private_2)
|
|
/**
|
|
* page_has_private - Determine if page has private stuff
|
|
* @page: The page to be checked
|
|
*
|
|
* Determine if a page has private stuff, indicating that release routines
|
|
* should be invoked upon it.
|
|
*/
|
|
static inline int page_has_private(struct page *page)
|
|
{
|
|
return !!(page->flags & PAGE_FLAGS_PRIVATE);
|
|
}
|
|
|
|
#undef PF_ANY
|
|
#undef PF_HEAD
|
|
#undef PF_ONLY_HEAD
|
|
#undef PF_NO_TAIL
|
|
#undef PF_NO_COMPOUND
|
|
#undef PF_SECOND
|
|
#endif /* !__GENERATING_BOUNDS_H */
|
|
|
|
#endif /* PAGE_FLAGS_H */
|