mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-28 07:05:12 +07:00
112ed2d31a
Start partitioning off the code that talks to the hardware (GT) from the uapi layers and move the device facing code under gt/ One casualty is s/intel_ringbuffer.h/intel_engine.h/ with the plan to subdivide that header and body further (and split out the submission code from the ringbuffer and logical context handling). This patch aims to be simple motion so git can fixup inflight patches with little mess. Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Acked-by: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Acked-by: Jani Nikula <jani.nikula@intel.com> Acked-by: Rodrigo Vivi <rodrigo.vivi@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20190424174839.7141-1-chris@chris-wilson.co.uk
3923 lines
102 KiB
C
3923 lines
102 KiB
C
/*
|
|
* Copyright © 2010 Daniel Vetter
|
|
* Copyright © 2011-2014 Intel Corporation
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the next
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
* Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
|
* IN THE SOFTWARE.
|
|
*
|
|
*/
|
|
|
|
#include <linux/slab.h> /* fault-inject.h is not standalone! */
|
|
|
|
#include <linux/fault-inject.h>
|
|
#include <linux/log2.h>
|
|
#include <linux/random.h>
|
|
#include <linux/seq_file.h>
|
|
#include <linux/stop_machine.h>
|
|
|
|
#include <asm/set_memory.h>
|
|
|
|
#include <drm/i915_drm.h>
|
|
|
|
#include "i915_drv.h"
|
|
#include "i915_vgpu.h"
|
|
#include "i915_trace.h"
|
|
#include "intel_drv.h"
|
|
#include "intel_frontbuffer.h"
|
|
|
|
#define I915_GFP_ALLOW_FAIL (GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN)
|
|
|
|
/**
|
|
* DOC: Global GTT views
|
|
*
|
|
* Background and previous state
|
|
*
|
|
* Historically objects could exists (be bound) in global GTT space only as
|
|
* singular instances with a view representing all of the object's backing pages
|
|
* in a linear fashion. This view will be called a normal view.
|
|
*
|
|
* To support multiple views of the same object, where the number of mapped
|
|
* pages is not equal to the backing store, or where the layout of the pages
|
|
* is not linear, concept of a GGTT view was added.
|
|
*
|
|
* One example of an alternative view is a stereo display driven by a single
|
|
* image. In this case we would have a framebuffer looking like this
|
|
* (2x2 pages):
|
|
*
|
|
* 12
|
|
* 34
|
|
*
|
|
* Above would represent a normal GGTT view as normally mapped for GPU or CPU
|
|
* rendering. In contrast, fed to the display engine would be an alternative
|
|
* view which could look something like this:
|
|
*
|
|
* 1212
|
|
* 3434
|
|
*
|
|
* In this example both the size and layout of pages in the alternative view is
|
|
* different from the normal view.
|
|
*
|
|
* Implementation and usage
|
|
*
|
|
* GGTT views are implemented using VMAs and are distinguished via enum
|
|
* i915_ggtt_view_type and struct i915_ggtt_view.
|
|
*
|
|
* A new flavour of core GEM functions which work with GGTT bound objects were
|
|
* added with the _ggtt_ infix, and sometimes with _view postfix to avoid
|
|
* renaming in large amounts of code. They take the struct i915_ggtt_view
|
|
* parameter encapsulating all metadata required to implement a view.
|
|
*
|
|
* As a helper for callers which are only interested in the normal view,
|
|
* globally const i915_ggtt_view_normal singleton instance exists. All old core
|
|
* GEM API functions, the ones not taking the view parameter, are operating on,
|
|
* or with the normal GGTT view.
|
|
*
|
|
* Code wanting to add or use a new GGTT view needs to:
|
|
*
|
|
* 1. Add a new enum with a suitable name.
|
|
* 2. Extend the metadata in the i915_ggtt_view structure if required.
|
|
* 3. Add support to i915_get_vma_pages().
|
|
*
|
|
* New views are required to build a scatter-gather table from within the
|
|
* i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
|
|
* exists for the lifetime of an VMA.
|
|
*
|
|
* Core API is designed to have copy semantics which means that passed in
|
|
* struct i915_ggtt_view does not need to be persistent (left around after
|
|
* calling the core API functions).
|
|
*
|
|
*/
|
|
|
|
static int
|
|
i915_get_ggtt_vma_pages(struct i915_vma *vma);
|
|
|
|
static void gen6_ggtt_invalidate(struct drm_i915_private *dev_priv)
|
|
{
|
|
/*
|
|
* Note that as an uncached mmio write, this will flush the
|
|
* WCB of the writes into the GGTT before it triggers the invalidate.
|
|
*/
|
|
I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
|
|
}
|
|
|
|
static void guc_ggtt_invalidate(struct drm_i915_private *dev_priv)
|
|
{
|
|
gen6_ggtt_invalidate(dev_priv);
|
|
I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
|
|
}
|
|
|
|
static void gmch_ggtt_invalidate(struct drm_i915_private *dev_priv)
|
|
{
|
|
intel_gtt_chipset_flush();
|
|
}
|
|
|
|
static inline void i915_ggtt_invalidate(struct drm_i915_private *i915)
|
|
{
|
|
i915->ggtt.invalidate(i915);
|
|
}
|
|
|
|
static int ppgtt_bind_vma(struct i915_vma *vma,
|
|
enum i915_cache_level cache_level,
|
|
u32 unused)
|
|
{
|
|
u32 pte_flags;
|
|
int err;
|
|
|
|
if (!(vma->flags & I915_VMA_LOCAL_BIND)) {
|
|
err = vma->vm->allocate_va_range(vma->vm,
|
|
vma->node.start, vma->size);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
/* Applicable to VLV, and gen8+ */
|
|
pte_flags = 0;
|
|
if (i915_gem_object_is_readonly(vma->obj))
|
|
pte_flags |= PTE_READ_ONLY;
|
|
|
|
vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void ppgtt_unbind_vma(struct i915_vma *vma)
|
|
{
|
|
vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
|
|
}
|
|
|
|
static int ppgtt_set_pages(struct i915_vma *vma)
|
|
{
|
|
GEM_BUG_ON(vma->pages);
|
|
|
|
vma->pages = vma->obj->mm.pages;
|
|
|
|
vma->page_sizes = vma->obj->mm.page_sizes;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void clear_pages(struct i915_vma *vma)
|
|
{
|
|
GEM_BUG_ON(!vma->pages);
|
|
|
|
if (vma->pages != vma->obj->mm.pages) {
|
|
sg_free_table(vma->pages);
|
|
kfree(vma->pages);
|
|
}
|
|
vma->pages = NULL;
|
|
|
|
memset(&vma->page_sizes, 0, sizeof(vma->page_sizes));
|
|
}
|
|
|
|
static u64 gen8_pte_encode(dma_addr_t addr,
|
|
enum i915_cache_level level,
|
|
u32 flags)
|
|
{
|
|
gen8_pte_t pte = addr | _PAGE_PRESENT | _PAGE_RW;
|
|
|
|
if (unlikely(flags & PTE_READ_ONLY))
|
|
pte &= ~_PAGE_RW;
|
|
|
|
switch (level) {
|
|
case I915_CACHE_NONE:
|
|
pte |= PPAT_UNCACHED;
|
|
break;
|
|
case I915_CACHE_WT:
|
|
pte |= PPAT_DISPLAY_ELLC;
|
|
break;
|
|
default:
|
|
pte |= PPAT_CACHED;
|
|
break;
|
|
}
|
|
|
|
return pte;
|
|
}
|
|
|
|
static gen8_pde_t gen8_pde_encode(const dma_addr_t addr,
|
|
const enum i915_cache_level level)
|
|
{
|
|
gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
|
|
pde |= addr;
|
|
if (level != I915_CACHE_NONE)
|
|
pde |= PPAT_CACHED_PDE;
|
|
else
|
|
pde |= PPAT_UNCACHED;
|
|
return pde;
|
|
}
|
|
|
|
#define gen8_pdpe_encode gen8_pde_encode
|
|
#define gen8_pml4e_encode gen8_pde_encode
|
|
|
|
static u64 snb_pte_encode(dma_addr_t addr,
|
|
enum i915_cache_level level,
|
|
u32 flags)
|
|
{
|
|
gen6_pte_t pte = GEN6_PTE_VALID;
|
|
pte |= GEN6_PTE_ADDR_ENCODE(addr);
|
|
|
|
switch (level) {
|
|
case I915_CACHE_L3_LLC:
|
|
case I915_CACHE_LLC:
|
|
pte |= GEN6_PTE_CACHE_LLC;
|
|
break;
|
|
case I915_CACHE_NONE:
|
|
pte |= GEN6_PTE_UNCACHED;
|
|
break;
|
|
default:
|
|
MISSING_CASE(level);
|
|
}
|
|
|
|
return pte;
|
|
}
|
|
|
|
static u64 ivb_pte_encode(dma_addr_t addr,
|
|
enum i915_cache_level level,
|
|
u32 flags)
|
|
{
|
|
gen6_pte_t pte = GEN6_PTE_VALID;
|
|
pte |= GEN6_PTE_ADDR_ENCODE(addr);
|
|
|
|
switch (level) {
|
|
case I915_CACHE_L3_LLC:
|
|
pte |= GEN7_PTE_CACHE_L3_LLC;
|
|
break;
|
|
case I915_CACHE_LLC:
|
|
pte |= GEN6_PTE_CACHE_LLC;
|
|
break;
|
|
case I915_CACHE_NONE:
|
|
pte |= GEN6_PTE_UNCACHED;
|
|
break;
|
|
default:
|
|
MISSING_CASE(level);
|
|
}
|
|
|
|
return pte;
|
|
}
|
|
|
|
static u64 byt_pte_encode(dma_addr_t addr,
|
|
enum i915_cache_level level,
|
|
u32 flags)
|
|
{
|
|
gen6_pte_t pte = GEN6_PTE_VALID;
|
|
pte |= GEN6_PTE_ADDR_ENCODE(addr);
|
|
|
|
if (!(flags & PTE_READ_ONLY))
|
|
pte |= BYT_PTE_WRITEABLE;
|
|
|
|
if (level != I915_CACHE_NONE)
|
|
pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
|
|
|
|
return pte;
|
|
}
|
|
|
|
static u64 hsw_pte_encode(dma_addr_t addr,
|
|
enum i915_cache_level level,
|
|
u32 flags)
|
|
{
|
|
gen6_pte_t pte = GEN6_PTE_VALID;
|
|
pte |= HSW_PTE_ADDR_ENCODE(addr);
|
|
|
|
if (level != I915_CACHE_NONE)
|
|
pte |= HSW_WB_LLC_AGE3;
|
|
|
|
return pte;
|
|
}
|
|
|
|
static u64 iris_pte_encode(dma_addr_t addr,
|
|
enum i915_cache_level level,
|
|
u32 flags)
|
|
{
|
|
gen6_pte_t pte = GEN6_PTE_VALID;
|
|
pte |= HSW_PTE_ADDR_ENCODE(addr);
|
|
|
|
switch (level) {
|
|
case I915_CACHE_NONE:
|
|
break;
|
|
case I915_CACHE_WT:
|
|
pte |= HSW_WT_ELLC_LLC_AGE3;
|
|
break;
|
|
default:
|
|
pte |= HSW_WB_ELLC_LLC_AGE3;
|
|
break;
|
|
}
|
|
|
|
return pte;
|
|
}
|
|
|
|
static void stash_init(struct pagestash *stash)
|
|
{
|
|
pagevec_init(&stash->pvec);
|
|
spin_lock_init(&stash->lock);
|
|
}
|
|
|
|
static struct page *stash_pop_page(struct pagestash *stash)
|
|
{
|
|
struct page *page = NULL;
|
|
|
|
spin_lock(&stash->lock);
|
|
if (likely(stash->pvec.nr))
|
|
page = stash->pvec.pages[--stash->pvec.nr];
|
|
spin_unlock(&stash->lock);
|
|
|
|
return page;
|
|
}
|
|
|
|
static void stash_push_pagevec(struct pagestash *stash, struct pagevec *pvec)
|
|
{
|
|
int nr;
|
|
|
|
spin_lock_nested(&stash->lock, SINGLE_DEPTH_NESTING);
|
|
|
|
nr = min_t(int, pvec->nr, pagevec_space(&stash->pvec));
|
|
memcpy(stash->pvec.pages + stash->pvec.nr,
|
|
pvec->pages + pvec->nr - nr,
|
|
sizeof(pvec->pages[0]) * nr);
|
|
stash->pvec.nr += nr;
|
|
|
|
spin_unlock(&stash->lock);
|
|
|
|
pvec->nr -= nr;
|
|
}
|
|
|
|
static struct page *vm_alloc_page(struct i915_address_space *vm, gfp_t gfp)
|
|
{
|
|
struct pagevec stack;
|
|
struct page *page;
|
|
|
|
if (I915_SELFTEST_ONLY(should_fail(&vm->fault_attr, 1)))
|
|
i915_gem_shrink_all(vm->i915);
|
|
|
|
page = stash_pop_page(&vm->free_pages);
|
|
if (page)
|
|
return page;
|
|
|
|
if (!vm->pt_kmap_wc)
|
|
return alloc_page(gfp);
|
|
|
|
/* Look in our global stash of WC pages... */
|
|
page = stash_pop_page(&vm->i915->mm.wc_stash);
|
|
if (page)
|
|
return page;
|
|
|
|
/*
|
|
* Otherwise batch allocate pages to amortize cost of set_pages_wc.
|
|
*
|
|
* We have to be careful as page allocation may trigger the shrinker
|
|
* (via direct reclaim) which will fill up the WC stash underneath us.
|
|
* So we add our WB pages into a temporary pvec on the stack and merge
|
|
* them into the WC stash after all the allocations are complete.
|
|
*/
|
|
pagevec_init(&stack);
|
|
do {
|
|
struct page *page;
|
|
|
|
page = alloc_page(gfp);
|
|
if (unlikely(!page))
|
|
break;
|
|
|
|
stack.pages[stack.nr++] = page;
|
|
} while (pagevec_space(&stack));
|
|
|
|
if (stack.nr && !set_pages_array_wc(stack.pages, stack.nr)) {
|
|
page = stack.pages[--stack.nr];
|
|
|
|
/* Merge spare WC pages to the global stash */
|
|
stash_push_pagevec(&vm->i915->mm.wc_stash, &stack);
|
|
|
|
/* Push any surplus WC pages onto the local VM stash */
|
|
if (stack.nr)
|
|
stash_push_pagevec(&vm->free_pages, &stack);
|
|
}
|
|
|
|
/* Return unwanted leftovers */
|
|
if (unlikely(stack.nr)) {
|
|
WARN_ON_ONCE(set_pages_array_wb(stack.pages, stack.nr));
|
|
__pagevec_release(&stack);
|
|
}
|
|
|
|
return page;
|
|
}
|
|
|
|
static void vm_free_pages_release(struct i915_address_space *vm,
|
|
bool immediate)
|
|
{
|
|
struct pagevec *pvec = &vm->free_pages.pvec;
|
|
struct pagevec stack;
|
|
|
|
lockdep_assert_held(&vm->free_pages.lock);
|
|
GEM_BUG_ON(!pagevec_count(pvec));
|
|
|
|
if (vm->pt_kmap_wc) {
|
|
/*
|
|
* When we use WC, first fill up the global stash and then
|
|
* only if full immediately free the overflow.
|
|
*/
|
|
stash_push_pagevec(&vm->i915->mm.wc_stash, pvec);
|
|
|
|
/*
|
|
* As we have made some room in the VM's free_pages,
|
|
* we can wait for it to fill again. Unless we are
|
|
* inside i915_address_space_fini() and must
|
|
* immediately release the pages!
|
|
*/
|
|
if (pvec->nr <= (immediate ? 0 : PAGEVEC_SIZE - 1))
|
|
return;
|
|
|
|
/*
|
|
* We have to drop the lock to allow ourselves to sleep,
|
|
* so take a copy of the pvec and clear the stash for
|
|
* others to use it as we sleep.
|
|
*/
|
|
stack = *pvec;
|
|
pagevec_reinit(pvec);
|
|
spin_unlock(&vm->free_pages.lock);
|
|
|
|
pvec = &stack;
|
|
set_pages_array_wb(pvec->pages, pvec->nr);
|
|
|
|
spin_lock(&vm->free_pages.lock);
|
|
}
|
|
|
|
__pagevec_release(pvec);
|
|
}
|
|
|
|
static void vm_free_page(struct i915_address_space *vm, struct page *page)
|
|
{
|
|
/*
|
|
* On !llc, we need to change the pages back to WB. We only do so
|
|
* in bulk, so we rarely need to change the page attributes here,
|
|
* but doing so requires a stop_machine() from deep inside arch/x86/mm.
|
|
* To make detection of the possible sleep more likely, use an
|
|
* unconditional might_sleep() for everybody.
|
|
*/
|
|
might_sleep();
|
|
spin_lock(&vm->free_pages.lock);
|
|
if (!pagevec_add(&vm->free_pages.pvec, page))
|
|
vm_free_pages_release(vm, false);
|
|
spin_unlock(&vm->free_pages.lock);
|
|
}
|
|
|
|
static void i915_address_space_init(struct i915_address_space *vm, int subclass)
|
|
{
|
|
/*
|
|
* The vm->mutex must be reclaim safe (for use in the shrinker).
|
|
* Do a dummy acquire now under fs_reclaim so that any allocation
|
|
* attempt holding the lock is immediately reported by lockdep.
|
|
*/
|
|
mutex_init(&vm->mutex);
|
|
lockdep_set_subclass(&vm->mutex, subclass);
|
|
i915_gem_shrinker_taints_mutex(vm->i915, &vm->mutex);
|
|
|
|
GEM_BUG_ON(!vm->total);
|
|
drm_mm_init(&vm->mm, 0, vm->total);
|
|
vm->mm.head_node.color = I915_COLOR_UNEVICTABLE;
|
|
|
|
stash_init(&vm->free_pages);
|
|
|
|
INIT_LIST_HEAD(&vm->unbound_list);
|
|
INIT_LIST_HEAD(&vm->bound_list);
|
|
}
|
|
|
|
static void i915_address_space_fini(struct i915_address_space *vm)
|
|
{
|
|
spin_lock(&vm->free_pages.lock);
|
|
if (pagevec_count(&vm->free_pages.pvec))
|
|
vm_free_pages_release(vm, true);
|
|
GEM_BUG_ON(pagevec_count(&vm->free_pages.pvec));
|
|
spin_unlock(&vm->free_pages.lock);
|
|
|
|
drm_mm_takedown(&vm->mm);
|
|
|
|
mutex_destroy(&vm->mutex);
|
|
}
|
|
|
|
static int __setup_page_dma(struct i915_address_space *vm,
|
|
struct i915_page_dma *p,
|
|
gfp_t gfp)
|
|
{
|
|
p->page = vm_alloc_page(vm, gfp | I915_GFP_ALLOW_FAIL);
|
|
if (unlikely(!p->page))
|
|
return -ENOMEM;
|
|
|
|
p->daddr = dma_map_page_attrs(vm->dma,
|
|
p->page, 0, PAGE_SIZE,
|
|
PCI_DMA_BIDIRECTIONAL,
|
|
DMA_ATTR_SKIP_CPU_SYNC |
|
|
DMA_ATTR_NO_WARN);
|
|
if (unlikely(dma_mapping_error(vm->dma, p->daddr))) {
|
|
vm_free_page(vm, p->page);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int setup_page_dma(struct i915_address_space *vm,
|
|
struct i915_page_dma *p)
|
|
{
|
|
return __setup_page_dma(vm, p, __GFP_HIGHMEM);
|
|
}
|
|
|
|
static void cleanup_page_dma(struct i915_address_space *vm,
|
|
struct i915_page_dma *p)
|
|
{
|
|
dma_unmap_page(vm->dma, p->daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
|
|
vm_free_page(vm, p->page);
|
|
}
|
|
|
|
#define kmap_atomic_px(px) kmap_atomic(px_base(px)->page)
|
|
|
|
#define setup_px(vm, px) setup_page_dma((vm), px_base(px))
|
|
#define cleanup_px(vm, px) cleanup_page_dma((vm), px_base(px))
|
|
#define fill_px(vm, px, v) fill_page_dma((vm), px_base(px), (v))
|
|
#define fill32_px(vm, px, v) fill_page_dma_32((vm), px_base(px), (v))
|
|
|
|
static void fill_page_dma(struct i915_address_space *vm,
|
|
struct i915_page_dma *p,
|
|
const u64 val)
|
|
{
|
|
u64 * const vaddr = kmap_atomic(p->page);
|
|
|
|
memset64(vaddr, val, PAGE_SIZE / sizeof(val));
|
|
|
|
kunmap_atomic(vaddr);
|
|
}
|
|
|
|
static void fill_page_dma_32(struct i915_address_space *vm,
|
|
struct i915_page_dma *p,
|
|
const u32 v)
|
|
{
|
|
fill_page_dma(vm, p, (u64)v << 32 | v);
|
|
}
|
|
|
|
static int
|
|
setup_scratch_page(struct i915_address_space *vm, gfp_t gfp)
|
|
{
|
|
unsigned long size;
|
|
|
|
/*
|
|
* In order to utilize 64K pages for an object with a size < 2M, we will
|
|
* need to support a 64K scratch page, given that every 16th entry for a
|
|
* page-table operating in 64K mode must point to a properly aligned 64K
|
|
* region, including any PTEs which happen to point to scratch.
|
|
*
|
|
* This is only relevant for the 48b PPGTT where we support
|
|
* huge-gtt-pages, see also i915_vma_insert(). However, as we share the
|
|
* scratch (read-only) between all vm, we create one 64k scratch page
|
|
* for all.
|
|
*/
|
|
size = I915_GTT_PAGE_SIZE_4K;
|
|
if (i915_vm_is_4lvl(vm) &&
|
|
HAS_PAGE_SIZES(vm->i915, I915_GTT_PAGE_SIZE_64K)) {
|
|
size = I915_GTT_PAGE_SIZE_64K;
|
|
gfp |= __GFP_NOWARN;
|
|
}
|
|
gfp |= __GFP_ZERO | __GFP_RETRY_MAYFAIL;
|
|
|
|
do {
|
|
int order = get_order(size);
|
|
struct page *page;
|
|
dma_addr_t addr;
|
|
|
|
page = alloc_pages(gfp, order);
|
|
if (unlikely(!page))
|
|
goto skip;
|
|
|
|
addr = dma_map_page_attrs(vm->dma,
|
|
page, 0, size,
|
|
PCI_DMA_BIDIRECTIONAL,
|
|
DMA_ATTR_SKIP_CPU_SYNC |
|
|
DMA_ATTR_NO_WARN);
|
|
if (unlikely(dma_mapping_error(vm->dma, addr)))
|
|
goto free_page;
|
|
|
|
if (unlikely(!IS_ALIGNED(addr, size)))
|
|
goto unmap_page;
|
|
|
|
vm->scratch_page.page = page;
|
|
vm->scratch_page.daddr = addr;
|
|
vm->scratch_order = order;
|
|
return 0;
|
|
|
|
unmap_page:
|
|
dma_unmap_page(vm->dma, addr, size, PCI_DMA_BIDIRECTIONAL);
|
|
free_page:
|
|
__free_pages(page, order);
|
|
skip:
|
|
if (size == I915_GTT_PAGE_SIZE_4K)
|
|
return -ENOMEM;
|
|
|
|
size = I915_GTT_PAGE_SIZE_4K;
|
|
gfp &= ~__GFP_NOWARN;
|
|
} while (1);
|
|
}
|
|
|
|
static void cleanup_scratch_page(struct i915_address_space *vm)
|
|
{
|
|
struct i915_page_dma *p = &vm->scratch_page;
|
|
int order = vm->scratch_order;
|
|
|
|
dma_unmap_page(vm->dma, p->daddr, BIT(order) << PAGE_SHIFT,
|
|
PCI_DMA_BIDIRECTIONAL);
|
|
__free_pages(p->page, order);
|
|
}
|
|
|
|
static struct i915_page_table *alloc_pt(struct i915_address_space *vm)
|
|
{
|
|
struct i915_page_table *pt;
|
|
|
|
pt = kmalloc(sizeof(*pt), I915_GFP_ALLOW_FAIL);
|
|
if (unlikely(!pt))
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
if (unlikely(setup_px(vm, pt))) {
|
|
kfree(pt);
|
|
return ERR_PTR(-ENOMEM);
|
|
}
|
|
|
|
pt->used_ptes = 0;
|
|
return pt;
|
|
}
|
|
|
|
static void free_pt(struct i915_address_space *vm, struct i915_page_table *pt)
|
|
{
|
|
cleanup_px(vm, pt);
|
|
kfree(pt);
|
|
}
|
|
|
|
static void gen8_initialize_pt(struct i915_address_space *vm,
|
|
struct i915_page_table *pt)
|
|
{
|
|
fill_px(vm, pt, vm->scratch_pte);
|
|
}
|
|
|
|
static void gen6_initialize_pt(struct i915_address_space *vm,
|
|
struct i915_page_table *pt)
|
|
{
|
|
fill32_px(vm, pt, vm->scratch_pte);
|
|
}
|
|
|
|
static struct i915_page_directory *alloc_pd(struct i915_address_space *vm)
|
|
{
|
|
struct i915_page_directory *pd;
|
|
|
|
pd = kzalloc(sizeof(*pd), I915_GFP_ALLOW_FAIL);
|
|
if (unlikely(!pd))
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
if (unlikely(setup_px(vm, pd))) {
|
|
kfree(pd);
|
|
return ERR_PTR(-ENOMEM);
|
|
}
|
|
|
|
pd->used_pdes = 0;
|
|
return pd;
|
|
}
|
|
|
|
static void free_pd(struct i915_address_space *vm,
|
|
struct i915_page_directory *pd)
|
|
{
|
|
cleanup_px(vm, pd);
|
|
kfree(pd);
|
|
}
|
|
|
|
static void gen8_initialize_pd(struct i915_address_space *vm,
|
|
struct i915_page_directory *pd)
|
|
{
|
|
fill_px(vm, pd,
|
|
gen8_pde_encode(px_dma(vm->scratch_pt), I915_CACHE_LLC));
|
|
memset_p((void **)pd->page_table, vm->scratch_pt, I915_PDES);
|
|
}
|
|
|
|
static int __pdp_init(struct i915_address_space *vm,
|
|
struct i915_page_directory_pointer *pdp)
|
|
{
|
|
const unsigned int pdpes = i915_pdpes_per_pdp(vm);
|
|
|
|
pdp->page_directory = kmalloc_array(pdpes, sizeof(*pdp->page_directory),
|
|
I915_GFP_ALLOW_FAIL);
|
|
if (unlikely(!pdp->page_directory))
|
|
return -ENOMEM;
|
|
|
|
memset_p((void **)pdp->page_directory, vm->scratch_pd, pdpes);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void __pdp_fini(struct i915_page_directory_pointer *pdp)
|
|
{
|
|
kfree(pdp->page_directory);
|
|
pdp->page_directory = NULL;
|
|
}
|
|
|
|
static struct i915_page_directory_pointer *
|
|
alloc_pdp(struct i915_address_space *vm)
|
|
{
|
|
struct i915_page_directory_pointer *pdp;
|
|
int ret = -ENOMEM;
|
|
|
|
GEM_BUG_ON(!i915_vm_is_4lvl(vm));
|
|
|
|
pdp = kzalloc(sizeof(*pdp), GFP_KERNEL);
|
|
if (!pdp)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
ret = __pdp_init(vm, pdp);
|
|
if (ret)
|
|
goto fail_bitmap;
|
|
|
|
ret = setup_px(vm, pdp);
|
|
if (ret)
|
|
goto fail_page_m;
|
|
|
|
return pdp;
|
|
|
|
fail_page_m:
|
|
__pdp_fini(pdp);
|
|
fail_bitmap:
|
|
kfree(pdp);
|
|
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
static void free_pdp(struct i915_address_space *vm,
|
|
struct i915_page_directory_pointer *pdp)
|
|
{
|
|
__pdp_fini(pdp);
|
|
|
|
if (!i915_vm_is_4lvl(vm))
|
|
return;
|
|
|
|
cleanup_px(vm, pdp);
|
|
kfree(pdp);
|
|
}
|
|
|
|
static void gen8_initialize_pdp(struct i915_address_space *vm,
|
|
struct i915_page_directory_pointer *pdp)
|
|
{
|
|
gen8_ppgtt_pdpe_t scratch_pdpe;
|
|
|
|
scratch_pdpe = gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC);
|
|
|
|
fill_px(vm, pdp, scratch_pdpe);
|
|
}
|
|
|
|
static void gen8_initialize_pml4(struct i915_address_space *vm,
|
|
struct i915_pml4 *pml4)
|
|
{
|
|
fill_px(vm, pml4,
|
|
gen8_pml4e_encode(px_dma(vm->scratch_pdp), I915_CACHE_LLC));
|
|
memset_p((void **)pml4->pdps, vm->scratch_pdp, GEN8_PML4ES_PER_PML4);
|
|
}
|
|
|
|
/*
|
|
* PDE TLBs are a pain to invalidate on GEN8+. When we modify
|
|
* the page table structures, we mark them dirty so that
|
|
* context switching/execlist queuing code takes extra steps
|
|
* to ensure that tlbs are flushed.
|
|
*/
|
|
static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt)
|
|
{
|
|
ppgtt->pd_dirty_engines = ALL_ENGINES;
|
|
}
|
|
|
|
/* Removes entries from a single page table, releasing it if it's empty.
|
|
* Caller can use the return value to update higher-level entries.
|
|
*/
|
|
static bool gen8_ppgtt_clear_pt(const struct i915_address_space *vm,
|
|
struct i915_page_table *pt,
|
|
u64 start, u64 length)
|
|
{
|
|
unsigned int num_entries = gen8_pte_count(start, length);
|
|
gen8_pte_t *vaddr;
|
|
|
|
GEM_BUG_ON(num_entries > pt->used_ptes);
|
|
|
|
pt->used_ptes -= num_entries;
|
|
if (!pt->used_ptes)
|
|
return true;
|
|
|
|
vaddr = kmap_atomic_px(pt);
|
|
memset64(vaddr + gen8_pte_index(start), vm->scratch_pte, num_entries);
|
|
kunmap_atomic(vaddr);
|
|
|
|
return false;
|
|
}
|
|
|
|
static void gen8_ppgtt_set_pde(struct i915_address_space *vm,
|
|
struct i915_page_directory *pd,
|
|
struct i915_page_table *pt,
|
|
unsigned int pde)
|
|
{
|
|
gen8_pde_t *vaddr;
|
|
|
|
pd->page_table[pde] = pt;
|
|
|
|
vaddr = kmap_atomic_px(pd);
|
|
vaddr[pde] = gen8_pde_encode(px_dma(pt), I915_CACHE_LLC);
|
|
kunmap_atomic(vaddr);
|
|
}
|
|
|
|
static bool gen8_ppgtt_clear_pd(struct i915_address_space *vm,
|
|
struct i915_page_directory *pd,
|
|
u64 start, u64 length)
|
|
{
|
|
struct i915_page_table *pt;
|
|
u32 pde;
|
|
|
|
gen8_for_each_pde(pt, pd, start, length, pde) {
|
|
GEM_BUG_ON(pt == vm->scratch_pt);
|
|
|
|
if (!gen8_ppgtt_clear_pt(vm, pt, start, length))
|
|
continue;
|
|
|
|
gen8_ppgtt_set_pde(vm, pd, vm->scratch_pt, pde);
|
|
GEM_BUG_ON(!pd->used_pdes);
|
|
pd->used_pdes--;
|
|
|
|
free_pt(vm, pt);
|
|
}
|
|
|
|
return !pd->used_pdes;
|
|
}
|
|
|
|
static void gen8_ppgtt_set_pdpe(struct i915_address_space *vm,
|
|
struct i915_page_directory_pointer *pdp,
|
|
struct i915_page_directory *pd,
|
|
unsigned int pdpe)
|
|
{
|
|
gen8_ppgtt_pdpe_t *vaddr;
|
|
|
|
pdp->page_directory[pdpe] = pd;
|
|
if (!i915_vm_is_4lvl(vm))
|
|
return;
|
|
|
|
vaddr = kmap_atomic_px(pdp);
|
|
vaddr[pdpe] = gen8_pdpe_encode(px_dma(pd), I915_CACHE_LLC);
|
|
kunmap_atomic(vaddr);
|
|
}
|
|
|
|
/* Removes entries from a single page dir pointer, releasing it if it's empty.
|
|
* Caller can use the return value to update higher-level entries
|
|
*/
|
|
static bool gen8_ppgtt_clear_pdp(struct i915_address_space *vm,
|
|
struct i915_page_directory_pointer *pdp,
|
|
u64 start, u64 length)
|
|
{
|
|
struct i915_page_directory *pd;
|
|
unsigned int pdpe;
|
|
|
|
gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
|
|
GEM_BUG_ON(pd == vm->scratch_pd);
|
|
|
|
if (!gen8_ppgtt_clear_pd(vm, pd, start, length))
|
|
continue;
|
|
|
|
gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
|
|
GEM_BUG_ON(!pdp->used_pdpes);
|
|
pdp->used_pdpes--;
|
|
|
|
free_pd(vm, pd);
|
|
}
|
|
|
|
return !pdp->used_pdpes;
|
|
}
|
|
|
|
static void gen8_ppgtt_clear_3lvl(struct i915_address_space *vm,
|
|
u64 start, u64 length)
|
|
{
|
|
gen8_ppgtt_clear_pdp(vm, &i915_vm_to_ppgtt(vm)->pdp, start, length);
|
|
}
|
|
|
|
static void gen8_ppgtt_set_pml4e(struct i915_pml4 *pml4,
|
|
struct i915_page_directory_pointer *pdp,
|
|
unsigned int pml4e)
|
|
{
|
|
gen8_ppgtt_pml4e_t *vaddr;
|
|
|
|
pml4->pdps[pml4e] = pdp;
|
|
|
|
vaddr = kmap_atomic_px(pml4);
|
|
vaddr[pml4e] = gen8_pml4e_encode(px_dma(pdp), I915_CACHE_LLC);
|
|
kunmap_atomic(vaddr);
|
|
}
|
|
|
|
/* Removes entries from a single pml4.
|
|
* This is the top-level structure in 4-level page tables used on gen8+.
|
|
* Empty entries are always scratch pml4e.
|
|
*/
|
|
static void gen8_ppgtt_clear_4lvl(struct i915_address_space *vm,
|
|
u64 start, u64 length)
|
|
{
|
|
struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
|
|
struct i915_pml4 *pml4 = &ppgtt->pml4;
|
|
struct i915_page_directory_pointer *pdp;
|
|
unsigned int pml4e;
|
|
|
|
GEM_BUG_ON(!i915_vm_is_4lvl(vm));
|
|
|
|
gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
|
|
GEM_BUG_ON(pdp == vm->scratch_pdp);
|
|
|
|
if (!gen8_ppgtt_clear_pdp(vm, pdp, start, length))
|
|
continue;
|
|
|
|
gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e);
|
|
|
|
free_pdp(vm, pdp);
|
|
}
|
|
}
|
|
|
|
static inline struct sgt_dma {
|
|
struct scatterlist *sg;
|
|
dma_addr_t dma, max;
|
|
} sgt_dma(struct i915_vma *vma) {
|
|
struct scatterlist *sg = vma->pages->sgl;
|
|
dma_addr_t addr = sg_dma_address(sg);
|
|
return (struct sgt_dma) { sg, addr, addr + sg->length };
|
|
}
|
|
|
|
struct gen8_insert_pte {
|
|
u16 pml4e;
|
|
u16 pdpe;
|
|
u16 pde;
|
|
u16 pte;
|
|
};
|
|
|
|
static __always_inline struct gen8_insert_pte gen8_insert_pte(u64 start)
|
|
{
|
|
return (struct gen8_insert_pte) {
|
|
gen8_pml4e_index(start),
|
|
gen8_pdpe_index(start),
|
|
gen8_pde_index(start),
|
|
gen8_pte_index(start),
|
|
};
|
|
}
|
|
|
|
static __always_inline bool
|
|
gen8_ppgtt_insert_pte_entries(struct i915_hw_ppgtt *ppgtt,
|
|
struct i915_page_directory_pointer *pdp,
|
|
struct sgt_dma *iter,
|
|
struct gen8_insert_pte *idx,
|
|
enum i915_cache_level cache_level,
|
|
u32 flags)
|
|
{
|
|
struct i915_page_directory *pd;
|
|
const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level, flags);
|
|
gen8_pte_t *vaddr;
|
|
bool ret;
|
|
|
|
GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->vm));
|
|
pd = pdp->page_directory[idx->pdpe];
|
|
vaddr = kmap_atomic_px(pd->page_table[idx->pde]);
|
|
do {
|
|
vaddr[idx->pte] = pte_encode | iter->dma;
|
|
|
|
iter->dma += I915_GTT_PAGE_SIZE;
|
|
if (iter->dma >= iter->max) {
|
|
iter->sg = __sg_next(iter->sg);
|
|
if (!iter->sg) {
|
|
ret = false;
|
|
break;
|
|
}
|
|
|
|
iter->dma = sg_dma_address(iter->sg);
|
|
iter->max = iter->dma + iter->sg->length;
|
|
}
|
|
|
|
if (++idx->pte == GEN8_PTES) {
|
|
idx->pte = 0;
|
|
|
|
if (++idx->pde == I915_PDES) {
|
|
idx->pde = 0;
|
|
|
|
/* Limited by sg length for 3lvl */
|
|
if (++idx->pdpe == GEN8_PML4ES_PER_PML4) {
|
|
idx->pdpe = 0;
|
|
ret = true;
|
|
break;
|
|
}
|
|
|
|
GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->vm));
|
|
pd = pdp->page_directory[idx->pdpe];
|
|
}
|
|
|
|
kunmap_atomic(vaddr);
|
|
vaddr = kmap_atomic_px(pd->page_table[idx->pde]);
|
|
}
|
|
} while (1);
|
|
kunmap_atomic(vaddr);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void gen8_ppgtt_insert_3lvl(struct i915_address_space *vm,
|
|
struct i915_vma *vma,
|
|
enum i915_cache_level cache_level,
|
|
u32 flags)
|
|
{
|
|
struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
|
|
struct sgt_dma iter = sgt_dma(vma);
|
|
struct gen8_insert_pte idx = gen8_insert_pte(vma->node.start);
|
|
|
|
gen8_ppgtt_insert_pte_entries(ppgtt, &ppgtt->pdp, &iter, &idx,
|
|
cache_level, flags);
|
|
|
|
vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
|
|
}
|
|
|
|
static void gen8_ppgtt_insert_huge_entries(struct i915_vma *vma,
|
|
struct i915_page_directory_pointer **pdps,
|
|
struct sgt_dma *iter,
|
|
enum i915_cache_level cache_level,
|
|
u32 flags)
|
|
{
|
|
const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level, flags);
|
|
u64 start = vma->node.start;
|
|
dma_addr_t rem = iter->sg->length;
|
|
|
|
do {
|
|
struct gen8_insert_pte idx = gen8_insert_pte(start);
|
|
struct i915_page_directory_pointer *pdp = pdps[idx.pml4e];
|
|
struct i915_page_directory *pd = pdp->page_directory[idx.pdpe];
|
|
unsigned int page_size;
|
|
bool maybe_64K = false;
|
|
gen8_pte_t encode = pte_encode;
|
|
gen8_pte_t *vaddr;
|
|
u16 index, max;
|
|
|
|
if (vma->page_sizes.sg & I915_GTT_PAGE_SIZE_2M &&
|
|
IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_2M) &&
|
|
rem >= I915_GTT_PAGE_SIZE_2M && !idx.pte) {
|
|
index = idx.pde;
|
|
max = I915_PDES;
|
|
page_size = I915_GTT_PAGE_SIZE_2M;
|
|
|
|
encode |= GEN8_PDE_PS_2M;
|
|
|
|
vaddr = kmap_atomic_px(pd);
|
|
} else {
|
|
struct i915_page_table *pt = pd->page_table[idx.pde];
|
|
|
|
index = idx.pte;
|
|
max = GEN8_PTES;
|
|
page_size = I915_GTT_PAGE_SIZE;
|
|
|
|
if (!index &&
|
|
vma->page_sizes.sg & I915_GTT_PAGE_SIZE_64K &&
|
|
IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) &&
|
|
(IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) ||
|
|
rem >= (max - index) * I915_GTT_PAGE_SIZE))
|
|
maybe_64K = true;
|
|
|
|
vaddr = kmap_atomic_px(pt);
|
|
}
|
|
|
|
do {
|
|
GEM_BUG_ON(iter->sg->length < page_size);
|
|
vaddr[index++] = encode | iter->dma;
|
|
|
|
start += page_size;
|
|
iter->dma += page_size;
|
|
rem -= page_size;
|
|
if (iter->dma >= iter->max) {
|
|
iter->sg = __sg_next(iter->sg);
|
|
if (!iter->sg)
|
|
break;
|
|
|
|
rem = iter->sg->length;
|
|
iter->dma = sg_dma_address(iter->sg);
|
|
iter->max = iter->dma + rem;
|
|
|
|
if (maybe_64K && index < max &&
|
|
!(IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) &&
|
|
(IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) ||
|
|
rem >= (max - index) * I915_GTT_PAGE_SIZE)))
|
|
maybe_64K = false;
|
|
|
|
if (unlikely(!IS_ALIGNED(iter->dma, page_size)))
|
|
break;
|
|
}
|
|
} while (rem >= page_size && index < max);
|
|
|
|
kunmap_atomic(vaddr);
|
|
|
|
/*
|
|
* Is it safe to mark the 2M block as 64K? -- Either we have
|
|
* filled whole page-table with 64K entries, or filled part of
|
|
* it and have reached the end of the sg table and we have
|
|
* enough padding.
|
|
*/
|
|
if (maybe_64K &&
|
|
(index == max ||
|
|
(i915_vm_has_scratch_64K(vma->vm) &&
|
|
!iter->sg && IS_ALIGNED(vma->node.start +
|
|
vma->node.size,
|
|
I915_GTT_PAGE_SIZE_2M)))) {
|
|
vaddr = kmap_atomic_px(pd);
|
|
vaddr[idx.pde] |= GEN8_PDE_IPS_64K;
|
|
kunmap_atomic(vaddr);
|
|
page_size = I915_GTT_PAGE_SIZE_64K;
|
|
|
|
/*
|
|
* We write all 4K page entries, even when using 64K
|
|
* pages. In order to verify that the HW isn't cheating
|
|
* by using the 4K PTE instead of the 64K PTE, we want
|
|
* to remove all the surplus entries. If the HW skipped
|
|
* the 64K PTE, it will read/write into the scratch page
|
|
* instead - which we detect as missing results during
|
|
* selftests.
|
|
*/
|
|
if (I915_SELFTEST_ONLY(vma->vm->scrub_64K)) {
|
|
u16 i;
|
|
|
|
encode = vma->vm->scratch_pte;
|
|
vaddr = kmap_atomic_px(pd->page_table[idx.pde]);
|
|
|
|
for (i = 1; i < index; i += 16)
|
|
memset64(vaddr + i, encode, 15);
|
|
|
|
kunmap_atomic(vaddr);
|
|
}
|
|
}
|
|
|
|
vma->page_sizes.gtt |= page_size;
|
|
} while (iter->sg);
|
|
}
|
|
|
|
static void gen8_ppgtt_insert_4lvl(struct i915_address_space *vm,
|
|
struct i915_vma *vma,
|
|
enum i915_cache_level cache_level,
|
|
u32 flags)
|
|
{
|
|
struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
|
|
struct sgt_dma iter = sgt_dma(vma);
|
|
struct i915_page_directory_pointer **pdps = ppgtt->pml4.pdps;
|
|
|
|
if (vma->page_sizes.sg > I915_GTT_PAGE_SIZE) {
|
|
gen8_ppgtt_insert_huge_entries(vma, pdps, &iter, cache_level,
|
|
flags);
|
|
} else {
|
|
struct gen8_insert_pte idx = gen8_insert_pte(vma->node.start);
|
|
|
|
while (gen8_ppgtt_insert_pte_entries(ppgtt, pdps[idx.pml4e++],
|
|
&iter, &idx, cache_level,
|
|
flags))
|
|
GEM_BUG_ON(idx.pml4e >= GEN8_PML4ES_PER_PML4);
|
|
|
|
vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
|
|
}
|
|
}
|
|
|
|
static void gen8_free_page_tables(struct i915_address_space *vm,
|
|
struct i915_page_directory *pd)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < I915_PDES; i++) {
|
|
if (pd->page_table[i] != vm->scratch_pt)
|
|
free_pt(vm, pd->page_table[i]);
|
|
}
|
|
}
|
|
|
|
static int gen8_init_scratch(struct i915_address_space *vm)
|
|
{
|
|
int ret;
|
|
|
|
/*
|
|
* If everybody agrees to not to write into the scratch page,
|
|
* we can reuse it for all vm, keeping contexts and processes separate.
|
|
*/
|
|
if (vm->has_read_only &&
|
|
vm->i915->kernel_context &&
|
|
vm->i915->kernel_context->ppgtt) {
|
|
struct i915_address_space *clone =
|
|
&vm->i915->kernel_context->ppgtt->vm;
|
|
|
|
GEM_BUG_ON(!clone->has_read_only);
|
|
|
|
vm->scratch_order = clone->scratch_order;
|
|
vm->scratch_pte = clone->scratch_pte;
|
|
vm->scratch_pt = clone->scratch_pt;
|
|
vm->scratch_pd = clone->scratch_pd;
|
|
vm->scratch_pdp = clone->scratch_pdp;
|
|
return 0;
|
|
}
|
|
|
|
ret = setup_scratch_page(vm, __GFP_HIGHMEM);
|
|
if (ret)
|
|
return ret;
|
|
|
|
vm->scratch_pte =
|
|
gen8_pte_encode(vm->scratch_page.daddr,
|
|
I915_CACHE_LLC,
|
|
vm->has_read_only);
|
|
|
|
vm->scratch_pt = alloc_pt(vm);
|
|
if (IS_ERR(vm->scratch_pt)) {
|
|
ret = PTR_ERR(vm->scratch_pt);
|
|
goto free_scratch_page;
|
|
}
|
|
|
|
vm->scratch_pd = alloc_pd(vm);
|
|
if (IS_ERR(vm->scratch_pd)) {
|
|
ret = PTR_ERR(vm->scratch_pd);
|
|
goto free_pt;
|
|
}
|
|
|
|
if (i915_vm_is_4lvl(vm)) {
|
|
vm->scratch_pdp = alloc_pdp(vm);
|
|
if (IS_ERR(vm->scratch_pdp)) {
|
|
ret = PTR_ERR(vm->scratch_pdp);
|
|
goto free_pd;
|
|
}
|
|
}
|
|
|
|
gen8_initialize_pt(vm, vm->scratch_pt);
|
|
gen8_initialize_pd(vm, vm->scratch_pd);
|
|
if (i915_vm_is_4lvl(vm))
|
|
gen8_initialize_pdp(vm, vm->scratch_pdp);
|
|
|
|
return 0;
|
|
|
|
free_pd:
|
|
free_pd(vm, vm->scratch_pd);
|
|
free_pt:
|
|
free_pt(vm, vm->scratch_pt);
|
|
free_scratch_page:
|
|
cleanup_scratch_page(vm);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int gen8_ppgtt_notify_vgt(struct i915_hw_ppgtt *ppgtt, bool create)
|
|
{
|
|
struct i915_address_space *vm = &ppgtt->vm;
|
|
struct drm_i915_private *dev_priv = vm->i915;
|
|
enum vgt_g2v_type msg;
|
|
int i;
|
|
|
|
if (i915_vm_is_4lvl(vm)) {
|
|
const u64 daddr = px_dma(&ppgtt->pml4);
|
|
|
|
I915_WRITE(vgtif_reg(pdp[0].lo), lower_32_bits(daddr));
|
|
I915_WRITE(vgtif_reg(pdp[0].hi), upper_32_bits(daddr));
|
|
|
|
msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE :
|
|
VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY);
|
|
} else {
|
|
for (i = 0; i < GEN8_3LVL_PDPES; i++) {
|
|
const u64 daddr = i915_page_dir_dma_addr(ppgtt, i);
|
|
|
|
I915_WRITE(vgtif_reg(pdp[i].lo), lower_32_bits(daddr));
|
|
I915_WRITE(vgtif_reg(pdp[i].hi), upper_32_bits(daddr));
|
|
}
|
|
|
|
msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE :
|
|
VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY);
|
|
}
|
|
|
|
I915_WRITE(vgtif_reg(g2v_notify), msg);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void gen8_free_scratch(struct i915_address_space *vm)
|
|
{
|
|
if (!vm->scratch_page.daddr)
|
|
return;
|
|
|
|
if (i915_vm_is_4lvl(vm))
|
|
free_pdp(vm, vm->scratch_pdp);
|
|
free_pd(vm, vm->scratch_pd);
|
|
free_pt(vm, vm->scratch_pt);
|
|
cleanup_scratch_page(vm);
|
|
}
|
|
|
|
static void gen8_ppgtt_cleanup_3lvl(struct i915_address_space *vm,
|
|
struct i915_page_directory_pointer *pdp)
|
|
{
|
|
const unsigned int pdpes = i915_pdpes_per_pdp(vm);
|
|
int i;
|
|
|
|
for (i = 0; i < pdpes; i++) {
|
|
if (pdp->page_directory[i] == vm->scratch_pd)
|
|
continue;
|
|
|
|
gen8_free_page_tables(vm, pdp->page_directory[i]);
|
|
free_pd(vm, pdp->page_directory[i]);
|
|
}
|
|
|
|
free_pdp(vm, pdp);
|
|
}
|
|
|
|
static void gen8_ppgtt_cleanup_4lvl(struct i915_hw_ppgtt *ppgtt)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < GEN8_PML4ES_PER_PML4; i++) {
|
|
if (ppgtt->pml4.pdps[i] == ppgtt->vm.scratch_pdp)
|
|
continue;
|
|
|
|
gen8_ppgtt_cleanup_3lvl(&ppgtt->vm, ppgtt->pml4.pdps[i]);
|
|
}
|
|
|
|
cleanup_px(&ppgtt->vm, &ppgtt->pml4);
|
|
}
|
|
|
|
static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
|
|
{
|
|
struct drm_i915_private *dev_priv = vm->i915;
|
|
struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
|
|
|
|
if (intel_vgpu_active(dev_priv))
|
|
gen8_ppgtt_notify_vgt(ppgtt, false);
|
|
|
|
if (i915_vm_is_4lvl(vm))
|
|
gen8_ppgtt_cleanup_4lvl(ppgtt);
|
|
else
|
|
gen8_ppgtt_cleanup_3lvl(&ppgtt->vm, &ppgtt->pdp);
|
|
|
|
gen8_free_scratch(vm);
|
|
}
|
|
|
|
static int gen8_ppgtt_alloc_pd(struct i915_address_space *vm,
|
|
struct i915_page_directory *pd,
|
|
u64 start, u64 length)
|
|
{
|
|
struct i915_page_table *pt;
|
|
u64 from = start;
|
|
unsigned int pde;
|
|
|
|
gen8_for_each_pde(pt, pd, start, length, pde) {
|
|
int count = gen8_pte_count(start, length);
|
|
|
|
if (pt == vm->scratch_pt) {
|
|
pd->used_pdes++;
|
|
|
|
pt = alloc_pt(vm);
|
|
if (IS_ERR(pt)) {
|
|
pd->used_pdes--;
|
|
goto unwind;
|
|
}
|
|
|
|
if (count < GEN8_PTES || intel_vgpu_active(vm->i915))
|
|
gen8_initialize_pt(vm, pt);
|
|
|
|
gen8_ppgtt_set_pde(vm, pd, pt, pde);
|
|
GEM_BUG_ON(pd->used_pdes > I915_PDES);
|
|
}
|
|
|
|
pt->used_ptes += count;
|
|
}
|
|
return 0;
|
|
|
|
unwind:
|
|
gen8_ppgtt_clear_pd(vm, pd, from, start - from);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static int gen8_ppgtt_alloc_pdp(struct i915_address_space *vm,
|
|
struct i915_page_directory_pointer *pdp,
|
|
u64 start, u64 length)
|
|
{
|
|
struct i915_page_directory *pd;
|
|
u64 from = start;
|
|
unsigned int pdpe;
|
|
int ret;
|
|
|
|
gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
|
|
if (pd == vm->scratch_pd) {
|
|
pdp->used_pdpes++;
|
|
|
|
pd = alloc_pd(vm);
|
|
if (IS_ERR(pd)) {
|
|
pdp->used_pdpes--;
|
|
goto unwind;
|
|
}
|
|
|
|
gen8_initialize_pd(vm, pd);
|
|
gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe);
|
|
GEM_BUG_ON(pdp->used_pdpes > i915_pdpes_per_pdp(vm));
|
|
}
|
|
|
|
ret = gen8_ppgtt_alloc_pd(vm, pd, start, length);
|
|
if (unlikely(ret))
|
|
goto unwind_pd;
|
|
}
|
|
|
|
return 0;
|
|
|
|
unwind_pd:
|
|
if (!pd->used_pdes) {
|
|
gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
|
|
GEM_BUG_ON(!pdp->used_pdpes);
|
|
pdp->used_pdpes--;
|
|
free_pd(vm, pd);
|
|
}
|
|
unwind:
|
|
gen8_ppgtt_clear_pdp(vm, pdp, from, start - from);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static int gen8_ppgtt_alloc_3lvl(struct i915_address_space *vm,
|
|
u64 start, u64 length)
|
|
{
|
|
return gen8_ppgtt_alloc_pdp(vm,
|
|
&i915_vm_to_ppgtt(vm)->pdp, start, length);
|
|
}
|
|
|
|
static int gen8_ppgtt_alloc_4lvl(struct i915_address_space *vm,
|
|
u64 start, u64 length)
|
|
{
|
|
struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
|
|
struct i915_pml4 *pml4 = &ppgtt->pml4;
|
|
struct i915_page_directory_pointer *pdp;
|
|
u64 from = start;
|
|
u32 pml4e;
|
|
int ret;
|
|
|
|
gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
|
|
if (pml4->pdps[pml4e] == vm->scratch_pdp) {
|
|
pdp = alloc_pdp(vm);
|
|
if (IS_ERR(pdp))
|
|
goto unwind;
|
|
|
|
gen8_initialize_pdp(vm, pdp);
|
|
gen8_ppgtt_set_pml4e(pml4, pdp, pml4e);
|
|
}
|
|
|
|
ret = gen8_ppgtt_alloc_pdp(vm, pdp, start, length);
|
|
if (unlikely(ret))
|
|
goto unwind_pdp;
|
|
}
|
|
|
|
return 0;
|
|
|
|
unwind_pdp:
|
|
if (!pdp->used_pdpes) {
|
|
gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e);
|
|
free_pdp(vm, pdp);
|
|
}
|
|
unwind:
|
|
gen8_ppgtt_clear_4lvl(vm, from, start - from);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static int gen8_preallocate_top_level_pdp(struct i915_hw_ppgtt *ppgtt)
|
|
{
|
|
struct i915_address_space *vm = &ppgtt->vm;
|
|
struct i915_page_directory_pointer *pdp = &ppgtt->pdp;
|
|
struct i915_page_directory *pd;
|
|
u64 start = 0, length = ppgtt->vm.total;
|
|
u64 from = start;
|
|
unsigned int pdpe;
|
|
|
|
gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
|
|
pd = alloc_pd(vm);
|
|
if (IS_ERR(pd))
|
|
goto unwind;
|
|
|
|
gen8_initialize_pd(vm, pd);
|
|
gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe);
|
|
pdp->used_pdpes++;
|
|
}
|
|
|
|
pdp->used_pdpes++; /* never remove */
|
|
return 0;
|
|
|
|
unwind:
|
|
start -= from;
|
|
gen8_for_each_pdpe(pd, pdp, from, start, pdpe) {
|
|
gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
|
|
free_pd(vm, pd);
|
|
}
|
|
pdp->used_pdpes = 0;
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static void ppgtt_init(struct drm_i915_private *i915,
|
|
struct i915_hw_ppgtt *ppgtt)
|
|
{
|
|
kref_init(&ppgtt->ref);
|
|
|
|
ppgtt->vm.i915 = i915;
|
|
ppgtt->vm.dma = &i915->drm.pdev->dev;
|
|
ppgtt->vm.total = BIT_ULL(INTEL_INFO(i915)->ppgtt_size);
|
|
|
|
i915_address_space_init(&ppgtt->vm, VM_CLASS_PPGTT);
|
|
|
|
ppgtt->vm.vma_ops.bind_vma = ppgtt_bind_vma;
|
|
ppgtt->vm.vma_ops.unbind_vma = ppgtt_unbind_vma;
|
|
ppgtt->vm.vma_ops.set_pages = ppgtt_set_pages;
|
|
ppgtt->vm.vma_ops.clear_pages = clear_pages;
|
|
}
|
|
|
|
/*
|
|
* GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
|
|
* with a net effect resembling a 2-level page table in normal x86 terms. Each
|
|
* PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
|
|
* space.
|
|
*
|
|
*/
|
|
static struct i915_hw_ppgtt *gen8_ppgtt_create(struct drm_i915_private *i915)
|
|
{
|
|
struct i915_hw_ppgtt *ppgtt;
|
|
int err;
|
|
|
|
ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
|
|
if (!ppgtt)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
ppgtt_init(i915, ppgtt);
|
|
|
|
/*
|
|
* From bdw, there is hw support for read-only pages in the PPGTT.
|
|
*
|
|
* Gen11 has HSDES#:1807136187 unresolved. Disable ro support
|
|
* for now.
|
|
*/
|
|
ppgtt->vm.has_read_only = INTEL_GEN(i915) != 11;
|
|
|
|
/* There are only few exceptions for gen >=6. chv and bxt.
|
|
* And we are not sure about the latter so play safe for now.
|
|
*/
|
|
if (IS_CHERRYVIEW(i915) || IS_BROXTON(i915))
|
|
ppgtt->vm.pt_kmap_wc = true;
|
|
|
|
err = gen8_init_scratch(&ppgtt->vm);
|
|
if (err)
|
|
goto err_free;
|
|
|
|
if (i915_vm_is_4lvl(&ppgtt->vm)) {
|
|
err = setup_px(&ppgtt->vm, &ppgtt->pml4);
|
|
if (err)
|
|
goto err_scratch;
|
|
|
|
gen8_initialize_pml4(&ppgtt->vm, &ppgtt->pml4);
|
|
|
|
ppgtt->vm.allocate_va_range = gen8_ppgtt_alloc_4lvl;
|
|
ppgtt->vm.insert_entries = gen8_ppgtt_insert_4lvl;
|
|
ppgtt->vm.clear_range = gen8_ppgtt_clear_4lvl;
|
|
} else {
|
|
err = __pdp_init(&ppgtt->vm, &ppgtt->pdp);
|
|
if (err)
|
|
goto err_scratch;
|
|
|
|
if (intel_vgpu_active(i915)) {
|
|
err = gen8_preallocate_top_level_pdp(ppgtt);
|
|
if (err) {
|
|
__pdp_fini(&ppgtt->pdp);
|
|
goto err_scratch;
|
|
}
|
|
}
|
|
|
|
ppgtt->vm.allocate_va_range = gen8_ppgtt_alloc_3lvl;
|
|
ppgtt->vm.insert_entries = gen8_ppgtt_insert_3lvl;
|
|
ppgtt->vm.clear_range = gen8_ppgtt_clear_3lvl;
|
|
}
|
|
|
|
if (intel_vgpu_active(i915))
|
|
gen8_ppgtt_notify_vgt(ppgtt, true);
|
|
|
|
ppgtt->vm.cleanup = gen8_ppgtt_cleanup;
|
|
|
|
return ppgtt;
|
|
|
|
err_scratch:
|
|
gen8_free_scratch(&ppgtt->vm);
|
|
err_free:
|
|
kfree(ppgtt);
|
|
return ERR_PTR(err);
|
|
}
|
|
|
|
/* Write pde (index) from the page directory @pd to the page table @pt */
|
|
static inline void gen6_write_pde(const struct gen6_hw_ppgtt *ppgtt,
|
|
const unsigned int pde,
|
|
const struct i915_page_table *pt)
|
|
{
|
|
/* Caller needs to make sure the write completes if necessary */
|
|
iowrite32(GEN6_PDE_ADDR_ENCODE(px_dma(pt)) | GEN6_PDE_VALID,
|
|
ppgtt->pd_addr + pde);
|
|
}
|
|
|
|
static void gen7_ppgtt_enable(struct drm_i915_private *dev_priv)
|
|
{
|
|
struct intel_engine_cs *engine;
|
|
u32 ecochk, ecobits;
|
|
enum intel_engine_id id;
|
|
|
|
ecobits = I915_READ(GAC_ECO_BITS);
|
|
I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
|
|
|
|
ecochk = I915_READ(GAM_ECOCHK);
|
|
if (IS_HASWELL(dev_priv)) {
|
|
ecochk |= ECOCHK_PPGTT_WB_HSW;
|
|
} else {
|
|
ecochk |= ECOCHK_PPGTT_LLC_IVB;
|
|
ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
|
|
}
|
|
I915_WRITE(GAM_ECOCHK, ecochk);
|
|
|
|
for_each_engine(engine, dev_priv, id) {
|
|
/* GFX_MODE is per-ring on gen7+ */
|
|
I915_WRITE(RING_MODE_GEN7(engine),
|
|
_MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
|
|
}
|
|
}
|
|
|
|
static void gen6_ppgtt_enable(struct drm_i915_private *dev_priv)
|
|
{
|
|
u32 ecochk, gab_ctl, ecobits;
|
|
|
|
ecobits = I915_READ(GAC_ECO_BITS);
|
|
I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
|
|
ECOBITS_PPGTT_CACHE64B);
|
|
|
|
gab_ctl = I915_READ(GAB_CTL);
|
|
I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
|
|
|
|
ecochk = I915_READ(GAM_ECOCHK);
|
|
I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
|
|
|
|
if (HAS_PPGTT(dev_priv)) /* may be disabled for VT-d */
|
|
I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
|
|
}
|
|
|
|
/* PPGTT support for Sandybdrige/Gen6 and later */
|
|
static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
|
|
u64 start, u64 length)
|
|
{
|
|
struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
|
|
unsigned int first_entry = start / I915_GTT_PAGE_SIZE;
|
|
unsigned int pde = first_entry / GEN6_PTES;
|
|
unsigned int pte = first_entry % GEN6_PTES;
|
|
unsigned int num_entries = length / I915_GTT_PAGE_SIZE;
|
|
const gen6_pte_t scratch_pte = vm->scratch_pte;
|
|
|
|
while (num_entries) {
|
|
struct i915_page_table *pt = ppgtt->base.pd.page_table[pde++];
|
|
const unsigned int count = min(num_entries, GEN6_PTES - pte);
|
|
gen6_pte_t *vaddr;
|
|
|
|
GEM_BUG_ON(pt == vm->scratch_pt);
|
|
|
|
num_entries -= count;
|
|
|
|
GEM_BUG_ON(count > pt->used_ptes);
|
|
pt->used_ptes -= count;
|
|
if (!pt->used_ptes)
|
|
ppgtt->scan_for_unused_pt = true;
|
|
|
|
/*
|
|
* Note that the hw doesn't support removing PDE on the fly
|
|
* (they are cached inside the context with no means to
|
|
* invalidate the cache), so we can only reset the PTE
|
|
* entries back to scratch.
|
|
*/
|
|
|
|
vaddr = kmap_atomic_px(pt);
|
|
memset32(vaddr + pte, scratch_pte, count);
|
|
kunmap_atomic(vaddr);
|
|
|
|
pte = 0;
|
|
}
|
|
}
|
|
|
|
static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
|
|
struct i915_vma *vma,
|
|
enum i915_cache_level cache_level,
|
|
u32 flags)
|
|
{
|
|
struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
|
|
unsigned first_entry = vma->node.start / I915_GTT_PAGE_SIZE;
|
|
unsigned act_pt = first_entry / GEN6_PTES;
|
|
unsigned act_pte = first_entry % GEN6_PTES;
|
|
const u32 pte_encode = vm->pte_encode(0, cache_level, flags);
|
|
struct sgt_dma iter = sgt_dma(vma);
|
|
gen6_pte_t *vaddr;
|
|
|
|
GEM_BUG_ON(ppgtt->pd.page_table[act_pt] == vm->scratch_pt);
|
|
|
|
vaddr = kmap_atomic_px(ppgtt->pd.page_table[act_pt]);
|
|
do {
|
|
vaddr[act_pte] = pte_encode | GEN6_PTE_ADDR_ENCODE(iter.dma);
|
|
|
|
iter.dma += I915_GTT_PAGE_SIZE;
|
|
if (iter.dma == iter.max) {
|
|
iter.sg = __sg_next(iter.sg);
|
|
if (!iter.sg)
|
|
break;
|
|
|
|
iter.dma = sg_dma_address(iter.sg);
|
|
iter.max = iter.dma + iter.sg->length;
|
|
}
|
|
|
|
if (++act_pte == GEN6_PTES) {
|
|
kunmap_atomic(vaddr);
|
|
vaddr = kmap_atomic_px(ppgtt->pd.page_table[++act_pt]);
|
|
act_pte = 0;
|
|
}
|
|
} while (1);
|
|
kunmap_atomic(vaddr);
|
|
|
|
vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
|
|
}
|
|
|
|
static int gen6_alloc_va_range(struct i915_address_space *vm,
|
|
u64 start, u64 length)
|
|
{
|
|
struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
|
|
struct i915_page_table *pt;
|
|
u64 from = start;
|
|
unsigned int pde;
|
|
bool flush = false;
|
|
|
|
gen6_for_each_pde(pt, &ppgtt->base.pd, start, length, pde) {
|
|
const unsigned int count = gen6_pte_count(start, length);
|
|
|
|
if (pt == vm->scratch_pt) {
|
|
pt = alloc_pt(vm);
|
|
if (IS_ERR(pt))
|
|
goto unwind_out;
|
|
|
|
gen6_initialize_pt(vm, pt);
|
|
ppgtt->base.pd.page_table[pde] = pt;
|
|
|
|
if (i915_vma_is_bound(ppgtt->vma,
|
|
I915_VMA_GLOBAL_BIND)) {
|
|
gen6_write_pde(ppgtt, pde, pt);
|
|
flush = true;
|
|
}
|
|
|
|
GEM_BUG_ON(pt->used_ptes);
|
|
}
|
|
|
|
pt->used_ptes += count;
|
|
}
|
|
|
|
if (flush) {
|
|
mark_tlbs_dirty(&ppgtt->base);
|
|
gen6_ggtt_invalidate(ppgtt->base.vm.i915);
|
|
}
|
|
|
|
return 0;
|
|
|
|
unwind_out:
|
|
gen6_ppgtt_clear_range(vm, from, start - from);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static int gen6_ppgtt_init_scratch(struct gen6_hw_ppgtt *ppgtt)
|
|
{
|
|
struct i915_address_space * const vm = &ppgtt->base.vm;
|
|
struct i915_page_table *unused;
|
|
u32 pde;
|
|
int ret;
|
|
|
|
ret = setup_scratch_page(vm, __GFP_HIGHMEM);
|
|
if (ret)
|
|
return ret;
|
|
|
|
vm->scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
|
|
I915_CACHE_NONE,
|
|
PTE_READ_ONLY);
|
|
|
|
vm->scratch_pt = alloc_pt(vm);
|
|
if (IS_ERR(vm->scratch_pt)) {
|
|
cleanup_scratch_page(vm);
|
|
return PTR_ERR(vm->scratch_pt);
|
|
}
|
|
|
|
gen6_initialize_pt(vm, vm->scratch_pt);
|
|
gen6_for_all_pdes(unused, &ppgtt->base.pd, pde)
|
|
ppgtt->base.pd.page_table[pde] = vm->scratch_pt;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void gen6_ppgtt_free_scratch(struct i915_address_space *vm)
|
|
{
|
|
free_pt(vm, vm->scratch_pt);
|
|
cleanup_scratch_page(vm);
|
|
}
|
|
|
|
static void gen6_ppgtt_free_pd(struct gen6_hw_ppgtt *ppgtt)
|
|
{
|
|
struct i915_page_table *pt;
|
|
u32 pde;
|
|
|
|
gen6_for_all_pdes(pt, &ppgtt->base.pd, pde)
|
|
if (pt != ppgtt->base.vm.scratch_pt)
|
|
free_pt(&ppgtt->base.vm, pt);
|
|
}
|
|
|
|
static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
|
|
{
|
|
struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
|
|
|
|
i915_vma_destroy(ppgtt->vma);
|
|
|
|
gen6_ppgtt_free_pd(ppgtt);
|
|
gen6_ppgtt_free_scratch(vm);
|
|
}
|
|
|
|
static int pd_vma_set_pages(struct i915_vma *vma)
|
|
{
|
|
vma->pages = ERR_PTR(-ENODEV);
|
|
return 0;
|
|
}
|
|
|
|
static void pd_vma_clear_pages(struct i915_vma *vma)
|
|
{
|
|
GEM_BUG_ON(!vma->pages);
|
|
|
|
vma->pages = NULL;
|
|
}
|
|
|
|
static int pd_vma_bind(struct i915_vma *vma,
|
|
enum i915_cache_level cache_level,
|
|
u32 unused)
|
|
{
|
|
struct i915_ggtt *ggtt = i915_vm_to_ggtt(vma->vm);
|
|
struct gen6_hw_ppgtt *ppgtt = vma->private;
|
|
u32 ggtt_offset = i915_ggtt_offset(vma) / I915_GTT_PAGE_SIZE;
|
|
struct i915_page_table *pt;
|
|
unsigned int pde;
|
|
|
|
ppgtt->base.pd.base.ggtt_offset = ggtt_offset * sizeof(gen6_pte_t);
|
|
ppgtt->pd_addr = (gen6_pte_t __iomem *)ggtt->gsm + ggtt_offset;
|
|
|
|
gen6_for_all_pdes(pt, &ppgtt->base.pd, pde)
|
|
gen6_write_pde(ppgtt, pde, pt);
|
|
|
|
mark_tlbs_dirty(&ppgtt->base);
|
|
gen6_ggtt_invalidate(ppgtt->base.vm.i915);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void pd_vma_unbind(struct i915_vma *vma)
|
|
{
|
|
struct gen6_hw_ppgtt *ppgtt = vma->private;
|
|
struct i915_page_table * const scratch_pt = ppgtt->base.vm.scratch_pt;
|
|
struct i915_page_table *pt;
|
|
unsigned int pde;
|
|
|
|
if (!ppgtt->scan_for_unused_pt)
|
|
return;
|
|
|
|
/* Free all no longer used page tables */
|
|
gen6_for_all_pdes(pt, &ppgtt->base.pd, pde) {
|
|
if (pt->used_ptes || pt == scratch_pt)
|
|
continue;
|
|
|
|
free_pt(&ppgtt->base.vm, pt);
|
|
ppgtt->base.pd.page_table[pde] = scratch_pt;
|
|
}
|
|
|
|
ppgtt->scan_for_unused_pt = false;
|
|
}
|
|
|
|
static const struct i915_vma_ops pd_vma_ops = {
|
|
.set_pages = pd_vma_set_pages,
|
|
.clear_pages = pd_vma_clear_pages,
|
|
.bind_vma = pd_vma_bind,
|
|
.unbind_vma = pd_vma_unbind,
|
|
};
|
|
|
|
static struct i915_vma *pd_vma_create(struct gen6_hw_ppgtt *ppgtt, int size)
|
|
{
|
|
struct drm_i915_private *i915 = ppgtt->base.vm.i915;
|
|
struct i915_ggtt *ggtt = &i915->ggtt;
|
|
struct i915_vma *vma;
|
|
|
|
GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
|
|
GEM_BUG_ON(size > ggtt->vm.total);
|
|
|
|
vma = i915_vma_alloc();
|
|
if (!vma)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
i915_active_init(i915, &vma->active, NULL);
|
|
INIT_ACTIVE_REQUEST(&vma->last_fence);
|
|
|
|
vma->vm = &ggtt->vm;
|
|
vma->ops = &pd_vma_ops;
|
|
vma->private = ppgtt;
|
|
|
|
vma->size = size;
|
|
vma->fence_size = size;
|
|
vma->flags = I915_VMA_GGTT;
|
|
vma->ggtt_view.type = I915_GGTT_VIEW_ROTATED; /* prevent fencing */
|
|
|
|
INIT_LIST_HEAD(&vma->obj_link);
|
|
|
|
mutex_lock(&vma->vm->mutex);
|
|
list_add(&vma->vm_link, &vma->vm->unbound_list);
|
|
mutex_unlock(&vma->vm->mutex);
|
|
|
|
return vma;
|
|
}
|
|
|
|
int gen6_ppgtt_pin(struct i915_hw_ppgtt *base)
|
|
{
|
|
struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(base);
|
|
int err;
|
|
|
|
GEM_BUG_ON(ppgtt->base.vm.closed);
|
|
|
|
/*
|
|
* Workaround the limited maximum vma->pin_count and the aliasing_ppgtt
|
|
* which will be pinned into every active context.
|
|
* (When vma->pin_count becomes atomic, I expect we will naturally
|
|
* need a larger, unpacked, type and kill this redundancy.)
|
|
*/
|
|
if (ppgtt->pin_count++)
|
|
return 0;
|
|
|
|
/*
|
|
* PPGTT PDEs reside in the GGTT and consists of 512 entries. The
|
|
* allocator works in address space sizes, so it's multiplied by page
|
|
* size. We allocate at the top of the GTT to avoid fragmentation.
|
|
*/
|
|
err = i915_vma_pin(ppgtt->vma,
|
|
0, GEN6_PD_ALIGN,
|
|
PIN_GLOBAL | PIN_HIGH);
|
|
if (err)
|
|
goto unpin;
|
|
|
|
return 0;
|
|
|
|
unpin:
|
|
ppgtt->pin_count = 0;
|
|
return err;
|
|
}
|
|
|
|
void gen6_ppgtt_unpin(struct i915_hw_ppgtt *base)
|
|
{
|
|
struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(base);
|
|
|
|
GEM_BUG_ON(!ppgtt->pin_count);
|
|
if (--ppgtt->pin_count)
|
|
return;
|
|
|
|
i915_vma_unpin(ppgtt->vma);
|
|
}
|
|
|
|
void gen6_ppgtt_unpin_all(struct i915_hw_ppgtt *base)
|
|
{
|
|
struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(base);
|
|
|
|
if (!ppgtt->pin_count)
|
|
return;
|
|
|
|
ppgtt->pin_count = 0;
|
|
i915_vma_unpin(ppgtt->vma);
|
|
}
|
|
|
|
static struct i915_hw_ppgtt *gen6_ppgtt_create(struct drm_i915_private *i915)
|
|
{
|
|
struct i915_ggtt * const ggtt = &i915->ggtt;
|
|
struct gen6_hw_ppgtt *ppgtt;
|
|
int err;
|
|
|
|
ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
|
|
if (!ppgtt)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
ppgtt_init(i915, &ppgtt->base);
|
|
|
|
ppgtt->base.vm.allocate_va_range = gen6_alloc_va_range;
|
|
ppgtt->base.vm.clear_range = gen6_ppgtt_clear_range;
|
|
ppgtt->base.vm.insert_entries = gen6_ppgtt_insert_entries;
|
|
ppgtt->base.vm.cleanup = gen6_ppgtt_cleanup;
|
|
|
|
ppgtt->base.vm.pte_encode = ggtt->vm.pte_encode;
|
|
|
|
err = gen6_ppgtt_init_scratch(ppgtt);
|
|
if (err)
|
|
goto err_free;
|
|
|
|
ppgtt->vma = pd_vma_create(ppgtt, GEN6_PD_SIZE);
|
|
if (IS_ERR(ppgtt->vma)) {
|
|
err = PTR_ERR(ppgtt->vma);
|
|
goto err_scratch;
|
|
}
|
|
|
|
return &ppgtt->base;
|
|
|
|
err_scratch:
|
|
gen6_ppgtt_free_scratch(&ppgtt->base.vm);
|
|
err_free:
|
|
kfree(ppgtt);
|
|
return ERR_PTR(err);
|
|
}
|
|
|
|
static void gtt_write_workarounds(struct drm_i915_private *dev_priv)
|
|
{
|
|
/* This function is for gtt related workarounds. This function is
|
|
* called on driver load and after a GPU reset, so you can place
|
|
* workarounds here even if they get overwritten by GPU reset.
|
|
*/
|
|
/* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt,kbl,glk,cfl,cnl,icl */
|
|
if (IS_BROADWELL(dev_priv))
|
|
I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
|
|
else if (IS_CHERRYVIEW(dev_priv))
|
|
I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
|
|
else if (IS_GEN9_LP(dev_priv))
|
|
I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
|
|
else if (INTEL_GEN(dev_priv) >= 9)
|
|
I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
|
|
|
|
/*
|
|
* To support 64K PTEs we need to first enable the use of the
|
|
* Intermediate-Page-Size(IPS) bit of the PDE field via some magical
|
|
* mmio, otherwise the page-walker will simply ignore the IPS bit. This
|
|
* shouldn't be needed after GEN10.
|
|
*
|
|
* 64K pages were first introduced from BDW+, although technically they
|
|
* only *work* from gen9+. For pre-BDW we instead have the option for
|
|
* 32K pages, but we don't currently have any support for it in our
|
|
* driver.
|
|
*/
|
|
if (HAS_PAGE_SIZES(dev_priv, I915_GTT_PAGE_SIZE_64K) &&
|
|
INTEL_GEN(dev_priv) <= 10)
|
|
I915_WRITE(GEN8_GAMW_ECO_DEV_RW_IA,
|
|
I915_READ(GEN8_GAMW_ECO_DEV_RW_IA) |
|
|
GAMW_ECO_ENABLE_64K_IPS_FIELD);
|
|
}
|
|
|
|
int i915_ppgtt_init_hw(struct drm_i915_private *dev_priv)
|
|
{
|
|
gtt_write_workarounds(dev_priv);
|
|
|
|
if (IS_GEN(dev_priv, 6))
|
|
gen6_ppgtt_enable(dev_priv);
|
|
else if (IS_GEN(dev_priv, 7))
|
|
gen7_ppgtt_enable(dev_priv);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct i915_hw_ppgtt *
|
|
__hw_ppgtt_create(struct drm_i915_private *i915)
|
|
{
|
|
if (INTEL_GEN(i915) < 8)
|
|
return gen6_ppgtt_create(i915);
|
|
else
|
|
return gen8_ppgtt_create(i915);
|
|
}
|
|
|
|
struct i915_hw_ppgtt *
|
|
i915_ppgtt_create(struct drm_i915_private *i915)
|
|
{
|
|
struct i915_hw_ppgtt *ppgtt;
|
|
|
|
ppgtt = __hw_ppgtt_create(i915);
|
|
if (IS_ERR(ppgtt))
|
|
return ppgtt;
|
|
|
|
trace_i915_ppgtt_create(&ppgtt->vm);
|
|
|
|
return ppgtt;
|
|
}
|
|
|
|
static void ppgtt_destroy_vma(struct i915_address_space *vm)
|
|
{
|
|
struct list_head *phases[] = {
|
|
&vm->bound_list,
|
|
&vm->unbound_list,
|
|
NULL,
|
|
}, **phase;
|
|
|
|
vm->closed = true;
|
|
for (phase = phases; *phase; phase++) {
|
|
struct i915_vma *vma, *vn;
|
|
|
|
list_for_each_entry_safe(vma, vn, *phase, vm_link)
|
|
i915_vma_destroy(vma);
|
|
}
|
|
}
|
|
|
|
void i915_ppgtt_release(struct kref *kref)
|
|
{
|
|
struct i915_hw_ppgtt *ppgtt =
|
|
container_of(kref, struct i915_hw_ppgtt, ref);
|
|
|
|
trace_i915_ppgtt_release(&ppgtt->vm);
|
|
|
|
ppgtt_destroy_vma(&ppgtt->vm);
|
|
|
|
GEM_BUG_ON(!list_empty(&ppgtt->vm.bound_list));
|
|
GEM_BUG_ON(!list_empty(&ppgtt->vm.unbound_list));
|
|
|
|
ppgtt->vm.cleanup(&ppgtt->vm);
|
|
i915_address_space_fini(&ppgtt->vm);
|
|
kfree(ppgtt);
|
|
}
|
|
|
|
/* Certain Gen5 chipsets require require idling the GPU before
|
|
* unmapping anything from the GTT when VT-d is enabled.
|
|
*/
|
|
static bool needs_idle_maps(struct drm_i915_private *dev_priv)
|
|
{
|
|
/* Query intel_iommu to see if we need the workaround. Presumably that
|
|
* was loaded first.
|
|
*/
|
|
return IS_GEN(dev_priv, 5) && IS_MOBILE(dev_priv) && intel_vtd_active();
|
|
}
|
|
|
|
static void gen6_check_faults(struct drm_i915_private *dev_priv)
|
|
{
|
|
struct intel_engine_cs *engine;
|
|
enum intel_engine_id id;
|
|
u32 fault;
|
|
|
|
for_each_engine(engine, dev_priv, id) {
|
|
fault = I915_READ(RING_FAULT_REG(engine));
|
|
if (fault & RING_FAULT_VALID) {
|
|
DRM_DEBUG_DRIVER("Unexpected fault\n"
|
|
"\tAddr: 0x%08lx\n"
|
|
"\tAddress space: %s\n"
|
|
"\tSource ID: %d\n"
|
|
"\tType: %d\n",
|
|
fault & PAGE_MASK,
|
|
fault & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
|
|
RING_FAULT_SRCID(fault),
|
|
RING_FAULT_FAULT_TYPE(fault));
|
|
}
|
|
}
|
|
}
|
|
|
|
static void gen8_check_faults(struct drm_i915_private *dev_priv)
|
|
{
|
|
u32 fault = I915_READ(GEN8_RING_FAULT_REG);
|
|
|
|
if (fault & RING_FAULT_VALID) {
|
|
u32 fault_data0, fault_data1;
|
|
u64 fault_addr;
|
|
|
|
fault_data0 = I915_READ(GEN8_FAULT_TLB_DATA0);
|
|
fault_data1 = I915_READ(GEN8_FAULT_TLB_DATA1);
|
|
fault_addr = ((u64)(fault_data1 & FAULT_VA_HIGH_BITS) << 44) |
|
|
((u64)fault_data0 << 12);
|
|
|
|
DRM_DEBUG_DRIVER("Unexpected fault\n"
|
|
"\tAddr: 0x%08x_%08x\n"
|
|
"\tAddress space: %s\n"
|
|
"\tEngine ID: %d\n"
|
|
"\tSource ID: %d\n"
|
|
"\tType: %d\n",
|
|
upper_32_bits(fault_addr),
|
|
lower_32_bits(fault_addr),
|
|
fault_data1 & FAULT_GTT_SEL ? "GGTT" : "PPGTT",
|
|
GEN8_RING_FAULT_ENGINE_ID(fault),
|
|
RING_FAULT_SRCID(fault),
|
|
RING_FAULT_FAULT_TYPE(fault));
|
|
}
|
|
}
|
|
|
|
void i915_check_and_clear_faults(struct drm_i915_private *dev_priv)
|
|
{
|
|
/* From GEN8 onwards we only have one 'All Engine Fault Register' */
|
|
if (INTEL_GEN(dev_priv) >= 8)
|
|
gen8_check_faults(dev_priv);
|
|
else if (INTEL_GEN(dev_priv) >= 6)
|
|
gen6_check_faults(dev_priv);
|
|
else
|
|
return;
|
|
|
|
i915_clear_error_registers(dev_priv);
|
|
}
|
|
|
|
void i915_gem_suspend_gtt_mappings(struct drm_i915_private *dev_priv)
|
|
{
|
|
struct i915_ggtt *ggtt = &dev_priv->ggtt;
|
|
|
|
/* Don't bother messing with faults pre GEN6 as we have little
|
|
* documentation supporting that it's a good idea.
|
|
*/
|
|
if (INTEL_GEN(dev_priv) < 6)
|
|
return;
|
|
|
|
i915_check_and_clear_faults(dev_priv);
|
|
|
|
ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
|
|
|
|
i915_ggtt_invalidate(dev_priv);
|
|
}
|
|
|
|
int i915_gem_gtt_prepare_pages(struct drm_i915_gem_object *obj,
|
|
struct sg_table *pages)
|
|
{
|
|
do {
|
|
if (dma_map_sg_attrs(&obj->base.dev->pdev->dev,
|
|
pages->sgl, pages->nents,
|
|
PCI_DMA_BIDIRECTIONAL,
|
|
DMA_ATTR_NO_WARN))
|
|
return 0;
|
|
|
|
/*
|
|
* If the DMA remap fails, one cause can be that we have
|
|
* too many objects pinned in a small remapping table,
|
|
* such as swiotlb. Incrementally purge all other objects and
|
|
* try again - if there are no more pages to remove from
|
|
* the DMA remapper, i915_gem_shrink will return 0.
|
|
*/
|
|
GEM_BUG_ON(obj->mm.pages == pages);
|
|
} while (i915_gem_shrink(to_i915(obj->base.dev),
|
|
obj->base.size >> PAGE_SHIFT, NULL,
|
|
I915_SHRINK_BOUND |
|
|
I915_SHRINK_UNBOUND));
|
|
|
|
return -ENOSPC;
|
|
}
|
|
|
|
static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
|
|
{
|
|
writeq(pte, addr);
|
|
}
|
|
|
|
static void gen8_ggtt_insert_page(struct i915_address_space *vm,
|
|
dma_addr_t addr,
|
|
u64 offset,
|
|
enum i915_cache_level level,
|
|
u32 unused)
|
|
{
|
|
struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
|
|
gen8_pte_t __iomem *pte =
|
|
(gen8_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
|
|
|
|
gen8_set_pte(pte, gen8_pte_encode(addr, level, 0));
|
|
|
|
ggtt->invalidate(vm->i915);
|
|
}
|
|
|
|
static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
|
|
struct i915_vma *vma,
|
|
enum i915_cache_level level,
|
|
u32 flags)
|
|
{
|
|
struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
|
|
struct sgt_iter sgt_iter;
|
|
gen8_pte_t __iomem *gtt_entries;
|
|
const gen8_pte_t pte_encode = gen8_pte_encode(0, level, 0);
|
|
dma_addr_t addr;
|
|
|
|
/*
|
|
* Note that we ignore PTE_READ_ONLY here. The caller must be careful
|
|
* not to allow the user to override access to a read only page.
|
|
*/
|
|
|
|
gtt_entries = (gen8_pte_t __iomem *)ggtt->gsm;
|
|
gtt_entries += vma->node.start / I915_GTT_PAGE_SIZE;
|
|
for_each_sgt_dma(addr, sgt_iter, vma->pages)
|
|
gen8_set_pte(gtt_entries++, pte_encode | addr);
|
|
|
|
/*
|
|
* We want to flush the TLBs only after we're certain all the PTE
|
|
* updates have finished.
|
|
*/
|
|
ggtt->invalidate(vm->i915);
|
|
}
|
|
|
|
static void gen6_ggtt_insert_page(struct i915_address_space *vm,
|
|
dma_addr_t addr,
|
|
u64 offset,
|
|
enum i915_cache_level level,
|
|
u32 flags)
|
|
{
|
|
struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
|
|
gen6_pte_t __iomem *pte =
|
|
(gen6_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
|
|
|
|
iowrite32(vm->pte_encode(addr, level, flags), pte);
|
|
|
|
ggtt->invalidate(vm->i915);
|
|
}
|
|
|
|
/*
|
|
* Binds an object into the global gtt with the specified cache level. The object
|
|
* will be accessible to the GPU via commands whose operands reference offsets
|
|
* within the global GTT as well as accessible by the GPU through the GMADR
|
|
* mapped BAR (dev_priv->mm.gtt->gtt).
|
|
*/
|
|
static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
|
|
struct i915_vma *vma,
|
|
enum i915_cache_level level,
|
|
u32 flags)
|
|
{
|
|
struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
|
|
gen6_pte_t __iomem *entries = (gen6_pte_t __iomem *)ggtt->gsm;
|
|
unsigned int i = vma->node.start / I915_GTT_PAGE_SIZE;
|
|
struct sgt_iter iter;
|
|
dma_addr_t addr;
|
|
for_each_sgt_dma(addr, iter, vma->pages)
|
|
iowrite32(vm->pte_encode(addr, level, flags), &entries[i++]);
|
|
|
|
/*
|
|
* We want to flush the TLBs only after we're certain all the PTE
|
|
* updates have finished.
|
|
*/
|
|
ggtt->invalidate(vm->i915);
|
|
}
|
|
|
|
static void nop_clear_range(struct i915_address_space *vm,
|
|
u64 start, u64 length)
|
|
{
|
|
}
|
|
|
|
static void gen8_ggtt_clear_range(struct i915_address_space *vm,
|
|
u64 start, u64 length)
|
|
{
|
|
struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
|
|
unsigned first_entry = start / I915_GTT_PAGE_SIZE;
|
|
unsigned num_entries = length / I915_GTT_PAGE_SIZE;
|
|
const gen8_pte_t scratch_pte = vm->scratch_pte;
|
|
gen8_pte_t __iomem *gtt_base =
|
|
(gen8_pte_t __iomem *)ggtt->gsm + first_entry;
|
|
const int max_entries = ggtt_total_entries(ggtt) - first_entry;
|
|
int i;
|
|
|
|
if (WARN(num_entries > max_entries,
|
|
"First entry = %d; Num entries = %d (max=%d)\n",
|
|
first_entry, num_entries, max_entries))
|
|
num_entries = max_entries;
|
|
|
|
for (i = 0; i < num_entries; i++)
|
|
gen8_set_pte(>t_base[i], scratch_pte);
|
|
}
|
|
|
|
static void bxt_vtd_ggtt_wa(struct i915_address_space *vm)
|
|
{
|
|
struct drm_i915_private *dev_priv = vm->i915;
|
|
|
|
/*
|
|
* Make sure the internal GAM fifo has been cleared of all GTT
|
|
* writes before exiting stop_machine(). This guarantees that
|
|
* any aperture accesses waiting to start in another process
|
|
* cannot back up behind the GTT writes causing a hang.
|
|
* The register can be any arbitrary GAM register.
|
|
*/
|
|
POSTING_READ(GFX_FLSH_CNTL_GEN6);
|
|
}
|
|
|
|
struct insert_page {
|
|
struct i915_address_space *vm;
|
|
dma_addr_t addr;
|
|
u64 offset;
|
|
enum i915_cache_level level;
|
|
};
|
|
|
|
static int bxt_vtd_ggtt_insert_page__cb(void *_arg)
|
|
{
|
|
struct insert_page *arg = _arg;
|
|
|
|
gen8_ggtt_insert_page(arg->vm, arg->addr, arg->offset, arg->level, 0);
|
|
bxt_vtd_ggtt_wa(arg->vm);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space *vm,
|
|
dma_addr_t addr,
|
|
u64 offset,
|
|
enum i915_cache_level level,
|
|
u32 unused)
|
|
{
|
|
struct insert_page arg = { vm, addr, offset, level };
|
|
|
|
stop_machine(bxt_vtd_ggtt_insert_page__cb, &arg, NULL);
|
|
}
|
|
|
|
struct insert_entries {
|
|
struct i915_address_space *vm;
|
|
struct i915_vma *vma;
|
|
enum i915_cache_level level;
|
|
u32 flags;
|
|
};
|
|
|
|
static int bxt_vtd_ggtt_insert_entries__cb(void *_arg)
|
|
{
|
|
struct insert_entries *arg = _arg;
|
|
|
|
gen8_ggtt_insert_entries(arg->vm, arg->vma, arg->level, arg->flags);
|
|
bxt_vtd_ggtt_wa(arg->vm);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space *vm,
|
|
struct i915_vma *vma,
|
|
enum i915_cache_level level,
|
|
u32 flags)
|
|
{
|
|
struct insert_entries arg = { vm, vma, level, flags };
|
|
|
|
stop_machine(bxt_vtd_ggtt_insert_entries__cb, &arg, NULL);
|
|
}
|
|
|
|
struct clear_range {
|
|
struct i915_address_space *vm;
|
|
u64 start;
|
|
u64 length;
|
|
};
|
|
|
|
static int bxt_vtd_ggtt_clear_range__cb(void *_arg)
|
|
{
|
|
struct clear_range *arg = _arg;
|
|
|
|
gen8_ggtt_clear_range(arg->vm, arg->start, arg->length);
|
|
bxt_vtd_ggtt_wa(arg->vm);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void bxt_vtd_ggtt_clear_range__BKL(struct i915_address_space *vm,
|
|
u64 start,
|
|
u64 length)
|
|
{
|
|
struct clear_range arg = { vm, start, length };
|
|
|
|
stop_machine(bxt_vtd_ggtt_clear_range__cb, &arg, NULL);
|
|
}
|
|
|
|
static void gen6_ggtt_clear_range(struct i915_address_space *vm,
|
|
u64 start, u64 length)
|
|
{
|
|
struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
|
|
unsigned first_entry = start / I915_GTT_PAGE_SIZE;
|
|
unsigned num_entries = length / I915_GTT_PAGE_SIZE;
|
|
gen6_pte_t scratch_pte, __iomem *gtt_base =
|
|
(gen6_pte_t __iomem *)ggtt->gsm + first_entry;
|
|
const int max_entries = ggtt_total_entries(ggtt) - first_entry;
|
|
int i;
|
|
|
|
if (WARN(num_entries > max_entries,
|
|
"First entry = %d; Num entries = %d (max=%d)\n",
|
|
first_entry, num_entries, max_entries))
|
|
num_entries = max_entries;
|
|
|
|
scratch_pte = vm->scratch_pte;
|
|
|
|
for (i = 0; i < num_entries; i++)
|
|
iowrite32(scratch_pte, >t_base[i]);
|
|
}
|
|
|
|
static void i915_ggtt_insert_page(struct i915_address_space *vm,
|
|
dma_addr_t addr,
|
|
u64 offset,
|
|
enum i915_cache_level cache_level,
|
|
u32 unused)
|
|
{
|
|
unsigned int flags = (cache_level == I915_CACHE_NONE) ?
|
|
AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
|
|
|
|
intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags);
|
|
}
|
|
|
|
static void i915_ggtt_insert_entries(struct i915_address_space *vm,
|
|
struct i915_vma *vma,
|
|
enum i915_cache_level cache_level,
|
|
u32 unused)
|
|
{
|
|
unsigned int flags = (cache_level == I915_CACHE_NONE) ?
|
|
AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
|
|
|
|
intel_gtt_insert_sg_entries(vma->pages, vma->node.start >> PAGE_SHIFT,
|
|
flags);
|
|
}
|
|
|
|
static void i915_ggtt_clear_range(struct i915_address_space *vm,
|
|
u64 start, u64 length)
|
|
{
|
|
intel_gtt_clear_range(start >> PAGE_SHIFT, length >> PAGE_SHIFT);
|
|
}
|
|
|
|
static int ggtt_bind_vma(struct i915_vma *vma,
|
|
enum i915_cache_level cache_level,
|
|
u32 flags)
|
|
{
|
|
struct drm_i915_private *i915 = vma->vm->i915;
|
|
struct drm_i915_gem_object *obj = vma->obj;
|
|
intel_wakeref_t wakeref;
|
|
u32 pte_flags;
|
|
|
|
/* Applicable to VLV (gen8+ do not support RO in the GGTT) */
|
|
pte_flags = 0;
|
|
if (i915_gem_object_is_readonly(obj))
|
|
pte_flags |= PTE_READ_ONLY;
|
|
|
|
with_intel_runtime_pm(i915, wakeref)
|
|
vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
|
|
|
|
vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
|
|
|
|
/*
|
|
* Without aliasing PPGTT there's no difference between
|
|
* GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
|
|
* upgrade to both bound if we bind either to avoid double-binding.
|
|
*/
|
|
vma->flags |= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void ggtt_unbind_vma(struct i915_vma *vma)
|
|
{
|
|
struct drm_i915_private *i915 = vma->vm->i915;
|
|
intel_wakeref_t wakeref;
|
|
|
|
with_intel_runtime_pm(i915, wakeref)
|
|
vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
|
|
}
|
|
|
|
static int aliasing_gtt_bind_vma(struct i915_vma *vma,
|
|
enum i915_cache_level cache_level,
|
|
u32 flags)
|
|
{
|
|
struct drm_i915_private *i915 = vma->vm->i915;
|
|
u32 pte_flags;
|
|
int ret;
|
|
|
|
/* Currently applicable only to VLV */
|
|
pte_flags = 0;
|
|
if (i915_gem_object_is_readonly(vma->obj))
|
|
pte_flags |= PTE_READ_ONLY;
|
|
|
|
if (flags & I915_VMA_LOCAL_BIND) {
|
|
struct i915_hw_ppgtt *appgtt = i915->mm.aliasing_ppgtt;
|
|
|
|
if (!(vma->flags & I915_VMA_LOCAL_BIND)) {
|
|
ret = appgtt->vm.allocate_va_range(&appgtt->vm,
|
|
vma->node.start,
|
|
vma->size);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
appgtt->vm.insert_entries(&appgtt->vm, vma, cache_level,
|
|
pte_flags);
|
|
}
|
|
|
|
if (flags & I915_VMA_GLOBAL_BIND) {
|
|
intel_wakeref_t wakeref;
|
|
|
|
with_intel_runtime_pm(i915, wakeref) {
|
|
vma->vm->insert_entries(vma->vm, vma,
|
|
cache_level, pte_flags);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void aliasing_gtt_unbind_vma(struct i915_vma *vma)
|
|
{
|
|
struct drm_i915_private *i915 = vma->vm->i915;
|
|
|
|
if (vma->flags & I915_VMA_GLOBAL_BIND) {
|
|
struct i915_address_space *vm = vma->vm;
|
|
intel_wakeref_t wakeref;
|
|
|
|
with_intel_runtime_pm(i915, wakeref)
|
|
vm->clear_range(vm, vma->node.start, vma->size);
|
|
}
|
|
|
|
if (vma->flags & I915_VMA_LOCAL_BIND) {
|
|
struct i915_address_space *vm = &i915->mm.aliasing_ppgtt->vm;
|
|
|
|
vm->clear_range(vm, vma->node.start, vma->size);
|
|
}
|
|
}
|
|
|
|
void i915_gem_gtt_finish_pages(struct drm_i915_gem_object *obj,
|
|
struct sg_table *pages)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
|
|
struct device *kdev = &dev_priv->drm.pdev->dev;
|
|
struct i915_ggtt *ggtt = &dev_priv->ggtt;
|
|
|
|
if (unlikely(ggtt->do_idle_maps)) {
|
|
if (i915_gem_wait_for_idle(dev_priv, 0, MAX_SCHEDULE_TIMEOUT)) {
|
|
DRM_ERROR("Failed to wait for idle; VT'd may hang.\n");
|
|
/* Wait a bit, in hopes it avoids the hang */
|
|
udelay(10);
|
|
}
|
|
}
|
|
|
|
dma_unmap_sg(kdev, pages->sgl, pages->nents, PCI_DMA_BIDIRECTIONAL);
|
|
}
|
|
|
|
static int ggtt_set_pages(struct i915_vma *vma)
|
|
{
|
|
int ret;
|
|
|
|
GEM_BUG_ON(vma->pages);
|
|
|
|
ret = i915_get_ggtt_vma_pages(vma);
|
|
if (ret)
|
|
return ret;
|
|
|
|
vma->page_sizes = vma->obj->mm.page_sizes;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void i915_gtt_color_adjust(const struct drm_mm_node *node,
|
|
unsigned long color,
|
|
u64 *start,
|
|
u64 *end)
|
|
{
|
|
if (node->allocated && node->color != color)
|
|
*start += I915_GTT_PAGE_SIZE;
|
|
|
|
/* Also leave a space between the unallocated reserved node after the
|
|
* GTT and any objects within the GTT, i.e. we use the color adjustment
|
|
* to insert a guard page to prevent prefetches crossing over the
|
|
* GTT boundary.
|
|
*/
|
|
node = list_next_entry(node, node_list);
|
|
if (node->color != color)
|
|
*end -= I915_GTT_PAGE_SIZE;
|
|
}
|
|
|
|
int i915_gem_init_aliasing_ppgtt(struct drm_i915_private *i915)
|
|
{
|
|
struct i915_ggtt *ggtt = &i915->ggtt;
|
|
struct i915_hw_ppgtt *ppgtt;
|
|
int err;
|
|
|
|
ppgtt = i915_ppgtt_create(i915);
|
|
if (IS_ERR(ppgtt))
|
|
return PTR_ERR(ppgtt);
|
|
|
|
if (GEM_WARN_ON(ppgtt->vm.total < ggtt->vm.total)) {
|
|
err = -ENODEV;
|
|
goto err_ppgtt;
|
|
}
|
|
|
|
/*
|
|
* Note we only pre-allocate as far as the end of the global
|
|
* GTT. On 48b / 4-level page-tables, the difference is very,
|
|
* very significant! We have to preallocate as GVT/vgpu does
|
|
* not like the page directory disappearing.
|
|
*/
|
|
err = ppgtt->vm.allocate_va_range(&ppgtt->vm, 0, ggtt->vm.total);
|
|
if (err)
|
|
goto err_ppgtt;
|
|
|
|
i915->mm.aliasing_ppgtt = ppgtt;
|
|
|
|
GEM_BUG_ON(ggtt->vm.vma_ops.bind_vma != ggtt_bind_vma);
|
|
ggtt->vm.vma_ops.bind_vma = aliasing_gtt_bind_vma;
|
|
|
|
GEM_BUG_ON(ggtt->vm.vma_ops.unbind_vma != ggtt_unbind_vma);
|
|
ggtt->vm.vma_ops.unbind_vma = aliasing_gtt_unbind_vma;
|
|
|
|
return 0;
|
|
|
|
err_ppgtt:
|
|
i915_ppgtt_put(ppgtt);
|
|
return err;
|
|
}
|
|
|
|
void i915_gem_fini_aliasing_ppgtt(struct drm_i915_private *i915)
|
|
{
|
|
struct i915_ggtt *ggtt = &i915->ggtt;
|
|
struct i915_hw_ppgtt *ppgtt;
|
|
|
|
ppgtt = fetch_and_zero(&i915->mm.aliasing_ppgtt);
|
|
if (!ppgtt)
|
|
return;
|
|
|
|
i915_ppgtt_put(ppgtt);
|
|
|
|
ggtt->vm.vma_ops.bind_vma = ggtt_bind_vma;
|
|
ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma;
|
|
}
|
|
|
|
int i915_gem_init_ggtt(struct drm_i915_private *dev_priv)
|
|
{
|
|
/* Let GEM Manage all of the aperture.
|
|
*
|
|
* However, leave one page at the end still bound to the scratch page.
|
|
* There are a number of places where the hardware apparently prefetches
|
|
* past the end of the object, and we've seen multiple hangs with the
|
|
* GPU head pointer stuck in a batchbuffer bound at the last page of the
|
|
* aperture. One page should be enough to keep any prefetching inside
|
|
* of the aperture.
|
|
*/
|
|
struct i915_ggtt *ggtt = &dev_priv->ggtt;
|
|
unsigned long hole_start, hole_end;
|
|
struct drm_mm_node *entry;
|
|
int ret;
|
|
|
|
/*
|
|
* GuC requires all resources that we're sharing with it to be placed in
|
|
* non-WOPCM memory. If GuC is not present or not in use we still need a
|
|
* small bias as ring wraparound at offset 0 sometimes hangs. No idea
|
|
* why.
|
|
*/
|
|
ggtt->pin_bias = max_t(u32, I915_GTT_PAGE_SIZE,
|
|
intel_guc_reserved_gtt_size(&dev_priv->guc));
|
|
|
|
ret = intel_vgt_balloon(dev_priv);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Reserve a mappable slot for our lockless error capture */
|
|
ret = drm_mm_insert_node_in_range(&ggtt->vm.mm, &ggtt->error_capture,
|
|
PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
|
|
0, ggtt->mappable_end,
|
|
DRM_MM_INSERT_LOW);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (USES_GUC(dev_priv)) {
|
|
ret = intel_guc_reserve_ggtt_top(&dev_priv->guc);
|
|
if (ret)
|
|
goto err_reserve;
|
|
}
|
|
|
|
/* Clear any non-preallocated blocks */
|
|
drm_mm_for_each_hole(entry, &ggtt->vm.mm, hole_start, hole_end) {
|
|
DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
|
|
hole_start, hole_end);
|
|
ggtt->vm.clear_range(&ggtt->vm, hole_start,
|
|
hole_end - hole_start);
|
|
}
|
|
|
|
/* And finally clear the reserved guard page */
|
|
ggtt->vm.clear_range(&ggtt->vm, ggtt->vm.total - PAGE_SIZE, PAGE_SIZE);
|
|
|
|
if (INTEL_PPGTT(dev_priv) == INTEL_PPGTT_ALIASING) {
|
|
ret = i915_gem_init_aliasing_ppgtt(dev_priv);
|
|
if (ret)
|
|
goto err_appgtt;
|
|
}
|
|
|
|
return 0;
|
|
|
|
err_appgtt:
|
|
intel_guc_release_ggtt_top(&dev_priv->guc);
|
|
err_reserve:
|
|
drm_mm_remove_node(&ggtt->error_capture);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* i915_ggtt_cleanup_hw - Clean up GGTT hardware initialization
|
|
* @dev_priv: i915 device
|
|
*/
|
|
void i915_ggtt_cleanup_hw(struct drm_i915_private *dev_priv)
|
|
{
|
|
struct i915_ggtt *ggtt = &dev_priv->ggtt;
|
|
struct i915_vma *vma, *vn;
|
|
struct pagevec *pvec;
|
|
|
|
ggtt->vm.closed = true;
|
|
|
|
mutex_lock(&dev_priv->drm.struct_mutex);
|
|
i915_gem_fini_aliasing_ppgtt(dev_priv);
|
|
|
|
list_for_each_entry_safe(vma, vn, &ggtt->vm.bound_list, vm_link)
|
|
WARN_ON(i915_vma_unbind(vma));
|
|
|
|
if (drm_mm_node_allocated(&ggtt->error_capture))
|
|
drm_mm_remove_node(&ggtt->error_capture);
|
|
|
|
intel_guc_release_ggtt_top(&dev_priv->guc);
|
|
|
|
if (drm_mm_initialized(&ggtt->vm.mm)) {
|
|
intel_vgt_deballoon(dev_priv);
|
|
i915_address_space_fini(&ggtt->vm);
|
|
}
|
|
|
|
ggtt->vm.cleanup(&ggtt->vm);
|
|
|
|
pvec = &dev_priv->mm.wc_stash.pvec;
|
|
if (pvec->nr) {
|
|
set_pages_array_wb(pvec->pages, pvec->nr);
|
|
__pagevec_release(pvec);
|
|
}
|
|
|
|
mutex_unlock(&dev_priv->drm.struct_mutex);
|
|
|
|
arch_phys_wc_del(ggtt->mtrr);
|
|
io_mapping_fini(&ggtt->iomap);
|
|
|
|
i915_gem_cleanup_stolen(dev_priv);
|
|
}
|
|
|
|
static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
|
|
{
|
|
snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
|
|
snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
|
|
return snb_gmch_ctl << 20;
|
|
}
|
|
|
|
static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
|
|
{
|
|
bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
|
|
bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
|
|
if (bdw_gmch_ctl)
|
|
bdw_gmch_ctl = 1 << bdw_gmch_ctl;
|
|
|
|
#ifdef CONFIG_X86_32
|
|
/* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * I915_GTT_PAGE_SIZE */
|
|
if (bdw_gmch_ctl > 4)
|
|
bdw_gmch_ctl = 4;
|
|
#endif
|
|
|
|
return bdw_gmch_ctl << 20;
|
|
}
|
|
|
|
static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
|
|
{
|
|
gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
|
|
gmch_ctrl &= SNB_GMCH_GGMS_MASK;
|
|
|
|
if (gmch_ctrl)
|
|
return 1 << (20 + gmch_ctrl);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size)
|
|
{
|
|
struct drm_i915_private *dev_priv = ggtt->vm.i915;
|
|
struct pci_dev *pdev = dev_priv->drm.pdev;
|
|
phys_addr_t phys_addr;
|
|
int ret;
|
|
|
|
/* For Modern GENs the PTEs and register space are split in the BAR */
|
|
phys_addr = pci_resource_start(pdev, 0) + pci_resource_len(pdev, 0) / 2;
|
|
|
|
/*
|
|
* On BXT+/CNL+ writes larger than 64 bit to the GTT pagetable range
|
|
* will be dropped. For WC mappings in general we have 64 byte burst
|
|
* writes when the WC buffer is flushed, so we can't use it, but have to
|
|
* resort to an uncached mapping. The WC issue is easily caught by the
|
|
* readback check when writing GTT PTE entries.
|
|
*/
|
|
if (IS_GEN9_LP(dev_priv) || INTEL_GEN(dev_priv) >= 10)
|
|
ggtt->gsm = ioremap_nocache(phys_addr, size);
|
|
else
|
|
ggtt->gsm = ioremap_wc(phys_addr, size);
|
|
if (!ggtt->gsm) {
|
|
DRM_ERROR("Failed to map the ggtt page table\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
ret = setup_scratch_page(&ggtt->vm, GFP_DMA32);
|
|
if (ret) {
|
|
DRM_ERROR("Scratch setup failed\n");
|
|
/* iounmap will also get called at remove, but meh */
|
|
iounmap(ggtt->gsm);
|
|
return ret;
|
|
}
|
|
|
|
ggtt->vm.scratch_pte =
|
|
ggtt->vm.pte_encode(ggtt->vm.scratch_page.daddr,
|
|
I915_CACHE_NONE, 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct intel_ppat_entry *
|
|
__alloc_ppat_entry(struct intel_ppat *ppat, unsigned int index, u8 value)
|
|
{
|
|
struct intel_ppat_entry *entry = &ppat->entries[index];
|
|
|
|
GEM_BUG_ON(index >= ppat->max_entries);
|
|
GEM_BUG_ON(test_bit(index, ppat->used));
|
|
|
|
entry->ppat = ppat;
|
|
entry->value = value;
|
|
kref_init(&entry->ref);
|
|
set_bit(index, ppat->used);
|
|
set_bit(index, ppat->dirty);
|
|
|
|
return entry;
|
|
}
|
|
|
|
static void __free_ppat_entry(struct intel_ppat_entry *entry)
|
|
{
|
|
struct intel_ppat *ppat = entry->ppat;
|
|
unsigned int index = entry - ppat->entries;
|
|
|
|
GEM_BUG_ON(index >= ppat->max_entries);
|
|
GEM_BUG_ON(!test_bit(index, ppat->used));
|
|
|
|
entry->value = ppat->clear_value;
|
|
clear_bit(index, ppat->used);
|
|
set_bit(index, ppat->dirty);
|
|
}
|
|
|
|
/**
|
|
* intel_ppat_get - get a usable PPAT entry
|
|
* @i915: i915 device instance
|
|
* @value: the PPAT value required by the caller
|
|
*
|
|
* The function tries to search if there is an existing PPAT entry which
|
|
* matches with the required value. If perfectly matched, the existing PPAT
|
|
* entry will be used. If only partially matched, it will try to check if
|
|
* there is any available PPAT index. If yes, it will allocate a new PPAT
|
|
* index for the required entry and update the HW. If not, the partially
|
|
* matched entry will be used.
|
|
*/
|
|
const struct intel_ppat_entry *
|
|
intel_ppat_get(struct drm_i915_private *i915, u8 value)
|
|
{
|
|
struct intel_ppat *ppat = &i915->ppat;
|
|
struct intel_ppat_entry *entry = NULL;
|
|
unsigned int scanned, best_score;
|
|
int i;
|
|
|
|
GEM_BUG_ON(!ppat->max_entries);
|
|
|
|
scanned = best_score = 0;
|
|
for_each_set_bit(i, ppat->used, ppat->max_entries) {
|
|
unsigned int score;
|
|
|
|
score = ppat->match(ppat->entries[i].value, value);
|
|
if (score > best_score) {
|
|
entry = &ppat->entries[i];
|
|
if (score == INTEL_PPAT_PERFECT_MATCH) {
|
|
kref_get(&entry->ref);
|
|
return entry;
|
|
}
|
|
best_score = score;
|
|
}
|
|
scanned++;
|
|
}
|
|
|
|
if (scanned == ppat->max_entries) {
|
|
if (!entry)
|
|
return ERR_PTR(-ENOSPC);
|
|
|
|
kref_get(&entry->ref);
|
|
return entry;
|
|
}
|
|
|
|
i = find_first_zero_bit(ppat->used, ppat->max_entries);
|
|
entry = __alloc_ppat_entry(ppat, i, value);
|
|
ppat->update_hw(i915);
|
|
return entry;
|
|
}
|
|
|
|
static void release_ppat(struct kref *kref)
|
|
{
|
|
struct intel_ppat_entry *entry =
|
|
container_of(kref, struct intel_ppat_entry, ref);
|
|
struct drm_i915_private *i915 = entry->ppat->i915;
|
|
|
|
__free_ppat_entry(entry);
|
|
entry->ppat->update_hw(i915);
|
|
}
|
|
|
|
/**
|
|
* intel_ppat_put - put back the PPAT entry got from intel_ppat_get()
|
|
* @entry: an intel PPAT entry
|
|
*
|
|
* Put back the PPAT entry got from intel_ppat_get(). If the PPAT index of the
|
|
* entry is dynamically allocated, its reference count will be decreased. Once
|
|
* the reference count becomes into zero, the PPAT index becomes free again.
|
|
*/
|
|
void intel_ppat_put(const struct intel_ppat_entry *entry)
|
|
{
|
|
struct intel_ppat *ppat = entry->ppat;
|
|
unsigned int index = entry - ppat->entries;
|
|
|
|
GEM_BUG_ON(!ppat->max_entries);
|
|
|
|
kref_put(&ppat->entries[index].ref, release_ppat);
|
|
}
|
|
|
|
static void cnl_private_pat_update_hw(struct drm_i915_private *dev_priv)
|
|
{
|
|
struct intel_ppat *ppat = &dev_priv->ppat;
|
|
int i;
|
|
|
|
for_each_set_bit(i, ppat->dirty, ppat->max_entries) {
|
|
I915_WRITE(GEN10_PAT_INDEX(i), ppat->entries[i].value);
|
|
clear_bit(i, ppat->dirty);
|
|
}
|
|
}
|
|
|
|
static void bdw_private_pat_update_hw(struct drm_i915_private *dev_priv)
|
|
{
|
|
struct intel_ppat *ppat = &dev_priv->ppat;
|
|
u64 pat = 0;
|
|
int i;
|
|
|
|
for (i = 0; i < ppat->max_entries; i++)
|
|
pat |= GEN8_PPAT(i, ppat->entries[i].value);
|
|
|
|
bitmap_clear(ppat->dirty, 0, ppat->max_entries);
|
|
|
|
I915_WRITE(GEN8_PRIVATE_PAT_LO, lower_32_bits(pat));
|
|
I915_WRITE(GEN8_PRIVATE_PAT_HI, upper_32_bits(pat));
|
|
}
|
|
|
|
static unsigned int bdw_private_pat_match(u8 src, u8 dst)
|
|
{
|
|
unsigned int score = 0;
|
|
enum {
|
|
AGE_MATCH = BIT(0),
|
|
TC_MATCH = BIT(1),
|
|
CA_MATCH = BIT(2),
|
|
};
|
|
|
|
/* Cache attribute has to be matched. */
|
|
if (GEN8_PPAT_GET_CA(src) != GEN8_PPAT_GET_CA(dst))
|
|
return 0;
|
|
|
|
score |= CA_MATCH;
|
|
|
|
if (GEN8_PPAT_GET_TC(src) == GEN8_PPAT_GET_TC(dst))
|
|
score |= TC_MATCH;
|
|
|
|
if (GEN8_PPAT_GET_AGE(src) == GEN8_PPAT_GET_AGE(dst))
|
|
score |= AGE_MATCH;
|
|
|
|
if (score == (AGE_MATCH | TC_MATCH | CA_MATCH))
|
|
return INTEL_PPAT_PERFECT_MATCH;
|
|
|
|
return score;
|
|
}
|
|
|
|
static unsigned int chv_private_pat_match(u8 src, u8 dst)
|
|
{
|
|
return (CHV_PPAT_GET_SNOOP(src) == CHV_PPAT_GET_SNOOP(dst)) ?
|
|
INTEL_PPAT_PERFECT_MATCH : 0;
|
|
}
|
|
|
|
static void cnl_setup_private_ppat(struct intel_ppat *ppat)
|
|
{
|
|
ppat->max_entries = 8;
|
|
ppat->update_hw = cnl_private_pat_update_hw;
|
|
ppat->match = bdw_private_pat_match;
|
|
ppat->clear_value = GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3);
|
|
|
|
__alloc_ppat_entry(ppat, 0, GEN8_PPAT_WB | GEN8_PPAT_LLC);
|
|
__alloc_ppat_entry(ppat, 1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);
|
|
__alloc_ppat_entry(ppat, 2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);
|
|
__alloc_ppat_entry(ppat, 3, GEN8_PPAT_UC);
|
|
__alloc_ppat_entry(ppat, 4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
|
|
__alloc_ppat_entry(ppat, 5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
|
|
__alloc_ppat_entry(ppat, 6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
|
|
__alloc_ppat_entry(ppat, 7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
|
|
}
|
|
|
|
/* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
|
|
* bits. When using advanced contexts each context stores its own PAT, but
|
|
* writing this data shouldn't be harmful even in those cases. */
|
|
static void bdw_setup_private_ppat(struct intel_ppat *ppat)
|
|
{
|
|
ppat->max_entries = 8;
|
|
ppat->update_hw = bdw_private_pat_update_hw;
|
|
ppat->match = bdw_private_pat_match;
|
|
ppat->clear_value = GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3);
|
|
|
|
if (!HAS_PPGTT(ppat->i915)) {
|
|
/* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
|
|
* so RTL will always use the value corresponding to
|
|
* pat_sel = 000".
|
|
* So let's disable cache for GGTT to avoid screen corruptions.
|
|
* MOCS still can be used though.
|
|
* - System agent ggtt writes (i.e. cpu gtt mmaps) already work
|
|
* before this patch, i.e. the same uncached + snooping access
|
|
* like on gen6/7 seems to be in effect.
|
|
* - So this just fixes blitter/render access. Again it looks
|
|
* like it's not just uncached access, but uncached + snooping.
|
|
* So we can still hold onto all our assumptions wrt cpu
|
|
* clflushing on LLC machines.
|
|
*/
|
|
__alloc_ppat_entry(ppat, 0, GEN8_PPAT_UC);
|
|
return;
|
|
}
|
|
|
|
__alloc_ppat_entry(ppat, 0, GEN8_PPAT_WB | GEN8_PPAT_LLC); /* for normal objects, no eLLC */
|
|
__alloc_ppat_entry(ppat, 1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC); /* for something pointing to ptes? */
|
|
__alloc_ppat_entry(ppat, 2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC); /* for scanout with eLLC */
|
|
__alloc_ppat_entry(ppat, 3, GEN8_PPAT_UC); /* Uncached objects, mostly for scanout */
|
|
__alloc_ppat_entry(ppat, 4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
|
|
__alloc_ppat_entry(ppat, 5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
|
|
__alloc_ppat_entry(ppat, 6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
|
|
__alloc_ppat_entry(ppat, 7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
|
|
}
|
|
|
|
static void chv_setup_private_ppat(struct intel_ppat *ppat)
|
|
{
|
|
ppat->max_entries = 8;
|
|
ppat->update_hw = bdw_private_pat_update_hw;
|
|
ppat->match = chv_private_pat_match;
|
|
ppat->clear_value = CHV_PPAT_SNOOP;
|
|
|
|
/*
|
|
* Map WB on BDW to snooped on CHV.
|
|
*
|
|
* Only the snoop bit has meaning for CHV, the rest is
|
|
* ignored.
|
|
*
|
|
* The hardware will never snoop for certain types of accesses:
|
|
* - CPU GTT (GMADR->GGTT->no snoop->memory)
|
|
* - PPGTT page tables
|
|
* - some other special cycles
|
|
*
|
|
* As with BDW, we also need to consider the following for GT accesses:
|
|
* "For GGTT, there is NO pat_sel[2:0] from the entry,
|
|
* so RTL will always use the value corresponding to
|
|
* pat_sel = 000".
|
|
* Which means we must set the snoop bit in PAT entry 0
|
|
* in order to keep the global status page working.
|
|
*/
|
|
|
|
__alloc_ppat_entry(ppat, 0, CHV_PPAT_SNOOP);
|
|
__alloc_ppat_entry(ppat, 1, 0);
|
|
__alloc_ppat_entry(ppat, 2, 0);
|
|
__alloc_ppat_entry(ppat, 3, 0);
|
|
__alloc_ppat_entry(ppat, 4, CHV_PPAT_SNOOP);
|
|
__alloc_ppat_entry(ppat, 5, CHV_PPAT_SNOOP);
|
|
__alloc_ppat_entry(ppat, 6, CHV_PPAT_SNOOP);
|
|
__alloc_ppat_entry(ppat, 7, CHV_PPAT_SNOOP);
|
|
}
|
|
|
|
static void gen6_gmch_remove(struct i915_address_space *vm)
|
|
{
|
|
struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
|
|
|
|
iounmap(ggtt->gsm);
|
|
cleanup_scratch_page(vm);
|
|
}
|
|
|
|
static void setup_private_pat(struct drm_i915_private *dev_priv)
|
|
{
|
|
struct intel_ppat *ppat = &dev_priv->ppat;
|
|
int i;
|
|
|
|
ppat->i915 = dev_priv;
|
|
|
|
if (INTEL_GEN(dev_priv) >= 10)
|
|
cnl_setup_private_ppat(ppat);
|
|
else if (IS_CHERRYVIEW(dev_priv) || IS_GEN9_LP(dev_priv))
|
|
chv_setup_private_ppat(ppat);
|
|
else
|
|
bdw_setup_private_ppat(ppat);
|
|
|
|
GEM_BUG_ON(ppat->max_entries > INTEL_MAX_PPAT_ENTRIES);
|
|
|
|
for_each_clear_bit(i, ppat->used, ppat->max_entries) {
|
|
ppat->entries[i].value = ppat->clear_value;
|
|
ppat->entries[i].ppat = ppat;
|
|
set_bit(i, ppat->dirty);
|
|
}
|
|
|
|
ppat->update_hw(dev_priv);
|
|
}
|
|
|
|
static int gen8_gmch_probe(struct i915_ggtt *ggtt)
|
|
{
|
|
struct drm_i915_private *dev_priv = ggtt->vm.i915;
|
|
struct pci_dev *pdev = dev_priv->drm.pdev;
|
|
unsigned int size;
|
|
u16 snb_gmch_ctl;
|
|
int err;
|
|
|
|
/* TODO: We're not aware of mappable constraints on gen8 yet */
|
|
ggtt->gmadr =
|
|
(struct resource) DEFINE_RES_MEM(pci_resource_start(pdev, 2),
|
|
pci_resource_len(pdev, 2));
|
|
ggtt->mappable_end = resource_size(&ggtt->gmadr);
|
|
|
|
err = pci_set_dma_mask(pdev, DMA_BIT_MASK(39));
|
|
if (!err)
|
|
err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(39));
|
|
if (err)
|
|
DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
|
|
|
|
pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
|
|
if (IS_CHERRYVIEW(dev_priv))
|
|
size = chv_get_total_gtt_size(snb_gmch_ctl);
|
|
else
|
|
size = gen8_get_total_gtt_size(snb_gmch_ctl);
|
|
|
|
ggtt->vm.total = (size / sizeof(gen8_pte_t)) * I915_GTT_PAGE_SIZE;
|
|
ggtt->vm.cleanup = gen6_gmch_remove;
|
|
ggtt->vm.insert_page = gen8_ggtt_insert_page;
|
|
ggtt->vm.clear_range = nop_clear_range;
|
|
if (intel_scanout_needs_vtd_wa(dev_priv))
|
|
ggtt->vm.clear_range = gen8_ggtt_clear_range;
|
|
|
|
ggtt->vm.insert_entries = gen8_ggtt_insert_entries;
|
|
|
|
/* Serialize GTT updates with aperture access on BXT if VT-d is on. */
|
|
if (intel_ggtt_update_needs_vtd_wa(dev_priv) ||
|
|
IS_CHERRYVIEW(dev_priv) /* fails with concurrent use/update */) {
|
|
ggtt->vm.insert_entries = bxt_vtd_ggtt_insert_entries__BKL;
|
|
ggtt->vm.insert_page = bxt_vtd_ggtt_insert_page__BKL;
|
|
if (ggtt->vm.clear_range != nop_clear_range)
|
|
ggtt->vm.clear_range = bxt_vtd_ggtt_clear_range__BKL;
|
|
|
|
/* Prevent recursively calling stop_machine() and deadlocks. */
|
|
dev_info(dev_priv->drm.dev,
|
|
"Disabling error capture for VT-d workaround\n");
|
|
i915_disable_error_state(dev_priv, -ENODEV);
|
|
}
|
|
|
|
ggtt->invalidate = gen6_ggtt_invalidate;
|
|
|
|
ggtt->vm.vma_ops.bind_vma = ggtt_bind_vma;
|
|
ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma;
|
|
ggtt->vm.vma_ops.set_pages = ggtt_set_pages;
|
|
ggtt->vm.vma_ops.clear_pages = clear_pages;
|
|
|
|
ggtt->vm.pte_encode = gen8_pte_encode;
|
|
|
|
setup_private_pat(dev_priv);
|
|
|
|
return ggtt_probe_common(ggtt, size);
|
|
}
|
|
|
|
static int gen6_gmch_probe(struct i915_ggtt *ggtt)
|
|
{
|
|
struct drm_i915_private *dev_priv = ggtt->vm.i915;
|
|
struct pci_dev *pdev = dev_priv->drm.pdev;
|
|
unsigned int size;
|
|
u16 snb_gmch_ctl;
|
|
int err;
|
|
|
|
ggtt->gmadr =
|
|
(struct resource) DEFINE_RES_MEM(pci_resource_start(pdev, 2),
|
|
pci_resource_len(pdev, 2));
|
|
ggtt->mappable_end = resource_size(&ggtt->gmadr);
|
|
|
|
/* 64/512MB is the current min/max we actually know of, but this is just
|
|
* a coarse sanity check.
|
|
*/
|
|
if (ggtt->mappable_end < (64<<20) || ggtt->mappable_end > (512<<20)) {
|
|
DRM_ERROR("Unknown GMADR size (%pa)\n", &ggtt->mappable_end);
|
|
return -ENXIO;
|
|
}
|
|
|
|
err = pci_set_dma_mask(pdev, DMA_BIT_MASK(40));
|
|
if (!err)
|
|
err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(40));
|
|
if (err)
|
|
DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
|
|
pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
|
|
|
|
size = gen6_get_total_gtt_size(snb_gmch_ctl);
|
|
ggtt->vm.total = (size / sizeof(gen6_pte_t)) * I915_GTT_PAGE_SIZE;
|
|
|
|
ggtt->vm.clear_range = nop_clear_range;
|
|
if (!HAS_FULL_PPGTT(dev_priv) || intel_scanout_needs_vtd_wa(dev_priv))
|
|
ggtt->vm.clear_range = gen6_ggtt_clear_range;
|
|
ggtt->vm.insert_page = gen6_ggtt_insert_page;
|
|
ggtt->vm.insert_entries = gen6_ggtt_insert_entries;
|
|
ggtt->vm.cleanup = gen6_gmch_remove;
|
|
|
|
ggtt->invalidate = gen6_ggtt_invalidate;
|
|
|
|
if (HAS_EDRAM(dev_priv))
|
|
ggtt->vm.pte_encode = iris_pte_encode;
|
|
else if (IS_HASWELL(dev_priv))
|
|
ggtt->vm.pte_encode = hsw_pte_encode;
|
|
else if (IS_VALLEYVIEW(dev_priv))
|
|
ggtt->vm.pte_encode = byt_pte_encode;
|
|
else if (INTEL_GEN(dev_priv) >= 7)
|
|
ggtt->vm.pte_encode = ivb_pte_encode;
|
|
else
|
|
ggtt->vm.pte_encode = snb_pte_encode;
|
|
|
|
ggtt->vm.vma_ops.bind_vma = ggtt_bind_vma;
|
|
ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma;
|
|
ggtt->vm.vma_ops.set_pages = ggtt_set_pages;
|
|
ggtt->vm.vma_ops.clear_pages = clear_pages;
|
|
|
|
return ggtt_probe_common(ggtt, size);
|
|
}
|
|
|
|
static void i915_gmch_remove(struct i915_address_space *vm)
|
|
{
|
|
intel_gmch_remove();
|
|
}
|
|
|
|
static int i915_gmch_probe(struct i915_ggtt *ggtt)
|
|
{
|
|
struct drm_i915_private *dev_priv = ggtt->vm.i915;
|
|
phys_addr_t gmadr_base;
|
|
int ret;
|
|
|
|
ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->drm.pdev, NULL);
|
|
if (!ret) {
|
|
DRM_ERROR("failed to set up gmch\n");
|
|
return -EIO;
|
|
}
|
|
|
|
intel_gtt_get(&ggtt->vm.total, &gmadr_base, &ggtt->mappable_end);
|
|
|
|
ggtt->gmadr =
|
|
(struct resource) DEFINE_RES_MEM(gmadr_base,
|
|
ggtt->mappable_end);
|
|
|
|
ggtt->do_idle_maps = needs_idle_maps(dev_priv);
|
|
ggtt->vm.insert_page = i915_ggtt_insert_page;
|
|
ggtt->vm.insert_entries = i915_ggtt_insert_entries;
|
|
ggtt->vm.clear_range = i915_ggtt_clear_range;
|
|
ggtt->vm.cleanup = i915_gmch_remove;
|
|
|
|
ggtt->invalidate = gmch_ggtt_invalidate;
|
|
|
|
ggtt->vm.vma_ops.bind_vma = ggtt_bind_vma;
|
|
ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma;
|
|
ggtt->vm.vma_ops.set_pages = ggtt_set_pages;
|
|
ggtt->vm.vma_ops.clear_pages = clear_pages;
|
|
|
|
if (unlikely(ggtt->do_idle_maps))
|
|
DRM_INFO("applying Ironlake quirks for intel_iommu\n");
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* i915_ggtt_probe_hw - Probe GGTT hardware location
|
|
* @dev_priv: i915 device
|
|
*/
|
|
int i915_ggtt_probe_hw(struct drm_i915_private *dev_priv)
|
|
{
|
|
struct i915_ggtt *ggtt = &dev_priv->ggtt;
|
|
int ret;
|
|
|
|
ggtt->vm.i915 = dev_priv;
|
|
ggtt->vm.dma = &dev_priv->drm.pdev->dev;
|
|
|
|
if (INTEL_GEN(dev_priv) <= 5)
|
|
ret = i915_gmch_probe(ggtt);
|
|
else if (INTEL_GEN(dev_priv) < 8)
|
|
ret = gen6_gmch_probe(ggtt);
|
|
else
|
|
ret = gen8_gmch_probe(ggtt);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if ((ggtt->vm.total - 1) >> 32) {
|
|
DRM_ERROR("We never expected a Global GTT with more than 32bits"
|
|
" of address space! Found %lldM!\n",
|
|
ggtt->vm.total >> 20);
|
|
ggtt->vm.total = 1ULL << 32;
|
|
ggtt->mappable_end =
|
|
min_t(u64, ggtt->mappable_end, ggtt->vm.total);
|
|
}
|
|
|
|
if (ggtt->mappable_end > ggtt->vm.total) {
|
|
DRM_ERROR("mappable aperture extends past end of GGTT,"
|
|
" aperture=%pa, total=%llx\n",
|
|
&ggtt->mappable_end, ggtt->vm.total);
|
|
ggtt->mappable_end = ggtt->vm.total;
|
|
}
|
|
|
|
/* GMADR is the PCI mmio aperture into the global GTT. */
|
|
DRM_DEBUG_DRIVER("GGTT size = %lluM\n", ggtt->vm.total >> 20);
|
|
DRM_DEBUG_DRIVER("GMADR size = %lluM\n", (u64)ggtt->mappable_end >> 20);
|
|
DRM_DEBUG_DRIVER("DSM size = %lluM\n",
|
|
(u64)resource_size(&intel_graphics_stolen_res) >> 20);
|
|
if (intel_vtd_active())
|
|
DRM_INFO("VT-d active for gfx access\n");
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* i915_ggtt_init_hw - Initialize GGTT hardware
|
|
* @dev_priv: i915 device
|
|
*/
|
|
int i915_ggtt_init_hw(struct drm_i915_private *dev_priv)
|
|
{
|
|
struct i915_ggtt *ggtt = &dev_priv->ggtt;
|
|
int ret;
|
|
|
|
stash_init(&dev_priv->mm.wc_stash);
|
|
|
|
/* Note that we use page colouring to enforce a guard page at the
|
|
* end of the address space. This is required as the CS may prefetch
|
|
* beyond the end of the batch buffer, across the page boundary,
|
|
* and beyond the end of the GTT if we do not provide a guard.
|
|
*/
|
|
mutex_lock(&dev_priv->drm.struct_mutex);
|
|
i915_address_space_init(&ggtt->vm, VM_CLASS_GGTT);
|
|
|
|
ggtt->vm.is_ggtt = true;
|
|
|
|
/* Only VLV supports read-only GGTT mappings */
|
|
ggtt->vm.has_read_only = IS_VALLEYVIEW(dev_priv);
|
|
|
|
if (!HAS_LLC(dev_priv) && !HAS_PPGTT(dev_priv))
|
|
ggtt->vm.mm.color_adjust = i915_gtt_color_adjust;
|
|
mutex_unlock(&dev_priv->drm.struct_mutex);
|
|
|
|
if (!io_mapping_init_wc(&dev_priv->ggtt.iomap,
|
|
dev_priv->ggtt.gmadr.start,
|
|
dev_priv->ggtt.mappable_end)) {
|
|
ret = -EIO;
|
|
goto out_gtt_cleanup;
|
|
}
|
|
|
|
ggtt->mtrr = arch_phys_wc_add(ggtt->gmadr.start, ggtt->mappable_end);
|
|
|
|
/*
|
|
* Initialise stolen early so that we may reserve preallocated
|
|
* objects for the BIOS to KMS transition.
|
|
*/
|
|
ret = i915_gem_init_stolen(dev_priv);
|
|
if (ret)
|
|
goto out_gtt_cleanup;
|
|
|
|
return 0;
|
|
|
|
out_gtt_cleanup:
|
|
ggtt->vm.cleanup(&ggtt->vm);
|
|
return ret;
|
|
}
|
|
|
|
int i915_ggtt_enable_hw(struct drm_i915_private *dev_priv)
|
|
{
|
|
if (INTEL_GEN(dev_priv) < 6 && !intel_enable_gtt())
|
|
return -EIO;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void i915_ggtt_enable_guc(struct drm_i915_private *i915)
|
|
{
|
|
GEM_BUG_ON(i915->ggtt.invalidate != gen6_ggtt_invalidate);
|
|
|
|
i915->ggtt.invalidate = guc_ggtt_invalidate;
|
|
|
|
i915_ggtt_invalidate(i915);
|
|
}
|
|
|
|
void i915_ggtt_disable_guc(struct drm_i915_private *i915)
|
|
{
|
|
/* XXX Temporary pardon for error unload */
|
|
if (i915->ggtt.invalidate == gen6_ggtt_invalidate)
|
|
return;
|
|
|
|
/* We should only be called after i915_ggtt_enable_guc() */
|
|
GEM_BUG_ON(i915->ggtt.invalidate != guc_ggtt_invalidate);
|
|
|
|
i915->ggtt.invalidate = gen6_ggtt_invalidate;
|
|
|
|
i915_ggtt_invalidate(i915);
|
|
}
|
|
|
|
void i915_gem_restore_gtt_mappings(struct drm_i915_private *dev_priv)
|
|
{
|
|
struct i915_ggtt *ggtt = &dev_priv->ggtt;
|
|
struct i915_vma *vma, *vn;
|
|
|
|
i915_check_and_clear_faults(dev_priv);
|
|
|
|
mutex_lock(&ggtt->vm.mutex);
|
|
|
|
/* First fill our portion of the GTT with scratch pages */
|
|
ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
|
|
ggtt->vm.closed = true; /* skip rewriting PTE on VMA unbind */
|
|
|
|
/* clflush objects bound into the GGTT and rebind them. */
|
|
list_for_each_entry_safe(vma, vn, &ggtt->vm.bound_list, vm_link) {
|
|
struct drm_i915_gem_object *obj = vma->obj;
|
|
|
|
if (!(vma->flags & I915_VMA_GLOBAL_BIND))
|
|
continue;
|
|
|
|
mutex_unlock(&ggtt->vm.mutex);
|
|
|
|
if (!i915_vma_unbind(vma))
|
|
goto lock;
|
|
|
|
WARN_ON(i915_vma_bind(vma,
|
|
obj ? obj->cache_level : 0,
|
|
PIN_UPDATE));
|
|
if (obj)
|
|
WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false));
|
|
|
|
lock:
|
|
mutex_lock(&ggtt->vm.mutex);
|
|
}
|
|
|
|
ggtt->vm.closed = false;
|
|
i915_ggtt_invalidate(dev_priv);
|
|
|
|
mutex_unlock(&ggtt->vm.mutex);
|
|
|
|
if (INTEL_GEN(dev_priv) >= 8) {
|
|
struct intel_ppat *ppat = &dev_priv->ppat;
|
|
|
|
bitmap_set(ppat->dirty, 0, ppat->max_entries);
|
|
dev_priv->ppat.update_hw(dev_priv);
|
|
return;
|
|
}
|
|
}
|
|
|
|
static struct scatterlist *
|
|
rotate_pages(struct drm_i915_gem_object *obj, unsigned int offset,
|
|
unsigned int width, unsigned int height,
|
|
unsigned int stride,
|
|
struct sg_table *st, struct scatterlist *sg)
|
|
{
|
|
unsigned int column, row;
|
|
unsigned int src_idx;
|
|
|
|
for (column = 0; column < width; column++) {
|
|
src_idx = stride * (height - 1) + column + offset;
|
|
for (row = 0; row < height; row++) {
|
|
st->nents++;
|
|
/* We don't need the pages, but need to initialize
|
|
* the entries so the sg list can be happily traversed.
|
|
* The only thing we need are DMA addresses.
|
|
*/
|
|
sg_set_page(sg, NULL, I915_GTT_PAGE_SIZE, 0);
|
|
sg_dma_address(sg) =
|
|
i915_gem_object_get_dma_address(obj, src_idx);
|
|
sg_dma_len(sg) = I915_GTT_PAGE_SIZE;
|
|
sg = sg_next(sg);
|
|
src_idx -= stride;
|
|
}
|
|
}
|
|
|
|
return sg;
|
|
}
|
|
|
|
static noinline struct sg_table *
|
|
intel_rotate_pages(struct intel_rotation_info *rot_info,
|
|
struct drm_i915_gem_object *obj)
|
|
{
|
|
unsigned int size = intel_rotation_info_size(rot_info);
|
|
struct sg_table *st;
|
|
struct scatterlist *sg;
|
|
int ret = -ENOMEM;
|
|
int i;
|
|
|
|
/* Allocate target SG list. */
|
|
st = kmalloc(sizeof(*st), GFP_KERNEL);
|
|
if (!st)
|
|
goto err_st_alloc;
|
|
|
|
ret = sg_alloc_table(st, size, GFP_KERNEL);
|
|
if (ret)
|
|
goto err_sg_alloc;
|
|
|
|
st->nents = 0;
|
|
sg = st->sgl;
|
|
|
|
for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) {
|
|
sg = rotate_pages(obj, rot_info->plane[i].offset,
|
|
rot_info->plane[i].width, rot_info->plane[i].height,
|
|
rot_info->plane[i].stride, st, sg);
|
|
}
|
|
|
|
return st;
|
|
|
|
err_sg_alloc:
|
|
kfree(st);
|
|
err_st_alloc:
|
|
|
|
DRM_DEBUG_DRIVER("Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n",
|
|
obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size);
|
|
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
static noinline struct sg_table *
|
|
intel_partial_pages(const struct i915_ggtt_view *view,
|
|
struct drm_i915_gem_object *obj)
|
|
{
|
|
struct sg_table *st;
|
|
struct scatterlist *sg, *iter;
|
|
unsigned int count = view->partial.size;
|
|
unsigned int offset;
|
|
int ret = -ENOMEM;
|
|
|
|
st = kmalloc(sizeof(*st), GFP_KERNEL);
|
|
if (!st)
|
|
goto err_st_alloc;
|
|
|
|
ret = sg_alloc_table(st, count, GFP_KERNEL);
|
|
if (ret)
|
|
goto err_sg_alloc;
|
|
|
|
iter = i915_gem_object_get_sg(obj, view->partial.offset, &offset);
|
|
GEM_BUG_ON(!iter);
|
|
|
|
sg = st->sgl;
|
|
st->nents = 0;
|
|
do {
|
|
unsigned int len;
|
|
|
|
len = min(iter->length - (offset << PAGE_SHIFT),
|
|
count << PAGE_SHIFT);
|
|
sg_set_page(sg, NULL, len, 0);
|
|
sg_dma_address(sg) =
|
|
sg_dma_address(iter) + (offset << PAGE_SHIFT);
|
|
sg_dma_len(sg) = len;
|
|
|
|
st->nents++;
|
|
count -= len >> PAGE_SHIFT;
|
|
if (count == 0) {
|
|
sg_mark_end(sg);
|
|
i915_sg_trim(st); /* Drop any unused tail entries. */
|
|
|
|
return st;
|
|
}
|
|
|
|
sg = __sg_next(sg);
|
|
iter = __sg_next(iter);
|
|
offset = 0;
|
|
} while (1);
|
|
|
|
err_sg_alloc:
|
|
kfree(st);
|
|
err_st_alloc:
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
static int
|
|
i915_get_ggtt_vma_pages(struct i915_vma *vma)
|
|
{
|
|
int ret;
|
|
|
|
/* The vma->pages are only valid within the lifespan of the borrowed
|
|
* obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so
|
|
* must be the vma->pages. A simple rule is that vma->pages must only
|
|
* be accessed when the obj->mm.pages are pinned.
|
|
*/
|
|
GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj));
|
|
|
|
switch (vma->ggtt_view.type) {
|
|
default:
|
|
GEM_BUG_ON(vma->ggtt_view.type);
|
|
/* fall through */
|
|
case I915_GGTT_VIEW_NORMAL:
|
|
vma->pages = vma->obj->mm.pages;
|
|
return 0;
|
|
|
|
case I915_GGTT_VIEW_ROTATED:
|
|
vma->pages =
|
|
intel_rotate_pages(&vma->ggtt_view.rotated, vma->obj);
|
|
break;
|
|
|
|
case I915_GGTT_VIEW_PARTIAL:
|
|
vma->pages = intel_partial_pages(&vma->ggtt_view, vma->obj);
|
|
break;
|
|
}
|
|
|
|
ret = 0;
|
|
if (IS_ERR(vma->pages)) {
|
|
ret = PTR_ERR(vma->pages);
|
|
vma->pages = NULL;
|
|
DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
|
|
vma->ggtt_view.type, ret);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* i915_gem_gtt_reserve - reserve a node in an address_space (GTT)
|
|
* @vm: the &struct i915_address_space
|
|
* @node: the &struct drm_mm_node (typically i915_vma.mode)
|
|
* @size: how much space to allocate inside the GTT,
|
|
* must be #I915_GTT_PAGE_SIZE aligned
|
|
* @offset: where to insert inside the GTT,
|
|
* must be #I915_GTT_MIN_ALIGNMENT aligned, and the node
|
|
* (@offset + @size) must fit within the address space
|
|
* @color: color to apply to node, if this node is not from a VMA,
|
|
* color must be #I915_COLOR_UNEVICTABLE
|
|
* @flags: control search and eviction behaviour
|
|
*
|
|
* i915_gem_gtt_reserve() tries to insert the @node at the exact @offset inside
|
|
* the address space (using @size and @color). If the @node does not fit, it
|
|
* tries to evict any overlapping nodes from the GTT, including any
|
|
* neighbouring nodes if the colors do not match (to ensure guard pages between
|
|
* differing domains). See i915_gem_evict_for_node() for the gory details
|
|
* on the eviction algorithm. #PIN_NONBLOCK may used to prevent waiting on
|
|
* evicting active overlapping objects, and any overlapping node that is pinned
|
|
* or marked as unevictable will also result in failure.
|
|
*
|
|
* Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
|
|
* asked to wait for eviction and interrupted.
|
|
*/
|
|
int i915_gem_gtt_reserve(struct i915_address_space *vm,
|
|
struct drm_mm_node *node,
|
|
u64 size, u64 offset, unsigned long color,
|
|
unsigned int flags)
|
|
{
|
|
int err;
|
|
|
|
GEM_BUG_ON(!size);
|
|
GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
|
|
GEM_BUG_ON(!IS_ALIGNED(offset, I915_GTT_MIN_ALIGNMENT));
|
|
GEM_BUG_ON(range_overflows(offset, size, vm->total));
|
|
GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->vm);
|
|
GEM_BUG_ON(drm_mm_node_allocated(node));
|
|
|
|
node->size = size;
|
|
node->start = offset;
|
|
node->color = color;
|
|
|
|
err = drm_mm_reserve_node(&vm->mm, node);
|
|
if (err != -ENOSPC)
|
|
return err;
|
|
|
|
if (flags & PIN_NOEVICT)
|
|
return -ENOSPC;
|
|
|
|
err = i915_gem_evict_for_node(vm, node, flags);
|
|
if (err == 0)
|
|
err = drm_mm_reserve_node(&vm->mm, node);
|
|
|
|
return err;
|
|
}
|
|
|
|
static u64 random_offset(u64 start, u64 end, u64 len, u64 align)
|
|
{
|
|
u64 range, addr;
|
|
|
|
GEM_BUG_ON(range_overflows(start, len, end));
|
|
GEM_BUG_ON(round_up(start, align) > round_down(end - len, align));
|
|
|
|
range = round_down(end - len, align) - round_up(start, align);
|
|
if (range) {
|
|
if (sizeof(unsigned long) == sizeof(u64)) {
|
|
addr = get_random_long();
|
|
} else {
|
|
addr = get_random_int();
|
|
if (range > U32_MAX) {
|
|
addr <<= 32;
|
|
addr |= get_random_int();
|
|
}
|
|
}
|
|
div64_u64_rem(addr, range, &addr);
|
|
start += addr;
|
|
}
|
|
|
|
return round_up(start, align);
|
|
}
|
|
|
|
/**
|
|
* i915_gem_gtt_insert - insert a node into an address_space (GTT)
|
|
* @vm: the &struct i915_address_space
|
|
* @node: the &struct drm_mm_node (typically i915_vma.node)
|
|
* @size: how much space to allocate inside the GTT,
|
|
* must be #I915_GTT_PAGE_SIZE aligned
|
|
* @alignment: required alignment of starting offset, may be 0 but
|
|
* if specified, this must be a power-of-two and at least
|
|
* #I915_GTT_MIN_ALIGNMENT
|
|
* @color: color to apply to node
|
|
* @start: start of any range restriction inside GTT (0 for all),
|
|
* must be #I915_GTT_PAGE_SIZE aligned
|
|
* @end: end of any range restriction inside GTT (U64_MAX for all),
|
|
* must be #I915_GTT_PAGE_SIZE aligned if not U64_MAX
|
|
* @flags: control search and eviction behaviour
|
|
*
|
|
* i915_gem_gtt_insert() first searches for an available hole into which
|
|
* is can insert the node. The hole address is aligned to @alignment and
|
|
* its @size must then fit entirely within the [@start, @end] bounds. The
|
|
* nodes on either side of the hole must match @color, or else a guard page
|
|
* will be inserted between the two nodes (or the node evicted). If no
|
|
* suitable hole is found, first a victim is randomly selected and tested
|
|
* for eviction, otherwise then the LRU list of objects within the GTT
|
|
* is scanned to find the first set of replacement nodes to create the hole.
|
|
* Those old overlapping nodes are evicted from the GTT (and so must be
|
|
* rebound before any future use). Any node that is currently pinned cannot
|
|
* be evicted (see i915_vma_pin()). Similar if the node's VMA is currently
|
|
* active and #PIN_NONBLOCK is specified, that node is also skipped when
|
|
* searching for an eviction candidate. See i915_gem_evict_something() for
|
|
* the gory details on the eviction algorithm.
|
|
*
|
|
* Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
|
|
* asked to wait for eviction and interrupted.
|
|
*/
|
|
int i915_gem_gtt_insert(struct i915_address_space *vm,
|
|
struct drm_mm_node *node,
|
|
u64 size, u64 alignment, unsigned long color,
|
|
u64 start, u64 end, unsigned int flags)
|
|
{
|
|
enum drm_mm_insert_mode mode;
|
|
u64 offset;
|
|
int err;
|
|
|
|
lockdep_assert_held(&vm->i915->drm.struct_mutex);
|
|
GEM_BUG_ON(!size);
|
|
GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
|
|
GEM_BUG_ON(alignment && !is_power_of_2(alignment));
|
|
GEM_BUG_ON(alignment && !IS_ALIGNED(alignment, I915_GTT_MIN_ALIGNMENT));
|
|
GEM_BUG_ON(start >= end);
|
|
GEM_BUG_ON(start > 0 && !IS_ALIGNED(start, I915_GTT_PAGE_SIZE));
|
|
GEM_BUG_ON(end < U64_MAX && !IS_ALIGNED(end, I915_GTT_PAGE_SIZE));
|
|
GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->vm);
|
|
GEM_BUG_ON(drm_mm_node_allocated(node));
|
|
|
|
if (unlikely(range_overflows(start, size, end)))
|
|
return -ENOSPC;
|
|
|
|
if (unlikely(round_up(start, alignment) > round_down(end - size, alignment)))
|
|
return -ENOSPC;
|
|
|
|
mode = DRM_MM_INSERT_BEST;
|
|
if (flags & PIN_HIGH)
|
|
mode = DRM_MM_INSERT_HIGHEST;
|
|
if (flags & PIN_MAPPABLE)
|
|
mode = DRM_MM_INSERT_LOW;
|
|
|
|
/* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
|
|
* so we know that we always have a minimum alignment of 4096.
|
|
* The drm_mm range manager is optimised to return results
|
|
* with zero alignment, so where possible use the optimal
|
|
* path.
|
|
*/
|
|
BUILD_BUG_ON(I915_GTT_MIN_ALIGNMENT > I915_GTT_PAGE_SIZE);
|
|
if (alignment <= I915_GTT_MIN_ALIGNMENT)
|
|
alignment = 0;
|
|
|
|
err = drm_mm_insert_node_in_range(&vm->mm, node,
|
|
size, alignment, color,
|
|
start, end, mode);
|
|
if (err != -ENOSPC)
|
|
return err;
|
|
|
|
if (mode & DRM_MM_INSERT_ONCE) {
|
|
err = drm_mm_insert_node_in_range(&vm->mm, node,
|
|
size, alignment, color,
|
|
start, end,
|
|
DRM_MM_INSERT_BEST);
|
|
if (err != -ENOSPC)
|
|
return err;
|
|
}
|
|
|
|
if (flags & PIN_NOEVICT)
|
|
return -ENOSPC;
|
|
|
|
/* No free space, pick a slot at random.
|
|
*
|
|
* There is a pathological case here using a GTT shared between
|
|
* mmap and GPU (i.e. ggtt/aliasing_ppgtt but not full-ppgtt):
|
|
*
|
|
* |<-- 256 MiB aperture -->||<-- 1792 MiB unmappable -->|
|
|
* (64k objects) (448k objects)
|
|
*
|
|
* Now imagine that the eviction LRU is ordered top-down (just because
|
|
* pathology meets real life), and that we need to evict an object to
|
|
* make room inside the aperture. The eviction scan then has to walk
|
|
* the 448k list before it finds one within range. And now imagine that
|
|
* it has to search for a new hole between every byte inside the memcpy,
|
|
* for several simultaneous clients.
|
|
*
|
|
* On a full-ppgtt system, if we have run out of available space, there
|
|
* will be lots and lots of objects in the eviction list! Again,
|
|
* searching that LRU list may be slow if we are also applying any
|
|
* range restrictions (e.g. restriction to low 4GiB) and so, for
|
|
* simplicity and similarilty between different GTT, try the single
|
|
* random replacement first.
|
|
*/
|
|
offset = random_offset(start, end,
|
|
size, alignment ?: I915_GTT_MIN_ALIGNMENT);
|
|
err = i915_gem_gtt_reserve(vm, node, size, offset, color, flags);
|
|
if (err != -ENOSPC)
|
|
return err;
|
|
|
|
/* Randomly selected placement is pinned, do a search */
|
|
err = i915_gem_evict_something(vm, size, alignment, color,
|
|
start, end, flags);
|
|
if (err)
|
|
return err;
|
|
|
|
return drm_mm_insert_node_in_range(&vm->mm, node,
|
|
size, alignment, color,
|
|
start, end, DRM_MM_INSERT_EVICT);
|
|
}
|
|
|
|
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
|
|
#include "selftests/mock_gtt.c"
|
|
#include "selftests/i915_gem_gtt.c"
|
|
#endif
|