linux_dsm_epyc7002/mm/swap.c
Andrea Arcangeli 70b50f94f1 mm: thp: tail page refcounting fix
Michel while working on the working set estimation code, noticed that
calling get_page_unless_zero() on a random pfn_to_page(random_pfn)
wasn't safe, if the pfn ended up being a tail page of a transparent
hugepage under splitting by __split_huge_page_refcount().

He then found the problem could also theoretically materialize with
page_cache_get_speculative() during the speculative radix tree lookups
that uses get_page_unless_zero() in SMP if the radix tree page is freed
and reallocated and get_user_pages is called on it before
page_cache_get_speculative has a chance to call get_page_unless_zero().

So the best way to fix the problem is to keep page_tail->_count zero at
all times.  This will guarantee that get_page_unless_zero() can never
succeed on any tail page.  page_tail->_mapcount is guaranteed zero and
is unused for all tail pages of a compound page, so we can simply
account the tail page references there and transfer them to
tail_page->_count in __split_huge_page_refcount() (in addition to the
head_page->_mapcount).

While debugging this s/_count/_mapcount/ change I also noticed get_page is
called by direct-io.c on pages returned by get_user_pages.  That wasn't
entirely safe because the two atomic_inc in get_page weren't atomic.  As
opposed to other get_user_page users like secondary-MMU page fault to
establish the shadow pagetables would never call any superflous get_page
after get_user_page returns.  It's safer to make get_page universally safe
for tail pages and to use get_page_foll() within follow_page (inside
get_user_pages()).  get_page_foll() is safe to do the refcounting for tail
pages without taking any locks because it is run within PT lock protected
critical sections (PT lock for pte and page_table_lock for
pmd_trans_huge).

The standard get_page() as invoked by direct-io instead will now take
the compound_lock but still only for tail pages.  The direct-io paths
are usually I/O bound and the compound_lock is per THP so very
finegrined, so there's no risk of scalability issues with it.  A simple
direct-io benchmarks with all lockdep prove locking and spinlock
debugging infrastructure enabled shows identical performance and no
overhead.  So it's worth it.  Ideally direct-io should stop calling
get_page() on pages returned by get_user_pages().  The spinlock in
get_page() is already optimized away for no-THP builds but doing
get_page() on tail pages returned by GUP is generally a rare operation
and usually only run in I/O paths.

This new refcounting on page_tail->_mapcount in addition to avoiding new
RCU critical sections will also allow the working set estimation code to
work without any further complexity associated to the tail page
refcounting with THP.

Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Reported-by: Michel Lespinasse <walken@google.com>
Reviewed-by: Michel Lespinasse <walken@google.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <jweiner@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: David Gibson <david@gibson.dropbear.id.au>
Cc: <stable@kernel.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-11-02 16:06:57 -07:00

800 lines
21 KiB
C

/*
* linux/mm/swap.c
*
* Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
*/
/*
* This file contains the default values for the operation of the
* Linux VM subsystem. Fine-tuning documentation can be found in
* Documentation/sysctl/vm.txt.
* Started 18.12.91
* Swap aging added 23.2.95, Stephen Tweedie.
* Buffermem limits added 12.3.98, Rik van Riel.
*/
#include <linux/mm.h>
#include <linux/sched.h>
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/mman.h>
#include <linux/pagemap.h>
#include <linux/pagevec.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mm_inline.h>
#include <linux/buffer_head.h> /* for try_to_release_page() */
#include <linux/percpu_counter.h>
#include <linux/percpu.h>
#include <linux/cpu.h>
#include <linux/notifier.h>
#include <linux/backing-dev.h>
#include <linux/memcontrol.h>
#include <linux/gfp.h>
#include "internal.h"
/* How many pages do we try to swap or page in/out together? */
int page_cluster;
static DEFINE_PER_CPU(struct pagevec[NR_LRU_LISTS], lru_add_pvecs);
static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs);
static DEFINE_PER_CPU(struct pagevec, lru_deactivate_pvecs);
/*
* This path almost never happens for VM activity - pages are normally
* freed via pagevecs. But it gets used by networking.
*/
static void __page_cache_release(struct page *page)
{
if (PageLRU(page)) {
unsigned long flags;
struct zone *zone = page_zone(page);
spin_lock_irqsave(&zone->lru_lock, flags);
VM_BUG_ON(!PageLRU(page));
__ClearPageLRU(page);
del_page_from_lru(zone, page);
spin_unlock_irqrestore(&zone->lru_lock, flags);
}
}
static void __put_single_page(struct page *page)
{
__page_cache_release(page);
free_hot_cold_page(page, 0);
}
static void __put_compound_page(struct page *page)
{
compound_page_dtor *dtor;
__page_cache_release(page);
dtor = get_compound_page_dtor(page);
(*dtor)(page);
}
static void put_compound_page(struct page *page)
{
if (unlikely(PageTail(page))) {
/* __split_huge_page_refcount can run under us */
struct page *page_head = compound_trans_head(page);
if (likely(page != page_head &&
get_page_unless_zero(page_head))) {
unsigned long flags;
/*
* page_head wasn't a dangling pointer but it
* may not be a head page anymore by the time
* we obtain the lock. That is ok as long as it
* can't be freed from under us.
*/
flags = compound_lock_irqsave(page_head);
if (unlikely(!PageTail(page))) {
/* __split_huge_page_refcount run before us */
compound_unlock_irqrestore(page_head, flags);
VM_BUG_ON(PageHead(page_head));
if (put_page_testzero(page_head))
__put_single_page(page_head);
out_put_single:
if (put_page_testzero(page))
__put_single_page(page);
return;
}
VM_BUG_ON(page_head != page->first_page);
/*
* We can release the refcount taken by
* get_page_unless_zero() now that
* __split_huge_page_refcount() is blocked on
* the compound_lock.
*/
if (put_page_testzero(page_head))
VM_BUG_ON(1);
/* __split_huge_page_refcount will wait now */
VM_BUG_ON(page_mapcount(page) <= 0);
atomic_dec(&page->_mapcount);
VM_BUG_ON(atomic_read(&page_head->_count) <= 0);
VM_BUG_ON(atomic_read(&page->_count) != 0);
compound_unlock_irqrestore(page_head, flags);
if (put_page_testzero(page_head)) {
if (PageHead(page_head))
__put_compound_page(page_head);
else
__put_single_page(page_head);
}
} else {
/* page_head is a dangling pointer */
VM_BUG_ON(PageTail(page));
goto out_put_single;
}
} else if (put_page_testzero(page)) {
if (PageHead(page))
__put_compound_page(page);
else
__put_single_page(page);
}
}
void put_page(struct page *page)
{
if (unlikely(PageCompound(page)))
put_compound_page(page);
else if (put_page_testzero(page))
__put_single_page(page);
}
EXPORT_SYMBOL(put_page);
/*
* This function is exported but must not be called by anything other
* than get_page(). It implements the slow path of get_page().
*/
bool __get_page_tail(struct page *page)
{
/*
* This takes care of get_page() if run on a tail page
* returned by one of the get_user_pages/follow_page variants.
* get_user_pages/follow_page itself doesn't need the compound
* lock because it runs __get_page_tail_foll() under the
* proper PT lock that already serializes against
* split_huge_page().
*/
unsigned long flags;
bool got = false;
struct page *page_head = compound_trans_head(page);
if (likely(page != page_head && get_page_unless_zero(page_head))) {
/*
* page_head wasn't a dangling pointer but it
* may not be a head page anymore by the time
* we obtain the lock. That is ok as long as it
* can't be freed from under us.
*/
flags = compound_lock_irqsave(page_head);
/* here __split_huge_page_refcount won't run anymore */
if (likely(PageTail(page))) {
__get_page_tail_foll(page, false);
got = true;
}
compound_unlock_irqrestore(page_head, flags);
if (unlikely(!got))
put_page(page_head);
}
return got;
}
EXPORT_SYMBOL(__get_page_tail);
/**
* put_pages_list() - release a list of pages
* @pages: list of pages threaded on page->lru
*
* Release a list of pages which are strung together on page.lru. Currently
* used by read_cache_pages() and related error recovery code.
*/
void put_pages_list(struct list_head *pages)
{
while (!list_empty(pages)) {
struct page *victim;
victim = list_entry(pages->prev, struct page, lru);
list_del(&victim->lru);
page_cache_release(victim);
}
}
EXPORT_SYMBOL(put_pages_list);
static void pagevec_lru_move_fn(struct pagevec *pvec,
void (*move_fn)(struct page *page, void *arg),
void *arg)
{
int i;
struct zone *zone = NULL;
unsigned long flags = 0;
for (i = 0; i < pagevec_count(pvec); i++) {
struct page *page = pvec->pages[i];
struct zone *pagezone = page_zone(page);
if (pagezone != zone) {
if (zone)
spin_unlock_irqrestore(&zone->lru_lock, flags);
zone = pagezone;
spin_lock_irqsave(&zone->lru_lock, flags);
}
(*move_fn)(page, arg);
}
if (zone)
spin_unlock_irqrestore(&zone->lru_lock, flags);
release_pages(pvec->pages, pvec->nr, pvec->cold);
pagevec_reinit(pvec);
}
static void pagevec_move_tail_fn(struct page *page, void *arg)
{
int *pgmoved = arg;
struct zone *zone = page_zone(page);
if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
enum lru_list lru = page_lru_base_type(page);
list_move_tail(&page->lru, &zone->lru[lru].list);
mem_cgroup_rotate_reclaimable_page(page);
(*pgmoved)++;
}
}
/*
* pagevec_move_tail() must be called with IRQ disabled.
* Otherwise this may cause nasty races.
*/
static void pagevec_move_tail(struct pagevec *pvec)
{
int pgmoved = 0;
pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
__count_vm_events(PGROTATED, pgmoved);
}
/*
* Writeback is about to end against a page which has been marked for immediate
* reclaim. If it still appears to be reclaimable, move it to the tail of the
* inactive list.
*/
void rotate_reclaimable_page(struct page *page)
{
if (!PageLocked(page) && !PageDirty(page) && !PageActive(page) &&
!PageUnevictable(page) && PageLRU(page)) {
struct pagevec *pvec;
unsigned long flags;
page_cache_get(page);
local_irq_save(flags);
pvec = &__get_cpu_var(lru_rotate_pvecs);
if (!pagevec_add(pvec, page))
pagevec_move_tail(pvec);
local_irq_restore(flags);
}
}
static void update_page_reclaim_stat(struct zone *zone, struct page *page,
int file, int rotated)
{
struct zone_reclaim_stat *reclaim_stat = &zone->reclaim_stat;
struct zone_reclaim_stat *memcg_reclaim_stat;
memcg_reclaim_stat = mem_cgroup_get_reclaim_stat_from_page(page);
reclaim_stat->recent_scanned[file]++;
if (rotated)
reclaim_stat->recent_rotated[file]++;
if (!memcg_reclaim_stat)
return;
memcg_reclaim_stat->recent_scanned[file]++;
if (rotated)
memcg_reclaim_stat->recent_rotated[file]++;
}
static void __activate_page(struct page *page, void *arg)
{
struct zone *zone = page_zone(page);
if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
int file = page_is_file_cache(page);
int lru = page_lru_base_type(page);
del_page_from_lru_list(zone, page, lru);
SetPageActive(page);
lru += LRU_ACTIVE;
add_page_to_lru_list(zone, page, lru);
__count_vm_event(PGACTIVATE);
update_page_reclaim_stat(zone, page, file, 1);
}
}
#ifdef CONFIG_SMP
static DEFINE_PER_CPU(struct pagevec, activate_page_pvecs);
static void activate_page_drain(int cpu)
{
struct pagevec *pvec = &per_cpu(activate_page_pvecs, cpu);
if (pagevec_count(pvec))
pagevec_lru_move_fn(pvec, __activate_page, NULL);
}
void activate_page(struct page *page)
{
if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
struct pagevec *pvec = &get_cpu_var(activate_page_pvecs);
page_cache_get(page);
if (!pagevec_add(pvec, page))
pagevec_lru_move_fn(pvec, __activate_page, NULL);
put_cpu_var(activate_page_pvecs);
}
}
#else
static inline void activate_page_drain(int cpu)
{
}
void activate_page(struct page *page)
{
struct zone *zone = page_zone(page);
spin_lock_irq(&zone->lru_lock);
__activate_page(page, NULL);
spin_unlock_irq(&zone->lru_lock);
}
#endif
/*
* Mark a page as having seen activity.
*
* inactive,unreferenced -> inactive,referenced
* inactive,referenced -> active,unreferenced
* active,unreferenced -> active,referenced
*/
void mark_page_accessed(struct page *page)
{
if (!PageActive(page) && !PageUnevictable(page) &&
PageReferenced(page) && PageLRU(page)) {
activate_page(page);
ClearPageReferenced(page);
} else if (!PageReferenced(page)) {
SetPageReferenced(page);
}
}
EXPORT_SYMBOL(mark_page_accessed);
void __lru_cache_add(struct page *page, enum lru_list lru)
{
struct pagevec *pvec = &get_cpu_var(lru_add_pvecs)[lru];
page_cache_get(page);
if (!pagevec_add(pvec, page))
____pagevec_lru_add(pvec, lru);
put_cpu_var(lru_add_pvecs);
}
EXPORT_SYMBOL(__lru_cache_add);
/**
* lru_cache_add_lru - add a page to a page list
* @page: the page to be added to the LRU.
* @lru: the LRU list to which the page is added.
*/
void lru_cache_add_lru(struct page *page, enum lru_list lru)
{
if (PageActive(page)) {
VM_BUG_ON(PageUnevictable(page));
ClearPageActive(page);
} else if (PageUnevictable(page)) {
VM_BUG_ON(PageActive(page));
ClearPageUnevictable(page);
}
VM_BUG_ON(PageLRU(page) || PageActive(page) || PageUnevictable(page));
__lru_cache_add(page, lru);
}
/**
* add_page_to_unevictable_list - add a page to the unevictable list
* @page: the page to be added to the unevictable list
*
* Add page directly to its zone's unevictable list. To avoid races with
* tasks that might be making the page evictable, through eg. munlock,
* munmap or exit, while it's not on the lru, we want to add the page
* while it's locked or otherwise "invisible" to other tasks. This is
* difficult to do when using the pagevec cache, so bypass that.
*/
void add_page_to_unevictable_list(struct page *page)
{
struct zone *zone = page_zone(page);
spin_lock_irq(&zone->lru_lock);
SetPageUnevictable(page);
SetPageLRU(page);
add_page_to_lru_list(zone, page, LRU_UNEVICTABLE);
spin_unlock_irq(&zone->lru_lock);
}
/*
* If the page can not be invalidated, it is moved to the
* inactive list to speed up its reclaim. It is moved to the
* head of the list, rather than the tail, to give the flusher
* threads some time to write it out, as this is much more
* effective than the single-page writeout from reclaim.
*
* If the page isn't page_mapped and dirty/writeback, the page
* could reclaim asap using PG_reclaim.
*
* 1. active, mapped page -> none
* 2. active, dirty/writeback page -> inactive, head, PG_reclaim
* 3. inactive, mapped page -> none
* 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
* 5. inactive, clean -> inactive, tail
* 6. Others -> none
*
* In 4, why it moves inactive's head, the VM expects the page would
* be write it out by flusher threads as this is much more effective
* than the single-page writeout from reclaim.
*/
static void lru_deactivate_fn(struct page *page, void *arg)
{
int lru, file;
bool active;
struct zone *zone = page_zone(page);
if (!PageLRU(page))
return;
if (PageUnevictable(page))
return;
/* Some processes are using the page */
if (page_mapped(page))
return;
active = PageActive(page);
file = page_is_file_cache(page);
lru = page_lru_base_type(page);
del_page_from_lru_list(zone, page, lru + active);
ClearPageActive(page);
ClearPageReferenced(page);
add_page_to_lru_list(zone, page, lru);
if (PageWriteback(page) || PageDirty(page)) {
/*
* PG_reclaim could be raced with end_page_writeback
* It can make readahead confusing. But race window
* is _really_ small and it's non-critical problem.
*/
SetPageReclaim(page);
} else {
/*
* The page's writeback ends up during pagevec
* We moves tha page into tail of inactive.
*/
list_move_tail(&page->lru, &zone->lru[lru].list);
mem_cgroup_rotate_reclaimable_page(page);
__count_vm_event(PGROTATED);
}
if (active)
__count_vm_event(PGDEACTIVATE);
update_page_reclaim_stat(zone, page, file, 0);
}
/*
* Drain pages out of the cpu's pagevecs.
* Either "cpu" is the current CPU, and preemption has already been
* disabled; or "cpu" is being hot-unplugged, and is already dead.
*/
static void drain_cpu_pagevecs(int cpu)
{
struct pagevec *pvecs = per_cpu(lru_add_pvecs, cpu);
struct pagevec *pvec;
int lru;
for_each_lru(lru) {
pvec = &pvecs[lru - LRU_BASE];
if (pagevec_count(pvec))
____pagevec_lru_add(pvec, lru);
}
pvec = &per_cpu(lru_rotate_pvecs, cpu);
if (pagevec_count(pvec)) {
unsigned long flags;
/* No harm done if a racing interrupt already did this */
local_irq_save(flags);
pagevec_move_tail(pvec);
local_irq_restore(flags);
}
pvec = &per_cpu(lru_deactivate_pvecs, cpu);
if (pagevec_count(pvec))
pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
activate_page_drain(cpu);
}
/**
* deactivate_page - forcefully deactivate a page
* @page: page to deactivate
*
* This function hints the VM that @page is a good reclaim candidate,
* for example if its invalidation fails due to the page being dirty
* or under writeback.
*/
void deactivate_page(struct page *page)
{
/*
* In a workload with many unevictable page such as mprotect, unevictable
* page deactivation for accelerating reclaim is pointless.
*/
if (PageUnevictable(page))
return;
if (likely(get_page_unless_zero(page))) {
struct pagevec *pvec = &get_cpu_var(lru_deactivate_pvecs);
if (!pagevec_add(pvec, page))
pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
put_cpu_var(lru_deactivate_pvecs);
}
}
void lru_add_drain(void)
{
drain_cpu_pagevecs(get_cpu());
put_cpu();
}
static void lru_add_drain_per_cpu(struct work_struct *dummy)
{
lru_add_drain();
}
/*
* Returns 0 for success
*/
int lru_add_drain_all(void)
{
return schedule_on_each_cpu(lru_add_drain_per_cpu);
}
/*
* Batched page_cache_release(). Decrement the reference count on all the
* passed pages. If it fell to zero then remove the page from the LRU and
* free it.
*
* Avoid taking zone->lru_lock if possible, but if it is taken, retain it
* for the remainder of the operation.
*
* The locking in this function is against shrink_inactive_list(): we recheck
* the page count inside the lock to see whether shrink_inactive_list()
* grabbed the page via the LRU. If it did, give up: shrink_inactive_list()
* will free it.
*/
void release_pages(struct page **pages, int nr, int cold)
{
int i;
struct pagevec pages_to_free;
struct zone *zone = NULL;
unsigned long uninitialized_var(flags);
pagevec_init(&pages_to_free, cold);
for (i = 0; i < nr; i++) {
struct page *page = pages[i];
if (unlikely(PageCompound(page))) {
if (zone) {
spin_unlock_irqrestore(&zone->lru_lock, flags);
zone = NULL;
}
put_compound_page(page);
continue;
}
if (!put_page_testzero(page))
continue;
if (PageLRU(page)) {
struct zone *pagezone = page_zone(page);
if (pagezone != zone) {
if (zone)
spin_unlock_irqrestore(&zone->lru_lock,
flags);
zone = pagezone;
spin_lock_irqsave(&zone->lru_lock, flags);
}
VM_BUG_ON(!PageLRU(page));
__ClearPageLRU(page);
del_page_from_lru(zone, page);
}
if (!pagevec_add(&pages_to_free, page)) {
if (zone) {
spin_unlock_irqrestore(&zone->lru_lock, flags);
zone = NULL;
}
__pagevec_free(&pages_to_free);
pagevec_reinit(&pages_to_free);
}
}
if (zone)
spin_unlock_irqrestore(&zone->lru_lock, flags);
pagevec_free(&pages_to_free);
}
EXPORT_SYMBOL(release_pages);
/*
* The pages which we're about to release may be in the deferred lru-addition
* queues. That would prevent them from really being freed right now. That's
* OK from a correctness point of view but is inefficient - those pages may be
* cache-warm and we want to give them back to the page allocator ASAP.
*
* So __pagevec_release() will drain those queues here. __pagevec_lru_add()
* and __pagevec_lru_add_active() call release_pages() directly to avoid
* mutual recursion.
*/
void __pagevec_release(struct pagevec *pvec)
{
lru_add_drain();
release_pages(pvec->pages, pagevec_count(pvec), pvec->cold);
pagevec_reinit(pvec);
}
EXPORT_SYMBOL(__pagevec_release);
/* used by __split_huge_page_refcount() */
void lru_add_page_tail(struct zone* zone,
struct page *page, struct page *page_tail)
{
int active;
enum lru_list lru;
const int file = 0;
struct list_head *head;
VM_BUG_ON(!PageHead(page));
VM_BUG_ON(PageCompound(page_tail));
VM_BUG_ON(PageLRU(page_tail));
VM_BUG_ON(!spin_is_locked(&zone->lru_lock));
SetPageLRU(page_tail);
if (page_evictable(page_tail, NULL)) {
if (PageActive(page)) {
SetPageActive(page_tail);
active = 1;
lru = LRU_ACTIVE_ANON;
} else {
active = 0;
lru = LRU_INACTIVE_ANON;
}
update_page_reclaim_stat(zone, page_tail, file, active);
if (likely(PageLRU(page)))
head = page->lru.prev;
else
head = &zone->lru[lru].list;
__add_page_to_lru_list(zone, page_tail, lru, head);
} else {
SetPageUnevictable(page_tail);
add_page_to_lru_list(zone, page_tail, LRU_UNEVICTABLE);
}
}
static void ____pagevec_lru_add_fn(struct page *page, void *arg)
{
enum lru_list lru = (enum lru_list)arg;
struct zone *zone = page_zone(page);
int file = is_file_lru(lru);
int active = is_active_lru(lru);
VM_BUG_ON(PageActive(page));
VM_BUG_ON(PageUnevictable(page));
VM_BUG_ON(PageLRU(page));
SetPageLRU(page);
if (active)
SetPageActive(page);
update_page_reclaim_stat(zone, page, file, active);
add_page_to_lru_list(zone, page, lru);
}
/*
* Add the passed pages to the LRU, then drop the caller's refcount
* on them. Reinitialises the caller's pagevec.
*/
void ____pagevec_lru_add(struct pagevec *pvec, enum lru_list lru)
{
VM_BUG_ON(is_unevictable_lru(lru));
pagevec_lru_move_fn(pvec, ____pagevec_lru_add_fn, (void *)lru);
}
EXPORT_SYMBOL(____pagevec_lru_add);
/*
* Try to drop buffers from the pages in a pagevec
*/
void pagevec_strip(struct pagevec *pvec)
{
int i;
for (i = 0; i < pagevec_count(pvec); i++) {
struct page *page = pvec->pages[i];
if (page_has_private(page) && trylock_page(page)) {
if (page_has_private(page))
try_to_release_page(page, 0);
unlock_page(page);
}
}
}
/**
* pagevec_lookup - gang pagecache lookup
* @pvec: Where the resulting pages are placed
* @mapping: The address_space to search
* @start: The starting page index
* @nr_pages: The maximum number of pages
*
* pagevec_lookup() will search for and return a group of up to @nr_pages pages
* in the mapping. The pages are placed in @pvec. pagevec_lookup() takes a
* reference against the pages in @pvec.
*
* The search returns a group of mapping-contiguous pages with ascending
* indexes. There may be holes in the indices due to not-present pages.
*
* pagevec_lookup() returns the number of pages which were found.
*/
unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping,
pgoff_t start, unsigned nr_pages)
{
pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages);
return pagevec_count(pvec);
}
EXPORT_SYMBOL(pagevec_lookup);
unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping,
pgoff_t *index, int tag, unsigned nr_pages)
{
pvec->nr = find_get_pages_tag(mapping, index, tag,
nr_pages, pvec->pages);
return pagevec_count(pvec);
}
EXPORT_SYMBOL(pagevec_lookup_tag);
/*
* Perform any setup for the swap system
*/
void __init swap_setup(void)
{
unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT);
#ifdef CONFIG_SWAP
bdi_init(swapper_space.backing_dev_info);
#endif
/* Use a smaller cluster for small-memory machines */
if (megs < 16)
page_cluster = 2;
else
page_cluster = 3;
/*
* Right now other parts of the system means that we
* _really_ don't want to cluster much more
*/
}