linux_dsm_epyc7002/drivers/net/3c505.c
David Howells 7d12e780e0 IRQ: Maintain regs pointer globally rather than passing to IRQ handlers
Maintain a per-CPU global "struct pt_regs *" variable which can be used instead
of passing regs around manually through all ~1800 interrupt handlers in the
Linux kernel.

The regs pointer is used in few places, but it potentially costs both stack
space and code to pass it around.  On the FRV arch, removing the regs parameter
from all the genirq function results in a 20% speed up of the IRQ exit path
(ie: from leaving timer_interrupt() to leaving do_IRQ()).

Where appropriate, an arch may override the generic storage facility and do
something different with the variable.  On FRV, for instance, the address is
maintained in GR28 at all times inside the kernel as part of general exception
handling.

Having looked over the code, it appears that the parameter may be handed down
through up to twenty or so layers of functions.  Consider a USB character
device attached to a USB hub, attached to a USB controller that posts its
interrupts through a cascaded auxiliary interrupt controller.  A character
device driver may want to pass regs to the sysrq handler through the input
layer which adds another few layers of parameter passing.

I've build this code with allyesconfig for x86_64 and i386.  I've runtested the
main part of the code on FRV and i386, though I can't test most of the drivers.
I've also done partial conversion for powerpc and MIPS - these at least compile
with minimal configurations.

This will affect all archs.  Mostly the changes should be relatively easy.
Take do_IRQ(), store the regs pointer at the beginning, saving the old one:

	struct pt_regs *old_regs = set_irq_regs(regs);

And put the old one back at the end:

	set_irq_regs(old_regs);

Don't pass regs through to generic_handle_irq() or __do_IRQ().

In timer_interrupt(), this sort of change will be necessary:

	-	update_process_times(user_mode(regs));
	-	profile_tick(CPU_PROFILING, regs);
	+	update_process_times(user_mode(get_irq_regs()));
	+	profile_tick(CPU_PROFILING);

I'd like to move update_process_times()'s use of get_irq_regs() into itself,
except that i386, alone of the archs, uses something other than user_mode().

Some notes on the interrupt handling in the drivers:

 (*) input_dev() is now gone entirely.  The regs pointer is no longer stored in
     the input_dev struct.

 (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking.  It does
     something different depending on whether it's been supplied with a regs
     pointer or not.

 (*) Various IRQ handler function pointers have been moved to type
     irq_handler_t.

Signed-Off-By: David Howells <dhowells@redhat.com>
(cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 15:10:12 +01:00

1689 lines
49 KiB
C

/*
* Linux Ethernet device driver for the 3Com Etherlink Plus (3C505)
* By Craig Southeren, Juha Laiho and Philip Blundell
*
* 3c505.c This module implements an interface to the 3Com
* Etherlink Plus (3c505) Ethernet card. Linux device
* driver interface reverse engineered from the Linux 3C509
* device drivers. Some 3C505 information gleaned from
* the Crynwr packet driver. Still this driver would not
* be here without 3C505 technical reference provided by
* 3Com.
*
* $Id: 3c505.c,v 1.10 1996/04/16 13:06:27 phil Exp $
*
* Authors: Linux 3c505 device driver by
* Craig Southeren, <craigs@ineluki.apana.org.au>
* Final debugging by
* Andrew Tridgell, <tridge@nimbus.anu.edu.au>
* Auto irq/address, tuning, cleanup and v1.1.4+ kernel mods by
* Juha Laiho, <jlaiho@ichaos.nullnet.fi>
* Linux 3C509 driver by
* Donald Becker, <becker@super.org>
* (Now at <becker@scyld.com>)
* Crynwr packet driver by
* Krishnan Gopalan and Gregg Stefancik,
* Clemson University Engineering Computer Operations.
* Portions of the code have been adapted from the 3c505
* driver for NCSA Telnet by Bruce Orchard and later
* modified by Warren Van Houten and krus@diku.dk.
* 3C505 technical information provided by
* Terry Murphy, of 3Com Network Adapter Division
* Linux 1.3.0 changes by
* Alan Cox <Alan.Cox@linux.org>
* More debugging, DMA support, currently maintained by
* Philip Blundell <philb@gnu.org>
* Multicard/soft configurable dma channel/rev 2 hardware support
* by Christopher Collins <ccollins@pcug.org.au>
* Ethtool support (jgarzik), 11/17/2001
*/
#define DRV_NAME "3c505"
#define DRV_VERSION "1.10a"
/* Theory of operation:
*
* The 3c505 is quite an intelligent board. All communication with it is done
* by means of Primary Command Blocks (PCBs); these are transferred using PIO
* through the command register. The card has 256k of on-board RAM, which is
* used to buffer received packets. It might seem at first that more buffers
* are better, but in fact this isn't true. From my tests, it seems that
* more than about 10 buffers are unnecessary, and there is a noticeable
* performance hit in having more active on the card. So the majority of the
* card's memory isn't, in fact, used. Sadly, the card only has one transmit
* buffer and, short of loading our own firmware into it (which is what some
* drivers resort to) there's nothing we can do about this.
*
* We keep up to 4 "receive packet" commands active on the board at a time.
* When a packet comes in, so long as there is a receive command active, the
* board will send us a "packet received" PCB and then add the data for that
* packet to the DMA queue. If a DMA transfer is not already in progress, we
* set one up to start uploading the data. We have to maintain a list of
* backlogged receive packets, because the card may decide to tell us about
* a newly-arrived packet at any time, and we may not be able to start a DMA
* transfer immediately (ie one may already be going on). We can't NAK the
* PCB, because then it would throw the packet away.
*
* Trying to send a PCB to the card at the wrong moment seems to have bad
* effects. If we send it a transmit PCB while a receive DMA is happening,
* it will just NAK the PCB and so we will have wasted our time. Worse, it
* sometimes seems to interrupt the transfer. The majority of the low-level
* code is protected by one huge semaphore -- "busy" -- which is set whenever
* it probably isn't safe to do anything to the card. The receive routine
* must gain a lock on "busy" before it can start a DMA transfer, and the
* transmit routine must gain a lock before it sends the first PCB to the card.
* The send_pcb() routine also has an internal semaphore to protect it against
* being re-entered (which would be disastrous) -- this is needed because
* several things can happen asynchronously (re-priming the receiver and
* asking the card for statistics, for example). send_pcb() will also refuse
* to talk to the card at all if a DMA upload is happening. The higher-level
* networking code will reschedule a later retry if some part of the driver
* is blocked. In practice, this doesn't seem to happen very often.
*/
/* This driver may now work with revision 2.x hardware, since all the read
* operations on the HCR have been removed (we now keep our own softcopy).
* But I don't have an old card to test it on.
*
* This has had the bad effect that the autoprobe routine is now a bit
* less friendly to other devices. However, it was never very good.
* before, so I doubt it will hurt anybody.
*/
/* The driver is a mess. I took Craig's and Juha's code, and hacked it firstly
* to make it more reliable, and secondly to add DMA mode. Many things could
* probably be done better; the concurrency protection is particularly awful.
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/interrupt.h>
#include <linux/errno.h>
#include <linux/in.h>
#include <linux/slab.h>
#include <linux/ioport.h>
#include <linux/spinlock.h>
#include <linux/ethtool.h>
#include <linux/delay.h>
#include <linux/bitops.h>
#include <asm/uaccess.h>
#include <asm/io.h>
#include <asm/dma.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/init.h>
#include "3c505.h"
/*********************************************************
*
* define debug messages here as common strings to reduce space
*
*********************************************************/
static const char filename[] = __FILE__;
static const char timeout_msg[] = "*** timeout at %s:%s (line %d) ***\n";
#define TIMEOUT_MSG(lineno) \
printk(timeout_msg, filename,__FUNCTION__,(lineno))
static const char invalid_pcb_msg[] =
"*** invalid pcb length %d at %s:%s (line %d) ***\n";
#define INVALID_PCB_MSG(len) \
printk(invalid_pcb_msg, (len),filename,__FUNCTION__,__LINE__)
static char search_msg[] __initdata = KERN_INFO "%s: Looking for 3c505 adapter at address %#x...";
static char stilllooking_msg[] __initdata = "still looking...";
static char found_msg[] __initdata = "found.\n";
static char notfound_msg[] __initdata = "not found (reason = %d)\n";
static char couldnot_msg[] __initdata = KERN_INFO "%s: 3c505 not found\n";
/*********************************************************
*
* various other debug stuff
*
*********************************************************/
#ifdef ELP_DEBUG
static int elp_debug = ELP_DEBUG;
#else
static int elp_debug;
#endif
#define debug elp_debug
/*
* 0 = no messages (well, some)
* 1 = messages when high level commands performed
* 2 = messages when low level commands performed
* 3 = messages when interrupts received
*/
/*****************************************************************
*
* useful macros
*
*****************************************************************/
#ifndef TRUE
#define TRUE 1
#endif
#ifndef FALSE
#define FALSE 0
#endif
/*****************************************************************
*
* List of I/O-addresses we try to auto-sense
* Last element MUST BE 0!
*****************************************************************/
static int addr_list[] __initdata = {0x300, 0x280, 0x310, 0};
/* Dma Memory related stuff */
static unsigned long dma_mem_alloc(int size)
{
int order = get_order(size);
return __get_dma_pages(GFP_KERNEL, order);
}
/*****************************************************************
*
* Functions for I/O (note the inline !)
*
*****************************************************************/
static inline unsigned char inb_status(unsigned int base_addr)
{
return inb(base_addr + PORT_STATUS);
}
static inline int inb_command(unsigned int base_addr)
{
return inb(base_addr + PORT_COMMAND);
}
static inline void outb_control(unsigned char val, struct net_device *dev)
{
outb(val, dev->base_addr + PORT_CONTROL);
((elp_device *)(dev->priv))->hcr_val = val;
}
#define HCR_VAL(x) (((elp_device *)((x)->priv))->hcr_val)
static inline void outb_command(unsigned char val, unsigned int base_addr)
{
outb(val, base_addr + PORT_COMMAND);
}
static inline unsigned int backlog_next(unsigned int n)
{
return (n + 1) % BACKLOG_SIZE;
}
/*****************************************************************
*
* useful functions for accessing the adapter
*
*****************************************************************/
/*
* use this routine when accessing the ASF bits as they are
* changed asynchronously by the adapter
*/
/* get adapter PCB status */
#define GET_ASF(addr) \
(get_status(addr)&ASF_PCB_MASK)
static inline int get_status(unsigned int base_addr)
{
unsigned long timeout = jiffies + 10*HZ/100;
register int stat1;
do {
stat1 = inb_status(base_addr);
} while (stat1 != inb_status(base_addr) && time_before(jiffies, timeout));
if (time_after_eq(jiffies, timeout))
TIMEOUT_MSG(__LINE__);
return stat1;
}
static inline void set_hsf(struct net_device *dev, int hsf)
{
elp_device *adapter = dev->priv;
unsigned long flags;
spin_lock_irqsave(&adapter->lock, flags);
outb_control((HCR_VAL(dev) & ~HSF_PCB_MASK) | hsf, dev);
spin_unlock_irqrestore(&adapter->lock, flags);
}
static int start_receive(struct net_device *, pcb_struct *);
static inline void adapter_reset(struct net_device *dev)
{
unsigned long timeout;
elp_device *adapter = dev->priv;
unsigned char orig_hcr = adapter->hcr_val;
outb_control(0, dev);
if (inb_status(dev->base_addr) & ACRF) {
do {
inb_command(dev->base_addr);
timeout = jiffies + 2*HZ/100;
while (time_before_eq(jiffies, timeout) && !(inb_status(dev->base_addr) & ACRF));
} while (inb_status(dev->base_addr) & ACRF);
set_hsf(dev, HSF_PCB_NAK);
}
outb_control(adapter->hcr_val | ATTN | DIR, dev);
mdelay(10);
outb_control(adapter->hcr_val & ~ATTN, dev);
mdelay(10);
outb_control(adapter->hcr_val | FLSH, dev);
mdelay(10);
outb_control(adapter->hcr_val & ~FLSH, dev);
mdelay(10);
outb_control(orig_hcr, dev);
if (!start_receive(dev, &adapter->tx_pcb))
printk(KERN_ERR "%s: start receive command failed \n", dev->name);
}
/* Check to make sure that a DMA transfer hasn't timed out. This should
* never happen in theory, but seems to occur occasionally if the card gets
* prodded at the wrong time.
*/
static inline void check_3c505_dma(struct net_device *dev)
{
elp_device *adapter = dev->priv;
if (adapter->dmaing && time_after(jiffies, adapter->current_dma.start_time + 10)) {
unsigned long flags, f;
printk(KERN_ERR "%s: DMA %s timed out, %d bytes left\n", dev->name, adapter->current_dma.direction ? "download" : "upload", get_dma_residue(dev->dma));
spin_lock_irqsave(&adapter->lock, flags);
adapter->dmaing = 0;
adapter->busy = 0;
f=claim_dma_lock();
disable_dma(dev->dma);
release_dma_lock(f);
if (adapter->rx_active)
adapter->rx_active--;
outb_control(adapter->hcr_val & ~(DMAE | TCEN | DIR), dev);
spin_unlock_irqrestore(&adapter->lock, flags);
}
}
/* Primitive functions used by send_pcb() */
static inline unsigned int send_pcb_slow(unsigned int base_addr, unsigned char byte)
{
unsigned long timeout;
outb_command(byte, base_addr);
for (timeout = jiffies + 5*HZ/100; time_before(jiffies, timeout);) {
if (inb_status(base_addr) & HCRE)
return FALSE;
}
printk(KERN_WARNING "3c505: send_pcb_slow timed out\n");
return TRUE;
}
static inline unsigned int send_pcb_fast(unsigned int base_addr, unsigned char byte)
{
unsigned int timeout;
outb_command(byte, base_addr);
for (timeout = 0; timeout < 40000; timeout++) {
if (inb_status(base_addr) & HCRE)
return FALSE;
}
printk(KERN_WARNING "3c505: send_pcb_fast timed out\n");
return TRUE;
}
/* Check to see if the receiver needs restarting, and kick it if so */
static inline void prime_rx(struct net_device *dev)
{
elp_device *adapter = dev->priv;
while (adapter->rx_active < ELP_RX_PCBS && netif_running(dev)) {
if (!start_receive(dev, &adapter->itx_pcb))
break;
}
}
/*****************************************************************
*
* send_pcb
* Send a PCB to the adapter.
*
* output byte to command reg --<--+
* wait until HCRE is non zero |
* loop until all bytes sent -->--+
* set HSF1 and HSF2 to 1
* output pcb length
* wait until ASF give ACK or NAK
* set HSF1 and HSF2 to 0
*
*****************************************************************/
/* This can be quite slow -- the adapter is allowed to take up to 40ms
* to respond to the initial interrupt.
*
* We run initially with interrupts turned on, but with a semaphore set
* so that nobody tries to re-enter this code. Once the first byte has
* gone through, we turn interrupts off and then send the others (the
* timeout is reduced to 500us).
*/
static int send_pcb(struct net_device *dev, pcb_struct * pcb)
{
int i;
unsigned long timeout;
elp_device *adapter = dev->priv;
unsigned long flags;
check_3c505_dma(dev);
if (adapter->dmaing && adapter->current_dma.direction == 0)
return FALSE;
/* Avoid contention */
if (test_and_set_bit(1, &adapter->send_pcb_semaphore)) {
if (elp_debug >= 3) {
printk(KERN_DEBUG "%s: send_pcb entered while threaded\n", dev->name);
}
return FALSE;
}
/*
* load each byte into the command register and
* wait for the HCRE bit to indicate the adapter
* had read the byte
*/
set_hsf(dev, 0);
if (send_pcb_slow(dev->base_addr, pcb->command))
goto abort;
spin_lock_irqsave(&adapter->lock, flags);
if (send_pcb_fast(dev->base_addr, pcb->length))
goto sti_abort;
for (i = 0; i < pcb->length; i++) {
if (send_pcb_fast(dev->base_addr, pcb->data.raw[i]))
goto sti_abort;
}
outb_control(adapter->hcr_val | 3, dev); /* signal end of PCB */
outb_command(2 + pcb->length, dev->base_addr);
/* now wait for the acknowledgement */
spin_unlock_irqrestore(&adapter->lock, flags);
for (timeout = jiffies + 5*HZ/100; time_before(jiffies, timeout);) {
switch (GET_ASF(dev->base_addr)) {
case ASF_PCB_ACK:
adapter->send_pcb_semaphore = 0;
return TRUE;
case ASF_PCB_NAK:
#ifdef ELP_DEBUG
printk(KERN_DEBUG "%s: send_pcb got NAK\n", dev->name);
#endif
goto abort;
}
}
if (elp_debug >= 1)
printk(KERN_DEBUG "%s: timeout waiting for PCB acknowledge (status %02x)\n", dev->name, inb_status(dev->base_addr));
goto abort;
sti_abort:
spin_unlock_irqrestore(&adapter->lock, flags);
abort:
adapter->send_pcb_semaphore = 0;
return FALSE;
}
/*****************************************************************
*
* receive_pcb
* Read a PCB from the adapter
*
* wait for ACRF to be non-zero ---<---+
* input a byte |
* if ASF1 and ASF2 were not both one |
* before byte was read, loop --->---+
* set HSF1 and HSF2 for ack
*
*****************************************************************/
static int receive_pcb(struct net_device *dev, pcb_struct * pcb)
{
int i, j;
int total_length;
int stat;
unsigned long timeout;
unsigned long flags;
elp_device *adapter = dev->priv;
set_hsf(dev, 0);
/* get the command code */
timeout = jiffies + 2*HZ/100;
while (((stat = get_status(dev->base_addr)) & ACRF) == 0 && time_before(jiffies, timeout));
if (time_after_eq(jiffies, timeout)) {
TIMEOUT_MSG(__LINE__);
return FALSE;
}
pcb->command = inb_command(dev->base_addr);
/* read the data length */
timeout = jiffies + 3*HZ/100;
while (((stat = get_status(dev->base_addr)) & ACRF) == 0 && time_before(jiffies, timeout));
if (time_after_eq(jiffies, timeout)) {
TIMEOUT_MSG(__LINE__);
printk(KERN_INFO "%s: status %02x\n", dev->name, stat);
return FALSE;
}
pcb->length = inb_command(dev->base_addr);
if (pcb->length > MAX_PCB_DATA) {
INVALID_PCB_MSG(pcb->length);
adapter_reset(dev);
return FALSE;
}
/* read the data */
spin_lock_irqsave(&adapter->lock, flags);
i = 0;
do {
j = 0;
while (((stat = get_status(dev->base_addr)) & ACRF) == 0 && j++ < 20000);
pcb->data.raw[i++] = inb_command(dev->base_addr);
if (i > MAX_PCB_DATA)
INVALID_PCB_MSG(i);
} while ((stat & ASF_PCB_MASK) != ASF_PCB_END && j < 20000);
spin_unlock_irqrestore(&adapter->lock, flags);
if (j >= 20000) {
TIMEOUT_MSG(__LINE__);
return FALSE;
}
/* woops, the last "data" byte was really the length! */
total_length = pcb->data.raw[--i];
/* safety check total length vs data length */
if (total_length != (pcb->length + 2)) {
if (elp_debug >= 2)
printk(KERN_WARNING "%s: mangled PCB received\n", dev->name);
set_hsf(dev, HSF_PCB_NAK);
return FALSE;
}
if (pcb->command == CMD_RECEIVE_PACKET_COMPLETE) {
if (test_and_set_bit(0, (void *) &adapter->busy)) {
if (backlog_next(adapter->rx_backlog.in) == adapter->rx_backlog.out) {
set_hsf(dev, HSF_PCB_NAK);
printk(KERN_WARNING "%s: PCB rejected, transfer in progress and backlog full\n", dev->name);
pcb->command = 0;
return TRUE;
} else {
pcb->command = 0xff;
}
}
}
set_hsf(dev, HSF_PCB_ACK);
return TRUE;
}
/******************************************************
*
* queue a receive command on the adapter so we will get an
* interrupt when a packet is received.
*
******************************************************/
static int start_receive(struct net_device *dev, pcb_struct * tx_pcb)
{
int status;
elp_device *adapter = dev->priv;
if (elp_debug >= 3)
printk(KERN_DEBUG "%s: restarting receiver\n", dev->name);
tx_pcb->command = CMD_RECEIVE_PACKET;
tx_pcb->length = sizeof(struct Rcv_pkt);
tx_pcb->data.rcv_pkt.buf_seg
= tx_pcb->data.rcv_pkt.buf_ofs = 0; /* Unused */
tx_pcb->data.rcv_pkt.buf_len = 1600;
tx_pcb->data.rcv_pkt.timeout = 0; /* set timeout to zero */
status = send_pcb(dev, tx_pcb);
if (status)
adapter->rx_active++;
return status;
}
/******************************************************
*
* extract a packet from the adapter
* this routine is only called from within the interrupt
* service routine, so no cli/sti calls are needed
* note that the length is always assumed to be even
*
******************************************************/
static void receive_packet(struct net_device *dev, int len)
{
int rlen;
elp_device *adapter = dev->priv;
void *target;
struct sk_buff *skb;
unsigned long flags;
rlen = (len + 1) & ~1;
skb = dev_alloc_skb(rlen + 2);
if (!skb) {
printk(KERN_WARNING "%s: memory squeeze, dropping packet\n", dev->name);
target = adapter->dma_buffer;
adapter->current_dma.target = NULL;
/* FIXME: stats */
return;
}
skb_reserve(skb, 2);
target = skb_put(skb, rlen);
if ((unsigned long)(target + rlen) >= MAX_DMA_ADDRESS) {
adapter->current_dma.target = target;
target = adapter->dma_buffer;
} else {
adapter->current_dma.target = NULL;
}
/* if this happens, we die */
if (test_and_set_bit(0, (void *) &adapter->dmaing))
printk(KERN_ERR "%s: rx blocked, DMA in progress, dir %d\n", dev->name, adapter->current_dma.direction);
skb->dev = dev;
adapter->current_dma.direction = 0;
adapter->current_dma.length = rlen;
adapter->current_dma.skb = skb;
adapter->current_dma.start_time = jiffies;
outb_control(adapter->hcr_val | DIR | TCEN | DMAE, dev);
flags=claim_dma_lock();
disable_dma(dev->dma);
clear_dma_ff(dev->dma);
set_dma_mode(dev->dma, 0x04); /* dma read */
set_dma_addr(dev->dma, isa_virt_to_bus(target));
set_dma_count(dev->dma, rlen);
enable_dma(dev->dma);
release_dma_lock(flags);
if (elp_debug >= 3) {
printk(KERN_DEBUG "%s: rx DMA transfer started\n", dev->name);
}
if (adapter->rx_active)
adapter->rx_active--;
if (!adapter->busy)
printk(KERN_WARNING "%s: receive_packet called, busy not set.\n", dev->name);
}
/******************************************************
*
* interrupt handler
*
******************************************************/
static irqreturn_t elp_interrupt(int irq, void *dev_id)
{
int len;
int dlen;
int icount = 0;
struct net_device *dev;
elp_device *adapter;
unsigned long timeout;
dev = dev_id;
adapter = (elp_device *) dev->priv;
spin_lock(&adapter->lock);
do {
/*
* has a DMA transfer finished?
*/
if (inb_status(dev->base_addr) & DONE) {
if (!adapter->dmaing) {
printk(KERN_WARNING "%s: phantom DMA completed\n", dev->name);
}
if (elp_debug >= 3) {
printk(KERN_DEBUG "%s: %s DMA complete, status %02x\n", dev->name, adapter->current_dma.direction ? "tx" : "rx", inb_status(dev->base_addr));
}
outb_control(adapter->hcr_val & ~(DMAE | TCEN | DIR), dev);
if (adapter->current_dma.direction) {
dev_kfree_skb_irq(adapter->current_dma.skb);
} else {
struct sk_buff *skb = adapter->current_dma.skb;
if (skb) {
if (adapter->current_dma.target) {
/* have already done the skb_put() */
memcpy(adapter->current_dma.target, adapter->dma_buffer, adapter->current_dma.length);
}
skb->protocol = eth_type_trans(skb,dev);
adapter->stats.rx_bytes += skb->len;
netif_rx(skb);
dev->last_rx = jiffies;
}
}
adapter->dmaing = 0;
if (adapter->rx_backlog.in != adapter->rx_backlog.out) {
int t = adapter->rx_backlog.length[adapter->rx_backlog.out];
adapter->rx_backlog.out = backlog_next(adapter->rx_backlog.out);
if (elp_debug >= 2)
printk(KERN_DEBUG "%s: receiving backlogged packet (%d)\n", dev->name, t);
receive_packet(dev, t);
} else {
adapter->busy = 0;
}
} else {
/* has one timed out? */
check_3c505_dma(dev);
}
/*
* receive a PCB from the adapter
*/
timeout = jiffies + 3*HZ/100;
while ((inb_status(dev->base_addr) & ACRF) != 0 && time_before(jiffies, timeout)) {
if (receive_pcb(dev, &adapter->irx_pcb)) {
switch (adapter->irx_pcb.command)
{
case 0:
break;
/*
* received a packet - this must be handled fast
*/
case 0xff:
case CMD_RECEIVE_PACKET_COMPLETE:
/* if the device isn't open, don't pass packets up the stack */
if (!netif_running(dev))
break;
len = adapter->irx_pcb.data.rcv_resp.pkt_len;
dlen = adapter->irx_pcb.data.rcv_resp.buf_len;
if (adapter->irx_pcb.data.rcv_resp.timeout != 0) {
printk(KERN_ERR "%s: interrupt - packet not received correctly\n", dev->name);
} else {
if (elp_debug >= 3) {
printk(KERN_DEBUG "%s: interrupt - packet received of length %i (%i)\n", dev->name, len, dlen);
}
if (adapter->irx_pcb.command == 0xff) {
if (elp_debug >= 2)
printk(KERN_DEBUG "%s: adding packet to backlog (len = %d)\n", dev->name, dlen);
adapter->rx_backlog.length[adapter->rx_backlog.in] = dlen;
adapter->rx_backlog.in = backlog_next(adapter->rx_backlog.in);
} else {
receive_packet(dev, dlen);
}
if (elp_debug >= 3)
printk(KERN_DEBUG "%s: packet received\n", dev->name);
}
break;
/*
* 82586 configured correctly
*/
case CMD_CONFIGURE_82586_RESPONSE:
adapter->got[CMD_CONFIGURE_82586] = 1;
if (elp_debug >= 3)
printk(KERN_DEBUG "%s: interrupt - configure response received\n", dev->name);
break;
/*
* Adapter memory configuration
*/
case CMD_CONFIGURE_ADAPTER_RESPONSE:
adapter->got[CMD_CONFIGURE_ADAPTER_MEMORY] = 1;
if (elp_debug >= 3)
printk(KERN_DEBUG "%s: Adapter memory configuration %s.\n", dev->name,
adapter->irx_pcb.data.failed ? "failed" : "succeeded");
break;
/*
* Multicast list loading
*/
case CMD_LOAD_MULTICAST_RESPONSE:
adapter->got[CMD_LOAD_MULTICAST_LIST] = 1;
if (elp_debug >= 3)
printk(KERN_DEBUG "%s: Multicast address list loading %s.\n", dev->name,
adapter->irx_pcb.data.failed ? "failed" : "succeeded");
break;
/*
* Station address setting
*/
case CMD_SET_ADDRESS_RESPONSE:
adapter->got[CMD_SET_STATION_ADDRESS] = 1;
if (elp_debug >= 3)
printk(KERN_DEBUG "%s: Ethernet address setting %s.\n", dev->name,
adapter->irx_pcb.data.failed ? "failed" : "succeeded");
break;
/*
* received board statistics
*/
case CMD_NETWORK_STATISTICS_RESPONSE:
adapter->stats.rx_packets += adapter->irx_pcb.data.netstat.tot_recv;
adapter->stats.tx_packets += adapter->irx_pcb.data.netstat.tot_xmit;
adapter->stats.rx_crc_errors += adapter->irx_pcb.data.netstat.err_CRC;
adapter->stats.rx_frame_errors += adapter->irx_pcb.data.netstat.err_align;
adapter->stats.rx_fifo_errors += adapter->irx_pcb.data.netstat.err_ovrrun;
adapter->stats.rx_over_errors += adapter->irx_pcb.data.netstat.err_res;
adapter->got[CMD_NETWORK_STATISTICS] = 1;
if (elp_debug >= 3)
printk(KERN_DEBUG "%s: interrupt - statistics response received\n", dev->name);
break;
/*
* sent a packet
*/
case CMD_TRANSMIT_PACKET_COMPLETE:
if (elp_debug >= 3)
printk(KERN_DEBUG "%s: interrupt - packet sent\n", dev->name);
if (!netif_running(dev))
break;
switch (adapter->irx_pcb.data.xmit_resp.c_stat) {
case 0xffff:
adapter->stats.tx_aborted_errors++;
printk(KERN_INFO "%s: transmit timed out, network cable problem?\n", dev->name);
break;
case 0xfffe:
adapter->stats.tx_fifo_errors++;
printk(KERN_INFO "%s: transmit timed out, FIFO underrun\n", dev->name);
break;
}
netif_wake_queue(dev);
break;
/*
* some unknown PCB
*/
default:
printk(KERN_DEBUG "%s: unknown PCB received - %2.2x\n", dev->name, adapter->irx_pcb.command);
break;
}
} else {
printk(KERN_WARNING "%s: failed to read PCB on interrupt\n", dev->name);
adapter_reset(dev);
}
}
} while (icount++ < 5 && (inb_status(dev->base_addr) & (ACRF | DONE)));
prime_rx(dev);
/*
* indicate no longer in interrupt routine
*/
spin_unlock(&adapter->lock);
return IRQ_HANDLED;
}
/******************************************************
*
* open the board
*
******************************************************/
static int elp_open(struct net_device *dev)
{
elp_device *adapter;
int retval;
adapter = dev->priv;
if (elp_debug >= 3)
printk(KERN_DEBUG "%s: request to open device\n", dev->name);
/*
* make sure we actually found the device
*/
if (adapter == NULL) {
printk(KERN_ERR "%s: Opening a non-existent physical device\n", dev->name);
return -EAGAIN;
}
/*
* disable interrupts on the board
*/
outb_control(0, dev);
/*
* clear any pending interrupts
*/
inb_command(dev->base_addr);
adapter_reset(dev);
/*
* no receive PCBs active
*/
adapter->rx_active = 0;
adapter->busy = 0;
adapter->send_pcb_semaphore = 0;
adapter->rx_backlog.in = 0;
adapter->rx_backlog.out = 0;
spin_lock_init(&adapter->lock);
/*
* install our interrupt service routine
*/
if ((retval = request_irq(dev->irq, &elp_interrupt, 0, dev->name, dev))) {
printk(KERN_ERR "%s: could not allocate IRQ%d\n", dev->name, dev->irq);
return retval;
}
if ((retval = request_dma(dev->dma, dev->name))) {
free_irq(dev->irq, dev);
printk(KERN_ERR "%s: could not allocate DMA%d channel\n", dev->name, dev->dma);
return retval;
}
adapter->dma_buffer = (void *) dma_mem_alloc(DMA_BUFFER_SIZE);
if (!adapter->dma_buffer) {
printk(KERN_ERR "%s: could not allocate DMA buffer\n", dev->name);
free_dma(dev->dma);
free_irq(dev->irq, dev);
return -ENOMEM;
}
adapter->dmaing = 0;
/*
* enable interrupts on the board
*/
outb_control(CMDE, dev);
/*
* configure adapter memory: we need 10 multicast addresses, default==0
*/
if (elp_debug >= 3)
printk(KERN_DEBUG "%s: sending 3c505 memory configuration command\n", dev->name);
adapter->tx_pcb.command = CMD_CONFIGURE_ADAPTER_MEMORY;
adapter->tx_pcb.data.memconf.cmd_q = 10;
adapter->tx_pcb.data.memconf.rcv_q = 20;
adapter->tx_pcb.data.memconf.mcast = 10;
adapter->tx_pcb.data.memconf.frame = 20;
adapter->tx_pcb.data.memconf.rcv_b = 20;
adapter->tx_pcb.data.memconf.progs = 0;
adapter->tx_pcb.length = sizeof(struct Memconf);
adapter->got[CMD_CONFIGURE_ADAPTER_MEMORY] = 0;
if (!send_pcb(dev, &adapter->tx_pcb))
printk(KERN_ERR "%s: couldn't send memory configuration command\n", dev->name);
else {
unsigned long timeout = jiffies + TIMEOUT;
while (adapter->got[CMD_CONFIGURE_ADAPTER_MEMORY] == 0 && time_before(jiffies, timeout));
if (time_after_eq(jiffies, timeout))
TIMEOUT_MSG(__LINE__);
}
/*
* configure adapter to receive broadcast messages and wait for response
*/
if (elp_debug >= 3)
printk(KERN_DEBUG "%s: sending 82586 configure command\n", dev->name);
adapter->tx_pcb.command = CMD_CONFIGURE_82586;
adapter->tx_pcb.data.configure = NO_LOOPBACK | RECV_BROAD;
adapter->tx_pcb.length = 2;
adapter->got[CMD_CONFIGURE_82586] = 0;
if (!send_pcb(dev, &adapter->tx_pcb))
printk(KERN_ERR "%s: couldn't send 82586 configure command\n", dev->name);
else {
unsigned long timeout = jiffies + TIMEOUT;
while (adapter->got[CMD_CONFIGURE_82586] == 0 && time_before(jiffies, timeout));
if (time_after_eq(jiffies, timeout))
TIMEOUT_MSG(__LINE__);
}
/* enable burst-mode DMA */
/* outb(0x1, dev->base_addr + PORT_AUXDMA); */
/*
* queue receive commands to provide buffering
*/
prime_rx(dev);
if (elp_debug >= 3)
printk(KERN_DEBUG "%s: %d receive PCBs active\n", dev->name, adapter->rx_active);
/*
* device is now officially open!
*/
netif_start_queue(dev);
return 0;
}
/******************************************************
*
* send a packet to the adapter
*
******************************************************/
static int send_packet(struct net_device *dev, struct sk_buff *skb)
{
elp_device *adapter = dev->priv;
unsigned long target;
unsigned long flags;
/*
* make sure the length is even and no shorter than 60 bytes
*/
unsigned int nlen = (((skb->len < 60) ? 60 : skb->len) + 1) & (~1);
if (test_and_set_bit(0, (void *) &adapter->busy)) {
if (elp_debug >= 2)
printk(KERN_DEBUG "%s: transmit blocked\n", dev->name);
return FALSE;
}
adapter->stats.tx_bytes += nlen;
/*
* send the adapter a transmit packet command. Ignore segment and offset
* and make sure the length is even
*/
adapter->tx_pcb.command = CMD_TRANSMIT_PACKET;
adapter->tx_pcb.length = sizeof(struct Xmit_pkt);
adapter->tx_pcb.data.xmit_pkt.buf_ofs
= adapter->tx_pcb.data.xmit_pkt.buf_seg = 0; /* Unused */
adapter->tx_pcb.data.xmit_pkt.pkt_len = nlen;
if (!send_pcb(dev, &adapter->tx_pcb)) {
adapter->busy = 0;
return FALSE;
}
/* if this happens, we die */
if (test_and_set_bit(0, (void *) &adapter->dmaing))
printk(KERN_DEBUG "%s: tx: DMA %d in progress\n", dev->name, adapter->current_dma.direction);
adapter->current_dma.direction = 1;
adapter->current_dma.start_time = jiffies;
if ((unsigned long)(skb->data + nlen) >= MAX_DMA_ADDRESS || nlen != skb->len) {
memcpy(adapter->dma_buffer, skb->data, nlen);
memset(adapter->dma_buffer+skb->len, 0, nlen-skb->len);
target = isa_virt_to_bus(adapter->dma_buffer);
}
else {
target = isa_virt_to_bus(skb->data);
}
adapter->current_dma.skb = skb;
flags=claim_dma_lock();
disable_dma(dev->dma);
clear_dma_ff(dev->dma);
set_dma_mode(dev->dma, 0x48); /* dma memory -> io */
set_dma_addr(dev->dma, target);
set_dma_count(dev->dma, nlen);
outb_control(adapter->hcr_val | DMAE | TCEN, dev);
enable_dma(dev->dma);
release_dma_lock(flags);
if (elp_debug >= 3)
printk(KERN_DEBUG "%s: DMA transfer started\n", dev->name);
return TRUE;
}
/*
* The upper layer thinks we timed out
*/
static void elp_timeout(struct net_device *dev)
{
elp_device *adapter = dev->priv;
int stat;
stat = inb_status(dev->base_addr);
printk(KERN_WARNING "%s: transmit timed out, lost %s?\n", dev->name, (stat & ACRF) ? "interrupt" : "command");
if (elp_debug >= 1)
printk(KERN_DEBUG "%s: status %#02x\n", dev->name, stat);
dev->trans_start = jiffies;
adapter->stats.tx_dropped++;
netif_wake_queue(dev);
}
/******************************************************
*
* start the transmitter
* return 0 if sent OK, else return 1
*
******************************************************/
static int elp_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
unsigned long flags;
elp_device *adapter = dev->priv;
spin_lock_irqsave(&adapter->lock, flags);
check_3c505_dma(dev);
if (elp_debug >= 3)
printk(KERN_DEBUG "%s: request to send packet of length %d\n", dev->name, (int) skb->len);
netif_stop_queue(dev);
/*
* send the packet at skb->data for skb->len
*/
if (!send_packet(dev, skb)) {
if (elp_debug >= 2) {
printk(KERN_DEBUG "%s: failed to transmit packet\n", dev->name);
}
spin_unlock_irqrestore(&adapter->lock, flags);
return 1;
}
if (elp_debug >= 3)
printk(KERN_DEBUG "%s: packet of length %d sent\n", dev->name, (int) skb->len);
/*
* start the transmit timeout
*/
dev->trans_start = jiffies;
prime_rx(dev);
spin_unlock_irqrestore(&adapter->lock, flags);
netif_start_queue(dev);
return 0;
}
/******************************************************
*
* return statistics on the board
*
******************************************************/
static struct net_device_stats *elp_get_stats(struct net_device *dev)
{
elp_device *adapter = (elp_device *) dev->priv;
if (elp_debug >= 3)
printk(KERN_DEBUG "%s: request for stats\n", dev->name);
/* If the device is closed, just return the latest stats we have,
- we cannot ask from the adapter without interrupts */
if (!netif_running(dev))
return &adapter->stats;
/* send a get statistics command to the board */
adapter->tx_pcb.command = CMD_NETWORK_STATISTICS;
adapter->tx_pcb.length = 0;
adapter->got[CMD_NETWORK_STATISTICS] = 0;
if (!send_pcb(dev, &adapter->tx_pcb))
printk(KERN_ERR "%s: couldn't send get statistics command\n", dev->name);
else {
unsigned long timeout = jiffies + TIMEOUT;
while (adapter->got[CMD_NETWORK_STATISTICS] == 0 && time_before(jiffies, timeout));
if (time_after_eq(jiffies, timeout)) {
TIMEOUT_MSG(__LINE__);
return &adapter->stats;
}
}
/* statistics are now up to date */
return &adapter->stats;
}
static void netdev_get_drvinfo(struct net_device *dev,
struct ethtool_drvinfo *info)
{
strcpy(info->driver, DRV_NAME);
strcpy(info->version, DRV_VERSION);
sprintf(info->bus_info, "ISA 0x%lx", dev->base_addr);
}
static u32 netdev_get_msglevel(struct net_device *dev)
{
return debug;
}
static void netdev_set_msglevel(struct net_device *dev, u32 level)
{
debug = level;
}
static const struct ethtool_ops netdev_ethtool_ops = {
.get_drvinfo = netdev_get_drvinfo,
.get_msglevel = netdev_get_msglevel,
.set_msglevel = netdev_set_msglevel,
};
/******************************************************
*
* close the board
*
******************************************************/
static int elp_close(struct net_device *dev)
{
elp_device *adapter;
adapter = dev->priv;
if (elp_debug >= 3)
printk(KERN_DEBUG "%s: request to close device\n", dev->name);
netif_stop_queue(dev);
/* Someone may request the device statistic information even when
* the interface is closed. The following will update the statistics
* structure in the driver, so we'll be able to give current statistics.
*/
(void) elp_get_stats(dev);
/*
* disable interrupts on the board
*/
outb_control(0, dev);
/*
* release the IRQ
*/
free_irq(dev->irq, dev);
free_dma(dev->dma);
free_pages((unsigned long) adapter->dma_buffer, get_order(DMA_BUFFER_SIZE));
return 0;
}
/************************************************************
*
* Set multicast list
* num_addrs==0: clear mc_list
* num_addrs==-1: set promiscuous mode
* num_addrs>0: set mc_list
*
************************************************************/
static void elp_set_mc_list(struct net_device *dev)
{
elp_device *adapter = (elp_device *) dev->priv;
struct dev_mc_list *dmi = dev->mc_list;
int i;
unsigned long flags;
if (elp_debug >= 3)
printk(KERN_DEBUG "%s: request to set multicast list\n", dev->name);
spin_lock_irqsave(&adapter->lock, flags);
if (!(dev->flags & (IFF_PROMISC | IFF_ALLMULTI))) {
/* send a "load multicast list" command to the board, max 10 addrs/cmd */
/* if num_addrs==0 the list will be cleared */
adapter->tx_pcb.command = CMD_LOAD_MULTICAST_LIST;
adapter->tx_pcb.length = 6 * dev->mc_count;
for (i = 0; i < dev->mc_count; i++) {
memcpy(adapter->tx_pcb.data.multicast[i], dmi->dmi_addr, 6);
dmi = dmi->next;
}
adapter->got[CMD_LOAD_MULTICAST_LIST] = 0;
if (!send_pcb(dev, &adapter->tx_pcb))
printk(KERN_ERR "%s: couldn't send set_multicast command\n", dev->name);
else {
unsigned long timeout = jiffies + TIMEOUT;
while (adapter->got[CMD_LOAD_MULTICAST_LIST] == 0 && time_before(jiffies, timeout));
if (time_after_eq(jiffies, timeout)) {
TIMEOUT_MSG(__LINE__);
}
}
if (dev->mc_count)
adapter->tx_pcb.data.configure = NO_LOOPBACK | RECV_BROAD | RECV_MULTI;
else /* num_addrs == 0 */
adapter->tx_pcb.data.configure = NO_LOOPBACK | RECV_BROAD;
} else
adapter->tx_pcb.data.configure = NO_LOOPBACK | RECV_PROMISC;
/*
* configure adapter to receive messages (as specified above)
* and wait for response
*/
if (elp_debug >= 3)
printk(KERN_DEBUG "%s: sending 82586 configure command\n", dev->name);
adapter->tx_pcb.command = CMD_CONFIGURE_82586;
adapter->tx_pcb.length = 2;
adapter->got[CMD_CONFIGURE_82586] = 0;
if (!send_pcb(dev, &adapter->tx_pcb))
{
spin_unlock_irqrestore(&adapter->lock, flags);
printk(KERN_ERR "%s: couldn't send 82586 configure command\n", dev->name);
}
else {
unsigned long timeout = jiffies + TIMEOUT;
spin_unlock_irqrestore(&adapter->lock, flags);
while (adapter->got[CMD_CONFIGURE_82586] == 0 && time_before(jiffies, timeout));
if (time_after_eq(jiffies, timeout))
TIMEOUT_MSG(__LINE__);
}
}
/************************************************************
*
* A couple of tests to see if there's 3C505 or not
* Called only by elp_autodetect
************************************************************/
static int __init elp_sense(struct net_device *dev)
{
int addr = dev->base_addr;
const char *name = dev->name;
byte orig_HSR;
if (!request_region(addr, ELP_IO_EXTENT, "3c505"))
return -ENODEV;
orig_HSR = inb_status(addr);
if (elp_debug > 0)
printk(search_msg, name, addr);
if (orig_HSR == 0xff) {
if (elp_debug > 0)
printk(notfound_msg, 1);
goto out;
}
/* Wait for a while; the adapter may still be booting up */
if (elp_debug > 0)
printk(stilllooking_msg);
if (orig_HSR & DIR) {
/* If HCR.DIR is up, we pull it down. HSR.DIR should follow. */
outb(0, dev->base_addr + PORT_CONTROL);
msleep(300);
if (inb_status(addr) & DIR) {
if (elp_debug > 0)
printk(notfound_msg, 2);
goto out;
}
} else {
/* If HCR.DIR is down, we pull it up. HSR.DIR should follow. */
outb(DIR, dev->base_addr + PORT_CONTROL);
msleep(300);
if (!(inb_status(addr) & DIR)) {
if (elp_debug > 0)
printk(notfound_msg, 3);
goto out;
}
}
/*
* It certainly looks like a 3c505.
*/
if (elp_debug > 0)
printk(found_msg);
return 0;
out:
release_region(addr, ELP_IO_EXTENT);
return -ENODEV;
}
/*************************************************************
*
* Search through addr_list[] and try to find a 3C505
* Called only by eplus_probe
*************************************************************/
static int __init elp_autodetect(struct net_device *dev)
{
int idx = 0;
/* if base address set, then only check that address
otherwise, run through the table */
if (dev->base_addr != 0) { /* dev->base_addr == 0 ==> plain autodetect */
if (elp_sense(dev) == 0)
return dev->base_addr;
} else
while ((dev->base_addr = addr_list[idx++])) {
if (elp_sense(dev) == 0)
return dev->base_addr;
}
/* could not find an adapter */
if (elp_debug > 0)
printk(couldnot_msg, dev->name);
return 0; /* Because of this, the layer above will return -ENODEV */
}
/******************************************************
*
* probe for an Etherlink Plus board at the specified address
*
******************************************************/
/* There are three situations we need to be able to detect here:
* a) the card is idle
* b) the card is still booting up
* c) the card is stuck in a strange state (some DOS drivers do this)
*
* In case (a), all is well. In case (b), we wait 10 seconds to see if the
* card finishes booting, and carry on if so. In case (c), we do a hard reset,
* loop round, and hope for the best.
*
* This is all very unpleasant, but hopefully avoids the problems with the old
* probe code (which had a 15-second delay if the card was idle, and didn't
* work at all if it was in a weird state).
*/
static int __init elplus_setup(struct net_device *dev)
{
elp_device *adapter = dev->priv;
int i, tries, tries1, okay;
unsigned long timeout;
unsigned long cookie = 0;
int err = -ENODEV;
SET_MODULE_OWNER(dev);
/*
* setup adapter structure
*/
dev->base_addr = elp_autodetect(dev);
if (!dev->base_addr)
return -ENODEV;
adapter->send_pcb_semaphore = 0;
for (tries1 = 0; tries1 < 3; tries1++) {
outb_control((adapter->hcr_val | CMDE) & ~DIR, dev);
/* First try to write just one byte, to see if the card is
* responding at all normally.
*/
timeout = jiffies + 5*HZ/100;
okay = 0;
while (time_before(jiffies, timeout) && !(inb_status(dev->base_addr) & HCRE));
if ((inb_status(dev->base_addr) & HCRE)) {
outb_command(0, dev->base_addr); /* send a spurious byte */
timeout = jiffies + 5*HZ/100;
while (time_before(jiffies, timeout) && !(inb_status(dev->base_addr) & HCRE));
if (inb_status(dev->base_addr) & HCRE)
okay = 1;
}
if (!okay) {
/* Nope, it's ignoring the command register. This means that
* either it's still booting up, or it's died.
*/
printk(KERN_ERR "%s: command register wouldn't drain, ", dev->name);
if ((inb_status(dev->base_addr) & 7) == 3) {
/* If the adapter status is 3, it *could* still be booting.
* Give it the benefit of the doubt for 10 seconds.
*/
printk("assuming 3c505 still starting\n");
timeout = jiffies + 10*HZ;
while (time_before(jiffies, timeout) && (inb_status(dev->base_addr) & 7));
if (inb_status(dev->base_addr) & 7) {
printk(KERN_ERR "%s: 3c505 failed to start\n", dev->name);
} else {
okay = 1; /* It started */
}
} else {
/* Otherwise, it must just be in a strange
* state. We probably need to kick it.
*/
printk("3c505 is sulking\n");
}
}
for (tries = 0; tries < 5 && okay; tries++) {
/*
* Try to set the Ethernet address, to make sure that the board
* is working.
*/
adapter->tx_pcb.command = CMD_STATION_ADDRESS;
adapter->tx_pcb.length = 0;
cookie = probe_irq_on();
if (!send_pcb(dev, &adapter->tx_pcb)) {
printk(KERN_ERR "%s: could not send first PCB\n", dev->name);
probe_irq_off(cookie);
continue;
}
if (!receive_pcb(dev, &adapter->rx_pcb)) {
printk(KERN_ERR "%s: could not read first PCB\n", dev->name);
probe_irq_off(cookie);
continue;
}
if ((adapter->rx_pcb.command != CMD_ADDRESS_RESPONSE) ||
(adapter->rx_pcb.length != 6)) {
printk(KERN_ERR "%s: first PCB wrong (%d, %d)\n", dev->name, adapter->rx_pcb.command, adapter->rx_pcb.length);
probe_irq_off(cookie);
continue;
}
goto okay;
}
/* It's broken. Do a hard reset to re-initialise the board,
* and try again.
*/
printk(KERN_INFO "%s: resetting adapter\n", dev->name);
outb_control(adapter->hcr_val | FLSH | ATTN, dev);
outb_control(adapter->hcr_val & ~(FLSH | ATTN), dev);
}
printk(KERN_ERR "%s: failed to initialise 3c505\n", dev->name);
goto out;
okay:
if (dev->irq) { /* Is there a preset IRQ? */
int rpt = probe_irq_off(cookie);
if (dev->irq != rpt) {
printk(KERN_WARNING "%s: warning, irq %d configured but %d detected\n", dev->name, dev->irq, rpt);
}
/* if dev->irq == probe_irq_off(cookie), all is well */
} else /* No preset IRQ; just use what we can detect */
dev->irq = probe_irq_off(cookie);
switch (dev->irq) { /* Legal, sane? */
case 0:
printk(KERN_ERR "%s: IRQ probe failed: check 3c505 jumpers.\n",
dev->name);
goto out;
case 1:
case 6:
case 8:
case 13:
printk(KERN_ERR "%s: Impossible IRQ %d reported by probe_irq_off().\n",
dev->name, dev->irq);
goto out;
}
/*
* Now we have the IRQ number so we can disable the interrupts from
* the board until the board is opened.
*/
outb_control(adapter->hcr_val & ~CMDE, dev);
/*
* copy Ethernet address into structure
*/
for (i = 0; i < 6; i++)
dev->dev_addr[i] = adapter->rx_pcb.data.eth_addr[i];
/* find a DMA channel */
if (!dev->dma) {
if (dev->mem_start) {
dev->dma = dev->mem_start & 7;
}
else {
printk(KERN_WARNING "%s: warning, DMA channel not specified, using default\n", dev->name);
dev->dma = ELP_DMA;
}
}
/*
* print remainder of startup message
*/
printk(KERN_INFO "%s: 3c505 at %#lx, irq %d, dma %d, ",
dev->name, dev->base_addr, dev->irq, dev->dma);
printk("addr %02x:%02x:%02x:%02x:%02x:%02x, ",
dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
/*
* read more information from the adapter
*/
adapter->tx_pcb.command = CMD_ADAPTER_INFO;
adapter->tx_pcb.length = 0;
if (!send_pcb(dev, &adapter->tx_pcb) ||
!receive_pcb(dev, &adapter->rx_pcb) ||
(adapter->rx_pcb.command != CMD_ADAPTER_INFO_RESPONSE) ||
(adapter->rx_pcb.length != 10)) {
printk("not responding to second PCB\n");
}
printk("rev %d.%d, %dk\n", adapter->rx_pcb.data.info.major_vers, adapter->rx_pcb.data.info.minor_vers, adapter->rx_pcb.data.info.RAM_sz);
/*
* reconfigure the adapter memory to better suit our purposes
*/
adapter->tx_pcb.command = CMD_CONFIGURE_ADAPTER_MEMORY;
adapter->tx_pcb.length = 12;
adapter->tx_pcb.data.memconf.cmd_q = 8;
adapter->tx_pcb.data.memconf.rcv_q = 8;
adapter->tx_pcb.data.memconf.mcast = 10;
adapter->tx_pcb.data.memconf.frame = 10;
adapter->tx_pcb.data.memconf.rcv_b = 10;
adapter->tx_pcb.data.memconf.progs = 0;
if (!send_pcb(dev, &adapter->tx_pcb) ||
!receive_pcb(dev, &adapter->rx_pcb) ||
(adapter->rx_pcb.command != CMD_CONFIGURE_ADAPTER_RESPONSE) ||
(adapter->rx_pcb.length != 2)) {
printk(KERN_ERR "%s: could not configure adapter memory\n", dev->name);
}
if (adapter->rx_pcb.data.configure) {
printk(KERN_ERR "%s: adapter configuration failed\n", dev->name);
}
dev->open = elp_open; /* local */
dev->stop = elp_close; /* local */
dev->get_stats = elp_get_stats; /* local */
dev->hard_start_xmit = elp_start_xmit; /* local */
dev->tx_timeout = elp_timeout; /* local */
dev->watchdog_timeo = 10*HZ;
dev->set_multicast_list = elp_set_mc_list; /* local */
dev->ethtool_ops = &netdev_ethtool_ops; /* local */
memset(&(adapter->stats), 0, sizeof(struct net_device_stats));
dev->mem_start = dev->mem_end = 0;
err = register_netdev(dev);
if (err)
goto out;
return 0;
out:
release_region(dev->base_addr, ELP_IO_EXTENT);
return err;
}
#ifndef MODULE
struct net_device * __init elplus_probe(int unit)
{
struct net_device *dev = alloc_etherdev(sizeof(elp_device));
int err;
if (!dev)
return ERR_PTR(-ENOMEM);
sprintf(dev->name, "eth%d", unit);
netdev_boot_setup_check(dev);
err = elplus_setup(dev);
if (err) {
free_netdev(dev);
return ERR_PTR(err);
}
return dev;
}
#else
static struct net_device *dev_3c505[ELP_MAX_CARDS];
static int io[ELP_MAX_CARDS];
static int irq[ELP_MAX_CARDS];
static int dma[ELP_MAX_CARDS];
module_param_array(io, int, NULL, 0);
module_param_array(irq, int, NULL, 0);
module_param_array(dma, int, NULL, 0);
MODULE_PARM_DESC(io, "EtherLink Plus I/O base address(es)");
MODULE_PARM_DESC(irq, "EtherLink Plus IRQ number(s) (assigned)");
MODULE_PARM_DESC(dma, "EtherLink Plus DMA channel(s)");
int __init init_module(void)
{
int this_dev, found = 0;
for (this_dev = 0; this_dev < ELP_MAX_CARDS; this_dev++) {
struct net_device *dev = alloc_etherdev(sizeof(elp_device));
if (!dev)
break;
dev->irq = irq[this_dev];
dev->base_addr = io[this_dev];
if (dma[this_dev]) {
dev->dma = dma[this_dev];
} else {
dev->dma = ELP_DMA;
printk(KERN_WARNING "3c505.c: warning, using default DMA channel,\n");
}
if (io[this_dev] == 0) {
if (this_dev) {
free_netdev(dev);
break;
}
printk(KERN_NOTICE "3c505.c: module autoprobe not recommended, give io=xx.\n");
}
if (elplus_setup(dev) != 0) {
printk(KERN_WARNING "3c505.c: Failed to register card at 0x%x.\n", io[this_dev]);
free_netdev(dev);
break;
}
dev_3c505[this_dev] = dev;
found++;
}
if (!found)
return -ENODEV;
return 0;
}
void cleanup_module(void)
{
int this_dev;
for (this_dev = 0; this_dev < ELP_MAX_CARDS; this_dev++) {
struct net_device *dev = dev_3c505[this_dev];
if (dev) {
unregister_netdev(dev);
release_region(dev->base_addr, ELP_IO_EXTENT);
free_netdev(dev);
}
}
}
#endif /* MODULE */
MODULE_LICENSE("GPL");