linux_dsm_epyc7002/drivers/net/ethernet/broadcom/tg3.c
Michael Chan 0f0d15100a tg3: Fix data corruption on 5725 with TSO
The 5725 family of devices (asic rev 5762), corrupts TSO packets where
the buffer is within MSS bytes of a 4G boundary (4G, 8G etc.). Detect
this condition and trigger the workaround path.

Cc: <stable@vger.kernel.org>
Signed-off-by: Michael Chan <mchan@broadcom.com>
Signed-off-by: Nithin Nayak Sujir <nsujir@broadcom.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-05-14 11:32:04 -07:00

17741 lines
452 KiB
C

/*
* tg3.c: Broadcom Tigon3 ethernet driver.
*
* Copyright (C) 2001, 2002, 2003, 2004 David S. Miller (davem@redhat.com)
* Copyright (C) 2001, 2002, 2003 Jeff Garzik (jgarzik@pobox.com)
* Copyright (C) 2004 Sun Microsystems Inc.
* Copyright (C) 2005-2013 Broadcom Corporation.
*
* Firmware is:
* Derived from proprietary unpublished source code,
* Copyright (C) 2000-2003 Broadcom Corporation.
*
* Permission is hereby granted for the distribution of this firmware
* data in hexadecimal or equivalent format, provided this copyright
* notice is accompanying it.
*/
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/stringify.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/compiler.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/in.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/ioport.h>
#include <linux/pci.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/ethtool.h>
#include <linux/mdio.h>
#include <linux/mii.h>
#include <linux/phy.h>
#include <linux/brcmphy.h>
#include <linux/if_vlan.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/workqueue.h>
#include <linux/prefetch.h>
#include <linux/dma-mapping.h>
#include <linux/firmware.h>
#include <linux/ssb/ssb_driver_gige.h>
#include <linux/hwmon.h>
#include <linux/hwmon-sysfs.h>
#include <net/checksum.h>
#include <net/ip.h>
#include <linux/io.h>
#include <asm/byteorder.h>
#include <linux/uaccess.h>
#include <uapi/linux/net_tstamp.h>
#include <linux/ptp_clock_kernel.h>
#ifdef CONFIG_SPARC
#include <asm/idprom.h>
#include <asm/prom.h>
#endif
#define BAR_0 0
#define BAR_2 2
#include "tg3.h"
/* Functions & macros to verify TG3_FLAGS types */
static inline int _tg3_flag(enum TG3_FLAGS flag, unsigned long *bits)
{
return test_bit(flag, bits);
}
static inline void _tg3_flag_set(enum TG3_FLAGS flag, unsigned long *bits)
{
set_bit(flag, bits);
}
static inline void _tg3_flag_clear(enum TG3_FLAGS flag, unsigned long *bits)
{
clear_bit(flag, bits);
}
#define tg3_flag(tp, flag) \
_tg3_flag(TG3_FLAG_##flag, (tp)->tg3_flags)
#define tg3_flag_set(tp, flag) \
_tg3_flag_set(TG3_FLAG_##flag, (tp)->tg3_flags)
#define tg3_flag_clear(tp, flag) \
_tg3_flag_clear(TG3_FLAG_##flag, (tp)->tg3_flags)
#define DRV_MODULE_NAME "tg3"
#define TG3_MAJ_NUM 3
#define TG3_MIN_NUM 131
#define DRV_MODULE_VERSION \
__stringify(TG3_MAJ_NUM) "." __stringify(TG3_MIN_NUM)
#define DRV_MODULE_RELDATE "April 09, 2013"
#define RESET_KIND_SHUTDOWN 0
#define RESET_KIND_INIT 1
#define RESET_KIND_SUSPEND 2
#define TG3_DEF_RX_MODE 0
#define TG3_DEF_TX_MODE 0
#define TG3_DEF_MSG_ENABLE \
(NETIF_MSG_DRV | \
NETIF_MSG_PROBE | \
NETIF_MSG_LINK | \
NETIF_MSG_TIMER | \
NETIF_MSG_IFDOWN | \
NETIF_MSG_IFUP | \
NETIF_MSG_RX_ERR | \
NETIF_MSG_TX_ERR)
#define TG3_GRC_LCLCTL_PWRSW_DELAY 100
/* length of time before we decide the hardware is borked,
* and dev->tx_timeout() should be called to fix the problem
*/
#define TG3_TX_TIMEOUT (5 * HZ)
/* hardware minimum and maximum for a single frame's data payload */
#define TG3_MIN_MTU 60
#define TG3_MAX_MTU(tp) \
(tg3_flag(tp, JUMBO_CAPABLE) ? 9000 : 1500)
/* These numbers seem to be hard coded in the NIC firmware somehow.
* You can't change the ring sizes, but you can change where you place
* them in the NIC onboard memory.
*/
#define TG3_RX_STD_RING_SIZE(tp) \
(tg3_flag(tp, LRG_PROD_RING_CAP) ? \
TG3_RX_STD_MAX_SIZE_5717 : TG3_RX_STD_MAX_SIZE_5700)
#define TG3_DEF_RX_RING_PENDING 200
#define TG3_RX_JMB_RING_SIZE(tp) \
(tg3_flag(tp, LRG_PROD_RING_CAP) ? \
TG3_RX_JMB_MAX_SIZE_5717 : TG3_RX_JMB_MAX_SIZE_5700)
#define TG3_DEF_RX_JUMBO_RING_PENDING 100
/* Do not place this n-ring entries value into the tp struct itself,
* we really want to expose these constants to GCC so that modulo et
* al. operations are done with shifts and masks instead of with
* hw multiply/modulo instructions. Another solution would be to
* replace things like '% foo' with '& (foo - 1)'.
*/
#define TG3_TX_RING_SIZE 512
#define TG3_DEF_TX_RING_PENDING (TG3_TX_RING_SIZE - 1)
#define TG3_RX_STD_RING_BYTES(tp) \
(sizeof(struct tg3_rx_buffer_desc) * TG3_RX_STD_RING_SIZE(tp))
#define TG3_RX_JMB_RING_BYTES(tp) \
(sizeof(struct tg3_ext_rx_buffer_desc) * TG3_RX_JMB_RING_SIZE(tp))
#define TG3_RX_RCB_RING_BYTES(tp) \
(sizeof(struct tg3_rx_buffer_desc) * (tp->rx_ret_ring_mask + 1))
#define TG3_TX_RING_BYTES (sizeof(struct tg3_tx_buffer_desc) * \
TG3_TX_RING_SIZE)
#define NEXT_TX(N) (((N) + 1) & (TG3_TX_RING_SIZE - 1))
#define TG3_DMA_BYTE_ENAB 64
#define TG3_RX_STD_DMA_SZ 1536
#define TG3_RX_JMB_DMA_SZ 9046
#define TG3_RX_DMA_TO_MAP_SZ(x) ((x) + TG3_DMA_BYTE_ENAB)
#define TG3_RX_STD_MAP_SZ TG3_RX_DMA_TO_MAP_SZ(TG3_RX_STD_DMA_SZ)
#define TG3_RX_JMB_MAP_SZ TG3_RX_DMA_TO_MAP_SZ(TG3_RX_JMB_DMA_SZ)
#define TG3_RX_STD_BUFF_RING_SIZE(tp) \
(sizeof(struct ring_info) * TG3_RX_STD_RING_SIZE(tp))
#define TG3_RX_JMB_BUFF_RING_SIZE(tp) \
(sizeof(struct ring_info) * TG3_RX_JMB_RING_SIZE(tp))
/* Due to a hardware bug, the 5701 can only DMA to memory addresses
* that are at least dword aligned when used in PCIX mode. The driver
* works around this bug by double copying the packet. This workaround
* is built into the normal double copy length check for efficiency.
*
* However, the double copy is only necessary on those architectures
* where unaligned memory accesses are inefficient. For those architectures
* where unaligned memory accesses incur little penalty, we can reintegrate
* the 5701 in the normal rx path. Doing so saves a device structure
* dereference by hardcoding the double copy threshold in place.
*/
#define TG3_RX_COPY_THRESHOLD 256
#if NET_IP_ALIGN == 0 || defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
#define TG3_RX_COPY_THRESH(tp) TG3_RX_COPY_THRESHOLD
#else
#define TG3_RX_COPY_THRESH(tp) ((tp)->rx_copy_thresh)
#endif
#if (NET_IP_ALIGN != 0)
#define TG3_RX_OFFSET(tp) ((tp)->rx_offset)
#else
#define TG3_RX_OFFSET(tp) (NET_SKB_PAD)
#endif
/* minimum number of free TX descriptors required to wake up TX process */
#define TG3_TX_WAKEUP_THRESH(tnapi) ((tnapi)->tx_pending / 4)
#define TG3_TX_BD_DMA_MAX_2K 2048
#define TG3_TX_BD_DMA_MAX_4K 4096
#define TG3_RAW_IP_ALIGN 2
#define TG3_FW_UPDATE_TIMEOUT_SEC 5
#define TG3_FW_UPDATE_FREQ_SEC (TG3_FW_UPDATE_TIMEOUT_SEC / 2)
#define FIRMWARE_TG3 "tigon/tg3.bin"
#define FIRMWARE_TG357766 "tigon/tg357766.bin"
#define FIRMWARE_TG3TSO "tigon/tg3_tso.bin"
#define FIRMWARE_TG3TSO5 "tigon/tg3_tso5.bin"
static char version[] =
DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")";
MODULE_AUTHOR("David S. Miller (davem@redhat.com) and Jeff Garzik (jgarzik@pobox.com)");
MODULE_DESCRIPTION("Broadcom Tigon3 ethernet driver");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_MODULE_VERSION);
MODULE_FIRMWARE(FIRMWARE_TG3);
MODULE_FIRMWARE(FIRMWARE_TG3TSO);
MODULE_FIRMWARE(FIRMWARE_TG3TSO5);
static int tg3_debug = -1; /* -1 == use TG3_DEF_MSG_ENABLE as value */
module_param(tg3_debug, int, 0);
MODULE_PARM_DESC(tg3_debug, "Tigon3 bitmapped debugging message enable value");
#define TG3_DRV_DATA_FLAG_10_100_ONLY 0x0001
#define TG3_DRV_DATA_FLAG_5705_10_100 0x0002
static DEFINE_PCI_DEVICE_TABLE(tg3_pci_tbl) = {
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5700)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5701)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5702)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5703)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5704)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5702FE)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5705)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5705_2)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5705M)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5705M_2)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5702X)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5703X)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5704S)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5702A3)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5703A3)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5782)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5788)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5789)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5901),
.driver_data = TG3_DRV_DATA_FLAG_10_100_ONLY |
TG3_DRV_DATA_FLAG_5705_10_100},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5901_2),
.driver_data = TG3_DRV_DATA_FLAG_10_100_ONLY |
TG3_DRV_DATA_FLAG_5705_10_100},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5704S_2)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5705F),
.driver_data = TG3_DRV_DATA_FLAG_10_100_ONLY |
TG3_DRV_DATA_FLAG_5705_10_100},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5721)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5722)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5750)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5751)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5751M)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5751F),
.driver_data = TG3_DRV_DATA_FLAG_10_100_ONLY},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5752)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5752M)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5753)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5753M)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5753F),
.driver_data = TG3_DRV_DATA_FLAG_10_100_ONLY},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5754)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5754M)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5755)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5755M)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5756)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5786)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5787)},
{PCI_DEVICE_SUB(PCI_VENDOR_ID_BROADCOM, TG3PCI_DEVICE_TIGON3_5787M,
PCI_VENDOR_ID_LENOVO,
TG3PCI_SUBDEVICE_ID_LENOVO_5787M),
.driver_data = TG3_DRV_DATA_FLAG_10_100_ONLY},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5787M)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5787F),
.driver_data = TG3_DRV_DATA_FLAG_10_100_ONLY},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5714)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5714S)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5715)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5715S)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5780)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5780S)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5781)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5906)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5906M)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5784)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5764)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5723)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5761)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5761E)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, TG3PCI_DEVICE_TIGON3_5761S)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, TG3PCI_DEVICE_TIGON3_5761SE)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, TG3PCI_DEVICE_TIGON3_5785_G)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, TG3PCI_DEVICE_TIGON3_5785_F)},
{PCI_DEVICE_SUB(PCI_VENDOR_ID_BROADCOM, TG3PCI_DEVICE_TIGON3_57780,
PCI_VENDOR_ID_AI, TG3PCI_SUBDEVICE_ID_ACER_57780_A),
.driver_data = TG3_DRV_DATA_FLAG_10_100_ONLY},
{PCI_DEVICE_SUB(PCI_VENDOR_ID_BROADCOM, TG3PCI_DEVICE_TIGON3_57780,
PCI_VENDOR_ID_AI, TG3PCI_SUBDEVICE_ID_ACER_57780_B),
.driver_data = TG3_DRV_DATA_FLAG_10_100_ONLY},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, TG3PCI_DEVICE_TIGON3_57780)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, TG3PCI_DEVICE_TIGON3_57760)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, TG3PCI_DEVICE_TIGON3_57790),
.driver_data = TG3_DRV_DATA_FLAG_10_100_ONLY},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, TG3PCI_DEVICE_TIGON3_57788)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, TG3PCI_DEVICE_TIGON3_5717)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, TG3PCI_DEVICE_TIGON3_5717_C)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, TG3PCI_DEVICE_TIGON3_5718)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, TG3PCI_DEVICE_TIGON3_57781)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, TG3PCI_DEVICE_TIGON3_57785)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, TG3PCI_DEVICE_TIGON3_57761)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, TG3PCI_DEVICE_TIGON3_57765)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, TG3PCI_DEVICE_TIGON3_57791),
.driver_data = TG3_DRV_DATA_FLAG_10_100_ONLY},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, TG3PCI_DEVICE_TIGON3_57795),
.driver_data = TG3_DRV_DATA_FLAG_10_100_ONLY},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, TG3PCI_DEVICE_TIGON3_5719)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, TG3PCI_DEVICE_TIGON3_5720)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, TG3PCI_DEVICE_TIGON3_57762)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, TG3PCI_DEVICE_TIGON3_57766)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, TG3PCI_DEVICE_TIGON3_5762)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, TG3PCI_DEVICE_TIGON3_5725)},
{PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, TG3PCI_DEVICE_TIGON3_5727)},
{PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_9DXX)},
{PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_9MXX)},
{PCI_DEVICE(PCI_VENDOR_ID_ALTIMA, PCI_DEVICE_ID_ALTIMA_AC1000)},
{PCI_DEVICE(PCI_VENDOR_ID_ALTIMA, PCI_DEVICE_ID_ALTIMA_AC1001)},
{PCI_DEVICE(PCI_VENDOR_ID_ALTIMA, PCI_DEVICE_ID_ALTIMA_AC1003)},
{PCI_DEVICE(PCI_VENDOR_ID_ALTIMA, PCI_DEVICE_ID_ALTIMA_AC9100)},
{PCI_DEVICE(PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_TIGON3)},
{PCI_DEVICE(0x10cf, 0x11a2)}, /* Fujitsu 1000base-SX with BCM5703SKHB */
{}
};
MODULE_DEVICE_TABLE(pci, tg3_pci_tbl);
static const struct {
const char string[ETH_GSTRING_LEN];
} ethtool_stats_keys[] = {
{ "rx_octets" },
{ "rx_fragments" },
{ "rx_ucast_packets" },
{ "rx_mcast_packets" },
{ "rx_bcast_packets" },
{ "rx_fcs_errors" },
{ "rx_align_errors" },
{ "rx_xon_pause_rcvd" },
{ "rx_xoff_pause_rcvd" },
{ "rx_mac_ctrl_rcvd" },
{ "rx_xoff_entered" },
{ "rx_frame_too_long_errors" },
{ "rx_jabbers" },
{ "rx_undersize_packets" },
{ "rx_in_length_errors" },
{ "rx_out_length_errors" },
{ "rx_64_or_less_octet_packets" },
{ "rx_65_to_127_octet_packets" },
{ "rx_128_to_255_octet_packets" },
{ "rx_256_to_511_octet_packets" },
{ "rx_512_to_1023_octet_packets" },
{ "rx_1024_to_1522_octet_packets" },
{ "rx_1523_to_2047_octet_packets" },
{ "rx_2048_to_4095_octet_packets" },
{ "rx_4096_to_8191_octet_packets" },
{ "rx_8192_to_9022_octet_packets" },
{ "tx_octets" },
{ "tx_collisions" },
{ "tx_xon_sent" },
{ "tx_xoff_sent" },
{ "tx_flow_control" },
{ "tx_mac_errors" },
{ "tx_single_collisions" },
{ "tx_mult_collisions" },
{ "tx_deferred" },
{ "tx_excessive_collisions" },
{ "tx_late_collisions" },
{ "tx_collide_2times" },
{ "tx_collide_3times" },
{ "tx_collide_4times" },
{ "tx_collide_5times" },
{ "tx_collide_6times" },
{ "tx_collide_7times" },
{ "tx_collide_8times" },
{ "tx_collide_9times" },
{ "tx_collide_10times" },
{ "tx_collide_11times" },
{ "tx_collide_12times" },
{ "tx_collide_13times" },
{ "tx_collide_14times" },
{ "tx_collide_15times" },
{ "tx_ucast_packets" },
{ "tx_mcast_packets" },
{ "tx_bcast_packets" },
{ "tx_carrier_sense_errors" },
{ "tx_discards" },
{ "tx_errors" },
{ "dma_writeq_full" },
{ "dma_write_prioq_full" },
{ "rxbds_empty" },
{ "rx_discards" },
{ "rx_errors" },
{ "rx_threshold_hit" },
{ "dma_readq_full" },
{ "dma_read_prioq_full" },
{ "tx_comp_queue_full" },
{ "ring_set_send_prod_index" },
{ "ring_status_update" },
{ "nic_irqs" },
{ "nic_avoided_irqs" },
{ "nic_tx_threshold_hit" },
{ "mbuf_lwm_thresh_hit" },
};
#define TG3_NUM_STATS ARRAY_SIZE(ethtool_stats_keys)
#define TG3_NVRAM_TEST 0
#define TG3_LINK_TEST 1
#define TG3_REGISTER_TEST 2
#define TG3_MEMORY_TEST 3
#define TG3_MAC_LOOPB_TEST 4
#define TG3_PHY_LOOPB_TEST 5
#define TG3_EXT_LOOPB_TEST 6
#define TG3_INTERRUPT_TEST 7
static const struct {
const char string[ETH_GSTRING_LEN];
} ethtool_test_keys[] = {
[TG3_NVRAM_TEST] = { "nvram test (online) " },
[TG3_LINK_TEST] = { "link test (online) " },
[TG3_REGISTER_TEST] = { "register test (offline)" },
[TG3_MEMORY_TEST] = { "memory test (offline)" },
[TG3_MAC_LOOPB_TEST] = { "mac loopback test (offline)" },
[TG3_PHY_LOOPB_TEST] = { "phy loopback test (offline)" },
[TG3_EXT_LOOPB_TEST] = { "ext loopback test (offline)" },
[TG3_INTERRUPT_TEST] = { "interrupt test (offline)" },
};
#define TG3_NUM_TEST ARRAY_SIZE(ethtool_test_keys)
static void tg3_write32(struct tg3 *tp, u32 off, u32 val)
{
writel(val, tp->regs + off);
}
static u32 tg3_read32(struct tg3 *tp, u32 off)
{
return readl(tp->regs + off);
}
static void tg3_ape_write32(struct tg3 *tp, u32 off, u32 val)
{
writel(val, tp->aperegs + off);
}
static u32 tg3_ape_read32(struct tg3 *tp, u32 off)
{
return readl(tp->aperegs + off);
}
static void tg3_write_indirect_reg32(struct tg3 *tp, u32 off, u32 val)
{
unsigned long flags;
spin_lock_irqsave(&tp->indirect_lock, flags);
pci_write_config_dword(tp->pdev, TG3PCI_REG_BASE_ADDR, off);
pci_write_config_dword(tp->pdev, TG3PCI_REG_DATA, val);
spin_unlock_irqrestore(&tp->indirect_lock, flags);
}
static void tg3_write_flush_reg32(struct tg3 *tp, u32 off, u32 val)
{
writel(val, tp->regs + off);
readl(tp->regs + off);
}
static u32 tg3_read_indirect_reg32(struct tg3 *tp, u32 off)
{
unsigned long flags;
u32 val;
spin_lock_irqsave(&tp->indirect_lock, flags);
pci_write_config_dword(tp->pdev, TG3PCI_REG_BASE_ADDR, off);
pci_read_config_dword(tp->pdev, TG3PCI_REG_DATA, &val);
spin_unlock_irqrestore(&tp->indirect_lock, flags);
return val;
}
static void tg3_write_indirect_mbox(struct tg3 *tp, u32 off, u32 val)
{
unsigned long flags;
if (off == (MAILBOX_RCVRET_CON_IDX_0 + TG3_64BIT_REG_LOW)) {
pci_write_config_dword(tp->pdev, TG3PCI_RCV_RET_RING_CON_IDX +
TG3_64BIT_REG_LOW, val);
return;
}
if (off == TG3_RX_STD_PROD_IDX_REG) {
pci_write_config_dword(tp->pdev, TG3PCI_STD_RING_PROD_IDX +
TG3_64BIT_REG_LOW, val);
return;
}
spin_lock_irqsave(&tp->indirect_lock, flags);
pci_write_config_dword(tp->pdev, TG3PCI_REG_BASE_ADDR, off + 0x5600);
pci_write_config_dword(tp->pdev, TG3PCI_REG_DATA, val);
spin_unlock_irqrestore(&tp->indirect_lock, flags);
/* In indirect mode when disabling interrupts, we also need
* to clear the interrupt bit in the GRC local ctrl register.
*/
if ((off == (MAILBOX_INTERRUPT_0 + TG3_64BIT_REG_LOW)) &&
(val == 0x1)) {
pci_write_config_dword(tp->pdev, TG3PCI_MISC_LOCAL_CTRL,
tp->grc_local_ctrl|GRC_LCLCTRL_CLEARINT);
}
}
static u32 tg3_read_indirect_mbox(struct tg3 *tp, u32 off)
{
unsigned long flags;
u32 val;
spin_lock_irqsave(&tp->indirect_lock, flags);
pci_write_config_dword(tp->pdev, TG3PCI_REG_BASE_ADDR, off + 0x5600);
pci_read_config_dword(tp->pdev, TG3PCI_REG_DATA, &val);
spin_unlock_irqrestore(&tp->indirect_lock, flags);
return val;
}
/* usec_wait specifies the wait time in usec when writing to certain registers
* where it is unsafe to read back the register without some delay.
* GRC_LOCAL_CTRL is one example if the GPIOs are toggled to switch power.
* TG3PCI_CLOCK_CTRL is another example if the clock frequencies are changed.
*/
static void _tw32_flush(struct tg3 *tp, u32 off, u32 val, u32 usec_wait)
{
if (tg3_flag(tp, PCIX_TARGET_HWBUG) || tg3_flag(tp, ICH_WORKAROUND))
/* Non-posted methods */
tp->write32(tp, off, val);
else {
/* Posted method */
tg3_write32(tp, off, val);
if (usec_wait)
udelay(usec_wait);
tp->read32(tp, off);
}
/* Wait again after the read for the posted method to guarantee that
* the wait time is met.
*/
if (usec_wait)
udelay(usec_wait);
}
static inline void tw32_mailbox_flush(struct tg3 *tp, u32 off, u32 val)
{
tp->write32_mbox(tp, off, val);
if (tg3_flag(tp, FLUSH_POSTED_WRITES) ||
(!tg3_flag(tp, MBOX_WRITE_REORDER) &&
!tg3_flag(tp, ICH_WORKAROUND)))
tp->read32_mbox(tp, off);
}
static void tg3_write32_tx_mbox(struct tg3 *tp, u32 off, u32 val)
{
void __iomem *mbox = tp->regs + off;
writel(val, mbox);
if (tg3_flag(tp, TXD_MBOX_HWBUG))
writel(val, mbox);
if (tg3_flag(tp, MBOX_WRITE_REORDER) ||
tg3_flag(tp, FLUSH_POSTED_WRITES))
readl(mbox);
}
static u32 tg3_read32_mbox_5906(struct tg3 *tp, u32 off)
{
return readl(tp->regs + off + GRCMBOX_BASE);
}
static void tg3_write32_mbox_5906(struct tg3 *tp, u32 off, u32 val)
{
writel(val, tp->regs + off + GRCMBOX_BASE);
}
#define tw32_mailbox(reg, val) tp->write32_mbox(tp, reg, val)
#define tw32_mailbox_f(reg, val) tw32_mailbox_flush(tp, (reg), (val))
#define tw32_rx_mbox(reg, val) tp->write32_rx_mbox(tp, reg, val)
#define tw32_tx_mbox(reg, val) tp->write32_tx_mbox(tp, reg, val)
#define tr32_mailbox(reg) tp->read32_mbox(tp, reg)
#define tw32(reg, val) tp->write32(tp, reg, val)
#define tw32_f(reg, val) _tw32_flush(tp, (reg), (val), 0)
#define tw32_wait_f(reg, val, us) _tw32_flush(tp, (reg), (val), (us))
#define tr32(reg) tp->read32(tp, reg)
static void tg3_write_mem(struct tg3 *tp, u32 off, u32 val)
{
unsigned long flags;
if (tg3_asic_rev(tp) == ASIC_REV_5906 &&
(off >= NIC_SRAM_STATS_BLK) && (off < NIC_SRAM_TX_BUFFER_DESC))
return;
spin_lock_irqsave(&tp->indirect_lock, flags);
if (tg3_flag(tp, SRAM_USE_CONFIG)) {
pci_write_config_dword(tp->pdev, TG3PCI_MEM_WIN_BASE_ADDR, off);
pci_write_config_dword(tp->pdev, TG3PCI_MEM_WIN_DATA, val);
/* Always leave this as zero. */
pci_write_config_dword(tp->pdev, TG3PCI_MEM_WIN_BASE_ADDR, 0);
} else {
tw32_f(TG3PCI_MEM_WIN_BASE_ADDR, off);
tw32_f(TG3PCI_MEM_WIN_DATA, val);
/* Always leave this as zero. */
tw32_f(TG3PCI_MEM_WIN_BASE_ADDR, 0);
}
spin_unlock_irqrestore(&tp->indirect_lock, flags);
}
static void tg3_read_mem(struct tg3 *tp, u32 off, u32 *val)
{
unsigned long flags;
if (tg3_asic_rev(tp) == ASIC_REV_5906 &&
(off >= NIC_SRAM_STATS_BLK) && (off < NIC_SRAM_TX_BUFFER_DESC)) {
*val = 0;
return;
}
spin_lock_irqsave(&tp->indirect_lock, flags);
if (tg3_flag(tp, SRAM_USE_CONFIG)) {
pci_write_config_dword(tp->pdev, TG3PCI_MEM_WIN_BASE_ADDR, off);
pci_read_config_dword(tp->pdev, TG3PCI_MEM_WIN_DATA, val);
/* Always leave this as zero. */
pci_write_config_dword(tp->pdev, TG3PCI_MEM_WIN_BASE_ADDR, 0);
} else {
tw32_f(TG3PCI_MEM_WIN_BASE_ADDR, off);
*val = tr32(TG3PCI_MEM_WIN_DATA);
/* Always leave this as zero. */
tw32_f(TG3PCI_MEM_WIN_BASE_ADDR, 0);
}
spin_unlock_irqrestore(&tp->indirect_lock, flags);
}
static void tg3_ape_lock_init(struct tg3 *tp)
{
int i;
u32 regbase, bit;
if (tg3_asic_rev(tp) == ASIC_REV_5761)
regbase = TG3_APE_LOCK_GRANT;
else
regbase = TG3_APE_PER_LOCK_GRANT;
/* Make sure the driver hasn't any stale locks. */
for (i = TG3_APE_LOCK_PHY0; i <= TG3_APE_LOCK_GPIO; i++) {
switch (i) {
case TG3_APE_LOCK_PHY0:
case TG3_APE_LOCK_PHY1:
case TG3_APE_LOCK_PHY2:
case TG3_APE_LOCK_PHY3:
bit = APE_LOCK_GRANT_DRIVER;
break;
default:
if (!tp->pci_fn)
bit = APE_LOCK_GRANT_DRIVER;
else
bit = 1 << tp->pci_fn;
}
tg3_ape_write32(tp, regbase + 4 * i, bit);
}
}
static int tg3_ape_lock(struct tg3 *tp, int locknum)
{
int i, off;
int ret = 0;
u32 status, req, gnt, bit;
if (!tg3_flag(tp, ENABLE_APE))
return 0;
switch (locknum) {
case TG3_APE_LOCK_GPIO:
if (tg3_asic_rev(tp) == ASIC_REV_5761)
return 0;
case TG3_APE_LOCK_GRC:
case TG3_APE_LOCK_MEM:
if (!tp->pci_fn)
bit = APE_LOCK_REQ_DRIVER;
else
bit = 1 << tp->pci_fn;
break;
case TG3_APE_LOCK_PHY0:
case TG3_APE_LOCK_PHY1:
case TG3_APE_LOCK_PHY2:
case TG3_APE_LOCK_PHY3:
bit = APE_LOCK_REQ_DRIVER;
break;
default:
return -EINVAL;
}
if (tg3_asic_rev(tp) == ASIC_REV_5761) {
req = TG3_APE_LOCK_REQ;
gnt = TG3_APE_LOCK_GRANT;
} else {
req = TG3_APE_PER_LOCK_REQ;
gnt = TG3_APE_PER_LOCK_GRANT;
}
off = 4 * locknum;
tg3_ape_write32(tp, req + off, bit);
/* Wait for up to 1 millisecond to acquire lock. */
for (i = 0; i < 100; i++) {
status = tg3_ape_read32(tp, gnt + off);
if (status == bit)
break;
udelay(10);
}
if (status != bit) {
/* Revoke the lock request. */
tg3_ape_write32(tp, gnt + off, bit);
ret = -EBUSY;
}
return ret;
}
static void tg3_ape_unlock(struct tg3 *tp, int locknum)
{
u32 gnt, bit;
if (!tg3_flag(tp, ENABLE_APE))
return;
switch (locknum) {
case TG3_APE_LOCK_GPIO:
if (tg3_asic_rev(tp) == ASIC_REV_5761)
return;
case TG3_APE_LOCK_GRC:
case TG3_APE_LOCK_MEM:
if (!tp->pci_fn)
bit = APE_LOCK_GRANT_DRIVER;
else
bit = 1 << tp->pci_fn;
break;
case TG3_APE_LOCK_PHY0:
case TG3_APE_LOCK_PHY1:
case TG3_APE_LOCK_PHY2:
case TG3_APE_LOCK_PHY3:
bit = APE_LOCK_GRANT_DRIVER;
break;
default:
return;
}
if (tg3_asic_rev(tp) == ASIC_REV_5761)
gnt = TG3_APE_LOCK_GRANT;
else
gnt = TG3_APE_PER_LOCK_GRANT;
tg3_ape_write32(tp, gnt + 4 * locknum, bit);
}
static int tg3_ape_event_lock(struct tg3 *tp, u32 timeout_us)
{
u32 apedata;
while (timeout_us) {
if (tg3_ape_lock(tp, TG3_APE_LOCK_MEM))
return -EBUSY;
apedata = tg3_ape_read32(tp, TG3_APE_EVENT_STATUS);
if (!(apedata & APE_EVENT_STATUS_EVENT_PENDING))
break;
tg3_ape_unlock(tp, TG3_APE_LOCK_MEM);
udelay(10);
timeout_us -= (timeout_us > 10) ? 10 : timeout_us;
}
return timeout_us ? 0 : -EBUSY;
}
static int tg3_ape_wait_for_event(struct tg3 *tp, u32 timeout_us)
{
u32 i, apedata;
for (i = 0; i < timeout_us / 10; i++) {
apedata = tg3_ape_read32(tp, TG3_APE_EVENT_STATUS);
if (!(apedata & APE_EVENT_STATUS_EVENT_PENDING))
break;
udelay(10);
}
return i == timeout_us / 10;
}
static int tg3_ape_scratchpad_read(struct tg3 *tp, u32 *data, u32 base_off,
u32 len)
{
int err;
u32 i, bufoff, msgoff, maxlen, apedata;
if (!tg3_flag(tp, APE_HAS_NCSI))
return 0;
apedata = tg3_ape_read32(tp, TG3_APE_SEG_SIG);
if (apedata != APE_SEG_SIG_MAGIC)
return -ENODEV;
apedata = tg3_ape_read32(tp, TG3_APE_FW_STATUS);
if (!(apedata & APE_FW_STATUS_READY))
return -EAGAIN;
bufoff = tg3_ape_read32(tp, TG3_APE_SEG_MSG_BUF_OFF) +
TG3_APE_SHMEM_BASE;
msgoff = bufoff + 2 * sizeof(u32);
maxlen = tg3_ape_read32(tp, TG3_APE_SEG_MSG_BUF_LEN);
while (len) {
u32 length;
/* Cap xfer sizes to scratchpad limits. */
length = (len > maxlen) ? maxlen : len;
len -= length;
apedata = tg3_ape_read32(tp, TG3_APE_FW_STATUS);
if (!(apedata & APE_FW_STATUS_READY))
return -EAGAIN;
/* Wait for up to 1 msec for APE to service previous event. */
err = tg3_ape_event_lock(tp, 1000);
if (err)
return err;
apedata = APE_EVENT_STATUS_DRIVER_EVNT |
APE_EVENT_STATUS_SCRTCHPD_READ |
APE_EVENT_STATUS_EVENT_PENDING;
tg3_ape_write32(tp, TG3_APE_EVENT_STATUS, apedata);
tg3_ape_write32(tp, bufoff, base_off);
tg3_ape_write32(tp, bufoff + sizeof(u32), length);
tg3_ape_unlock(tp, TG3_APE_LOCK_MEM);
tg3_ape_write32(tp, TG3_APE_EVENT, APE_EVENT_1);
base_off += length;
if (tg3_ape_wait_for_event(tp, 30000))
return -EAGAIN;
for (i = 0; length; i += 4, length -= 4) {
u32 val = tg3_ape_read32(tp, msgoff + i);
memcpy(data, &val, sizeof(u32));
data++;
}
}
return 0;
}
static int tg3_ape_send_event(struct tg3 *tp, u32 event)
{
int err;
u32 apedata;
apedata = tg3_ape_read32(tp, TG3_APE_SEG_SIG);
if (apedata != APE_SEG_SIG_MAGIC)
return -EAGAIN;
apedata = tg3_ape_read32(tp, TG3_APE_FW_STATUS);
if (!(apedata & APE_FW_STATUS_READY))
return -EAGAIN;
/* Wait for up to 1 millisecond for APE to service previous event. */
err = tg3_ape_event_lock(tp, 1000);
if (err)
return err;
tg3_ape_write32(tp, TG3_APE_EVENT_STATUS,
event | APE_EVENT_STATUS_EVENT_PENDING);
tg3_ape_unlock(tp, TG3_APE_LOCK_MEM);
tg3_ape_write32(tp, TG3_APE_EVENT, APE_EVENT_1);
return 0;
}
static void tg3_ape_driver_state_change(struct tg3 *tp, int kind)
{
u32 event;
u32 apedata;
if (!tg3_flag(tp, ENABLE_APE))
return;
switch (kind) {
case RESET_KIND_INIT:
tg3_ape_write32(tp, TG3_APE_HOST_SEG_SIG,
APE_HOST_SEG_SIG_MAGIC);
tg3_ape_write32(tp, TG3_APE_HOST_SEG_LEN,
APE_HOST_SEG_LEN_MAGIC);
apedata = tg3_ape_read32(tp, TG3_APE_HOST_INIT_COUNT);
tg3_ape_write32(tp, TG3_APE_HOST_INIT_COUNT, ++apedata);
tg3_ape_write32(tp, TG3_APE_HOST_DRIVER_ID,
APE_HOST_DRIVER_ID_MAGIC(TG3_MAJ_NUM, TG3_MIN_NUM));
tg3_ape_write32(tp, TG3_APE_HOST_BEHAVIOR,
APE_HOST_BEHAV_NO_PHYLOCK);
tg3_ape_write32(tp, TG3_APE_HOST_DRVR_STATE,
TG3_APE_HOST_DRVR_STATE_START);
event = APE_EVENT_STATUS_STATE_START;
break;
case RESET_KIND_SHUTDOWN:
/* With the interface we are currently using,
* APE does not track driver state. Wiping
* out the HOST SEGMENT SIGNATURE forces
* the APE to assume OS absent status.
*/
tg3_ape_write32(tp, TG3_APE_HOST_SEG_SIG, 0x0);
if (device_may_wakeup(&tp->pdev->dev) &&
tg3_flag(tp, WOL_ENABLE)) {
tg3_ape_write32(tp, TG3_APE_HOST_WOL_SPEED,
TG3_APE_HOST_WOL_SPEED_AUTO);
apedata = TG3_APE_HOST_DRVR_STATE_WOL;
} else
apedata = TG3_APE_HOST_DRVR_STATE_UNLOAD;
tg3_ape_write32(tp, TG3_APE_HOST_DRVR_STATE, apedata);
event = APE_EVENT_STATUS_STATE_UNLOAD;
break;
case RESET_KIND_SUSPEND:
event = APE_EVENT_STATUS_STATE_SUSPEND;
break;
default:
return;
}
event |= APE_EVENT_STATUS_DRIVER_EVNT | APE_EVENT_STATUS_STATE_CHNGE;
tg3_ape_send_event(tp, event);
}
static void tg3_disable_ints(struct tg3 *tp)
{
int i;
tw32(TG3PCI_MISC_HOST_CTRL,
(tp->misc_host_ctrl | MISC_HOST_CTRL_MASK_PCI_INT));
for (i = 0; i < tp->irq_max; i++)
tw32_mailbox_f(tp->napi[i].int_mbox, 0x00000001);
}
static void tg3_enable_ints(struct tg3 *tp)
{
int i;
tp->irq_sync = 0;
wmb();
tw32(TG3PCI_MISC_HOST_CTRL,
(tp->misc_host_ctrl & ~MISC_HOST_CTRL_MASK_PCI_INT));
tp->coal_now = tp->coalesce_mode | HOSTCC_MODE_ENABLE;
for (i = 0; i < tp->irq_cnt; i++) {
struct tg3_napi *tnapi = &tp->napi[i];
tw32_mailbox_f(tnapi->int_mbox, tnapi->last_tag << 24);
if (tg3_flag(tp, 1SHOT_MSI))
tw32_mailbox_f(tnapi->int_mbox, tnapi->last_tag << 24);
tp->coal_now |= tnapi->coal_now;
}
/* Force an initial interrupt */
if (!tg3_flag(tp, TAGGED_STATUS) &&
(tp->napi[0].hw_status->status & SD_STATUS_UPDATED))
tw32(GRC_LOCAL_CTRL, tp->grc_local_ctrl | GRC_LCLCTRL_SETINT);
else
tw32(HOSTCC_MODE, tp->coal_now);
tp->coal_now &= ~(tp->napi[0].coal_now | tp->napi[1].coal_now);
}
static inline unsigned int tg3_has_work(struct tg3_napi *tnapi)
{
struct tg3 *tp = tnapi->tp;
struct tg3_hw_status *sblk = tnapi->hw_status;
unsigned int work_exists = 0;
/* check for phy events */
if (!(tg3_flag(tp, USE_LINKCHG_REG) || tg3_flag(tp, POLL_SERDES))) {
if (sblk->status & SD_STATUS_LINK_CHG)
work_exists = 1;
}
/* check for TX work to do */
if (sblk->idx[0].tx_consumer != tnapi->tx_cons)
work_exists = 1;
/* check for RX work to do */
if (tnapi->rx_rcb_prod_idx &&
*(tnapi->rx_rcb_prod_idx) != tnapi->rx_rcb_ptr)
work_exists = 1;
return work_exists;
}
/* tg3_int_reenable
* similar to tg3_enable_ints, but it accurately determines whether there
* is new work pending and can return without flushing the PIO write
* which reenables interrupts
*/
static void tg3_int_reenable(struct tg3_napi *tnapi)
{
struct tg3 *tp = tnapi->tp;
tw32_mailbox(tnapi->int_mbox, tnapi->last_tag << 24);
mmiowb();
/* When doing tagged status, this work check is unnecessary.
* The last_tag we write above tells the chip which piece of
* work we've completed.
*/
if (!tg3_flag(tp, TAGGED_STATUS) && tg3_has_work(tnapi))
tw32(HOSTCC_MODE, tp->coalesce_mode |
HOSTCC_MODE_ENABLE | tnapi->coal_now);
}
static void tg3_switch_clocks(struct tg3 *tp)
{
u32 clock_ctrl;
u32 orig_clock_ctrl;
if (tg3_flag(tp, CPMU_PRESENT) || tg3_flag(tp, 5780_CLASS))
return;
clock_ctrl = tr32(TG3PCI_CLOCK_CTRL);
orig_clock_ctrl = clock_ctrl;
clock_ctrl &= (CLOCK_CTRL_FORCE_CLKRUN |
CLOCK_CTRL_CLKRUN_OENABLE |
0x1f);
tp->pci_clock_ctrl = clock_ctrl;
if (tg3_flag(tp, 5705_PLUS)) {
if (orig_clock_ctrl & CLOCK_CTRL_625_CORE) {
tw32_wait_f(TG3PCI_CLOCK_CTRL,
clock_ctrl | CLOCK_CTRL_625_CORE, 40);
}
} else if ((orig_clock_ctrl & CLOCK_CTRL_44MHZ_CORE) != 0) {
tw32_wait_f(TG3PCI_CLOCK_CTRL,
clock_ctrl |
(CLOCK_CTRL_44MHZ_CORE | CLOCK_CTRL_ALTCLK),
40);
tw32_wait_f(TG3PCI_CLOCK_CTRL,
clock_ctrl | (CLOCK_CTRL_ALTCLK),
40);
}
tw32_wait_f(TG3PCI_CLOCK_CTRL, clock_ctrl, 40);
}
#define PHY_BUSY_LOOPS 5000
static int __tg3_readphy(struct tg3 *tp, unsigned int phy_addr, int reg,
u32 *val)
{
u32 frame_val;
unsigned int loops;
int ret;
if ((tp->mi_mode & MAC_MI_MODE_AUTO_POLL) != 0) {
tw32_f(MAC_MI_MODE,
(tp->mi_mode & ~MAC_MI_MODE_AUTO_POLL));
udelay(80);
}
tg3_ape_lock(tp, tp->phy_ape_lock);
*val = 0x0;
frame_val = ((phy_addr << MI_COM_PHY_ADDR_SHIFT) &
MI_COM_PHY_ADDR_MASK);
frame_val |= ((reg << MI_COM_REG_ADDR_SHIFT) &
MI_COM_REG_ADDR_MASK);
frame_val |= (MI_COM_CMD_READ | MI_COM_START);
tw32_f(MAC_MI_COM, frame_val);
loops = PHY_BUSY_LOOPS;
while (loops != 0) {
udelay(10);
frame_val = tr32(MAC_MI_COM);
if ((frame_val & MI_COM_BUSY) == 0) {
udelay(5);
frame_val = tr32(MAC_MI_COM);
break;
}
loops -= 1;
}
ret = -EBUSY;
if (loops != 0) {
*val = frame_val & MI_COM_DATA_MASK;
ret = 0;
}
if ((tp->mi_mode & MAC_MI_MODE_AUTO_POLL) != 0) {
tw32_f(MAC_MI_MODE, tp->mi_mode);
udelay(80);
}
tg3_ape_unlock(tp, tp->phy_ape_lock);
return ret;
}
static int tg3_readphy(struct tg3 *tp, int reg, u32 *val)
{
return __tg3_readphy(tp, tp->phy_addr, reg, val);
}
static int __tg3_writephy(struct tg3 *tp, unsigned int phy_addr, int reg,
u32 val)
{
u32 frame_val;
unsigned int loops;
int ret;
if ((tp->phy_flags & TG3_PHYFLG_IS_FET) &&
(reg == MII_CTRL1000 || reg == MII_TG3_AUX_CTRL))
return 0;
if ((tp->mi_mode & MAC_MI_MODE_AUTO_POLL) != 0) {
tw32_f(MAC_MI_MODE,
(tp->mi_mode & ~MAC_MI_MODE_AUTO_POLL));
udelay(80);
}
tg3_ape_lock(tp, tp->phy_ape_lock);
frame_val = ((phy_addr << MI_COM_PHY_ADDR_SHIFT) &
MI_COM_PHY_ADDR_MASK);
frame_val |= ((reg << MI_COM_REG_ADDR_SHIFT) &
MI_COM_REG_ADDR_MASK);
frame_val |= (val & MI_COM_DATA_MASK);
frame_val |= (MI_COM_CMD_WRITE | MI_COM_START);
tw32_f(MAC_MI_COM, frame_val);
loops = PHY_BUSY_LOOPS;
while (loops != 0) {
udelay(10);
frame_val = tr32(MAC_MI_COM);
if ((frame_val & MI_COM_BUSY) == 0) {
udelay(5);
frame_val = tr32(MAC_MI_COM);
break;
}
loops -= 1;
}
ret = -EBUSY;
if (loops != 0)
ret = 0;
if ((tp->mi_mode & MAC_MI_MODE_AUTO_POLL) != 0) {
tw32_f(MAC_MI_MODE, tp->mi_mode);
udelay(80);
}
tg3_ape_unlock(tp, tp->phy_ape_lock);
return ret;
}
static int tg3_writephy(struct tg3 *tp, int reg, u32 val)
{
return __tg3_writephy(tp, tp->phy_addr, reg, val);
}
static int tg3_phy_cl45_write(struct tg3 *tp, u32 devad, u32 addr, u32 val)
{
int err;
err = tg3_writephy(tp, MII_TG3_MMD_CTRL, devad);
if (err)
goto done;
err = tg3_writephy(tp, MII_TG3_MMD_ADDRESS, addr);
if (err)
goto done;
err = tg3_writephy(tp, MII_TG3_MMD_CTRL,
MII_TG3_MMD_CTRL_DATA_NOINC | devad);
if (err)
goto done;
err = tg3_writephy(tp, MII_TG3_MMD_ADDRESS, val);
done:
return err;
}
static int tg3_phy_cl45_read(struct tg3 *tp, u32 devad, u32 addr, u32 *val)
{
int err;
err = tg3_writephy(tp, MII_TG3_MMD_CTRL, devad);
if (err)
goto done;
err = tg3_writephy(tp, MII_TG3_MMD_ADDRESS, addr);
if (err)
goto done;
err = tg3_writephy(tp, MII_TG3_MMD_CTRL,
MII_TG3_MMD_CTRL_DATA_NOINC | devad);
if (err)
goto done;
err = tg3_readphy(tp, MII_TG3_MMD_ADDRESS, val);
done:
return err;
}
static int tg3_phydsp_read(struct tg3 *tp, u32 reg, u32 *val)
{
int err;
err = tg3_writephy(tp, MII_TG3_DSP_ADDRESS, reg);
if (!err)
err = tg3_readphy(tp, MII_TG3_DSP_RW_PORT, val);
return err;
}
static int tg3_phydsp_write(struct tg3 *tp, u32 reg, u32 val)
{
int err;
err = tg3_writephy(tp, MII_TG3_DSP_ADDRESS, reg);
if (!err)
err = tg3_writephy(tp, MII_TG3_DSP_RW_PORT, val);
return err;
}
static int tg3_phy_auxctl_read(struct tg3 *tp, int reg, u32 *val)
{
int err;
err = tg3_writephy(tp, MII_TG3_AUX_CTRL,
(reg << MII_TG3_AUXCTL_MISC_RDSEL_SHIFT) |
MII_TG3_AUXCTL_SHDWSEL_MISC);
if (!err)
err = tg3_readphy(tp, MII_TG3_AUX_CTRL, val);
return err;
}
static int tg3_phy_auxctl_write(struct tg3 *tp, int reg, u32 set)
{
if (reg == MII_TG3_AUXCTL_SHDWSEL_MISC)
set |= MII_TG3_AUXCTL_MISC_WREN;
return tg3_writephy(tp, MII_TG3_AUX_CTRL, set | reg);
}
static int tg3_phy_toggle_auxctl_smdsp(struct tg3 *tp, bool enable)
{
u32 val;
int err;
err = tg3_phy_auxctl_read(tp, MII_TG3_AUXCTL_SHDWSEL_AUXCTL, &val);
if (err)
return err;
if (enable)
val |= MII_TG3_AUXCTL_ACTL_SMDSP_ENA;
else
val &= ~MII_TG3_AUXCTL_ACTL_SMDSP_ENA;
err = tg3_phy_auxctl_write((tp), MII_TG3_AUXCTL_SHDWSEL_AUXCTL,
val | MII_TG3_AUXCTL_ACTL_TX_6DB);
return err;
}
static int tg3_bmcr_reset(struct tg3 *tp)
{
u32 phy_control;
int limit, err;
/* OK, reset it, and poll the BMCR_RESET bit until it
* clears or we time out.
*/
phy_control = BMCR_RESET;
err = tg3_writephy(tp, MII_BMCR, phy_control);
if (err != 0)
return -EBUSY;
limit = 5000;
while (limit--) {
err = tg3_readphy(tp, MII_BMCR, &phy_control);
if (err != 0)
return -EBUSY;
if ((phy_control & BMCR_RESET) == 0) {
udelay(40);
break;
}
udelay(10);
}
if (limit < 0)
return -EBUSY;
return 0;
}
static int tg3_mdio_read(struct mii_bus *bp, int mii_id, int reg)
{
struct tg3 *tp = bp->priv;
u32 val;
spin_lock_bh(&tp->lock);
if (tg3_readphy(tp, reg, &val))
val = -EIO;
spin_unlock_bh(&tp->lock);
return val;
}
static int tg3_mdio_write(struct mii_bus *bp, int mii_id, int reg, u16 val)
{
struct tg3 *tp = bp->priv;
u32 ret = 0;
spin_lock_bh(&tp->lock);
if (tg3_writephy(tp, reg, val))
ret = -EIO;
spin_unlock_bh(&tp->lock);
return ret;
}
static int tg3_mdio_reset(struct mii_bus *bp)
{
return 0;
}
static void tg3_mdio_config_5785(struct tg3 *tp)
{
u32 val;
struct phy_device *phydev;
phydev = tp->mdio_bus->phy_map[TG3_PHY_MII_ADDR];
switch (phydev->drv->phy_id & phydev->drv->phy_id_mask) {
case PHY_ID_BCM50610:
case PHY_ID_BCM50610M:
val = MAC_PHYCFG2_50610_LED_MODES;
break;
case PHY_ID_BCMAC131:
val = MAC_PHYCFG2_AC131_LED_MODES;
break;
case PHY_ID_RTL8211C:
val = MAC_PHYCFG2_RTL8211C_LED_MODES;
break;
case PHY_ID_RTL8201E:
val = MAC_PHYCFG2_RTL8201E_LED_MODES;
break;
default:
return;
}
if (phydev->interface != PHY_INTERFACE_MODE_RGMII) {
tw32(MAC_PHYCFG2, val);
val = tr32(MAC_PHYCFG1);
val &= ~(MAC_PHYCFG1_RGMII_INT |
MAC_PHYCFG1_RXCLK_TO_MASK | MAC_PHYCFG1_TXCLK_TO_MASK);
val |= MAC_PHYCFG1_RXCLK_TIMEOUT | MAC_PHYCFG1_TXCLK_TIMEOUT;
tw32(MAC_PHYCFG1, val);
return;
}
if (!tg3_flag(tp, RGMII_INBAND_DISABLE))
val |= MAC_PHYCFG2_EMODE_MASK_MASK |
MAC_PHYCFG2_FMODE_MASK_MASK |
MAC_PHYCFG2_GMODE_MASK_MASK |
MAC_PHYCFG2_ACT_MASK_MASK |
MAC_PHYCFG2_QUAL_MASK_MASK |
MAC_PHYCFG2_INBAND_ENABLE;
tw32(MAC_PHYCFG2, val);
val = tr32(MAC_PHYCFG1);
val &= ~(MAC_PHYCFG1_RXCLK_TO_MASK | MAC_PHYCFG1_TXCLK_TO_MASK |
MAC_PHYCFG1_RGMII_EXT_RX_DEC | MAC_PHYCFG1_RGMII_SND_STAT_EN);
if (!tg3_flag(tp, RGMII_INBAND_DISABLE)) {
if (tg3_flag(tp, RGMII_EXT_IBND_RX_EN))
val |= MAC_PHYCFG1_RGMII_EXT_RX_DEC;
if (tg3_flag(tp, RGMII_EXT_IBND_TX_EN))
val |= MAC_PHYCFG1_RGMII_SND_STAT_EN;
}
val |= MAC_PHYCFG1_RXCLK_TIMEOUT | MAC_PHYCFG1_TXCLK_TIMEOUT |
MAC_PHYCFG1_RGMII_INT | MAC_PHYCFG1_TXC_DRV;
tw32(MAC_PHYCFG1, val);
val = tr32(MAC_EXT_RGMII_MODE);
val &= ~(MAC_RGMII_MODE_RX_INT_B |
MAC_RGMII_MODE_RX_QUALITY |
MAC_RGMII_MODE_RX_ACTIVITY |
MAC_RGMII_MODE_RX_ENG_DET |
MAC_RGMII_MODE_TX_ENABLE |
MAC_RGMII_MODE_TX_LOWPWR |
MAC_RGMII_MODE_TX_RESET);
if (!tg3_flag(tp, RGMII_INBAND_DISABLE)) {
if (tg3_flag(tp, RGMII_EXT_IBND_RX_EN))
val |= MAC_RGMII_MODE_RX_INT_B |
MAC_RGMII_MODE_RX_QUALITY |
MAC_RGMII_MODE_RX_ACTIVITY |
MAC_RGMII_MODE_RX_ENG_DET;
if (tg3_flag(tp, RGMII_EXT_IBND_TX_EN))
val |= MAC_RGMII_MODE_TX_ENABLE |
MAC_RGMII_MODE_TX_LOWPWR |
MAC_RGMII_MODE_TX_RESET;
}
tw32(MAC_EXT_RGMII_MODE, val);
}
static void tg3_mdio_start(struct tg3 *tp)
{
tp->mi_mode &= ~MAC_MI_MODE_AUTO_POLL;
tw32_f(MAC_MI_MODE, tp->mi_mode);
udelay(80);
if (tg3_flag(tp, MDIOBUS_INITED) &&
tg3_asic_rev(tp) == ASIC_REV_5785)
tg3_mdio_config_5785(tp);
}
static int tg3_mdio_init(struct tg3 *tp)
{
int i;
u32 reg;
struct phy_device *phydev;
if (tg3_flag(tp, 5717_PLUS)) {
u32 is_serdes;
tp->phy_addr = tp->pci_fn + 1;
if (tg3_chip_rev_id(tp) != CHIPREV_ID_5717_A0)
is_serdes = tr32(SG_DIG_STATUS) & SG_DIG_IS_SERDES;
else
is_serdes = tr32(TG3_CPMU_PHY_STRAP) &
TG3_CPMU_PHY_STRAP_IS_SERDES;
if (is_serdes)
tp->phy_addr += 7;
} else
tp->phy_addr = TG3_PHY_MII_ADDR;
tg3_mdio_start(tp);
if (!tg3_flag(tp, USE_PHYLIB) || tg3_flag(tp, MDIOBUS_INITED))
return 0;
tp->mdio_bus = mdiobus_alloc();
if (tp->mdio_bus == NULL)
return -ENOMEM;
tp->mdio_bus->name = "tg3 mdio bus";
snprintf(tp->mdio_bus->id, MII_BUS_ID_SIZE, "%x",
(tp->pdev->bus->number << 8) | tp->pdev->devfn);
tp->mdio_bus->priv = tp;
tp->mdio_bus->parent = &tp->pdev->dev;
tp->mdio_bus->read = &tg3_mdio_read;
tp->mdio_bus->write = &tg3_mdio_write;
tp->mdio_bus->reset = &tg3_mdio_reset;
tp->mdio_bus->phy_mask = ~(1 << TG3_PHY_MII_ADDR);
tp->mdio_bus->irq = &tp->mdio_irq[0];
for (i = 0; i < PHY_MAX_ADDR; i++)
tp->mdio_bus->irq[i] = PHY_POLL;
/* The bus registration will look for all the PHYs on the mdio bus.
* Unfortunately, it does not ensure the PHY is powered up before
* accessing the PHY ID registers. A chip reset is the
* quickest way to bring the device back to an operational state..
*/
if (tg3_readphy(tp, MII_BMCR, &reg) || (reg & BMCR_PDOWN))
tg3_bmcr_reset(tp);
i = mdiobus_register(tp->mdio_bus);
if (i) {
dev_warn(&tp->pdev->dev, "mdiobus_reg failed (0x%x)\n", i);
mdiobus_free(tp->mdio_bus);
return i;
}
phydev = tp->mdio_bus->phy_map[TG3_PHY_MII_ADDR];
if (!phydev || !phydev->drv) {
dev_warn(&tp->pdev->dev, "No PHY devices\n");
mdiobus_unregister(tp->mdio_bus);
mdiobus_free(tp->mdio_bus);
return -ENODEV;
}
switch (phydev->drv->phy_id & phydev->drv->phy_id_mask) {
case PHY_ID_BCM57780:
phydev->interface = PHY_INTERFACE_MODE_GMII;
phydev->dev_flags |= PHY_BRCM_AUTO_PWRDWN_ENABLE;
break;
case PHY_ID_BCM50610:
case PHY_ID_BCM50610M:
phydev->dev_flags |= PHY_BRCM_CLEAR_RGMII_MODE |
PHY_BRCM_RX_REFCLK_UNUSED |
PHY_BRCM_DIS_TXCRXC_NOENRGY |
PHY_BRCM_AUTO_PWRDWN_ENABLE;
if (tg3_flag(tp, RGMII_INBAND_DISABLE))
phydev->dev_flags |= PHY_BRCM_STD_IBND_DISABLE;
if (tg3_flag(tp, RGMII_EXT_IBND_RX_EN))
phydev->dev_flags |= PHY_BRCM_EXT_IBND_RX_ENABLE;
if (tg3_flag(tp, RGMII_EXT_IBND_TX_EN))
phydev->dev_flags |= PHY_BRCM_EXT_IBND_TX_ENABLE;
/* fallthru */
case PHY_ID_RTL8211C:
phydev->interface = PHY_INTERFACE_MODE_RGMII;
break;
case PHY_ID_RTL8201E:
case PHY_ID_BCMAC131:
phydev->interface = PHY_INTERFACE_MODE_MII;
phydev->dev_flags |= PHY_BRCM_AUTO_PWRDWN_ENABLE;
tp->phy_flags |= TG3_PHYFLG_IS_FET;
break;
}
tg3_flag_set(tp, MDIOBUS_INITED);
if (tg3_asic_rev(tp) == ASIC_REV_5785)
tg3_mdio_config_5785(tp);
return 0;
}
static void tg3_mdio_fini(struct tg3 *tp)
{
if (tg3_flag(tp, MDIOBUS_INITED)) {
tg3_flag_clear(tp, MDIOBUS_INITED);
mdiobus_unregister(tp->mdio_bus);
mdiobus_free(tp->mdio_bus);
}
}
/* tp->lock is held. */
static inline void tg3_generate_fw_event(struct tg3 *tp)
{
u32 val;
val = tr32(GRC_RX_CPU_EVENT);
val |= GRC_RX_CPU_DRIVER_EVENT;
tw32_f(GRC_RX_CPU_EVENT, val);
tp->last_event_jiffies = jiffies;
}
#define TG3_FW_EVENT_TIMEOUT_USEC 2500
/* tp->lock is held. */
static void tg3_wait_for_event_ack(struct tg3 *tp)
{
int i;
unsigned int delay_cnt;
long time_remain;
/* If enough time has passed, no wait is necessary. */
time_remain = (long)(tp->last_event_jiffies + 1 +
usecs_to_jiffies(TG3_FW_EVENT_TIMEOUT_USEC)) -
(long)jiffies;
if (time_remain < 0)
return;
/* Check if we can shorten the wait time. */
delay_cnt = jiffies_to_usecs(time_remain);
if (delay_cnt > TG3_FW_EVENT_TIMEOUT_USEC)
delay_cnt = TG3_FW_EVENT_TIMEOUT_USEC;
delay_cnt = (delay_cnt >> 3) + 1;
for (i = 0; i < delay_cnt; i++) {
if (!(tr32(GRC_RX_CPU_EVENT) & GRC_RX_CPU_DRIVER_EVENT))
break;
udelay(8);
}
}
/* tp->lock is held. */
static void tg3_phy_gather_ump_data(struct tg3 *tp, u32 *data)
{
u32 reg, val;
val = 0;
if (!tg3_readphy(tp, MII_BMCR, &reg))
val = reg << 16;
if (!tg3_readphy(tp, MII_BMSR, &reg))
val |= (reg & 0xffff);
*data++ = val;
val = 0;
if (!tg3_readphy(tp, MII_ADVERTISE, &reg))
val = reg << 16;
if (!tg3_readphy(tp, MII_LPA, &reg))
val |= (reg & 0xffff);
*data++ = val;
val = 0;
if (!(tp->phy_flags & TG3_PHYFLG_MII_SERDES)) {
if (!tg3_readphy(tp, MII_CTRL1000, &reg))
val = reg << 16;
if (!tg3_readphy(tp, MII_STAT1000, &reg))
val |= (reg & 0xffff);
}
*data++ = val;
if (!tg3_readphy(tp, MII_PHYADDR, &reg))
val = reg << 16;
else
val = 0;
*data++ = val;
}
/* tp->lock is held. */
static void tg3_ump_link_report(struct tg3 *tp)
{
u32 data[4];
if (!tg3_flag(tp, 5780_CLASS) || !tg3_flag(tp, ENABLE_ASF))
return;
tg3_phy_gather_ump_data(tp, data);
tg3_wait_for_event_ack(tp);
tg3_write_mem(tp, NIC_SRAM_FW_CMD_MBOX, FWCMD_NICDRV_LINK_UPDATE);
tg3_write_mem(tp, NIC_SRAM_FW_CMD_LEN_MBOX, 14);
tg3_write_mem(tp, NIC_SRAM_FW_CMD_DATA_MBOX + 0x0, data[0]);
tg3_write_mem(tp, NIC_SRAM_FW_CMD_DATA_MBOX + 0x4, data[1]);
tg3_write_mem(tp, NIC_SRAM_FW_CMD_DATA_MBOX + 0x8, data[2]);
tg3_write_mem(tp, NIC_SRAM_FW_CMD_DATA_MBOX + 0xc, data[3]);
tg3_generate_fw_event(tp);
}
/* tp->lock is held. */
static void tg3_stop_fw(struct tg3 *tp)
{
if (tg3_flag(tp, ENABLE_ASF) && !tg3_flag(tp, ENABLE_APE)) {
/* Wait for RX cpu to ACK the previous event. */
tg3_wait_for_event_ack(tp);
tg3_write_mem(tp, NIC_SRAM_FW_CMD_MBOX, FWCMD_NICDRV_PAUSE_FW);
tg3_generate_fw_event(tp);
/* Wait for RX cpu to ACK this event. */
tg3_wait_for_event_ack(tp);
}
}
/* tp->lock is held. */
static void tg3_write_sig_pre_reset(struct tg3 *tp, int kind)
{
tg3_write_mem(tp, NIC_SRAM_FIRMWARE_MBOX,
NIC_SRAM_FIRMWARE_MBOX_MAGIC1);
if (tg3_flag(tp, ASF_NEW_HANDSHAKE)) {
switch (kind) {
case RESET_KIND_INIT:
tg3_write_mem(tp, NIC_SRAM_FW_DRV_STATE_MBOX,
DRV_STATE_START);
break;
case RESET_KIND_SHUTDOWN:
tg3_write_mem(tp, NIC_SRAM_FW_DRV_STATE_MBOX,
DRV_STATE_UNLOAD);
break;
case RESET_KIND_SUSPEND:
tg3_write_mem(tp, NIC_SRAM_FW_DRV_STATE_MBOX,
DRV_STATE_SUSPEND);
break;
default:
break;
}
}
if (kind == RESET_KIND_INIT ||
kind == RESET_KIND_SUSPEND)
tg3_ape_driver_state_change(tp, kind);
}
/* tp->lock is held. */
static void tg3_write_sig_post_reset(struct tg3 *tp, int kind)
{
if (tg3_flag(tp, ASF_NEW_HANDSHAKE)) {
switch (kind) {
case RESET_KIND_INIT:
tg3_write_mem(tp, NIC_SRAM_FW_DRV_STATE_MBOX,
DRV_STATE_START_DONE);
break;
case RESET_KIND_SHUTDOWN:
tg3_write_mem(tp, NIC_SRAM_FW_DRV_STATE_MBOX,
DRV_STATE_UNLOAD_DONE);
break;
default:
break;
}
}
if (kind == RESET_KIND_SHUTDOWN)
tg3_ape_driver_state_change(tp, kind);
}
/* tp->lock is held. */
static void tg3_write_sig_legacy(struct tg3 *tp, int kind)
{
if (tg3_flag(tp, ENABLE_ASF)) {
switch (kind) {
case RESET_KIND_INIT:
tg3_write_mem(tp, NIC_SRAM_FW_DRV_STATE_MBOX,
DRV_STATE_START);
break;
case RESET_KIND_SHUTDOWN:
tg3_write_mem(tp, NIC_SRAM_FW_DRV_STATE_MBOX,
DRV_STATE_UNLOAD);
break;
case RESET_KIND_SUSPEND:
tg3_write_mem(tp, NIC_SRAM_FW_DRV_STATE_MBOX,
DRV_STATE_SUSPEND);
break;
default:
break;
}
}
}
static int tg3_poll_fw(struct tg3 *tp)
{
int i;
u32 val;
if (tg3_flag(tp, IS_SSB_CORE)) {
/* We don't use firmware. */
return 0;
}
if (tg3_asic_rev(tp) == ASIC_REV_5906) {
/* Wait up to 20ms for init done. */
for (i = 0; i < 200; i++) {
if (tr32(VCPU_STATUS) & VCPU_STATUS_INIT_DONE)
return 0;
udelay(100);
}
return -ENODEV;
}
/* Wait for firmware initialization to complete. */
for (i = 0; i < 100000; i++) {
tg3_read_mem(tp, NIC_SRAM_FIRMWARE_MBOX, &val);
if (val == ~NIC_SRAM_FIRMWARE_MBOX_MAGIC1)
break;
udelay(10);
}
/* Chip might not be fitted with firmware. Some Sun onboard
* parts are configured like that. So don't signal the timeout
* of the above loop as an error, but do report the lack of
* running firmware once.
*/
if (i >= 100000 && !tg3_flag(tp, NO_FWARE_REPORTED)) {
tg3_flag_set(tp, NO_FWARE_REPORTED);
netdev_info(tp->dev, "No firmware running\n");
}
if (tg3_chip_rev_id(tp) == CHIPREV_ID_57765_A0) {
/* The 57765 A0 needs a little more
* time to do some important work.
*/
mdelay(10);
}
return 0;
}
static void tg3_link_report(struct tg3 *tp)
{
if (!netif_carrier_ok(tp->dev)) {
netif_info(tp, link, tp->dev, "Link is down\n");
tg3_ump_link_report(tp);
} else if (netif_msg_link(tp)) {
netdev_info(tp->dev, "Link is up at %d Mbps, %s duplex\n",
(tp->link_config.active_speed == SPEED_1000 ?
1000 :
(tp->link_config.active_speed == SPEED_100 ?
100 : 10)),
(tp->link_config.active_duplex == DUPLEX_FULL ?
"full" : "half"));
netdev_info(tp->dev, "Flow control is %s for TX and %s for RX\n",
(tp->link_config.active_flowctrl & FLOW_CTRL_TX) ?
"on" : "off",
(tp->link_config.active_flowctrl & FLOW_CTRL_RX) ?
"on" : "off");
if (tp->phy_flags & TG3_PHYFLG_EEE_CAP)
netdev_info(tp->dev, "EEE is %s\n",
tp->setlpicnt ? "enabled" : "disabled");
tg3_ump_link_report(tp);
}
tp->link_up = netif_carrier_ok(tp->dev);
}
static u32 tg3_decode_flowctrl_1000T(u32 adv)
{
u32 flowctrl = 0;
if (adv & ADVERTISE_PAUSE_CAP) {
flowctrl |= FLOW_CTRL_RX;
if (!(adv & ADVERTISE_PAUSE_ASYM))
flowctrl |= FLOW_CTRL_TX;
} else if (adv & ADVERTISE_PAUSE_ASYM)
flowctrl |= FLOW_CTRL_TX;
return flowctrl;
}
static u16 tg3_advert_flowctrl_1000X(u8 flow_ctrl)
{
u16 miireg;
if ((flow_ctrl & FLOW_CTRL_TX) && (flow_ctrl & FLOW_CTRL_RX))
miireg = ADVERTISE_1000XPAUSE;
else if (flow_ctrl & FLOW_CTRL_TX)
miireg = ADVERTISE_1000XPSE_ASYM;
else if (flow_ctrl & FLOW_CTRL_RX)
miireg = ADVERTISE_1000XPAUSE | ADVERTISE_1000XPSE_ASYM;
else
miireg = 0;
return miireg;
}
static u32 tg3_decode_flowctrl_1000X(u32 adv)
{
u32 flowctrl = 0;
if (adv & ADVERTISE_1000XPAUSE) {
flowctrl |= FLOW_CTRL_RX;
if (!(adv & ADVERTISE_1000XPSE_ASYM))
flowctrl |= FLOW_CTRL_TX;
} else if (adv & ADVERTISE_1000XPSE_ASYM)
flowctrl |= FLOW_CTRL_TX;
return flowctrl;
}
static u8 tg3_resolve_flowctrl_1000X(u16 lcladv, u16 rmtadv)
{
u8 cap = 0;
if (lcladv & rmtadv & ADVERTISE_1000XPAUSE) {
cap = FLOW_CTRL_TX | FLOW_CTRL_RX;
} else if (lcladv & rmtadv & ADVERTISE_1000XPSE_ASYM) {
if (lcladv & ADVERTISE_1000XPAUSE)
cap = FLOW_CTRL_RX;
if (rmtadv & ADVERTISE_1000XPAUSE)
cap = FLOW_CTRL_TX;
}
return cap;
}
static void tg3_setup_flow_control(struct tg3 *tp, u32 lcladv, u32 rmtadv)
{
u8 autoneg;
u8 flowctrl = 0;
u32 old_rx_mode = tp->rx_mode;
u32 old_tx_mode = tp->tx_mode;
if (tg3_flag(tp, USE_PHYLIB))
autoneg = tp->mdio_bus->phy_map[TG3_PHY_MII_ADDR]->autoneg;
else
autoneg = tp->link_config.autoneg;
if (autoneg == AUTONEG_ENABLE && tg3_flag(tp, PAUSE_AUTONEG)) {
if (tp->phy_flags & TG3_PHYFLG_ANY_SERDES)
flowctrl = tg3_resolve_flowctrl_1000X(lcladv, rmtadv);
else
flowctrl = mii_resolve_flowctrl_fdx(lcladv, rmtadv);
} else
flowctrl = tp->link_config.flowctrl;
tp->link_config.active_flowctrl = flowctrl;
if (flowctrl & FLOW_CTRL_RX)
tp->rx_mode |= RX_MODE_FLOW_CTRL_ENABLE;
else
tp->rx_mode &= ~RX_MODE_FLOW_CTRL_ENABLE;
if (old_rx_mode != tp->rx_mode)
tw32_f(MAC_RX_MODE, tp->rx_mode);
if (flowctrl & FLOW_CTRL_TX)
tp->tx_mode |= TX_MODE_FLOW_CTRL_ENABLE;
else
tp->tx_mode &= ~TX_MODE_FLOW_CTRL_ENABLE;
if (old_tx_mode != tp->tx_mode)
tw32_f(MAC_TX_MODE, tp->tx_mode);
}
static void tg3_adjust_link(struct net_device *dev)
{
u8 oldflowctrl, linkmesg = 0;
u32 mac_mode, lcl_adv, rmt_adv;
struct tg3 *tp = netdev_priv(dev);
struct phy_device *phydev = tp->mdio_bus->phy_map[TG3_PHY_MII_ADDR];
spin_lock_bh(&tp->lock);
mac_mode = tp->mac_mode & ~(MAC_MODE_PORT_MODE_MASK |
MAC_MODE_HALF_DUPLEX);
oldflowctrl = tp->link_config.active_flowctrl;
if (phydev->link) {
lcl_adv = 0;
rmt_adv = 0;
if (phydev->speed == SPEED_100 || phydev->speed == SPEED_10)
mac_mode |= MAC_MODE_PORT_MODE_MII;
else if (phydev->speed == SPEED_1000 ||
tg3_asic_rev(tp) != ASIC_REV_5785)
mac_mode |= MAC_MODE_PORT_MODE_GMII;
else
mac_mode |= MAC_MODE_PORT_MODE_MII;
if (phydev->duplex == DUPLEX_HALF)
mac_mode |= MAC_MODE_HALF_DUPLEX;
else {
lcl_adv = mii_advertise_flowctrl(
tp->link_config.flowctrl);
if (phydev->pause)
rmt_adv = LPA_PAUSE_CAP;
if (phydev->asym_pause)
rmt_adv |= LPA_PAUSE_ASYM;
}
tg3_setup_flow_control(tp, lcl_adv, rmt_adv);
} else
mac_mode |= MAC_MODE_PORT_MODE_GMII;
if (mac_mode != tp->mac_mode) {
tp->mac_mode = mac_mode;
tw32_f(MAC_MODE, tp->mac_mode);
udelay(40);
}
if (tg3_asic_rev(tp) == ASIC_REV_5785) {
if (phydev->speed == SPEED_10)
tw32(MAC_MI_STAT,
MAC_MI_STAT_10MBPS_MODE |
MAC_MI_STAT_LNKSTAT_ATTN_ENAB);
else
tw32(MAC_MI_STAT, MAC_MI_STAT_LNKSTAT_ATTN_ENAB);
}
if (phydev->speed == SPEED_1000 && phydev->duplex == DUPLEX_HALF)
tw32(MAC_TX_LENGTHS,
((2 << TX_LENGTHS_IPG_CRS_SHIFT) |
(6 << TX_LENGTHS_IPG_SHIFT) |
(0xff << TX_LENGTHS_SLOT_TIME_SHIFT)));
else
tw32(MAC_TX_LENGTHS,
((2 << TX_LENGTHS_IPG_CRS_SHIFT) |
(6 << TX_LENGTHS_IPG_SHIFT) |
(32 << TX_LENGTHS_SLOT_TIME_SHIFT)));
if (phydev->link != tp->old_link ||
phydev->speed != tp->link_config.active_speed ||
phydev->duplex != tp->link_config.active_duplex ||
oldflowctrl != tp->link_config.active_flowctrl)
linkmesg = 1;
tp->old_link = phydev->link;
tp->link_config.active_speed = phydev->speed;
tp->link_config.active_duplex = phydev->duplex;
spin_unlock_bh(&tp->lock);
if (linkmesg)
tg3_link_report(tp);
}
static int tg3_phy_init(struct tg3 *tp)
{
struct phy_device *phydev;
if (tp->phy_flags & TG3_PHYFLG_IS_CONNECTED)
return 0;
/* Bring the PHY back to a known state. */
tg3_bmcr_reset(tp);
phydev = tp->mdio_bus->phy_map[TG3_PHY_MII_ADDR];
/* Attach the MAC to the PHY. */
phydev = phy_connect(tp->dev, dev_name(&phydev->dev),
tg3_adjust_link, phydev->interface);
if (IS_ERR(phydev)) {
dev_err(&tp->pdev->dev, "Could not attach to PHY\n");
return PTR_ERR(phydev);
}
/* Mask with MAC supported features. */
switch (phydev->interface) {
case PHY_INTERFACE_MODE_GMII:
case PHY_INTERFACE_MODE_RGMII:
if (!(tp->phy_flags & TG3_PHYFLG_10_100_ONLY)) {
phydev->supported &= (PHY_GBIT_FEATURES |
SUPPORTED_Pause |
SUPPORTED_Asym_Pause);
break;
}
/* fallthru */
case PHY_INTERFACE_MODE_MII:
phydev->supported &= (PHY_BASIC_FEATURES |
SUPPORTED_Pause |
SUPPORTED_Asym_Pause);
break;
default:
phy_disconnect(tp->mdio_bus->phy_map[TG3_PHY_MII_ADDR]);
return -EINVAL;
}
tp->phy_flags |= TG3_PHYFLG_IS_CONNECTED;
phydev->advertising = phydev->supported;
return 0;
}
static void tg3_phy_start(struct tg3 *tp)
{
struct phy_device *phydev;
if (!(tp->phy_flags & TG3_PHYFLG_IS_CONNECTED))
return;
phydev = tp->mdio_bus->phy_map[TG3_PHY_MII_ADDR];
if (tp->phy_flags & TG3_PHYFLG_IS_LOW_POWER) {
tp->phy_flags &= ~TG3_PHYFLG_IS_LOW_POWER;
phydev->speed = tp->link_config.speed;
phydev->duplex = tp->link_config.duplex;
phydev->autoneg = tp->link_config.autoneg;
phydev->advertising = tp->link_config.advertising;
}
phy_start(phydev);
phy_start_aneg(phydev);
}
static void tg3_phy_stop(struct tg3 *tp)
{
if (!(tp->phy_flags & TG3_PHYFLG_IS_CONNECTED))
return;
phy_stop(tp->mdio_bus->phy_map[TG3_PHY_MII_ADDR]);
}
static void tg3_phy_fini(struct tg3 *tp)
{
if (tp->phy_flags & TG3_PHYFLG_IS_CONNECTED) {
phy_disconnect(tp->mdio_bus->phy_map[TG3_PHY_MII_ADDR]);
tp->phy_flags &= ~TG3_PHYFLG_IS_CONNECTED;
}
}
static int tg3_phy_set_extloopbk(struct tg3 *tp)
{
int err;
u32 val;
if (tp->phy_flags & TG3_PHYFLG_IS_FET)
return 0;
if ((tp->phy_id & TG3_PHY_ID_MASK) == TG3_PHY_ID_BCM5401) {
/* Cannot do read-modify-write on 5401 */
err = tg3_phy_auxctl_write(tp,
MII_TG3_AUXCTL_SHDWSEL_AUXCTL,
MII_TG3_AUXCTL_ACTL_EXTLOOPBK |
0x4c20);
goto done;
}
err = tg3_phy_auxctl_read(tp,
MII_TG3_AUXCTL_SHDWSEL_AUXCTL, &val);
if (err)
return err;
val |= MII_TG3_AUXCTL_ACTL_EXTLOOPBK;
err = tg3_phy_auxctl_write(tp,
MII_TG3_AUXCTL_SHDWSEL_AUXCTL, val);
done:
return err;
}
static void tg3_phy_fet_toggle_apd(struct tg3 *tp, bool enable)
{
u32 phytest;
if (!tg3_readphy(tp, MII_TG3_FET_TEST, &phytest)) {
u32 phy;
tg3_writephy(tp, MII_TG3_FET_TEST,
phytest | MII_TG3_FET_SHADOW_EN);
if (!tg3_readphy(tp, MII_TG3_FET_SHDW_AUXSTAT2, &phy)) {
if (enable)
phy |= MII_TG3_FET_SHDW_AUXSTAT2_APD;
else
phy &= ~MII_TG3_FET_SHDW_AUXSTAT2_APD;
tg3_writephy(tp, MII_TG3_FET_SHDW_AUXSTAT2, phy);
}
tg3_writephy(tp, MII_TG3_FET_TEST, phytest);
}
}
static void tg3_phy_toggle_apd(struct tg3 *tp, bool enable)
{
u32 reg;
if (!tg3_flag(tp, 5705_PLUS) ||
(tg3_flag(tp, 5717_PLUS) &&
(tp->phy_flags & TG3_PHYFLG_MII_SERDES)))
return;
if (tp->phy_flags & TG3_PHYFLG_IS_FET) {
tg3_phy_fet_toggle_apd(tp, enable);
return;
}
reg = MII_TG3_MISC_SHDW_WREN |
MII_TG3_MISC_SHDW_SCR5_SEL |
MII_TG3_MISC_SHDW_SCR5_LPED |
MII_TG3_MISC_SHDW_SCR5_DLPTLM |
MII_TG3_MISC_SHDW_SCR5_SDTL |
MII_TG3_MISC_SHDW_SCR5_C125OE;
if (tg3_asic_rev(tp) != ASIC_REV_5784 || !enable)
reg |= MII_TG3_MISC_SHDW_SCR5_DLLAPD;
tg3_writephy(tp, MII_TG3_MISC_SHDW, reg);
reg = MII_TG3_MISC_SHDW_WREN |
MII_TG3_MISC_SHDW_APD_SEL |
MII_TG3_MISC_SHDW_APD_WKTM_84MS;
if (enable)
reg |= MII_TG3_MISC_SHDW_APD_ENABLE;
tg3_writephy(tp, MII_TG3_MISC_SHDW, reg);
}
static void tg3_phy_toggle_automdix(struct tg3 *tp, bool enable)
{
u32 phy;
if (!tg3_flag(tp, 5705_PLUS) ||
(tp->phy_flags & TG3_PHYFLG_ANY_SERDES))
return;
if (tp->phy_flags & TG3_PHYFLG_IS_FET) {
u32 ephy;
if (!tg3_readphy(tp, MII_TG3_FET_TEST, &ephy)) {
u32 reg = MII_TG3_FET_SHDW_MISCCTRL;
tg3_writephy(tp, MII_TG3_FET_TEST,
ephy | MII_TG3_FET_SHADOW_EN);
if (!tg3_readphy(tp, reg, &phy)) {
if (enable)
phy |= MII_TG3_FET_SHDW_MISCCTRL_MDIX;
else
phy &= ~MII_TG3_FET_SHDW_MISCCTRL_MDIX;
tg3_writephy(tp, reg, phy);
}
tg3_writephy(tp, MII_TG3_FET_TEST, ephy);
}
} else {
int ret;
ret = tg3_phy_auxctl_read(tp,
MII_TG3_AUXCTL_SHDWSEL_MISC, &phy);
if (!ret) {
if (enable)
phy |= MII_TG3_AUXCTL_MISC_FORCE_AMDIX;
else
phy &= ~MII_TG3_AUXCTL_MISC_FORCE_AMDIX;
tg3_phy_auxctl_write(tp,
MII_TG3_AUXCTL_SHDWSEL_MISC, phy);
}
}
}
static void tg3_phy_set_wirespeed(struct tg3 *tp)
{
int ret;
u32 val;
if (tp->phy_flags & TG3_PHYFLG_NO_ETH_WIRE_SPEED)
return;
ret = tg3_phy_auxctl_read(tp, MII_TG3_AUXCTL_SHDWSEL_MISC, &val);
if (!ret)
tg3_phy_auxctl_write(tp, MII_TG3_AUXCTL_SHDWSEL_MISC,
val | MII_TG3_AUXCTL_MISC_WIRESPD_EN);
}
static void tg3_phy_apply_otp(struct tg3 *tp)
{
u32 otp, phy;
if (!tp->phy_otp)
return;
otp = tp->phy_otp;
if (tg3_phy_toggle_auxctl_smdsp(tp, true))
return;
phy = ((otp & TG3_OTP_AGCTGT_MASK) >> TG3_OTP_AGCTGT_SHIFT);
phy |= MII_TG3_DSP_TAP1_AGCTGT_DFLT;
tg3_phydsp_write(tp, MII_TG3_DSP_TAP1, phy);
phy = ((otp & TG3_OTP_HPFFLTR_MASK) >> TG3_OTP_HPFFLTR_SHIFT) |
((otp & TG3_OTP_HPFOVER_MASK) >> TG3_OTP_HPFOVER_SHIFT);
tg3_phydsp_write(tp, MII_TG3_DSP_AADJ1CH0, phy);
phy = ((otp & TG3_OTP_LPFDIS_MASK) >> TG3_OTP_LPFDIS_SHIFT);
phy |= MII_TG3_DSP_AADJ1CH3_ADCCKADJ;
tg3_phydsp_write(tp, MII_TG3_DSP_AADJ1CH3, phy);
phy = ((otp & TG3_OTP_VDAC_MASK) >> TG3_OTP_VDAC_SHIFT);
tg3_phydsp_write(tp, MII_TG3_DSP_EXP75, phy);
phy = ((otp & TG3_OTP_10BTAMP_MASK) >> TG3_OTP_10BTAMP_SHIFT);
tg3_phydsp_write(tp, MII_TG3_DSP_EXP96, phy);
phy = ((otp & TG3_OTP_ROFF_MASK) >> TG3_OTP_ROFF_SHIFT) |
((otp & TG3_OTP_RCOFF_MASK) >> TG3_OTP_RCOFF_SHIFT);
tg3_phydsp_write(tp, MII_TG3_DSP_EXP97, phy);
tg3_phy_toggle_auxctl_smdsp(tp, false);
}
static void tg3_phy_eee_adjust(struct tg3 *tp, bool current_link_up)
{
u32 val;
if (!(tp->phy_flags & TG3_PHYFLG_EEE_CAP))
return;
tp->setlpicnt = 0;
if (tp->link_config.autoneg == AUTONEG_ENABLE &&
current_link_up &&
tp->link_config.active_duplex == DUPLEX_FULL &&
(tp->link_config.active_speed == SPEED_100 ||
tp->link_config.active_speed == SPEED_1000)) {
u32 eeectl;
if (tp->link_config.active_speed == SPEED_1000)
eeectl = TG3_CPMU_EEE_CTRL_EXIT_16_5_US;
else
eeectl = TG3_CPMU_EEE_CTRL_EXIT_36_US;
tw32(TG3_CPMU_EEE_CTRL, eeectl);
tg3_phy_cl45_read(tp, MDIO_MMD_AN,
TG3_CL45_D7_EEERES_STAT, &val);
if (val == TG3_CL45_D7_EEERES_STAT_LP_1000T ||
val == TG3_CL45_D7_EEERES_STAT_LP_100TX)
tp->setlpicnt = 2;
}
if (!tp->setlpicnt) {
if (current_link_up &&
!tg3_phy_toggle_auxctl_smdsp(tp, true)) {
tg3_phydsp_write(tp, MII_TG3_DSP_TAP26, 0x0000);
tg3_phy_toggle_auxctl_smdsp(tp, false);
}
val = tr32(TG3_CPMU_EEE_MODE);
tw32(TG3_CPMU_EEE_MODE, val & ~TG3_CPMU_EEEMD_LPI_ENABLE);
}
}
static void tg3_phy_eee_enable(struct tg3 *tp)
{
u32 val;
if (tp->link_config.active_speed == SPEED_1000 &&
(tg3_asic_rev(tp) == ASIC_REV_5717 ||
tg3_asic_rev(tp) == ASIC_REV_5719 ||
tg3_flag(tp, 57765_CLASS)) &&
!tg3_phy_toggle_auxctl_smdsp(tp, true)) {
val = MII_TG3_DSP_TAP26_ALNOKO |
MII_TG3_DSP_TAP26_RMRXSTO;
tg3_phydsp_write(tp, MII_TG3_DSP_TAP26, val);
tg3_phy_toggle_auxctl_smdsp(tp, false);
}
val = tr32(TG3_CPMU_EEE_MODE);
tw32(TG3_CPMU_EEE_MODE, val | TG3_CPMU_EEEMD_LPI_ENABLE);
}
static int tg3_wait_macro_done(struct tg3 *tp)
{
int limit = 100;
while (limit--) {
u32 tmp32;
if (!tg3_readphy(tp, MII_TG3_DSP_CONTROL, &tmp32)) {
if ((tmp32 & 0x1000) == 0)
break;
}
}
if (limit < 0)
return -EBUSY;
return 0;
}
static int tg3_phy_write_and_check_testpat(struct tg3 *tp, int *resetp)
{
static const u32 test_pat[4][6] = {
{ 0x00005555, 0x00000005, 0x00002aaa, 0x0000000a, 0x00003456, 0x00000003 },
{ 0x00002aaa, 0x0000000a, 0x00003333, 0x00000003, 0x0000789a, 0x00000005 },
{ 0x00005a5a, 0x00000005, 0x00002a6a, 0x0000000a, 0x00001bcd, 0x00000003 },
{ 0x00002a5a, 0x0000000a, 0x000033c3, 0x00000003, 0x00002ef1, 0x00000005 }
};
int chan;
for (chan = 0; chan < 4; chan++) {
int i;
tg3_writephy(tp, MII_TG3_DSP_ADDRESS,
(chan * 0x2000) | 0x0200);
tg3_writephy(tp, MII_TG3_DSP_CONTROL, 0x0002);
for (i = 0; i < 6; i++)
tg3_writephy(tp, MII_TG3_DSP_RW_PORT,
test_pat[chan][i]);
tg3_writephy(tp, MII_TG3_DSP_CONTROL, 0x0202);
if (tg3_wait_macro_done(tp)) {
*resetp = 1;
return -EBUSY;
}
tg3_writephy(tp, MII_TG3_DSP_ADDRESS,
(chan * 0x2000) | 0x0200);
tg3_writephy(tp, MII_TG3_DSP_CONTROL, 0x0082);
if (tg3_wait_macro_done(tp)) {
*resetp = 1;
return -EBUSY;
}
tg3_writephy(tp, MII_TG3_DSP_CONTROL, 0x0802);
if (tg3_wait_macro_done(tp)) {
*resetp = 1;
return -EBUSY;
}
for (i = 0; i < 6; i += 2) {
u32 low, high;
if (tg3_readphy(tp, MII_TG3_DSP_RW_PORT, &low) ||
tg3_readphy(tp, MII_TG3_DSP_RW_PORT, &high) ||
tg3_wait_macro_done(tp)) {
*resetp = 1;
return -EBUSY;
}
low &= 0x7fff;
high &= 0x000f;
if (low != test_pat[chan][i] ||
high != test_pat[chan][i+1]) {
tg3_writephy(tp, MII_TG3_DSP_ADDRESS, 0x000b);
tg3_writephy(tp, MII_TG3_DSP_RW_PORT, 0x4001);
tg3_writephy(tp, MII_TG3_DSP_RW_PORT, 0x4005);
return -EBUSY;
}
}
}
return 0;
}
static int tg3_phy_reset_chanpat(struct tg3 *tp)
{
int chan;
for (chan = 0; chan < 4; chan++) {
int i;
tg3_writephy(tp, MII_TG3_DSP_ADDRESS,
(chan * 0x2000) | 0x0200);
tg3_writephy(tp, MII_TG3_DSP_CONTROL, 0x0002);
for (i = 0; i < 6; i++)
tg3_writephy(tp, MII_TG3_DSP_RW_PORT, 0x000);
tg3_writephy(tp, MII_TG3_DSP_CONTROL, 0x0202);
if (tg3_wait_macro_done(tp))
return -EBUSY;
}
return 0;
}
static int tg3_phy_reset_5703_4_5(struct tg3 *tp)
{
u32 reg32, phy9_orig;
int retries, do_phy_reset, err;
retries = 10;
do_phy_reset = 1;
do {
if (do_phy_reset) {
err = tg3_bmcr_reset(tp);
if (err)
return err;
do_phy_reset = 0;
}
/* Disable transmitter and interrupt. */
if (tg3_readphy(tp, MII_TG3_EXT_CTRL, &reg32))
continue;
reg32 |= 0x3000;
tg3_writephy(tp, MII_TG3_EXT_CTRL, reg32);
/* Set full-duplex, 1000 mbps. */
tg3_writephy(tp, MII_BMCR,
BMCR_FULLDPLX | BMCR_SPEED1000);
/* Set to master mode. */
if (tg3_readphy(tp, MII_CTRL1000, &phy9_orig))
continue;
tg3_writephy(tp, MII_CTRL1000,
CTL1000_AS_MASTER | CTL1000_ENABLE_MASTER);
err = tg3_phy_toggle_auxctl_smdsp(tp, true);
if (err)
return err;
/* Block the PHY control access. */
tg3_phydsp_write(tp, 0x8005, 0x0800);
err = tg3_phy_write_and_check_testpat(tp, &do_phy_reset);
if (!err)
break;
} while (--retries);
err = tg3_phy_reset_chanpat(tp);
if (err)
return err;
tg3_phydsp_write(tp, 0x8005, 0x0000);
tg3_writephy(tp, MII_TG3_DSP_ADDRESS, 0x8200);
tg3_writephy(tp, MII_TG3_DSP_CONTROL, 0x0000);
tg3_phy_toggle_auxctl_smdsp(tp, false);
tg3_writephy(tp, MII_CTRL1000, phy9_orig);
if (!tg3_readphy(tp, MII_TG3_EXT_CTRL, &reg32)) {
reg32 &= ~0x3000;
tg3_writephy(tp, MII_TG3_EXT_CTRL, reg32);
} else if (!err)
err = -EBUSY;
return err;
}
static void tg3_carrier_off(struct tg3 *tp)
{
netif_carrier_off(tp->dev);
tp->link_up = false;
}
static void tg3_warn_mgmt_link_flap(struct tg3 *tp)
{
if (tg3_flag(tp, ENABLE_ASF))
netdev_warn(tp->dev,
"Management side-band traffic will be interrupted during phy settings change\n");
}
/* This will reset the tigon3 PHY if there is no valid
* link unless the FORCE argument is non-zero.
*/
static int tg3_phy_reset(struct tg3 *tp)
{
u32 val, cpmuctrl;
int err;
if (tg3_asic_rev(tp) == ASIC_REV_5906) {
val = tr32(GRC_MISC_CFG);
tw32_f(GRC_MISC_CFG, val & ~GRC_MISC_CFG_EPHY_IDDQ);
udelay(40);
}
err = tg3_readphy(tp, MII_BMSR, &val);
err |= tg3_readphy(tp, MII_BMSR, &val);
if (err != 0)
return -EBUSY;
if (netif_running(tp->dev) && tp->link_up) {
netif_carrier_off(tp->dev);
tg3_link_report(tp);
}
if (tg3_asic_rev(tp) == ASIC_REV_5703 ||
tg3_asic_rev(tp) == ASIC_REV_5704 ||
tg3_asic_rev(tp) == ASIC_REV_5705) {
err = tg3_phy_reset_5703_4_5(tp);
if (err)
return err;
goto out;
}
cpmuctrl = 0;
if (tg3_asic_rev(tp) == ASIC_REV_5784 &&
tg3_chip_rev(tp) != CHIPREV_5784_AX) {
cpmuctrl = tr32(TG3_CPMU_CTRL);
if (cpmuctrl & CPMU_CTRL_GPHY_10MB_RXONLY)
tw32(TG3_CPMU_CTRL,
cpmuctrl & ~CPMU_CTRL_GPHY_10MB_RXONLY);
}
err = tg3_bmcr_reset(tp);
if (err)
return err;
if (cpmuctrl & CPMU_CTRL_GPHY_10MB_RXONLY) {
val = MII_TG3_DSP_EXP8_AEDW | MII_TG3_DSP_EXP8_REJ2MHz;
tg3_phydsp_write(tp, MII_TG3_DSP_EXP8, val);
tw32(TG3_CPMU_CTRL, cpmuctrl);
}
if (tg3_chip_rev(tp) == CHIPREV_5784_AX ||
tg3_chip_rev(tp) == CHIPREV_5761_AX) {
val = tr32(TG3_CPMU_LSPD_1000MB_CLK);
if ((val & CPMU_LSPD_1000MB_MACCLK_MASK) ==
CPMU_LSPD_1000MB_MACCLK_12_5) {
val &= ~CPMU_LSPD_1000MB_MACCLK_MASK;
udelay(40);
tw32_f(TG3_CPMU_LSPD_1000MB_CLK, val);
}
}
if (tg3_flag(tp, 5717_PLUS) &&
(tp->phy_flags & TG3_PHYFLG_MII_SERDES))
return 0;
tg3_phy_apply_otp(tp);
if (tp->phy_flags & TG3_PHYFLG_ENABLE_APD)
tg3_phy_toggle_apd(tp, true);
else
tg3_phy_toggle_apd(tp, false);
out:
if ((tp->phy_flags & TG3_PHYFLG_ADC_BUG) &&
!tg3_phy_toggle_auxctl_smdsp(tp, true)) {
tg3_phydsp_write(tp, 0x201f, 0x2aaa);
tg3_phydsp_write(tp, 0x000a, 0x0323);
tg3_phy_toggle_auxctl_smdsp(tp, false);
}
if (tp->phy_flags & TG3_PHYFLG_5704_A0_BUG) {
tg3_writephy(tp, MII_TG3_MISC_SHDW, 0x8d68);
tg3_writephy(tp, MII_TG3_MISC_SHDW, 0x8d68);
}
if (tp->phy_flags & TG3_PHYFLG_BER_BUG) {
if (!tg3_phy_toggle_auxctl_smdsp(tp, true)) {
tg3_phydsp_write(tp, 0x000a, 0x310b);
tg3_phydsp_write(tp, 0x201f, 0x9506);
tg3_phydsp_write(tp, 0x401f, 0x14e2);
tg3_phy_toggle_auxctl_smdsp(tp, false);
}
} else if (tp->phy_flags & TG3_PHYFLG_JITTER_BUG) {
if (!tg3_phy_toggle_auxctl_smdsp(tp, true)) {
tg3_writephy(tp, MII_TG3_DSP_ADDRESS, 0x000a);
if (tp->phy_flags & TG3_PHYFLG_ADJUST_TRIM) {
tg3_writephy(tp, MII_TG3_DSP_RW_PORT, 0x110b);
tg3_writephy(tp, MII_TG3_TEST1,
MII_TG3_TEST1_TRIM_EN | 0x4);
} else
tg3_writephy(tp, MII_TG3_DSP_RW_PORT, 0x010b);
tg3_phy_toggle_auxctl_smdsp(tp, false);
}
}
/* Set Extended packet length bit (bit 14) on all chips that */
/* support jumbo frames */
if ((tp->phy_id & TG3_PHY_ID_MASK) == TG3_PHY_ID_BCM5401) {
/* Cannot do read-modify-write on 5401 */
tg3_phy_auxctl_write(tp, MII_TG3_AUXCTL_SHDWSEL_AUXCTL, 0x4c20);
} else if (tg3_flag(tp, JUMBO_CAPABLE)) {
/* Set bit 14 with read-modify-write to preserve other bits */
err = tg3_phy_auxctl_read(tp,
MII_TG3_AUXCTL_SHDWSEL_AUXCTL, &val);
if (!err)
tg3_phy_auxctl_write(tp, MII_TG3_AUXCTL_SHDWSEL_AUXCTL,
val | MII_TG3_AUXCTL_ACTL_EXTPKTLEN);
}
/* Set phy register 0x10 bit 0 to high fifo elasticity to support
* jumbo frames transmission.
*/
if (tg3_flag(tp, JUMBO_CAPABLE)) {
if (!tg3_readphy(tp, MII_TG3_EXT_CTRL, &val))
tg3_writephy(tp, MII_TG3_EXT_CTRL,
val | MII_TG3_EXT_CTRL_FIFO_ELASTIC);
}
if (tg3_asic_rev(tp) == ASIC_REV_5906) {
/* adjust output voltage */
tg3_writephy(tp, MII_TG3_FET_PTEST, 0x12);
}
if (tg3_chip_rev_id(tp) == CHIPREV_ID_5762_A0)
tg3_phydsp_write(tp, 0xffb, 0x4000);
tg3_phy_toggle_automdix(tp, true);
tg3_phy_set_wirespeed(tp);
return 0;
}
#define TG3_GPIO_MSG_DRVR_PRES 0x00000001
#define TG3_GPIO_MSG_NEED_VAUX 0x00000002
#define TG3_GPIO_MSG_MASK (TG3_GPIO_MSG_DRVR_PRES | \
TG3_GPIO_MSG_NEED_VAUX)
#define TG3_GPIO_MSG_ALL_DRVR_PRES_MASK \
((TG3_GPIO_MSG_DRVR_PRES << 0) | \
(TG3_GPIO_MSG_DRVR_PRES << 4) | \
(TG3_GPIO_MSG_DRVR_PRES << 8) | \
(TG3_GPIO_MSG_DRVR_PRES << 12))
#define TG3_GPIO_MSG_ALL_NEED_VAUX_MASK \
((TG3_GPIO_MSG_NEED_VAUX << 0) | \
(TG3_GPIO_MSG_NEED_VAUX << 4) | \
(TG3_GPIO_MSG_NEED_VAUX << 8) | \
(TG3_GPIO_MSG_NEED_VAUX << 12))
static inline u32 tg3_set_function_status(struct tg3 *tp, u32 newstat)
{
u32 status, shift;
if (tg3_asic_rev(tp) == ASIC_REV_5717 ||
tg3_asic_rev(tp) == ASIC_REV_5719)
status = tg3_ape_read32(tp, TG3_APE_GPIO_MSG);
else
status = tr32(TG3_CPMU_DRV_STATUS);
shift = TG3_APE_GPIO_MSG_SHIFT + 4 * tp->pci_fn;
status &= ~(TG3_GPIO_MSG_MASK << shift);
status |= (newstat << shift);
if (tg3_asic_rev(tp) == ASIC_REV_5717 ||
tg3_asic_rev(tp) == ASIC_REV_5719)
tg3_ape_write32(tp, TG3_APE_GPIO_MSG, status);
else
tw32(TG3_CPMU_DRV_STATUS, status);
return status >> TG3_APE_GPIO_MSG_SHIFT;
}
static inline int tg3_pwrsrc_switch_to_vmain(struct tg3 *tp)
{
if (!tg3_flag(tp, IS_NIC))
return 0;
if (tg3_asic_rev(tp) == ASIC_REV_5717 ||
tg3_asic_rev(tp) == ASIC_REV_5719 ||
tg3_asic_rev(tp) == ASIC_REV_5720) {
if (tg3_ape_lock(tp, TG3_APE_LOCK_GPIO))
return -EIO;
tg3_set_function_status(tp, TG3_GPIO_MSG_DRVR_PRES);
tw32_wait_f(GRC_LOCAL_CTRL, tp->grc_local_ctrl,
TG3_GRC_LCLCTL_PWRSW_DELAY);
tg3_ape_unlock(tp, TG3_APE_LOCK_GPIO);
} else {
tw32_wait_f(GRC_LOCAL_CTRL, tp->grc_local_ctrl,
TG3_GRC_LCLCTL_PWRSW_DELAY);
}
return 0;
}
static void tg3_pwrsrc_die_with_vmain(struct tg3 *tp)
{
u32 grc_local_ctrl;
if (!tg3_flag(tp, IS_NIC) ||
tg3_asic_rev(tp) == ASIC_REV_5700 ||
tg3_asic_rev(tp) == ASIC_REV_5701)
return;
grc_local_ctrl = tp->grc_local_ctrl | GRC_LCLCTRL_GPIO_OE1;
tw32_wait_f(GRC_LOCAL_CTRL,
grc_local_ctrl | GRC_LCLCTRL_GPIO_OUTPUT1,
TG3_GRC_LCLCTL_PWRSW_DELAY);
tw32_wait_f(GRC_LOCAL_CTRL,
grc_local_ctrl,
TG3_GRC_LCLCTL_PWRSW_DELAY);
tw32_wait_f(GRC_LOCAL_CTRL,
grc_local_ctrl | GRC_LCLCTRL_GPIO_OUTPUT1,
TG3_GRC_LCLCTL_PWRSW_DELAY);
}
static void tg3_pwrsrc_switch_to_vaux(struct tg3 *tp)
{
if (!tg3_flag(tp, IS_NIC))
return;
if (tg3_asic_rev(tp) == ASIC_REV_5700 ||
tg3_asic_rev(tp) == ASIC_REV_5701) {
tw32_wait_f(GRC_LOCAL_CTRL, tp->grc_local_ctrl |
(GRC_LCLCTRL_GPIO_OE0 |
GRC_LCLCTRL_GPIO_OE1 |
GRC_LCLCTRL_GPIO_OE2 |
GRC_LCLCTRL_GPIO_OUTPUT0 |
GRC_LCLCTRL_GPIO_OUTPUT1),
TG3_GRC_LCLCTL_PWRSW_DELAY);
} else if (tp->pdev->device == PCI_DEVICE_ID_TIGON3_5761 ||
tp->pdev->device == TG3PCI_DEVICE_TIGON3_5761S) {
/* The 5761 non-e device swaps GPIO 0 and GPIO 2. */
u32 grc_local_ctrl = GRC_LCLCTRL_GPIO_OE0 |
GRC_LCLCTRL_GPIO_OE1 |
GRC_LCLCTRL_GPIO_OE2 |
GRC_LCLCTRL_GPIO_OUTPUT0 |
GRC_LCLCTRL_GPIO_OUTPUT1 |
tp->grc_local_ctrl;
tw32_wait_f(GRC_LOCAL_CTRL, grc_local_ctrl,
TG3_GRC_LCLCTL_PWRSW_DELAY);
grc_local_ctrl |= GRC_LCLCTRL_GPIO_OUTPUT2;
tw32_wait_f(GRC_LOCAL_CTRL, grc_local_ctrl,
TG3_GRC_LCLCTL_PWRSW_DELAY);
grc_local_ctrl &= ~GRC_LCLCTRL_GPIO_OUTPUT0;
tw32_wait_f(GRC_LOCAL_CTRL, grc_local_ctrl,
TG3_GRC_LCLCTL_PWRSW_DELAY);
} else {
u32 no_gpio2;
u32 grc_local_ctrl = 0;
/* Workaround to prevent overdrawing Amps. */
if (tg3_asic_rev(tp) == ASIC_REV_5714) {
grc_local_ctrl |= GRC_LCLCTRL_GPIO_OE3;
tw32_wait_f(GRC_LOCAL_CTRL, tp->grc_local_ctrl |
grc_local_ctrl,
TG3_GRC_LCLCTL_PWRSW_DELAY);
}
/* On 5753 and variants, GPIO2 cannot be used. */
no_gpio2 = tp->nic_sram_data_cfg &
NIC_SRAM_DATA_CFG_NO_GPIO2;
grc_local_ctrl |= GRC_LCLCTRL_GPIO_OE0 |
GRC_LCLCTRL_GPIO_OE1 |
GRC_LCLCTRL_GPIO_OE2 |
GRC_LCLCTRL_GPIO_OUTPUT1 |
GRC_LCLCTRL_GPIO_OUTPUT2;
if (no_gpio2) {
grc_local_ctrl &= ~(GRC_LCLCTRL_GPIO_OE2 |
GRC_LCLCTRL_GPIO_OUTPUT2);
}
tw32_wait_f(GRC_LOCAL_CTRL,
tp->grc_local_ctrl | grc_local_ctrl,
TG3_GRC_LCLCTL_PWRSW_DELAY);
grc_local_ctrl |= GRC_LCLCTRL_GPIO_OUTPUT0;
tw32_wait_f(GRC_LOCAL_CTRL,
tp->grc_local_ctrl | grc_local_ctrl,
TG3_GRC_LCLCTL_PWRSW_DELAY);
if (!no_gpio2) {
grc_local_ctrl &= ~GRC_LCLCTRL_GPIO_OUTPUT2;
tw32_wait_f(GRC_LOCAL_CTRL,
tp->grc_local_ctrl | grc_local_ctrl,
TG3_GRC_LCLCTL_PWRSW_DELAY);
}
}
}
static void tg3_frob_aux_power_5717(struct tg3 *tp, bool wol_enable)
{
u32 msg = 0;
/* Serialize power state transitions */
if (tg3_ape_lock(tp, TG3_APE_LOCK_GPIO))
return;
if (tg3_flag(tp, ENABLE_ASF) || tg3_flag(tp, ENABLE_APE) || wol_enable)
msg = TG3_GPIO_MSG_NEED_VAUX;
msg = tg3_set_function_status(tp, msg);
if (msg & TG3_GPIO_MSG_ALL_DRVR_PRES_MASK)
goto done;
if (msg & TG3_GPIO_MSG_ALL_NEED_VAUX_MASK)
tg3_pwrsrc_switch_to_vaux(tp);
else
tg3_pwrsrc_die_with_vmain(tp);
done:
tg3_ape_unlock(tp, TG3_APE_LOCK_GPIO);
}
static void tg3_frob_aux_power(struct tg3 *tp, bool include_wol)
{
bool need_vaux = false;
/* The GPIOs do something completely different on 57765. */
if (!tg3_flag(tp, IS_NIC) || tg3_flag(tp, 57765_CLASS))
return;
if (tg3_asic_rev(tp) == ASIC_REV_5717 ||
tg3_asic_rev(tp) == ASIC_REV_5719 ||
tg3_asic_rev(tp) == ASIC_REV_5720) {
tg3_frob_aux_power_5717(tp, include_wol ?
tg3_flag(tp, WOL_ENABLE) != 0 : 0);
return;
}
if (tp->pdev_peer && tp->pdev_peer != tp->pdev) {
struct net_device *dev_peer;
dev_peer = pci_get_drvdata(tp->pdev_peer);
/* remove_one() may have been run on the peer. */
if (dev_peer) {
struct tg3 *tp_peer = netdev_priv(dev_peer);
if (tg3_flag(tp_peer, INIT_COMPLETE))
return;
if ((include_wol && tg3_flag(tp_peer, WOL_ENABLE)) ||
tg3_flag(tp_peer, ENABLE_ASF))
need_vaux = true;
}
}
if ((include_wol && tg3_flag(tp, WOL_ENABLE)) ||
tg3_flag(tp, ENABLE_ASF))
need_vaux = true;
if (need_vaux)
tg3_pwrsrc_switch_to_vaux(tp);
else
tg3_pwrsrc_die_with_vmain(tp);
}
static int tg3_5700_link_polarity(struct tg3 *tp, u32 speed)
{
if (tp->led_ctrl == LED_CTRL_MODE_PHY_2)
return 1;
else if ((tp->phy_id & TG3_PHY_ID_MASK) == TG3_PHY_ID_BCM5411) {
if (speed != SPEED_10)
return 1;
} else if (speed == SPEED_10)
return 1;
return 0;
}
static bool tg3_phy_power_bug(struct tg3 *tp)
{
switch (tg3_asic_rev(tp)) {
case ASIC_REV_5700:
case ASIC_REV_5704:
return true;
case ASIC_REV_5780:
if (tp->phy_flags & TG3_PHYFLG_MII_SERDES)
return true;
return false;
case ASIC_REV_5717:
if (!tp->pci_fn)
return true;
return false;
case ASIC_REV_5719:
case ASIC_REV_5720:
if ((tp->phy_flags & TG3_PHYFLG_PHY_SERDES) &&
!tp->pci_fn)
return true;
return false;
}
return false;
}
static void tg3_power_down_phy(struct tg3 *tp, bool do_low_power)
{
u32 val;
if (tp->phy_flags & TG3_PHYFLG_KEEP_LINK_ON_PWRDN)
return;
if (tp->phy_flags & TG3_PHYFLG_PHY_SERDES) {
if (tg3_asic_rev(tp) == ASIC_REV_5704) {
u32 sg_dig_ctrl = tr32(SG_DIG_CTRL);
u32 serdes_cfg = tr32(MAC_SERDES_CFG);
sg_dig_ctrl |=
SG_DIG_USING_HW_AUTONEG | SG_DIG_SOFT_RESET;
tw32(SG_DIG_CTRL, sg_dig_ctrl);
tw32(MAC_SERDES_CFG, serdes_cfg | (1 << 15));
}
return;
}
if (tg3_asic_rev(tp) == ASIC_REV_5906) {
tg3_bmcr_reset(tp);
val = tr32(GRC_MISC_CFG);
tw32_f(GRC_MISC_CFG, val | GRC_MISC_CFG_EPHY_IDDQ);
udelay(40);
return;
} else if (tp->phy_flags & TG3_PHYFLG_IS_FET) {
u32 phytest;
if (!tg3_readphy(tp, MII_TG3_FET_TEST, &phytest)) {
u32 phy;
tg3_writephy(tp, MII_ADVERTISE, 0);
tg3_writephy(tp, MII_BMCR,
BMCR_ANENABLE | BMCR_ANRESTART);
tg3_writephy(tp, MII_TG3_FET_TEST,
phytest | MII_TG3_FET_SHADOW_EN);
if (!tg3_readphy(tp, MII_TG3_FET_SHDW_AUXMODE4, &phy)) {
phy |= MII_TG3_FET_SHDW_AUXMODE4_SBPD;
tg3_writephy(tp,
MII_TG3_FET_SHDW_AUXMODE4,
phy);
}
tg3_writephy(tp, MII_TG3_FET_TEST, phytest);
}
return;
} else if (do_low_power) {
tg3_writephy(tp, MII_TG3_EXT_CTRL,
MII_TG3_EXT_CTRL_FORCE_LED_OFF);
val = MII_TG3_AUXCTL_PCTL_100TX_LPWR |
MII_TG3_AUXCTL_PCTL_SPR_ISOLATE |
MII_TG3_AUXCTL_PCTL_VREG_11V;
tg3_phy_auxctl_write(tp, MII_TG3_AUXCTL_SHDWSEL_PWRCTL, val);
}
/* The PHY should not be powered down on some chips because
* of bugs.
*/
if (tg3_phy_power_bug(tp))
return;
if (tg3_chip_rev(tp) == CHIPREV_5784_AX ||
tg3_chip_rev(tp) == CHIPREV_5761_AX) {
val = tr32(TG3_CPMU_LSPD_1000MB_CLK);
val &= ~CPMU_LSPD_1000MB_MACCLK_MASK;
val |= CPMU_LSPD_1000MB_MACCLK_12_5;
tw32_f(TG3_CPMU_LSPD_1000MB_CLK, val);
}
tg3_writephy(tp, MII_BMCR, BMCR_PDOWN);
}
/* tp->lock is held. */
static int tg3_nvram_lock(struct tg3 *tp)
{
if (tg3_flag(tp, NVRAM)) {
int i;
if (tp->nvram_lock_cnt == 0) {
tw32(NVRAM_SWARB, SWARB_REQ_SET1);
for (i = 0; i < 8000; i++) {
if (tr32(NVRAM_SWARB) & SWARB_GNT1)
break;
udelay(20);
}
if (i == 8000) {
tw32(NVRAM_SWARB, SWARB_REQ_CLR1);
return -ENODEV;
}
}
tp->nvram_lock_cnt++;
}
return 0;
}
/* tp->lock is held. */
static void tg3_nvram_unlock(struct tg3 *tp)
{
if (tg3_flag(tp, NVRAM)) {
if (tp->nvram_lock_cnt > 0)
tp->nvram_lock_cnt--;
if (tp->nvram_lock_cnt == 0)
tw32_f(NVRAM_SWARB, SWARB_REQ_CLR1);
}
}
/* tp->lock is held. */
static void tg3_enable_nvram_access(struct tg3 *tp)
{
if (tg3_flag(tp, 5750_PLUS) && !tg3_flag(tp, PROTECTED_NVRAM)) {
u32 nvaccess = tr32(NVRAM_ACCESS);
tw32(NVRAM_ACCESS, nvaccess | ACCESS_ENABLE);
}
}
/* tp->lock is held. */
static void tg3_disable_nvram_access(struct tg3 *tp)
{
if (tg3_flag(tp, 5750_PLUS) && !tg3_flag(tp, PROTECTED_NVRAM)) {
u32 nvaccess = tr32(NVRAM_ACCESS);
tw32(NVRAM_ACCESS, nvaccess & ~ACCESS_ENABLE);
}
}
static int tg3_nvram_read_using_eeprom(struct tg3 *tp,
u32 offset, u32 *val)
{
u32 tmp;
int i;
if (offset > EEPROM_ADDR_ADDR_MASK || (offset % 4) != 0)
return -EINVAL;
tmp = tr32(GRC_EEPROM_ADDR) & ~(EEPROM_ADDR_ADDR_MASK |
EEPROM_ADDR_DEVID_MASK |
EEPROM_ADDR_READ);
tw32(GRC_EEPROM_ADDR,
tmp |
(0 << EEPROM_ADDR_DEVID_SHIFT) |
((offset << EEPROM_ADDR_ADDR_SHIFT) &
EEPROM_ADDR_ADDR_MASK) |
EEPROM_ADDR_READ | EEPROM_ADDR_START);
for (i = 0; i < 1000; i++) {
tmp = tr32(GRC_EEPROM_ADDR);
if (tmp & EEPROM_ADDR_COMPLETE)
break;
msleep(1);
}
if (!(tmp & EEPROM_ADDR_COMPLETE))
return -EBUSY;
tmp = tr32(GRC_EEPROM_DATA);
/*
* The data will always be opposite the native endian
* format. Perform a blind byteswap to compensate.
*/
*val = swab32(tmp);
return 0;
}
#define NVRAM_CMD_TIMEOUT 10000
static int tg3_nvram_exec_cmd(struct tg3 *tp, u32 nvram_cmd)
{
int i;
tw32(NVRAM_CMD, nvram_cmd);
for (i = 0; i < NVRAM_CMD_TIMEOUT; i++) {
udelay(10);
if (tr32(NVRAM_CMD) & NVRAM_CMD_DONE) {
udelay(10);
break;
}
}
if (i == NVRAM_CMD_TIMEOUT)
return -EBUSY;
return 0;
}
static u32 tg3_nvram_phys_addr(struct tg3 *tp, u32 addr)
{
if (tg3_flag(tp, NVRAM) &&
tg3_flag(tp, NVRAM_BUFFERED) &&
tg3_flag(tp, FLASH) &&
!tg3_flag(tp, NO_NVRAM_ADDR_TRANS) &&
(tp->nvram_jedecnum == JEDEC_ATMEL))
addr = ((addr / tp->nvram_pagesize) <<
ATMEL_AT45DB0X1B_PAGE_POS) +
(addr % tp->nvram_pagesize);
return addr;
}
static u32 tg3_nvram_logical_addr(struct tg3 *tp, u32 addr)
{
if (tg3_flag(tp, NVRAM) &&
tg3_flag(tp, NVRAM_BUFFERED) &&
tg3_flag(tp, FLASH) &&
!tg3_flag(tp, NO_NVRAM_ADDR_TRANS) &&
(tp->nvram_jedecnum == JEDEC_ATMEL))
addr = ((addr >> ATMEL_AT45DB0X1B_PAGE_POS) *
tp->nvram_pagesize) +
(addr & ((1 << ATMEL_AT45DB0X1B_PAGE_POS) - 1));
return addr;
}
/* NOTE: Data read in from NVRAM is byteswapped according to
* the byteswapping settings for all other register accesses.
* tg3 devices are BE devices, so on a BE machine, the data
* returned will be exactly as it is seen in NVRAM. On a LE
* machine, the 32-bit value will be byteswapped.
*/
static int tg3_nvram_read(struct tg3 *tp, u32 offset, u32 *val)
{
int ret;
if (!tg3_flag(tp, NVRAM))
return tg3_nvram_read_using_eeprom(tp, offset, val);
offset = tg3_nvram_phys_addr(tp, offset);
if (offset > NVRAM_ADDR_MSK)
return -EINVAL;
ret = tg3_nvram_lock(tp);
if (ret)
return ret;
tg3_enable_nvram_access(tp);
tw32(NVRAM_ADDR, offset);
ret = tg3_nvram_exec_cmd(tp, NVRAM_CMD_RD | NVRAM_CMD_GO |
NVRAM_CMD_FIRST | NVRAM_CMD_LAST | NVRAM_CMD_DONE);
if (ret == 0)
*val = tr32(NVRAM_RDDATA);
tg3_disable_nvram_access(tp);
tg3_nvram_unlock(tp);
return ret;
}
/* Ensures NVRAM data is in bytestream format. */
static int tg3_nvram_read_be32(struct tg3 *tp, u32 offset, __be32 *val)
{
u32 v;
int res = tg3_nvram_read(tp, offset, &v);
if (!res)
*val = cpu_to_be32(v);
return res;
}
static int tg3_nvram_write_block_using_eeprom(struct tg3 *tp,
u32 offset, u32 len, u8 *buf)
{
int i, j, rc = 0;
u32 val;
for (i = 0; i < len; i += 4) {
u32 addr;
__be32 data;
addr = offset + i;
memcpy(&data, buf + i, 4);
/*
* The SEEPROM interface expects the data to always be opposite
* the native endian format. We accomplish this by reversing
* all the operations that would have been performed on the
* data from a call to tg3_nvram_read_be32().
*/
tw32(GRC_EEPROM_DATA, swab32(be32_to_cpu(data)));
val = tr32(GRC_EEPROM_ADDR);
tw32(GRC_EEPROM_ADDR, val | EEPROM_ADDR_COMPLETE);
val &= ~(EEPROM_ADDR_ADDR_MASK | EEPROM_ADDR_DEVID_MASK |
EEPROM_ADDR_READ);
tw32(GRC_EEPROM_ADDR, val |
(0 << EEPROM_ADDR_DEVID_SHIFT) |
(addr & EEPROM_ADDR_ADDR_MASK) |
EEPROM_ADDR_START |
EEPROM_ADDR_WRITE);
for (j = 0; j < 1000; j++) {
val = tr32(GRC_EEPROM_ADDR);
if (val & EEPROM_ADDR_COMPLETE)
break;
msleep(1);
}
if (!(val & EEPROM_ADDR_COMPLETE)) {
rc = -EBUSY;
break;
}
}
return rc;
}
/* offset and length are dword aligned */
static int tg3_nvram_write_block_unbuffered(struct tg3 *tp, u32 offset, u32 len,
u8 *buf)
{
int ret = 0;
u32 pagesize = tp->nvram_pagesize;
u32 pagemask = pagesize - 1;
u32 nvram_cmd;
u8 *tmp;
tmp = kmalloc(pagesize, GFP_KERNEL);
if (tmp == NULL)
return -ENOMEM;
while (len) {
int j;
u32 phy_addr, page_off, size;
phy_addr = offset & ~pagemask;
for (j = 0; j < pagesize; j += 4) {
ret = tg3_nvram_read_be32(tp, phy_addr + j,
(__be32 *) (tmp + j));
if (ret)
break;
}
if (ret)
break;
page_off = offset & pagemask;
size = pagesize;
if (len < size)
size = len;
len -= size;
memcpy(tmp + page_off, buf, size);
offset = offset + (pagesize - page_off);
tg3_enable_nvram_access(tp);
/*
* Before we can erase the flash page, we need
* to issue a special "write enable" command.
*/
nvram_cmd = NVRAM_CMD_WREN | NVRAM_CMD_GO | NVRAM_CMD_DONE;
if (tg3_nvram_exec_cmd(tp, nvram_cmd))
break;
/* Erase the target page */
tw32(NVRAM_ADDR, phy_addr);
nvram_cmd = NVRAM_CMD_GO | NVRAM_CMD_DONE | NVRAM_CMD_WR |
NVRAM_CMD_FIRST | NVRAM_CMD_LAST | NVRAM_CMD_ERASE;
if (tg3_nvram_exec_cmd(tp, nvram_cmd))
break;
/* Issue another write enable to start the write. */
nvram_cmd = NVRAM_CMD_WREN | NVRAM_CMD_GO | NVRAM_CMD_DONE;
if (tg3_nvram_exec_cmd(tp, nvram_cmd))
break;
for (j = 0; j < pagesize; j += 4) {
__be32 data;
data = *((__be32 *) (tmp + j));
tw32(NVRAM_WRDATA, be32_to_cpu(data));
tw32(NVRAM_ADDR, phy_addr + j);
nvram_cmd = NVRAM_CMD_GO | NVRAM_CMD_DONE |
NVRAM_CMD_WR;
if (j == 0)
nvram_cmd |= NVRAM_CMD_FIRST;
else if (j == (pagesize - 4))
nvram_cmd |= NVRAM_CMD_LAST;
ret = tg3_nvram_exec_cmd(tp, nvram_cmd);
if (ret)
break;
}
if (ret)
break;
}
nvram_cmd = NVRAM_CMD_WRDI | NVRAM_CMD_GO | NVRAM_CMD_DONE;
tg3_nvram_exec_cmd(tp, nvram_cmd);
kfree(tmp);
return ret;
}
/* offset and length are dword aligned */
static int tg3_nvram_write_block_buffered(struct tg3 *tp, u32 offset, u32 len,
u8 *buf)
{
int i, ret = 0;
for (i = 0; i < len; i += 4, offset += 4) {
u32 page_off, phy_addr, nvram_cmd;
__be32 data;
memcpy(&data, buf + i, 4);
tw32(NVRAM_WRDATA, be32_to_cpu(data));
page_off = offset % tp->nvram_pagesize;
phy_addr = tg3_nvram_phys_addr(tp, offset);
nvram_cmd = NVRAM_CMD_GO | NVRAM_CMD_DONE | NVRAM_CMD_WR;
if (page_off == 0 || i == 0)
nvram_cmd |= NVRAM_CMD_FIRST;
if (page_off == (tp->nvram_pagesize - 4))
nvram_cmd |= NVRAM_CMD_LAST;
if (i == (len - 4))
nvram_cmd |= NVRAM_CMD_LAST;
if ((nvram_cmd & NVRAM_CMD_FIRST) ||
!tg3_flag(tp, FLASH) ||
!tg3_flag(tp, 57765_PLUS))
tw32(NVRAM_ADDR, phy_addr);
if (tg3_asic_rev(tp) != ASIC_REV_5752 &&
!tg3_flag(tp, 5755_PLUS) &&
(tp->nvram_jedecnum == JEDEC_ST) &&
(nvram_cmd & NVRAM_CMD_FIRST)) {
u32 cmd;
cmd = NVRAM_CMD_WREN | NVRAM_CMD_GO | NVRAM_CMD_DONE;
ret = tg3_nvram_exec_cmd(tp, cmd);
if (ret)
break;
}
if (!tg3_flag(tp, FLASH)) {
/* We always do complete word writes to eeprom. */
nvram_cmd |= (NVRAM_CMD_FIRST | NVRAM_CMD_LAST);
}
ret = tg3_nvram_exec_cmd(tp, nvram_cmd);
if (ret)
break;
}
return ret;
}
/* offset and length are dword aligned */
static int tg3_nvram_write_block(struct tg3 *tp, u32 offset, u32 len, u8 *buf)
{
int ret;
if (tg3_flag(tp, EEPROM_WRITE_PROT)) {
tw32_f(GRC_LOCAL_CTRL, tp->grc_local_ctrl &
~GRC_LCLCTRL_GPIO_OUTPUT1);
udelay(40);
}
if (!tg3_flag(tp, NVRAM)) {
ret = tg3_nvram_write_block_using_eeprom(tp, offset, len, buf);
} else {
u32 grc_mode;
ret = tg3_nvram_lock(tp);
if (ret)
return ret;
tg3_enable_nvram_access(tp);
if (tg3_flag(tp, 5750_PLUS) && !tg3_flag(tp, PROTECTED_NVRAM))
tw32(NVRAM_WRITE1, 0x406);
grc_mode = tr32(GRC_MODE);
tw32(GRC_MODE, grc_mode | GRC_MODE_NVRAM_WR_ENABLE);
if (tg3_flag(tp, NVRAM_BUFFERED) || !tg3_flag(tp, FLASH)) {
ret = tg3_nvram_write_block_buffered(tp, offset, len,
buf);
} else {
ret = tg3_nvram_write_block_unbuffered(tp, offset, len,
buf);
}
grc_mode = tr32(GRC_MODE);
tw32(GRC_MODE, grc_mode & ~GRC_MODE_NVRAM_WR_ENABLE);
tg3_disable_nvram_access(tp);
tg3_nvram_unlock(tp);
}
if (tg3_flag(tp, EEPROM_WRITE_PROT)) {
tw32_f(GRC_LOCAL_CTRL, tp->grc_local_ctrl);
udelay(40);
}
return ret;
}
#define RX_CPU_SCRATCH_BASE 0x30000
#define RX_CPU_SCRATCH_SIZE 0x04000
#define TX_CPU_SCRATCH_BASE 0x34000
#define TX_CPU_SCRATCH_SIZE 0x04000
/* tp->lock is held. */
static int tg3_pause_cpu(struct tg3 *tp, u32 cpu_base)
{
int i;
const int iters = 10000;
for (i = 0; i < iters; i++) {
tw32(cpu_base + CPU_STATE, 0xffffffff);
tw32(cpu_base + CPU_MODE, CPU_MODE_HALT);
if (tr32(cpu_base + CPU_MODE) & CPU_MODE_HALT)
break;
}
return (i == iters) ? -EBUSY : 0;
}
/* tp->lock is held. */
static int tg3_rxcpu_pause(struct tg3 *tp)
{
int rc = tg3_pause_cpu(tp, RX_CPU_BASE);
tw32(RX_CPU_BASE + CPU_STATE, 0xffffffff);
tw32_f(RX_CPU_BASE + CPU_MODE, CPU_MODE_HALT);
udelay(10);
return rc;
}
/* tp->lock is held. */
static int tg3_txcpu_pause(struct tg3 *tp)
{
return tg3_pause_cpu(tp, TX_CPU_BASE);
}
/* tp->lock is held. */
static void tg3_resume_cpu(struct tg3 *tp, u32 cpu_base)
{
tw32(cpu_base + CPU_STATE, 0xffffffff);
tw32_f(cpu_base + CPU_MODE, 0x00000000);
}
/* tp->lock is held. */
static void tg3_rxcpu_resume(struct tg3 *tp)
{
tg3_resume_cpu(tp, RX_CPU_BASE);
}
/* tp->lock is held. */
static int tg3_halt_cpu(struct tg3 *tp, u32 cpu_base)
{
int rc;
BUG_ON(cpu_base == TX_CPU_BASE && tg3_flag(tp, 5705_PLUS));
if (tg3_asic_rev(tp) == ASIC_REV_5906) {
u32 val = tr32(GRC_VCPU_EXT_CTRL);
tw32(GRC_VCPU_EXT_CTRL, val | GRC_VCPU_EXT_CTRL_HALT_CPU);
return 0;
}
if (cpu_base == RX_CPU_BASE) {
rc = tg3_rxcpu_pause(tp);
} else {
/*
* There is only an Rx CPU for the 5750 derivative in the
* BCM4785.
*/
if (tg3_flag(tp, IS_SSB_CORE))
return 0;
rc = tg3_txcpu_pause(tp);
}
if (rc) {
netdev_err(tp->dev, "%s timed out, %s CPU\n",
__func__, cpu_base == RX_CPU_BASE ? "RX" : "TX");
return -ENODEV;
}
/* Clear firmware's nvram arbitration. */
if (tg3_flag(tp, NVRAM))
tw32(NVRAM_SWARB, SWARB_REQ_CLR0);
return 0;
}
static int tg3_fw_data_len(struct tg3 *tp,
const struct tg3_firmware_hdr *fw_hdr)
{
int fw_len;
/* Non fragmented firmware have one firmware header followed by a
* contiguous chunk of data to be written. The length field in that
* header is not the length of data to be written but the complete
* length of the bss. The data length is determined based on
* tp->fw->size minus headers.
*
* Fragmented firmware have a main header followed by multiple
* fragments. Each fragment is identical to non fragmented firmware
* with a firmware header followed by a contiguous chunk of data. In
* the main header, the length field is unused and set to 0xffffffff.
* In each fragment header the length is the entire size of that
* fragment i.e. fragment data + header length. Data length is
* therefore length field in the header minus TG3_FW_HDR_LEN.
*/
if (tp->fw_len == 0xffffffff)
fw_len = be32_to_cpu(fw_hdr->len);
else
fw_len = tp->fw->size;
return (fw_len - TG3_FW_HDR_LEN) / sizeof(u32);
}
/* tp->lock is held. */
static int tg3_load_firmware_cpu(struct tg3 *tp, u32 cpu_base,
u32 cpu_scratch_base, int cpu_scratch_size,
const struct tg3_firmware_hdr *fw_hdr)
{
int err, i;
void (*write_op)(struct tg3 *, u32, u32);
int total_len = tp->fw->size;
if (cpu_base == TX_CPU_BASE && tg3_flag(tp, 5705_PLUS)) {
netdev_err(tp->dev,
"%s: Trying to load TX cpu firmware which is 5705\n",
__func__);
return -EINVAL;
}
if (tg3_flag(tp, 5705_PLUS) && tg3_asic_rev(tp) != ASIC_REV_57766)
write_op = tg3_write_mem;
else
write_op = tg3_write_indirect_reg32;
if (tg3_asic_rev(tp) != ASIC_REV_57766) {
/* It is possible that bootcode is still loading at this point.
* Get the nvram lock first before halting the cpu.
*/
int lock_err = tg3_nvram_lock(tp);
err = tg3_halt_cpu(tp, cpu_base);
if (!lock_err)
tg3_nvram_unlock(tp);
if (err)
goto out;
for (i = 0; i < cpu_scratch_size; i += sizeof(u32))
write_op(tp, cpu_scratch_base + i, 0);
tw32(cpu_base + CPU_STATE, 0xffffffff);
tw32(cpu_base + CPU_MODE,
tr32(cpu_base + CPU_MODE) | CPU_MODE_HALT);
} else {
/* Subtract additional main header for fragmented firmware and
* advance to the first fragment
*/
total_len -= TG3_FW_HDR_LEN;
fw_hdr++;
}
do {
u32 *fw_data = (u32 *)(fw_hdr + 1);
for (i = 0; i < tg3_fw_data_len(tp, fw_hdr); i++)
write_op(tp, cpu_scratch_base +
(be32_to_cpu(fw_hdr->base_addr) & 0xffff) +
(i * sizeof(u32)),
be32_to_cpu(fw_data[i]));
total_len -= be32_to_cpu(fw_hdr->len);
/* Advance to next fragment */
fw_hdr = (struct tg3_firmware_hdr *)
((void *)fw_hdr + be32_to_cpu(fw_hdr->len));
} while (total_len > 0);
err = 0;
out:
return err;
}
/* tp->lock is held. */
static int tg3_pause_cpu_and_set_pc(struct tg3 *tp, u32 cpu_base, u32 pc)
{
int i;
const int iters = 5;
tw32(cpu_base + CPU_STATE, 0xffffffff);
tw32_f(cpu_base + CPU_PC, pc);
for (i = 0; i < iters; i++) {
if (tr32(cpu_base + CPU_PC) == pc)
break;
tw32(cpu_base + CPU_STATE, 0xffffffff);
tw32(cpu_base + CPU_MODE, CPU_MODE_HALT);
tw32_f(cpu_base + CPU_PC, pc);
udelay(1000);
}
return (i == iters) ? -EBUSY : 0;
}
/* tp->lock is held. */
static int tg3_load_5701_a0_firmware_fix(struct tg3 *tp)
{
const struct tg3_firmware_hdr *fw_hdr;
int err;
fw_hdr = (struct tg3_firmware_hdr *)tp->fw->data;
/* Firmware blob starts with version numbers, followed by
start address and length. We are setting complete length.
length = end_address_of_bss - start_address_of_text.
Remainder is the blob to be loaded contiguously
from start address. */
err = tg3_load_firmware_cpu(tp, RX_CPU_BASE,
RX_CPU_SCRATCH_BASE, RX_CPU_SCRATCH_SIZE,
fw_hdr);
if (err)
return err;
err = tg3_load_firmware_cpu(tp, TX_CPU_BASE,
TX_CPU_SCRATCH_BASE, TX_CPU_SCRATCH_SIZE,
fw_hdr);
if (err)
return err;
/* Now startup only the RX cpu. */
err = tg3_pause_cpu_and_set_pc(tp, RX_CPU_BASE,
be32_to_cpu(fw_hdr->base_addr));
if (err) {
netdev_err(tp->dev, "%s fails to set RX CPU PC, is %08x "
"should be %08x\n", __func__,
tr32(RX_CPU_BASE + CPU_PC),
be32_to_cpu(fw_hdr->base_addr));
return -ENODEV;
}
tg3_rxcpu_resume(tp);
return 0;
}
static int tg3_validate_rxcpu_state(struct tg3 *tp)
{
const int iters = 1000;
int i;
u32 val;
/* Wait for boot code to complete initialization and enter service
* loop. It is then safe to download service patches
*/
for (i = 0; i < iters; i++) {
if (tr32(RX_CPU_HWBKPT) == TG3_SBROM_IN_SERVICE_LOOP)
break;
udelay(10);
}
if (i == iters) {
netdev_err(tp->dev, "Boot code not ready for service patches\n");
return -EBUSY;
}
val = tg3_read_indirect_reg32(tp, TG3_57766_FW_HANDSHAKE);
if (val & 0xff) {
netdev_warn(tp->dev,
"Other patches exist. Not downloading EEE patch\n");
return -EEXIST;
}
return 0;
}
/* tp->lock is held. */
static void tg3_load_57766_firmware(struct tg3 *tp)
{
struct tg3_firmware_hdr *fw_hdr;
if (!tg3_flag(tp, NO_NVRAM))
return;
if (tg3_validate_rxcpu_state(tp))
return;
if (!tp->fw)
return;
/* This firmware blob has a different format than older firmware
* releases as given below. The main difference is we have fragmented
* data to be written to non-contiguous locations.
*
* In the beginning we have a firmware header identical to other
* firmware which consists of version, base addr and length. The length
* here is unused and set to 0xffffffff.
*
* This is followed by a series of firmware fragments which are
* individually identical to previous firmware. i.e. they have the
* firmware header and followed by data for that fragment. The version
* field of the individual fragment header is unused.
*/
fw_hdr = (struct tg3_firmware_hdr *)tp->fw->data;
if (be32_to_cpu(fw_hdr->base_addr) != TG3_57766_FW_BASE_ADDR)
return;
if (tg3_rxcpu_pause(tp))
return;
/* tg3_load_firmware_cpu() will always succeed for the 57766 */
tg3_load_firmware_cpu(tp, 0, TG3_57766_FW_BASE_ADDR, 0, fw_hdr);
tg3_rxcpu_resume(tp);
}
/* tp->lock is held. */
static int tg3_load_tso_firmware(struct tg3 *tp)
{
const struct tg3_firmware_hdr *fw_hdr;
unsigned long cpu_base, cpu_scratch_base, cpu_scratch_size;
int err;
if (!tg3_flag(tp, FW_TSO))
return 0;
fw_hdr = (struct tg3_firmware_hdr *)tp->fw->data;
/* Firmware blob starts with version numbers, followed by
start address and length. We are setting complete length.
length = end_address_of_bss - start_address_of_text.
Remainder is the blob to be loaded contiguously
from start address. */
cpu_scratch_size = tp->fw_len;
if (tg3_asic_rev(tp) == ASIC_REV_5705) {
cpu_base = RX_CPU_BASE;
cpu_scratch_base = NIC_SRAM_MBUF_POOL_BASE5705;
} else {
cpu_base = TX_CPU_BASE;
cpu_scratch_base = TX_CPU_SCRATCH_BASE;
cpu_scratch_size = TX_CPU_SCRATCH_SIZE;
}
err = tg3_load_firmware_cpu(tp, cpu_base,
cpu_scratch_base, cpu_scratch_size,
fw_hdr);
if (err)
return err;
/* Now startup the cpu. */
err = tg3_pause_cpu_and_set_pc(tp, cpu_base,
be32_to_cpu(fw_hdr->base_addr));
if (err) {
netdev_err(tp->dev,
"%s fails to set CPU PC, is %08x should be %08x\n",
__func__, tr32(cpu_base + CPU_PC),
be32_to_cpu(fw_hdr->base_addr));
return -ENODEV;
}
tg3_resume_cpu(tp, cpu_base);
return 0;
}
/* tp->lock is held. */
static void __tg3_set_mac_addr(struct tg3 *tp, bool skip_mac_1)
{
u32 addr_high, addr_low;
int i;
addr_high = ((tp->dev->dev_addr[0] << 8) |
tp->dev->dev_addr[1]);
addr_low = ((tp->dev->dev_addr[2] << 24) |
(tp->dev->dev_addr[3] << 16) |
(tp->dev->dev_addr[4] << 8) |
(tp->dev->dev_addr[5] << 0));
for (i = 0; i < 4; i++) {
if (i == 1 && skip_mac_1)
continue;
tw32(MAC_ADDR_0_HIGH + (i * 8), addr_high);
tw32(MAC_ADDR_0_LOW + (i * 8), addr_low);
}
if (tg3_asic_rev(tp) == ASIC_REV_5703 ||
tg3_asic_rev(tp) == ASIC_REV_5704) {
for (i = 0; i < 12; i++) {
tw32(MAC_EXTADDR_0_HIGH + (i * 8), addr_high);
tw32(MAC_EXTADDR_0_LOW + (i * 8), addr_low);
}
}
addr_high = (tp->dev->dev_addr[0] +
tp->dev->dev_addr[1] +
tp->dev->dev_addr[2] +
tp->dev->dev_addr[3] +
tp->dev->dev_addr[4] +
tp->dev->dev_addr[5]) &
TX_BACKOFF_SEED_MASK;
tw32(MAC_TX_BACKOFF_SEED, addr_high);
}
static void tg3_enable_register_access(struct tg3 *tp)
{
/*
* Make sure register accesses (indirect or otherwise) will function
* correctly.
*/
pci_write_config_dword(tp->pdev,
TG3PCI_MISC_HOST_CTRL, tp->misc_host_ctrl);
}
static int tg3_power_up(struct tg3 *tp)
{
int err;
tg3_enable_register_access(tp);
err = pci_set_power_state(tp->pdev, PCI_D0);
if (!err) {
/* Switch out of Vaux if it is a NIC */
tg3_pwrsrc_switch_to_vmain(tp);
} else {
netdev_err(tp->dev, "Transition to D0 failed\n");
}
return err;
}
static int tg3_setup_phy(struct tg3 *, bool);
static int tg3_power_down_prepare(struct tg3 *tp)
{
u32 misc_host_ctrl;
bool device_should_wake, do_low_power;
tg3_enable_register_access(tp);
/* Restore the CLKREQ setting. */
if (tg3_flag(tp, CLKREQ_BUG))
pcie_capability_set_word(tp->pdev, PCI_EXP_LNKCTL,
PCI_EXP_LNKCTL_CLKREQ_EN);
misc_host_ctrl = tr32(TG3PCI_MISC_HOST_CTRL);
tw32(TG3PCI_MISC_HOST_CTRL,
misc_host_ctrl | MISC_HOST_CTRL_MASK_PCI_INT);
device_should_wake = device_may_wakeup(&tp->pdev->dev) &&
tg3_flag(tp, WOL_ENABLE);
if (tg3_flag(tp, USE_PHYLIB)) {
do_low_power = false;
if ((tp->phy_flags & TG3_PHYFLG_IS_CONNECTED) &&
!(tp->phy_flags & TG3_PHYFLG_IS_LOW_POWER)) {
struct phy_device *phydev;
u32 phyid, advertising;
phydev = tp->mdio_bus->phy_map[TG3_PHY_MII_ADDR];
tp->phy_flags |= TG3_PHYFLG_IS_LOW_POWER;
tp->link_config.speed = phydev->speed;
tp->link_config.duplex = phydev->duplex;
tp->link_config.autoneg = phydev->autoneg;
tp->link_config.advertising = phydev->advertising;
advertising = ADVERTISED_TP |
ADVERTISED_Pause |
ADVERTISED_Autoneg |
ADVERTISED_10baseT_Half;
if (tg3_flag(tp, ENABLE_ASF) || device_should_wake) {
if (tg3_flag(tp, WOL_SPEED_100MB))
advertising |=
ADVERTISED_100baseT_Half |
ADVERTISED_100baseT_Full |
ADVERTISED_10baseT_Full;
else
advertising |= ADVERTISED_10baseT_Full;
}
phydev->advertising = advertising;
phy_start_aneg(phydev);
phyid = phydev->drv->phy_id & phydev->drv->phy_id_mask;
if (phyid != PHY_ID_BCMAC131) {
phyid &= PHY_BCM_OUI_MASK;
if (phyid == PHY_BCM_OUI_1 ||
phyid == PHY_BCM_OUI_2 ||
phyid == PHY_BCM_OUI_3)
do_low_power = true;
}
}
} else {
do_low_power = true;
if (!(tp->phy_flags & TG3_PHYFLG_IS_LOW_POWER))
tp->phy_flags |= TG3_PHYFLG_IS_LOW_POWER;
if (!(tp->phy_flags & TG3_PHYFLG_ANY_SERDES))
tg3_setup_phy(tp, false);
}
if (tg3_asic_rev(tp) == ASIC_REV_5906) {
u32 val;
val = tr32(GRC_VCPU_EXT_CTRL);
tw32(GRC_VCPU_EXT_CTRL, val | GRC_VCPU_EXT_CTRL_DISABLE_WOL);
} else if (!tg3_flag(tp, ENABLE_ASF)) {
int i;
u32 val;
for (i = 0; i < 200; i++) {
tg3_read_mem(tp, NIC_SRAM_FW_ASF_STATUS_MBOX, &val);
if (val == ~NIC_SRAM_FIRMWARE_MBOX_MAGIC1)
break;
msleep(1);
}
}
if (tg3_flag(tp, WOL_CAP))
tg3_write_mem(tp, NIC_SRAM_WOL_MBOX, WOL_SIGNATURE |
WOL_DRV_STATE_SHUTDOWN |
WOL_DRV_WOL |
WOL_SET_MAGIC_PKT);
if (device_should_wake) {
u32 mac_mode;
if (!(tp->phy_flags & TG3_PHYFLG_PHY_SERDES)) {
if (do_low_power &&
!(tp->phy_flags & TG3_PHYFLG_IS_FET)) {
tg3_phy_auxctl_write(tp,
MII_TG3_AUXCTL_SHDWSEL_PWRCTL,
MII_TG3_AUXCTL_PCTL_WOL_EN |
MII_TG3_AUXCTL_PCTL_100TX_LPWR |
MII_TG3_AUXCTL_PCTL_CL_AB_TXDAC);
udelay(40);
}
if (tp->phy_flags & TG3_PHYFLG_MII_SERDES)
mac_mode = MAC_MODE_PORT_MODE_GMII;
else if (tp->phy_flags &
TG3_PHYFLG_KEEP_LINK_ON_PWRDN) {
if (tp->link_config.active_speed == SPEED_1000)
mac_mode = MAC_MODE_PORT_MODE_GMII;
else
mac_mode = MAC_MODE_PORT_MODE_MII;
} else
mac_mode = MAC_MODE_PORT_MODE_MII;
mac_mode |= tp->mac_mode & MAC_MODE_LINK_POLARITY;
if (tg3_asic_rev(tp) == ASIC_REV_5700) {
u32 speed = tg3_flag(tp, WOL_SPEED_100MB) ?
SPEED_100 : SPEED_10;
if (tg3_5700_link_polarity(tp, speed))
mac_mode |= MAC_MODE_LINK_POLARITY;
else
mac_mode &= ~MAC_MODE_LINK_POLARITY;
}
} else {
mac_mode = MAC_MODE_PORT_MODE_TBI;
}
if (!tg3_flag(tp, 5750_PLUS))
tw32(MAC_LED_CTRL, tp->led_ctrl);
mac_mode |= MAC_MODE_MAGIC_PKT_ENABLE;
if ((tg3_flag(tp, 5705_PLUS) && !tg3_flag(tp, 5780_CLASS)) &&
(tg3_flag(tp, ENABLE_ASF) || tg3_flag(tp, ENABLE_APE)))
mac_mode |= MAC_MODE_KEEP_FRAME_IN_WOL;
if (tg3_flag(tp, ENABLE_APE))
mac_mode |= MAC_MODE_APE_TX_EN |
MAC_MODE_APE_RX_EN |
MAC_MODE_TDE_ENABLE;
tw32_f(MAC_MODE, mac_mode);
udelay(100);
tw32_f(MAC_RX_MODE, RX_MODE_ENABLE);
udelay(10);
}
if (!tg3_flag(tp, WOL_SPEED_100MB) &&
(tg3_asic_rev(tp) == ASIC_REV_5700 ||
tg3_asic_rev(tp) == ASIC_REV_5701)) {
u32 base_val;
base_val = tp->pci_clock_ctrl;
base_val |= (CLOCK_CTRL_RXCLK_DISABLE |
CLOCK_CTRL_TXCLK_DISABLE);
tw32_wait_f(TG3PCI_CLOCK_CTRL, base_val | CLOCK_CTRL_ALTCLK |
CLOCK_CTRL_PWRDOWN_PLL133, 40);
} else if (tg3_flag(tp, 5780_CLASS) ||
tg3_flag(tp, CPMU_PRESENT) ||
tg3_asic_rev(tp) == ASIC_REV_5906) {
/* do nothing */
} else if (!(tg3_flag(tp, 5750_PLUS) && tg3_flag(tp, ENABLE_ASF))) {
u32 newbits1, newbits2;
if (tg3_asic_rev(tp) == ASIC_REV_5700 ||
tg3_asic_rev(tp) == ASIC_REV_5701) {
newbits1 = (CLOCK_CTRL_RXCLK_DISABLE |
CLOCK_CTRL_TXCLK_DISABLE |
CLOCK_CTRL_ALTCLK);
newbits2 = newbits1 | CLOCK_CTRL_44MHZ_CORE;
} else if (tg3_flag(tp, 5705_PLUS)) {
newbits1 = CLOCK_CTRL_625_CORE;
newbits2 = newbits1 | CLOCK_CTRL_ALTCLK;
} else {
newbits1 = CLOCK_CTRL_ALTCLK;
newbits2 = newbits1 | CLOCK_CTRL_44MHZ_CORE;
}
tw32_wait_f(TG3PCI_CLOCK_CTRL, tp->pci_clock_ctrl | newbits1,
40);
tw32_wait_f(TG3PCI_CLOCK_CTRL, tp->pci_clock_ctrl | newbits2,
40);
if (!tg3_flag(tp, 5705_PLUS)) {
u32 newbits3;
if (tg3_asic_rev(tp) == ASIC_REV_5700 ||
tg3_asic_rev(tp) == ASIC_REV_5701) {
newbits3 = (CLOCK_CTRL_RXCLK_DISABLE |
CLOCK_CTRL_TXCLK_DISABLE |
CLOCK_CTRL_44MHZ_CORE);
} else {
newbits3 = CLOCK_CTRL_44MHZ_CORE;
}
tw32_wait_f(TG3PCI_CLOCK_CTRL,
tp->pci_clock_ctrl | newbits3, 40);
}
}
if (!(device_should_wake) && !tg3_flag(tp, ENABLE_ASF))
tg3_power_down_phy(tp, do_low_power);
tg3_frob_aux_power(tp, true);
/* Workaround for unstable PLL clock */
if ((!tg3_flag(tp, IS_SSB_CORE)) &&
((tg3_chip_rev(tp) == CHIPREV_5750_AX) ||
(tg3_chip_rev(tp) == CHIPREV_5750_BX))) {
u32 val = tr32(0x7d00);
val &= ~((1 << 16) | (1 << 4) | (1 << 2) | (1 << 1) | 1);
tw32(0x7d00, val);
if (!tg3_flag(tp, ENABLE_ASF)) {
int err;
err = tg3_nvram_lock(tp);
tg3_halt_cpu(tp, RX_CPU_BASE);
if (!err)
tg3_nvram_unlock(tp);
}
}
tg3_write_sig_post_reset(tp, RESET_KIND_SHUTDOWN);
return 0;
}
static void tg3_power_down(struct tg3 *tp)
{
tg3_power_down_prepare(tp);
pci_wake_from_d3(tp->pdev, tg3_flag(tp, WOL_ENABLE));
pci_set_power_state(tp->pdev, PCI_D3hot);
}
static void tg3_aux_stat_to_speed_duplex(struct tg3 *tp, u32 val, u16 *speed, u8 *duplex)
{
switch (val & MII_TG3_AUX_STAT_SPDMASK) {
case MII_TG3_AUX_STAT_10HALF:
*speed = SPEED_10;
*duplex = DUPLEX_HALF;
break;
case MII_TG3_AUX_STAT_10FULL:
*speed = SPEED_10;
*duplex = DUPLEX_FULL;
break;
case MII_TG3_AUX_STAT_100HALF:
*speed = SPEED_100;
*duplex = DUPLEX_HALF;
break;
case MII_TG3_AUX_STAT_100FULL:
*speed = SPEED_100;
*duplex = DUPLEX_FULL;
break;
case MII_TG3_AUX_STAT_1000HALF:
*speed = SPEED_1000;
*duplex = DUPLEX_HALF;
break;
case MII_TG3_AUX_STAT_1000FULL:
*speed = SPEED_1000;
*duplex = DUPLEX_FULL;
break;
default:
if (tp->phy_flags & TG3_PHYFLG_IS_FET) {
*speed = (val & MII_TG3_AUX_STAT_100) ? SPEED_100 :
SPEED_10;
*duplex = (val & MII_TG3_AUX_STAT_FULL) ? DUPLEX_FULL :
DUPLEX_HALF;
break;
}
*speed = SPEED_UNKNOWN;
*duplex = DUPLEX_UNKNOWN;
break;
}
}
static int tg3_phy_autoneg_cfg(struct tg3 *tp, u32 advertise, u32 flowctrl)
{
int err = 0;
u32 val, new_adv;
new_adv = ADVERTISE_CSMA;
new_adv |= ethtool_adv_to_mii_adv_t(advertise) & ADVERTISE_ALL;
new_adv |= mii_advertise_flowctrl(flowctrl);
err = tg3_writephy(tp, MII_ADVERTISE, new_adv);
if (err)
goto done;
if (!(tp->phy_flags & TG3_PHYFLG_10_100_ONLY)) {
new_adv = ethtool_adv_to_mii_ctrl1000_t(advertise);
if (tg3_chip_rev_id(tp) == CHIPREV_ID_5701_A0 ||
tg3_chip_rev_id(tp) == CHIPREV_ID_5701_B0)
new_adv |= CTL1000_AS_MASTER | CTL1000_ENABLE_MASTER;
err = tg3_writephy(tp, MII_CTRL1000, new_adv);
if (err)
goto done;
}
if (!(tp->phy_flags & TG3_PHYFLG_EEE_CAP))
goto done;
tw32(TG3_CPMU_EEE_MODE,
tr32(TG3_CPMU_EEE_MODE) & ~TG3_CPMU_EEEMD_LPI_ENABLE);
err = tg3_phy_toggle_auxctl_smdsp(tp, true);
if (!err) {
u32 err2;
val = 0;
/* Advertise 100-BaseTX EEE ability */
if (advertise & ADVERTISED_100baseT_Full)
val |= MDIO_AN_EEE_ADV_100TX;
/* Advertise 1000-BaseT EEE ability */
if (advertise & ADVERTISED_1000baseT_Full)
val |= MDIO_AN_EEE_ADV_1000T;
err = tg3_phy_cl45_write(tp, MDIO_MMD_AN, MDIO_AN_EEE_ADV, val);
if (err)
val = 0;
switch (tg3_asic_rev(tp)) {
case ASIC_REV_5717:
case ASIC_REV_57765:
case ASIC_REV_57766:
case ASIC_REV_5719:
/* If we advertised any eee advertisements above... */
if (val)
val = MII_TG3_DSP_TAP26_ALNOKO |
MII_TG3_DSP_TAP26_RMRXSTO |
MII_TG3_DSP_TAP26_OPCSINPT;
tg3_phydsp_write(tp, MII_TG3_DSP_TAP26, val);
/* Fall through */
case ASIC_REV_5720:
case ASIC_REV_5762:
if (!tg3_phydsp_read(tp, MII_TG3_DSP_CH34TP2, &val))
tg3_phydsp_write(tp, MII_TG3_DSP_CH34TP2, val |
MII_TG3_DSP_CH34TP2_HIBW01);
}
err2 = tg3_phy_toggle_auxctl_smdsp(tp, false);
if (!err)
err = err2;
}
done:
return err;
}
static void tg3_phy_copper_begin(struct tg3 *tp)
{
if (tp->link_config.autoneg == AUTONEG_ENABLE ||
(tp->phy_flags & TG3_PHYFLG_IS_LOW_POWER)) {
u32 adv, fc;
if ((tp->phy_flags & TG3_PHYFLG_IS_LOW_POWER) &&
!(tp->phy_flags & TG3_PHYFLG_KEEP_LINK_ON_PWRDN)) {
adv = ADVERTISED_10baseT_Half |
ADVERTISED_10baseT_Full;
if (tg3_flag(tp, WOL_SPEED_100MB))
adv |= ADVERTISED_100baseT_Half |
ADVERTISED_100baseT_Full;
if (tp->phy_flags & TG3_PHYFLG_1G_ON_VAUX_OK)
adv |= ADVERTISED_1000baseT_Half |
ADVERTISED_1000baseT_Full;
fc = FLOW_CTRL_TX | FLOW_CTRL_RX;
} else {
adv = tp->link_config.advertising;
if (tp->phy_flags & TG3_PHYFLG_10_100_ONLY)
adv &= ~(ADVERTISED_1000baseT_Half |
ADVERTISED_1000baseT_Full);
fc = tp->link_config.flowctrl;
}
tg3_phy_autoneg_cfg(tp, adv, fc);
if ((tp->phy_flags & TG3_PHYFLG_IS_LOW_POWER) &&
(tp->phy_flags & TG3_PHYFLG_KEEP_LINK_ON_PWRDN)) {
/* Normally during power down we want to autonegotiate
* the lowest possible speed for WOL. However, to avoid
* link flap, we leave it untouched.
*/
return;
}
tg3_writephy(tp, MII_BMCR,
BMCR_ANENABLE | BMCR_ANRESTART);
} else {
int i;
u32 bmcr, orig_bmcr;
tp->link_config.active_speed = tp->link_config.speed;
tp->link_config.active_duplex = tp->link_config.duplex;
if (tg3_asic_rev(tp) == ASIC_REV_5714) {
/* With autoneg disabled, 5715 only links up when the
* advertisement register has the configured speed
* enabled.
*/
tg3_writephy(tp, MII_ADVERTISE, ADVERTISE_ALL);
}
bmcr = 0;
switch (tp->link_config.speed) {
default:
case SPEED_10:
break;
case SPEED_100:
bmcr |= BMCR_SPEED100;
break;
case SPEED_1000:
bmcr |= BMCR_SPEED1000;
break;
}
if (tp->link_config.duplex == DUPLEX_FULL)
bmcr |= BMCR_FULLDPLX;
if (!tg3_readphy(tp, MII_BMCR, &orig_bmcr) &&
(bmcr != orig_bmcr)) {
tg3_writephy(tp, MII_BMCR, BMCR_LOOPBACK);
for (i = 0; i < 1500; i++) {
u32 tmp;
udelay(10);
if (tg3_readphy(tp, MII_BMSR, &tmp) ||
tg3_readphy(tp, MII_BMSR, &tmp))
continue;
if (!(tmp & BMSR_LSTATUS)) {
udelay(40);
break;
}
}
tg3_writephy(tp, MII_BMCR, bmcr);
udelay(40);
}
}
}
static int tg3_phy_pull_config(struct tg3 *tp)
{
int err;
u32 val;
err = tg3_readphy(tp, MII_BMCR, &val);
if (err)
goto done;
if (!(val & BMCR_ANENABLE)) {
tp->link_config.autoneg = AUTONEG_DISABLE;
tp->link_config.advertising = 0;
tg3_flag_clear(tp, PAUSE_AUTONEG);
err = -EIO;
switch (val & (BMCR_SPEED1000 | BMCR_SPEED100)) {
case 0:
if (tp->phy_flags & TG3_PHYFLG_ANY_SERDES)
goto done;
tp->link_config.speed = SPEED_10;
break;
case BMCR_SPEED100:
if (tp->phy_flags & TG3_PHYFLG_ANY_SERDES)
goto done;
tp->link_config.speed = SPEED_100;
break;
case BMCR_SPEED1000:
if (!(tp->phy_flags & TG3_PHYFLG_10_100_ONLY)) {
tp->link_config.speed = SPEED_1000;
break;
}
/* Fall through */
default:
goto done;
}
if (val & BMCR_FULLDPLX)
tp->link_config.duplex = DUPLEX_FULL;
else
tp->link_config.duplex = DUPLEX_HALF;
tp->link_config.flowctrl = FLOW_CTRL_RX | FLOW_CTRL_TX;
err = 0;
goto done;
}
tp->link_config.autoneg = AUTONEG_ENABLE;
tp->link_config.advertising = ADVERTISED_Autoneg;
tg3_flag_set(tp, PAUSE_AUTONEG);
if (!(tp->phy_flags & TG3_PHYFLG_ANY_SERDES)) {
u32 adv;
err = tg3_readphy(tp, MII_ADVERTISE, &val);
if (err)
goto done;
adv = mii_adv_to_ethtool_adv_t(val & ADVERTISE_ALL);
tp->link_config.advertising |= adv | ADVERTISED_TP;
tp->link_config.flowctrl = tg3_decode_flowctrl_1000T(val);
} else {
tp->link_config.advertising |= ADVERTISED_FIBRE;
}
if (!(tp->phy_flags & TG3_PHYFLG_10_100_ONLY)) {
u32 adv;
if (!(tp->phy_flags & TG3_PHYFLG_ANY_SERDES)) {
err = tg3_readphy(tp, MII_CTRL1000, &val);
if (err)
goto done;
adv = mii_ctrl1000_to_ethtool_adv_t(val);
} else {
err = tg3_readphy(tp, MII_ADVERTISE, &val);
if (err)
goto done;
adv = tg3_decode_flowctrl_1000X(val);
tp->link_config.flowctrl = adv;
val &= (ADVERTISE_1000XHALF | ADVERTISE_1000XFULL);
adv = mii_adv_to_ethtool_adv_x(val);
}
tp->link_config.advertising |= adv;
}
done:
return err;
}
static int tg3_init_5401phy_dsp(struct tg3 *tp)
{
int err;
/* Turn off tap power management. */
/* Set Extended packet length bit */
err = tg3_phy_auxctl_write(tp, MII_TG3_AUXCTL_SHDWSEL_AUXCTL, 0x4c20);
err |= tg3_phydsp_write(tp, 0x0012, 0x1804);
err |= tg3_phydsp_write(tp, 0x0013, 0x1204);
err |= tg3_phydsp_write(tp, 0x8006, 0x0132);
err |= tg3_phydsp_write(tp, 0x8006, 0x0232);
err |= tg3_phydsp_write(tp, 0x201f, 0x0a20);
udelay(40);
return err;
}
static bool tg3_phy_eee_config_ok(struct tg3 *tp)
{
u32 val;
u32 tgtadv = 0;
u32 advertising = tp->link_config.advertising;
if (!(tp->phy_flags & TG3_PHYFLG_EEE_CAP))
return true;
if (tg3_phy_cl45_read(tp, MDIO_MMD_AN, MDIO_AN_EEE_ADV, &val))
return false;
val &= (MDIO_AN_EEE_ADV_100TX | MDIO_AN_EEE_ADV_1000T);
if (advertising & ADVERTISED_100baseT_Full)
tgtadv |= MDIO_AN_EEE_ADV_100TX;
if (advertising & ADVERTISED_1000baseT_Full)
tgtadv |= MDIO_AN_EEE_ADV_1000T;
if (val != tgtadv)
return false;
return true;
}
static bool tg3_phy_copper_an_config_ok(struct tg3 *tp, u32 *lcladv)
{
u32 advmsk, tgtadv, advertising;
advertising = tp->link_config.advertising;
tgtadv = ethtool_adv_to_mii_adv_t(advertising) & ADVERTISE_ALL;
advmsk = ADVERTISE_ALL;
if (tp->link_config.active_duplex == DUPLEX_FULL) {
tgtadv |= mii_advertise_flowctrl(tp->link_config.flowctrl);
advmsk |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
}
if (tg3_readphy(tp, MII_ADVERTISE, lcladv))
return false;
if ((*lcladv & advmsk) != tgtadv)
return false;
if (!(tp->phy_flags & TG3_PHYFLG_10_100_ONLY)) {
u32 tg3_ctrl;
tgtadv = ethtool_adv_to_mii_ctrl1000_t(advertising);
if (tg3_readphy(tp, MII_CTRL1000, &tg3_ctrl))
return false;
if (tgtadv &&
(tg3_chip_rev_id(tp) == CHIPREV_ID_5701_A0 ||
tg3_chip_rev_id(tp) == CHIPREV_ID_5701_B0)) {
tgtadv |= CTL1000_AS_MASTER | CTL1000_ENABLE_MASTER;
tg3_ctrl &= (ADVERTISE_1000HALF | ADVERTISE_1000FULL |
CTL1000_AS_MASTER | CTL1000_ENABLE_MASTER);
} else {
tg3_ctrl &= (ADVERTISE_1000HALF | ADVERTISE_1000FULL);
}
if (tg3_ctrl != tgtadv)
return false;
}
return true;
}
static bool tg3_phy_copper_fetch_rmtadv(struct tg3 *tp, u32 *rmtadv)
{
u32 lpeth = 0;
if (!(tp->phy_flags & TG3_PHYFLG_10_100_ONLY)) {
u32 val;
if (tg3_readphy(tp, MII_STAT1000, &val))
return false;
lpeth = mii_stat1000_to_ethtool_lpa_t(val);
}
if (tg3_readphy(tp, MII_LPA, rmtadv))
return false;
lpeth |= mii_lpa_to_ethtool_lpa_t(*rmtadv);
tp->link_config.rmt_adv = lpeth;
return true;
}
static bool tg3_test_and_report_link_chg(struct tg3 *tp, bool curr_link_up)
{
if (curr_link_up != tp->link_up) {
if (curr_link_up) {
netif_carrier_on(tp->dev);
} else {
netif_carrier_off(tp->dev);
if (tp->phy_flags & TG3_PHYFLG_MII_SERDES)
tp->phy_flags &= ~TG3_PHYFLG_PARALLEL_DETECT;
}
tg3_link_report(tp);
return true;
}
return false;
}
static void tg3_clear_mac_status(struct tg3 *tp)
{
tw32(MAC_EVENT, 0);
tw32_f(MAC_STATUS,
MAC_STATUS_SYNC_CHANGED |
MAC_STATUS_CFG_CHANGED |
MAC_STATUS_MI_COMPLETION |
MAC_STATUS_LNKSTATE_CHANGED);
udelay(40);
}
static int tg3_setup_copper_phy(struct tg3 *tp, bool force_reset)
{
bool current_link_up;
u32 bmsr, val;
u32 lcl_adv, rmt_adv;
u16 current_speed;
u8 current_duplex;
int i, err;
tg3_clear_mac_status(tp);
if ((tp->mi_mode & MAC_MI_MODE_AUTO_POLL) != 0) {
tw32_f(MAC_MI_MODE,
(tp->mi_mode & ~MAC_MI_MODE_AUTO_POLL));
udelay(80);
}
tg3_phy_auxctl_write(tp, MII_TG3_AUXCTL_SHDWSEL_PWRCTL, 0);
/* Some third-party PHYs need to be reset on link going
* down.
*/
if ((tg3_asic_rev(tp) == ASIC_REV_5703 ||
tg3_asic_rev(tp) == ASIC_REV_5704 ||
tg3_asic_rev(tp) == ASIC_REV_5705) &&
tp->link_up) {
tg3_readphy(tp, MII_BMSR, &bmsr);
if (!tg3_readphy(tp, MII_BMSR, &bmsr) &&
!(bmsr & BMSR_LSTATUS))
force_reset = true;
}
if (force_reset)
tg3_phy_reset(tp);
if ((tp->phy_id & TG3_PHY_ID_MASK) == TG3_PHY_ID_BCM5401) {
tg3_readphy(tp, MII_BMSR, &bmsr);
if (tg3_readphy(tp, MII_BMSR, &bmsr) ||
!tg3_flag(tp, INIT_COMPLETE))
bmsr = 0;
if (!(bmsr & BMSR_LSTATUS)) {
err = tg3_init_5401phy_dsp(tp);
if (err)
return err;
tg3_readphy(tp, MII_BMSR, &bmsr);
for (i = 0; i < 1000; i++) {
udelay(10);
if (!tg3_readphy(tp, MII_BMSR, &bmsr) &&
(bmsr & BMSR_LSTATUS)) {
udelay(40);
break;
}
}
if ((tp->phy_id & TG3_PHY_ID_REV_MASK) ==
TG3_PHY_REV_BCM5401_B0 &&
!(bmsr & BMSR_LSTATUS) &&
tp->link_config.active_speed == SPEED_1000) {
err = tg3_phy_reset(tp);
if (!err)
err = tg3_init_5401phy_dsp(tp);
if (err)
return err;
}
}
} else if (tg3_chip_rev_id(tp) == CHIPREV_ID_5701_A0 ||
tg3_chip_rev_id(tp) == CHIPREV_ID_5701_B0) {
/* 5701 {A0,B0} CRC bug workaround */
tg3_writephy(tp, 0x15, 0x0a75);
tg3_writephy(tp, MII_TG3_MISC_SHDW, 0x8c68);
tg3_writephy(tp, MII_TG3_MISC_SHDW, 0x8d68);
tg3_writephy(tp, MII_TG3_MISC_SHDW, 0x8c68);
}
/* Clear pending interrupts... */
tg3_readphy(tp, MII_TG3_ISTAT, &val);
tg3_readphy(tp, MII_TG3_ISTAT, &val);
if (tp->phy_flags & TG3_PHYFLG_USE_MI_INTERRUPT)
tg3_writephy(tp, MII_TG3_IMASK, ~MII_TG3_INT_LINKCHG);
else if (!(tp->phy_flags & TG3_PHYFLG_IS_FET))
tg3_writephy(tp, MII_TG3_IMASK, ~0);
if (tg3_asic_rev(tp) == ASIC_REV_5700 ||
tg3_asic_rev(tp) == ASIC_REV_5701) {
if (tp->led_ctrl == LED_CTRL_MODE_PHY_1)
tg3_writephy(tp, MII_TG3_EXT_CTRL,
MII_TG3_EXT_CTRL_LNK3_LED_MODE);
else
tg3_writephy(tp, MII_TG3_EXT_CTRL, 0);
}
current_link_up = false;
current_speed = SPEED_UNKNOWN;
current_duplex = DUPLEX_UNKNOWN;
tp->phy_flags &= ~TG3_PHYFLG_MDIX_STATE;
tp->link_config.rmt_adv = 0;
if (tp->phy_flags & TG3_PHYFLG_CAPACITIVE_COUPLING) {
err = tg3_phy_auxctl_read(tp,
MII_TG3_AUXCTL_SHDWSEL_MISCTEST,
&val);
if (!err && !(val & (1 << 10))) {
tg3_phy_auxctl_write(tp,
MII_TG3_AUXCTL_SHDWSEL_MISCTEST,
val | (1 << 10));
goto relink;
}
}
bmsr = 0;
for (i = 0; i < 100; i++) {
tg3_readphy(tp, MII_BMSR, &bmsr);
if (!tg3_readphy(tp, MII_BMSR, &bmsr) &&
(bmsr & BMSR_LSTATUS))
break;
udelay(40);
}
if (bmsr & BMSR_LSTATUS) {
u32 aux_stat, bmcr;
tg3_readphy(tp, MII_TG3_AUX_STAT, &aux_stat);
for (i = 0; i < 2000; i++) {
udelay(10);
if (!tg3_readphy(tp, MII_TG3_AUX_STAT, &aux_stat) &&
aux_stat)
break;
}
tg3_aux_stat_to_speed_duplex(tp, aux_stat,
&current_speed,
&current_duplex);
bmcr = 0;
for (i = 0; i < 200; i++) {
tg3_readphy(tp, MII_BMCR, &bmcr);
if (tg3_readphy(tp, MII_BMCR, &bmcr))
continue;
if (bmcr && bmcr != 0x7fff)
break;
udelay(10);
}
lcl_adv = 0;
rmt_adv = 0;
tp->link_config.active_speed = current_speed;
tp->link_config.active_duplex = current_duplex;
if (tp->link_config.autoneg == AUTONEG_ENABLE) {
bool eee_config_ok = tg3_phy_eee_config_ok(tp);
if ((bmcr & BMCR_ANENABLE) &&
eee_config_ok &&
tg3_phy_copper_an_config_ok(tp, &lcl_adv) &&
tg3_phy_copper_fetch_rmtadv(tp, &rmt_adv))
current_link_up = true;
/* EEE settings changes take effect only after a phy
* reset. If we have skipped a reset due to Link Flap
* Avoidance being enabled, do it now.
*/
if (!eee_config_ok &&
(tp->phy_flags & TG3_PHYFLG_KEEP_LINK_ON_PWRDN) &&
!force_reset)
tg3_phy_reset(tp);
} else {
if (!(bmcr & BMCR_ANENABLE) &&
tp->link_config.speed == current_speed &&
tp->link_config.duplex == current_duplex) {
current_link_up = true;
}
}
if (current_link_up &&
tp->link_config.active_duplex == DUPLEX_FULL) {
u32 reg, bit;
if (tp->phy_flags & TG3_PHYFLG_IS_FET) {
reg = MII_TG3_FET_GEN_STAT;
bit = MII_TG3_FET_GEN_STAT_MDIXSTAT;
} else {
reg = MII_TG3_EXT_STAT;
bit = MII_TG3_EXT_STAT_MDIX;
}
if (!tg3_readphy(tp, reg, &val) && (val & bit))
tp->phy_flags |= TG3_PHYFLG_MDIX_STATE;
tg3_setup_flow_control(tp, lcl_adv, rmt_adv);
}
}
relink:
if (!current_link_up || (tp->phy_flags & TG3_PHYFLG_IS_LOW_POWER)) {
tg3_phy_copper_begin(tp);
if (tg3_flag(tp, ROBOSWITCH)) {
current_link_up = true;
/* FIXME: when BCM5325 switch is used use 100 MBit/s */
current_speed = SPEED_1000;
current_duplex = DUPLEX_FULL;
tp->link_config.active_speed = current_speed;
tp->link_config.active_duplex = current_duplex;
}
tg3_readphy(tp, MII_BMSR, &bmsr);
if ((!tg3_readphy(tp, MII_BMSR, &bmsr) && (bmsr & BMSR_LSTATUS)) ||
(tp->mac_mode & MAC_MODE_PORT_INT_LPBACK))
current_link_up = true;
}
tp->mac_mode &= ~MAC_MODE_PORT_MODE_MASK;
if (current_link_up) {
if (tp->link_config.active_speed == SPEED_100 ||
tp->link_config.active_speed == SPEED_10)
tp->mac_mode |= MAC_MODE_PORT_MODE_MII;
else
tp->mac_mode |= MAC_MODE_PORT_MODE_GMII;
} else if (tp->phy_flags & TG3_PHYFLG_IS_FET)
tp->mac_mode |= MAC_MODE_PORT_MODE_MII;
else
tp->mac_mode |= MAC_MODE_PORT_MODE_GMII;
/* In order for the 5750 core in BCM4785 chip to work properly
* in RGMII mode, the Led Control Register must be set up.
*/
if (tg3_flag(tp, RGMII_MODE)) {
u32 led_ctrl = tr32(MAC_LED_CTRL);
led_ctrl &= ~(LED_CTRL_1000MBPS_ON | LED_CTRL_100MBPS_ON);
if (tp->link_config.active_speed == SPEED_10)
led_ctrl |= LED_CTRL_LNKLED_OVERRIDE;
else if (tp->link_config.active_speed == SPEED_100)
led_ctrl |= (LED_CTRL_LNKLED_OVERRIDE |
LED_CTRL_100MBPS_ON);
else if (tp->link_config.active_speed == SPEED_1000)
led_ctrl |= (LED_CTRL_LNKLED_OVERRIDE |
LED_CTRL_1000MBPS_ON);
tw32(MAC_LED_CTRL, led_ctrl);
udelay(40);
}
tp->mac_mode &= ~MAC_MODE_HALF_DUPLEX;
if (tp->link_config.active_duplex == DUPLEX_HALF)
tp->mac_mode |= MAC_MODE_HALF_DUPLEX;
if (tg3_asic_rev(tp) == ASIC_REV_5700) {
if (current_link_up &&
tg3_5700_link_polarity(tp, tp->link_config.active_speed))
tp->mac_mode |= MAC_MODE_LINK_POLARITY;
else
tp->mac_mode &= ~MAC_MODE_LINK_POLARITY;
}
/* ??? Without this setting Netgear GA302T PHY does not
* ??? send/receive packets...
*/
if ((tp->phy_id & TG3_PHY_ID_MASK) == TG3_PHY_ID_BCM5411 &&
tg3_chip_rev_id(tp) == CHIPREV_ID_5700_ALTIMA) {
tp->mi_mode |= MAC_MI_MODE_AUTO_POLL;
tw32_f(MAC_MI_MODE, tp->mi_mode);
udelay(80);
}
tw32_f(MAC_MODE, tp->mac_mode);
udelay(40);
tg3_phy_eee_adjust(tp, current_link_up);
if (tg3_flag(tp, USE_LINKCHG_REG)) {
/* Polled via timer. */
tw32_f(MAC_EVENT, 0);
} else {
tw32_f(MAC_EVENT, MAC_EVENT_LNKSTATE_CHANGED);
}
udelay(40);
if (tg3_asic_rev(tp) == ASIC_REV_5700 &&
current_link_up &&
tp->link_config.active_speed == SPEED_1000 &&
(tg3_flag(tp, PCIX_MODE) || tg3_flag(tp, PCI_HIGH_SPEED))) {
udelay(120);
tw32_f(MAC_STATUS,
(MAC_STATUS_SYNC_CHANGED |
MAC_STATUS_CFG_CHANGED));
udelay(40);
tg3_write_mem(tp,
NIC_SRAM_FIRMWARE_MBOX,
NIC_SRAM_FIRMWARE_MBOX_MAGIC2);
}
/* Prevent send BD corruption. */
if (tg3_flag(tp, CLKREQ_BUG)) {
if (tp->link_config.active_speed == SPEED_100 ||
tp->link_config.active_speed == SPEED_10)
pcie_capability_clear_word(tp->pdev, PCI_EXP_LNKCTL,
PCI_EXP_LNKCTL_CLKREQ_EN);
else
pcie_capability_set_word(tp->pdev, PCI_EXP_LNKCTL,
PCI_EXP_LNKCTL_CLKREQ_EN);
}
tg3_test_and_report_link_chg(tp, current_link_up);
return 0;
}
struct tg3_fiber_aneginfo {
int state;
#define ANEG_STATE_UNKNOWN 0
#define ANEG_STATE_AN_ENABLE 1
#define ANEG_STATE_RESTART_INIT 2
#define ANEG_STATE_RESTART 3
#define ANEG_STATE_DISABLE_LINK_OK 4
#define ANEG_STATE_ABILITY_DETECT_INIT 5
#define ANEG_STATE_ABILITY_DETECT 6
#define ANEG_STATE_ACK_DETECT_INIT 7
#define ANEG_STATE_ACK_DETECT 8
#define ANEG_STATE_COMPLETE_ACK_INIT 9
#define ANEG_STATE_COMPLETE_ACK 10
#define ANEG_STATE_IDLE_DETECT_INIT 11
#define ANEG_STATE_IDLE_DETECT 12
#define ANEG_STATE_LINK_OK 13
#define ANEG_STATE_NEXT_PAGE_WAIT_INIT 14
#define ANEG_STATE_NEXT_PAGE_WAIT 15
u32 flags;
#define MR_AN_ENABLE 0x00000001
#define MR_RESTART_AN 0x00000002
#define MR_AN_COMPLETE 0x00000004
#define MR_PAGE_RX 0x00000008
#define MR_NP_LOADED 0x00000010
#define MR_TOGGLE_TX 0x00000020
#define MR_LP_ADV_FULL_DUPLEX 0x00000040
#define MR_LP_ADV_HALF_DUPLEX 0x00000080
#define MR_LP_ADV_SYM_PAUSE 0x00000100
#define MR_LP_ADV_ASYM_PAUSE 0x00000200
#define MR_LP_ADV_REMOTE_FAULT1 0x00000400
#define MR_LP_ADV_REMOTE_FAULT2 0x00000800
#define MR_LP_ADV_NEXT_PAGE 0x00001000
#define MR_TOGGLE_RX 0x00002000
#define MR_NP_RX 0x00004000
#define MR_LINK_OK 0x80000000
unsigned long link_time, cur_time;
u32 ability_match_cfg;
int ability_match_count;
char ability_match, idle_match, ack_match;
u32 txconfig, rxconfig;
#define ANEG_CFG_NP 0x00000080
#define ANEG_CFG_ACK 0x00000040
#define ANEG_CFG_RF2 0x00000020
#define ANEG_CFG_RF1 0x00000010
#define ANEG_CFG_PS2 0x00000001
#define ANEG_CFG_PS1 0x00008000
#define ANEG_CFG_HD 0x00004000
#define ANEG_CFG_FD 0x00002000
#define ANEG_CFG_INVAL 0x00001f06
};
#define ANEG_OK 0
#define ANEG_DONE 1
#define ANEG_TIMER_ENAB 2
#define ANEG_FAILED -1
#define ANEG_STATE_SETTLE_TIME 10000
static int tg3_fiber_aneg_smachine(struct tg3 *tp,
struct tg3_fiber_aneginfo *ap)
{
u16 flowctrl;
unsigned long delta;
u32 rx_cfg_reg;
int ret;
if (ap->state == ANEG_STATE_UNKNOWN) {
ap->rxconfig = 0;
ap->link_time = 0;
ap->cur_time = 0;
ap->ability_match_cfg = 0;
ap->ability_match_count = 0;
ap->ability_match = 0;
ap->idle_match = 0;
ap->ack_match = 0;
}
ap->cur_time++;
if (tr32(MAC_STATUS) & MAC_STATUS_RCVD_CFG) {
rx_cfg_reg = tr32(MAC_RX_AUTO_NEG);
if (rx_cfg_reg != ap->ability_match_cfg) {
ap->ability_match_cfg = rx_cfg_reg;
ap->ability_match = 0;
ap->ability_match_count = 0;
} else {
if (++ap->ability_match_count > 1) {
ap->ability_match = 1;
ap->ability_match_cfg = rx_cfg_reg;
}
}
if (rx_cfg_reg & ANEG_CFG_ACK)
ap->ack_match = 1;
else
ap->ack_match = 0;
ap->idle_match = 0;
} else {
ap->idle_match = 1;
ap->ability_match_cfg = 0;
ap->ability_match_count = 0;
ap->ability_match = 0;
ap->ack_match = 0;
rx_cfg_reg = 0;
}
ap->rxconfig = rx_cfg_reg;
ret = ANEG_OK;
switch (ap->state) {
case ANEG_STATE_UNKNOWN:
if (ap->flags & (MR_AN_ENABLE | MR_RESTART_AN))
ap->state = ANEG_STATE_AN_ENABLE;
/* fallthru */
case ANEG_STATE_AN_ENABLE:
ap->flags &= ~(MR_AN_COMPLETE | MR_PAGE_RX);
if (ap->flags & MR_AN_ENABLE) {
ap->link_time = 0;
ap->cur_time = 0;
ap->ability_match_cfg = 0;
ap->ability_match_count = 0;
ap->ability_match = 0;
ap->idle_match = 0;
ap->ack_match = 0;
ap->state = ANEG_STATE_RESTART_INIT;
} else {
ap->state = ANEG_STATE_DISABLE_LINK_OK;
}
break;
case ANEG_STATE_RESTART_INIT:
ap->link_time = ap->cur_time;
ap->flags &= ~(MR_NP_LOADED);
ap->txconfig = 0;
tw32(MAC_TX_AUTO_NEG, 0);
tp->mac_mode |= MAC_MODE_SEND_CONFIGS;
tw32_f(MAC_MODE, tp->mac_mode);
udelay(40);
ret = ANEG_TIMER_ENAB;
ap->state = ANEG_STATE_RESTART;
/* fallthru */
case ANEG_STATE_RESTART:
delta = ap->cur_time - ap->link_time;
if (delta > ANEG_STATE_SETTLE_TIME)
ap->state = ANEG_STATE_ABILITY_DETECT_INIT;
else
ret = ANEG_TIMER_ENAB;
break;
case ANEG_STATE_DISABLE_LINK_OK:
ret = ANEG_DONE;
break;
case ANEG_STATE_ABILITY_DETECT_INIT:
ap->flags &= ~(MR_TOGGLE_TX);
ap->txconfig = ANEG_CFG_FD;
flowctrl = tg3_advert_flowctrl_1000X(tp->link_config.flowctrl);
if (flowctrl & ADVERTISE_1000XPAUSE)
ap->txconfig |= ANEG_CFG_PS1;
if (flowctrl & ADVERTISE_1000XPSE_ASYM)
ap->txconfig |= ANEG_CFG_PS2;
tw32(MAC_TX_AUTO_NEG, ap->txconfig);
tp->mac_mode |= MAC_MODE_SEND_CONFIGS;
tw32_f(MAC_MODE, tp->mac_mode);
udelay(40);
ap->state = ANEG_STATE_ABILITY_DETECT;
break;
case ANEG_STATE_ABILITY_DETECT:
if (ap->ability_match != 0 && ap->rxconfig != 0)
ap->state = ANEG_STATE_ACK_DETECT_INIT;
break;
case ANEG_STATE_ACK_DETECT_INIT:
ap->txconfig |= ANEG_CFG_ACK;
tw32(MAC_TX_AUTO_NEG, ap->txconfig);
tp->mac_mode |= MAC_MODE_SEND_CONFIGS;
tw32_f(MAC_MODE, tp->mac_mode);
udelay(40);
ap->state = ANEG_STATE_ACK_DETECT;
/* fallthru */
case ANEG_STATE_ACK_DETECT:
if (ap->ack_match != 0) {
if ((ap->rxconfig & ~ANEG_CFG_ACK) ==
(ap->ability_match_cfg & ~ANEG_CFG_ACK)) {
ap->state = ANEG_STATE_COMPLETE_ACK_INIT;
} else {
ap->state = ANEG_STATE_AN_ENABLE;
}
} else if (ap->ability_match != 0 &&
ap->rxconfig == 0) {
ap->state = ANEG_STATE_AN_ENABLE;
}
break;
case ANEG_STATE_COMPLETE_ACK_INIT:
if (ap->rxconfig & ANEG_CFG_INVAL) {
ret = ANEG_FAILED;
break;
}
ap->flags &= ~(MR_LP_ADV_FULL_DUPLEX |
MR_LP_ADV_HALF_DUPLEX |
MR_LP_ADV_SYM_PAUSE |
MR_LP_ADV_ASYM_PAUSE |
MR_LP_ADV_REMOTE_FAULT1 |
MR_LP_ADV_REMOTE_FAULT2 |
MR_LP_ADV_NEXT_PAGE |
MR_TOGGLE_RX |
MR_NP_RX);
if (ap->rxconfig & ANEG_CFG_FD)
ap->flags |= MR_LP_ADV_FULL_DUPLEX;
if (ap->rxconfig & ANEG_CFG_HD)
ap->flags |= MR_LP_ADV_HALF_DUPLEX;
if (ap->rxconfig & ANEG_CFG_PS1)
ap->flags |= MR_LP_ADV_SYM_PAUSE;
if (ap->rxconfig & ANEG_CFG_PS2)
ap->flags |= MR_LP_ADV_ASYM_PAUSE;
if (ap->rxconfig & ANEG_CFG_RF1)
ap->flags |= MR_LP_ADV_REMOTE_FAULT1;
if (ap->rxconfig & ANEG_CFG_RF2)
ap->flags |= MR_LP_ADV_REMOTE_FAULT2;
if (ap->rxconfig & ANEG_CFG_NP)
ap->flags |= MR_LP_ADV_NEXT_PAGE;
ap->link_time = ap->cur_time;
ap->flags ^= (MR_TOGGLE_TX);
if (ap->rxconfig & 0x0008)
ap->flags |= MR_TOGGLE_RX;
if (ap->rxconfig & ANEG_CFG_NP)
ap->flags |= MR_NP_RX;
ap->flags |= MR_PAGE_RX;
ap->state = ANEG_STATE_COMPLETE_ACK;
ret = ANEG_TIMER_ENAB;
break;
case ANEG_STATE_COMPLETE_ACK:
if (ap->ability_match != 0 &&
ap->rxconfig == 0) {
ap->state = ANEG_STATE_AN_ENABLE;
break;
}
delta = ap->cur_time - ap->link_time;
if (delta > ANEG_STATE_SETTLE_TIME) {
if (!(ap->flags & (MR_LP_ADV_NEXT_PAGE))) {
ap->state = ANEG_STATE_IDLE_DETECT_INIT;
} else {
if ((ap->txconfig & ANEG_CFG_NP) == 0 &&
!(ap->flags & MR_NP_RX)) {
ap->state = ANEG_STATE_IDLE_DETECT_INIT;
} else {
ret = ANEG_FAILED;
}
}
}
break;
case ANEG_STATE_IDLE_DETECT_INIT:
ap->link_time = ap->cur_time;
tp->mac_mode &= ~MAC_MODE_SEND_CONFIGS;
tw32_f(MAC_MODE, tp->mac_mode);
udelay(40);
ap->state = ANEG_STATE_IDLE_DETECT;
ret = ANEG_TIMER_ENAB;
break;
case ANEG_STATE_IDLE_DETECT:
if (ap->ability_match != 0 &&
ap->rxconfig == 0) {
ap->state = ANEG_STATE_AN_ENABLE;
break;
}
delta = ap->cur_time - ap->link_time;
if (delta > ANEG_STATE_SETTLE_TIME) {
/* XXX another gem from the Broadcom driver :( */
ap->state = ANEG_STATE_LINK_OK;
}
break;
case ANEG_STATE_LINK_OK:
ap->flags |= (MR_AN_COMPLETE | MR_LINK_OK);
ret = ANEG_DONE;
break;
case ANEG_STATE_NEXT_PAGE_WAIT_INIT:
/* ??? unimplemented */
break;
case ANEG_STATE_NEXT_PAGE_WAIT:
/* ??? unimplemented */
break;
default:
ret = ANEG_FAILED;
break;
}
return ret;
}
static int fiber_autoneg(struct tg3 *tp, u32 *txflags, u32 *rxflags)
{
int res = 0;
struct tg3_fiber_aneginfo aninfo;
int status = ANEG_FAILED;
unsigned int tick;
u32 tmp;
tw32_f(MAC_TX_AUTO_NEG, 0);
tmp = tp->mac_mode & ~MAC_MODE_PORT_MODE_MASK;
tw32_f(MAC_MODE, tmp | MAC_MODE_PORT_MODE_GMII);
udelay(40);
tw32_f(MAC_MODE, tp->mac_mode | MAC_MODE_SEND_CONFIGS);
udelay(40);
memset(&aninfo, 0, sizeof(aninfo));
aninfo.flags |= MR_AN_ENABLE;
aninfo.state = ANEG_STATE_UNKNOWN;
aninfo.cur_time = 0;
tick = 0;
while (++tick < 195000) {
status = tg3_fiber_aneg_smachine(tp, &aninfo);
if (status == ANEG_DONE || status == ANEG_FAILED)
break;
udelay(1);
}
tp->mac_mode &= ~MAC_MODE_SEND_CONFIGS;
tw32_f(MAC_MODE, tp->mac_mode);
udelay(40);
*txflags = aninfo.txconfig;
*rxflags = aninfo.flags;
if (status == ANEG_DONE &&
(aninfo.flags & (MR_AN_COMPLETE | MR_LINK_OK |
MR_LP_ADV_FULL_DUPLEX)))
res = 1;
return res;
}
static void tg3_init_bcm8002(struct tg3 *tp)
{
u32 mac_status = tr32(MAC_STATUS);
int i;
/* Reset when initting first time or we have a link. */
if (tg3_flag(tp, INIT_COMPLETE) &&
!(mac_status & MAC_STATUS_PCS_SYNCED))
return;
/* Set PLL lock range. */
tg3_writephy(tp, 0x16, 0x8007);
/* SW reset */
tg3_writephy(tp, MII_BMCR, BMCR_RESET);
/* Wait for reset to complete. */
/* XXX schedule_timeout() ... */
for (i = 0; i < 500; i++)
udelay(10);
/* Config mode; select PMA/Ch 1 regs. */
tg3_writephy(tp, 0x10, 0x8411);
/* Enable auto-lock and comdet, select txclk for tx. */
tg3_writephy(tp, 0x11, 0x0a10);
tg3_writephy(tp, 0x18, 0x00a0);
tg3_writephy(tp, 0x16, 0x41ff);
/* Assert and deassert POR. */
tg3_writephy(tp, 0x13, 0x0400);
udelay(40);
tg3_writephy(tp, 0x13, 0x0000);
tg3_writephy(tp, 0x11, 0x0a50);
udelay(40);
tg3_writephy(tp, 0x11, 0x0a10);
/* Wait for signal to stabilize */
/* XXX schedule_timeout() ... */
for (i = 0; i < 15000; i++)
udelay(10);
/* Deselect the channel register so we can read the PHYID
* later.
*/
tg3_writephy(tp, 0x10, 0x8011);
}
static bool tg3_setup_fiber_hw_autoneg(struct tg3 *tp, u32 mac_status)
{
u16 flowctrl;
bool current_link_up;
u32 sg_dig_ctrl, sg_dig_status;
u32 serdes_cfg, expected_sg_dig_ctrl;
int workaround, port_a;
serdes_cfg = 0;
expected_sg_dig_ctrl = 0;
workaround = 0;
port_a = 1;
current_link_up = false;
if (tg3_chip_rev_id(tp) != CHIPREV_ID_5704_A0 &&
tg3_chip_rev_id(tp) != CHIPREV_ID_5704_A1) {
workaround = 1;
if (tr32(TG3PCI_DUAL_MAC_CTRL) & DUAL_MAC_CTRL_ID)
port_a = 0;
/* preserve bits 0-11,13,14 for signal pre-emphasis */
/* preserve bits 20-23 for voltage regulator */
serdes_cfg = tr32(MAC_SERDES_CFG) & 0x00f06fff;
}
sg_dig_ctrl = tr32(SG_DIG_CTRL);
if (tp->link_config.autoneg != AUTONEG_ENABLE) {
if (sg_dig_ctrl & SG_DIG_USING_HW_AUTONEG) {
if (workaround) {
u32 val = serdes_cfg;
if (port_a)
val |= 0xc010000;
else
val |= 0x4010000;
tw32_f(MAC_SERDES_CFG, val);
}
tw32_f(SG_DIG_CTRL, SG_DIG_COMMON_SETUP);
}
if (mac_status & MAC_STATUS_PCS_SYNCED) {
tg3_setup_flow_control(tp, 0, 0);
current_link_up = true;
}
goto out;
}
/* Want auto-negotiation. */
expected_sg_dig_ctrl = SG_DIG_USING_HW_AUTONEG | SG_DIG_COMMON_SETUP;
flowctrl = tg3_advert_flowctrl_1000X(tp->link_config.flowctrl);
if (flowctrl & ADVERTISE_1000XPAUSE)
expected_sg_dig_ctrl |= SG_DIG_PAUSE_CAP;
if (flowctrl & ADVERTISE_1000XPSE_ASYM)
expected_sg_dig_ctrl |= SG_DIG_ASYM_PAUSE;
if (sg_dig_ctrl != expected_sg_dig_ctrl) {
if ((tp->phy_flags & TG3_PHYFLG_PARALLEL_DETECT) &&
tp->serdes_counter &&
((mac_status & (MAC_STATUS_PCS_SYNCED |
MAC_STATUS_RCVD_CFG)) ==
MAC_STATUS_PCS_SYNCED)) {
tp->serdes_counter--;
current_link_up = true;
goto out;
}
restart_autoneg:
if (workaround)
tw32_f(MAC_SERDES_CFG, serdes_cfg | 0xc011000);
tw32_f(SG_DIG_CTRL, expected_sg_dig_ctrl | SG_DIG_SOFT_RESET);
udelay(5);
tw32_f(SG_DIG_CTRL, expected_sg_dig_ctrl);
tp->serdes_counter = SERDES_AN_TIMEOUT_5704S;
tp->phy_flags &= ~TG3_PHYFLG_PARALLEL_DETECT;
} else if (mac_status & (MAC_STATUS_PCS_SYNCED |
MAC_STATUS_SIGNAL_DET)) {
sg_dig_status = tr32(SG_DIG_STATUS);
mac_status = tr32(MAC_STATUS);
if ((sg_dig_status & SG_DIG_AUTONEG_COMPLETE) &&
(mac_status & MAC_STATUS_PCS_SYNCED)) {
u32 local_adv = 0, remote_adv = 0;
if (sg_dig_ctrl & SG_DIG_PAUSE_CAP)
local_adv |= ADVERTISE_1000XPAUSE;
if (sg_dig_ctrl & SG_DIG_ASYM_PAUSE)
local_adv |= ADVERTISE_1000XPSE_ASYM;
if (sg_dig_status & SG_DIG_PARTNER_PAUSE_CAPABLE)
remote_adv |= LPA_1000XPAUSE;
if (sg_dig_status & SG_DIG_PARTNER_ASYM_PAUSE)
remote_adv |= LPA_1000XPAUSE_ASYM;
tp->link_config.rmt_adv =
mii_adv_to_ethtool_adv_x(remote_adv);
tg3_setup_flow_control(tp, local_adv, remote_adv);
current_link_up = true;
tp->serdes_counter = 0;
tp->phy_flags &= ~TG3_PHYFLG_PARALLEL_DETECT;
} else if (!(sg_dig_status & SG_DIG_AUTONEG_COMPLETE)) {
if (tp->serdes_counter)
tp->serdes_counter--;
else {
if (workaround) {
u32 val = serdes_cfg;
if (port_a)
val |= 0xc010000;
else
val |= 0x4010000;
tw32_f(MAC_SERDES_CFG, val);
}
tw32_f(SG_DIG_CTRL, SG_DIG_COMMON_SETUP);
udelay(40);
/* Link parallel detection - link is up */
/* only if we have PCS_SYNC and not */
/* receiving config code words */
mac_status = tr32(MAC_STATUS);
if ((mac_status & MAC_STATUS_PCS_SYNCED) &&
!(mac_status & MAC_STATUS_RCVD_CFG)) {
tg3_setup_flow_control(tp, 0, 0);
current_link_up = true;
tp->phy_flags |=
TG3_PHYFLG_PARALLEL_DETECT;
tp->serdes_counter =
SERDES_PARALLEL_DET_TIMEOUT;
} else
goto restart_autoneg;
}
}
} else {
tp->serdes_counter = SERDES_AN_TIMEOUT_5704S;
tp->phy_flags &= ~TG3_PHYFLG_PARALLEL_DETECT;
}
out:
return current_link_up;
}
static bool tg3_setup_fiber_by_hand(struct tg3 *tp, u32 mac_status)
{
bool current_link_up = false;
if (!(mac_status & MAC_STATUS_PCS_SYNCED))
goto out;
if (tp->link_config.autoneg == AUTONEG_ENABLE) {
u32 txflags, rxflags;
int i;
if (fiber_autoneg(tp, &txflags, &rxflags)) {
u32 local_adv = 0, remote_adv = 0;
if (txflags & ANEG_CFG_PS1)
local_adv |= ADVERTISE_1000XPAUSE;
if (txflags & ANEG_CFG_PS2)
local_adv |= ADVERTISE_1000XPSE_ASYM;
if (rxflags & MR_LP_ADV_SYM_PAUSE)
remote_adv |= LPA_1000XPAUSE;
if (rxflags & MR_LP_ADV_ASYM_PAUSE)
remote_adv |= LPA_1000XPAUSE_ASYM;
tp->link_config.rmt_adv =
mii_adv_to_ethtool_adv_x(remote_adv);
tg3_setup_flow_control(tp, local_adv, remote_adv);
current_link_up = true;
}
for (i = 0; i < 30; i++) {
udelay(20);
tw32_f(MAC_STATUS,
(MAC_STATUS_SYNC_CHANGED |
MAC_STATUS_CFG_CHANGED));
udelay(40);
if ((tr32(MAC_STATUS) &
(MAC_STATUS_SYNC_CHANGED |
MAC_STATUS_CFG_CHANGED)) == 0)
break;
}
mac_status = tr32(MAC_STATUS);
if (!current_link_up &&
(mac_status & MAC_STATUS_PCS_SYNCED) &&
!(mac_status & MAC_STATUS_RCVD_CFG))
current_link_up = true;
} else {
tg3_setup_flow_control(tp, 0, 0);
/* Forcing 1000FD link up. */
current_link_up = true;
tw32_f(MAC_MODE, (tp->mac_mode | MAC_MODE_SEND_CONFIGS));
udelay(40);
tw32_f(MAC_MODE, tp->mac_mode);
udelay(40);
}
out:
return current_link_up;
}
static int tg3_setup_fiber_phy(struct tg3 *tp, bool force_reset)
{
u32 orig_pause_cfg;
u16 orig_active_speed;
u8 orig_active_duplex;
u32 mac_status;
bool current_link_up;
int i;
orig_pause_cfg = tp->link_config.active_flowctrl;
orig_active_speed = tp->link_config.active_speed;
orig_active_duplex = tp->link_config.active_duplex;
if (!tg3_flag(tp, HW_AUTONEG) &&
tp->link_up &&
tg3_flag(tp, INIT_COMPLETE)) {
mac_status = tr32(MAC_STATUS);
mac_status &= (MAC_STATUS_PCS_SYNCED |
MAC_STATUS_SIGNAL_DET |
MAC_STATUS_CFG_CHANGED |
MAC_STATUS_RCVD_CFG);
if (mac_status == (MAC_STATUS_PCS_SYNCED |
MAC_STATUS_SIGNAL_DET)) {
tw32_f(MAC_STATUS, (MAC_STATUS_SYNC_CHANGED |
MAC_STATUS_CFG_CHANGED));
return 0;
}
}
tw32_f(MAC_TX_AUTO_NEG, 0);
tp->mac_mode &= ~(MAC_MODE_PORT_MODE_MASK | MAC_MODE_HALF_DUPLEX);
tp->mac_mode |= MAC_MODE_PORT_MODE_TBI;
tw32_f(MAC_MODE, tp->mac_mode);
udelay(40);
if (tp->phy_id == TG3_PHY_ID_BCM8002)
tg3_init_bcm8002(tp);
/* Enable link change event even when serdes polling. */
tw32_f(MAC_EVENT, MAC_EVENT_LNKSTATE_CHANGED);
udelay(40);
current_link_up = false;
tp->link_config.rmt_adv = 0;
mac_status = tr32(MAC_STATUS);
if (tg3_flag(tp, HW_AUTONEG))
current_link_up = tg3_setup_fiber_hw_autoneg(tp, mac_status);
else
current_link_up = tg3_setup_fiber_by_hand(tp, mac_status);
tp->napi[0].hw_status->status =
(SD_STATUS_UPDATED |
(tp->napi[0].hw_status->status & ~SD_STATUS_LINK_CHG));
for (i = 0; i < 100; i++) {
tw32_f(MAC_STATUS, (MAC_STATUS_SYNC_CHANGED |
MAC_STATUS_CFG_CHANGED));
udelay(5);
if ((tr32(MAC_STATUS) & (MAC_STATUS_SYNC_CHANGED |
MAC_STATUS_CFG_CHANGED |
MAC_STATUS_LNKSTATE_CHANGED)) == 0)
break;
}
mac_status = tr32(MAC_STATUS);
if ((mac_status & MAC_STATUS_PCS_SYNCED) == 0) {
current_link_up = false;
if (tp->link_config.autoneg == AUTONEG_ENABLE &&
tp->serdes_counter == 0) {
tw32_f(MAC_MODE, (tp->mac_mode |
MAC_MODE_SEND_CONFIGS));
udelay(1);
tw32_f(MAC_MODE, tp->mac_mode);
}
}
if (current_link_up) {
tp->link_config.active_speed = SPEED_1000;
tp->link_config.active_duplex = DUPLEX_FULL;
tw32(MAC_LED_CTRL, (tp->led_ctrl |
LED_CTRL_LNKLED_OVERRIDE |
LED_CTRL_1000MBPS_ON));
} else {
tp->link_config.active_speed = SPEED_UNKNOWN;
tp->link_config.active_duplex = DUPLEX_UNKNOWN;
tw32(MAC_LED_CTRL, (tp->led_ctrl |
LED_CTRL_LNKLED_OVERRIDE |
LED_CTRL_TRAFFIC_OVERRIDE));
}
if (!tg3_test_and_report_link_chg(tp, current_link_up)) {
u32 now_pause_cfg = tp->link_config.active_flowctrl;
if (orig_pause_cfg != now_pause_cfg ||
orig_active_speed != tp->link_config.active_speed ||
orig_active_duplex != tp->link_config.active_duplex)
tg3_link_report(tp);
}
return 0;
}
static int tg3_setup_fiber_mii_phy(struct tg3 *tp, bool force_reset)
{
int err = 0;
u32 bmsr, bmcr;
u16 current_speed = SPEED_UNKNOWN;
u8 current_duplex = DUPLEX_UNKNOWN;
bool current_link_up = false;
u32 local_adv, remote_adv, sgsr;
if ((tg3_asic_rev(tp) == ASIC_REV_5719 ||
tg3_asic_rev(tp) == ASIC_REV_5720) &&
!tg3_readphy(tp, SERDES_TG3_1000X_STATUS, &sgsr) &&
(sgsr & SERDES_TG3_SGMII_MODE)) {
if (force_reset)
tg3_phy_reset(tp);
tp->mac_mode &= ~MAC_MODE_PORT_MODE_MASK;
if (!(sgsr & SERDES_TG3_LINK_UP)) {
tp->mac_mode |= MAC_MODE_PORT_MODE_GMII;
} else {
current_link_up = true;
if (sgsr & SERDES_TG3_SPEED_1000) {
current_speed = SPEED_1000;
tp->mac_mode |= MAC_MODE_PORT_MODE_GMII;
} else if (sgsr & SERDES_TG3_SPEED_100) {
current_speed = SPEED_100;
tp->mac_mode |= MAC_MODE_PORT_MODE_MII;
} else {
current_speed = SPEED_10;
tp->mac_mode |= MAC_MODE_PORT_MODE_MII;
}
if (sgsr & SERDES_TG3_FULL_DUPLEX)
current_duplex = DUPLEX_FULL;
else
current_duplex = DUPLEX_HALF;
}
tw32_f(MAC_MODE, tp->mac_mode);
udelay(40);
tg3_clear_mac_status(tp);
goto fiber_setup_done;
}
tp->mac_mode |= MAC_MODE_PORT_MODE_GMII;
tw32_f(MAC_MODE, tp->mac_mode);
udelay(40);
tg3_clear_mac_status(tp);
if (force_reset)
tg3_phy_reset(tp);
tp->link_config.rmt_adv = 0;
err |= tg3_readphy(tp, MII_BMSR, &bmsr);
err |= tg3_readphy(tp, MII_BMSR, &bmsr);
if (tg3_asic_rev(tp) == ASIC_REV_5714) {
if (tr32(MAC_TX_STATUS) & TX_STATUS_LINK_UP)
bmsr |= BMSR_LSTATUS;
else
bmsr &= ~BMSR_LSTATUS;
}
err |= tg3_readphy(tp, MII_BMCR, &bmcr);
if ((tp->link_config.autoneg == AUTONEG_ENABLE) && !force_reset &&
(tp->phy_flags & TG3_PHYFLG_PARALLEL_DETECT)) {
/* do nothing, just check for link up at the end */
} else if (tp->link_config.autoneg == AUTONEG_ENABLE) {
u32 adv, newadv;
err |= tg3_readphy(tp, MII_ADVERTISE, &adv);
newadv = adv & ~(ADVERTISE_1000XFULL | ADVERTISE_1000XHALF |
ADVERTISE_1000XPAUSE |
ADVERTISE_1000XPSE_ASYM |
ADVERTISE_SLCT);
newadv |= tg3_advert_flowctrl_1000X(tp->link_config.flowctrl);
newadv |= ethtool_adv_to_mii_adv_x(tp->link_config.advertising);
if ((newadv != adv) || !(bmcr & BMCR_ANENABLE)) {
tg3_writephy(tp, MII_ADVERTISE, newadv);
bmcr |= BMCR_ANENABLE | BMCR_ANRESTART;
tg3_writephy(tp, MII_BMCR, bmcr);
tw32_f(MAC_EVENT, MAC_EVENT_LNKSTATE_CHANGED);
tp->serdes_counter = SERDES_AN_TIMEOUT_5714S;
tp->phy_flags &= ~TG3_PHYFLG_PARALLEL_DETECT;
return err;
}
} else {
u32 new_bmcr;
bmcr &= ~BMCR_SPEED1000;
new_bmcr = bmcr & ~(BMCR_ANENABLE | BMCR_FULLDPLX);
if (tp->link_config.duplex == DUPLEX_FULL)
new_bmcr |= BMCR_FULLDPLX;
if (new_bmcr != bmcr) {
/* BMCR_SPEED1000 is a reserved bit that needs
* to be set on write.
*/
new_bmcr |= BMCR_SPEED1000;
/* Force a linkdown */
if (tp->link_up) {
u32 adv;
err |= tg3_readphy(tp, MII_ADVERTISE, &adv);
adv &= ~(ADVERTISE_1000XFULL |
ADVERTISE_1000XHALF |
ADVERTISE_SLCT);
tg3_writephy(tp, MII_ADVERTISE, adv);
tg3_writephy(tp, MII_BMCR, bmcr |
BMCR_ANRESTART |
BMCR_ANENABLE);
udelay(10);
tg3_carrier_off(tp);
}
tg3_writephy(tp, MII_BMCR, new_bmcr);
bmcr = new_bmcr;
err |= tg3_readphy(tp, MII_BMSR, &bmsr);
err |= tg3_readphy(tp, MII_BMSR, &bmsr);
if (tg3_asic_rev(tp) == ASIC_REV_5714) {
if (tr32(MAC_TX_STATUS) & TX_STATUS_LINK_UP)
bmsr |= BMSR_LSTATUS;
else
bmsr &= ~BMSR_LSTATUS;
}
tp->phy_flags &= ~TG3_PHYFLG_PARALLEL_DETECT;
}
}
if (bmsr & BMSR_LSTATUS) {
current_speed = SPEED_1000;
current_link_up = true;
if (bmcr & BMCR_FULLDPLX)
current_duplex = DUPLEX_FULL;
else
current_duplex = DUPLEX_HALF;
local_adv = 0;
remote_adv = 0;
if (bmcr & BMCR_ANENABLE) {
u32 common;
err |= tg3_readphy(tp, MII_ADVERTISE, &local_adv);
err |= tg3_readphy(tp, MII_LPA, &remote_adv);
common = local_adv & remote_adv;
if (common & (ADVERTISE_1000XHALF |
ADVERTISE_1000XFULL)) {
if (common & ADVERTISE_1000XFULL)
current_duplex = DUPLEX_FULL;
else
current_duplex = DUPLEX_HALF;
tp->link_config.rmt_adv =
mii_adv_to_ethtool_adv_x(remote_adv);
} else if (!tg3_flag(tp, 5780_CLASS)) {
/* Link is up via parallel detect */
} else {
current_link_up = false;
}
}
}
fiber_setup_done:
if (current_link_up && current_duplex == DUPLEX_FULL)
tg3_setup_flow_control(tp, local_adv, remote_adv);
tp->mac_mode &= ~MAC_MODE_HALF_DUPLEX;
if (tp->link_config.active_duplex == DUPLEX_HALF)
tp->mac_mode |= MAC_MODE_HALF_DUPLEX;
tw32_f(MAC_MODE, tp->mac_mode);
udelay(40);
tw32_f(MAC_EVENT, MAC_EVENT_LNKSTATE_CHANGED);
tp->link_config.active_speed = current_speed;
tp->link_config.active_duplex = current_duplex;
tg3_test_and_report_link_chg(tp, current_link_up);
return err;
}
static void tg3_serdes_parallel_detect(struct tg3 *tp)
{
if (tp->serdes_counter) {
/* Give autoneg time to complete. */
tp->serdes_counter--;
return;
}
if (!tp->link_up &&
(tp->link_config.autoneg == AUTONEG_ENABLE)) {
u32 bmcr;
tg3_readphy(tp, MII_BMCR, &bmcr);
if (bmcr & BMCR_ANENABLE) {
u32 phy1, phy2;
/* Select shadow register 0x1f */
tg3_writephy(tp, MII_TG3_MISC_SHDW, 0x7c00);
tg3_readphy(tp, MII_TG3_MISC_SHDW, &phy1);
/* Select expansion interrupt status register */
tg3_writephy(tp, MII_TG3_DSP_ADDRESS,
MII_TG3_DSP_EXP1_INT_STAT);
tg3_readphy(tp, MII_TG3_DSP_RW_PORT, &phy2);
tg3_readphy(tp, MII_TG3_DSP_RW_PORT, &phy2);
if ((phy1 & 0x10) && !(phy2 & 0x20)) {
/* We have signal detect and not receiving
* config code words, link is up by parallel
* detection.
*/
bmcr &= ~BMCR_ANENABLE;
bmcr |= BMCR_SPEED1000 | BMCR_FULLDPLX;
tg3_writephy(tp, MII_BMCR, bmcr);
tp->phy_flags |= TG3_PHYFLG_PARALLEL_DETECT;
}
}
} else if (tp->link_up &&
(tp->link_config.autoneg == AUTONEG_ENABLE) &&
(tp->phy_flags & TG3_PHYFLG_PARALLEL_DETECT)) {
u32 phy2;
/* Select expansion interrupt status register */
tg3_writephy(tp, MII_TG3_DSP_ADDRESS,
MII_TG3_DSP_EXP1_INT_STAT);
tg3_readphy(tp, MII_TG3_DSP_RW_PORT, &phy2);
if (phy2 & 0x20) {
u32 bmcr;
/* Config code words received, turn on autoneg. */
tg3_readphy(tp, MII_BMCR, &bmcr);
tg3_writephy(tp, MII_BMCR, bmcr | BMCR_ANENABLE);
tp->phy_flags &= ~TG3_PHYFLG_PARALLEL_DETECT;
}
}
}
static int tg3_setup_phy(struct tg3 *tp, bool force_reset)
{
u32 val;
int err;
if (tp->phy_flags & TG3_PHYFLG_PHY_SERDES)
err = tg3_setup_fiber_phy(tp, force_reset);
else if (tp->phy_flags & TG3_PHYFLG_MII_SERDES)
err = tg3_setup_fiber_mii_phy(tp, force_reset);
else
err = tg3_setup_copper_phy(tp, force_reset);
if (tg3_chip_rev(tp) == CHIPREV_5784_AX) {
u32 scale;
val = tr32(TG3_CPMU_CLCK_STAT) & CPMU_CLCK_STAT_MAC_CLCK_MASK;
if (val == CPMU_CLCK_STAT_MAC_CLCK_62_5)
scale = 65;
else if (val == CPMU_CLCK_STAT_MAC_CLCK_6_25)
scale = 6;
else
scale = 12;
val = tr32(GRC_MISC_CFG) & ~GRC_MISC_CFG_PRESCALAR_MASK;
val |= (scale << GRC_MISC_CFG_PRESCALAR_SHIFT);
tw32(GRC_MISC_CFG, val);
}
val = (2 << TX_LENGTHS_IPG_CRS_SHIFT) |
(6 << TX_LENGTHS_IPG_SHIFT);
if (tg3_asic_rev(tp) == ASIC_REV_5720 ||
tg3_asic_rev(tp) == ASIC_REV_5762)
val |= tr32(MAC_TX_LENGTHS) &
(TX_LENGTHS_JMB_FRM_LEN_MSK |
TX_LENGTHS_CNT_DWN_VAL_MSK);
if (tp->link_config.active_speed == SPEED_1000 &&
tp->link_config.active_duplex == DUPLEX_HALF)
tw32(MAC_TX_LENGTHS, val |
(0xff << TX_LENGTHS_SLOT_TIME_SHIFT));
else
tw32(MAC_TX_LENGTHS, val |
(32 << TX_LENGTHS_SLOT_TIME_SHIFT));
if (!tg3_flag(tp, 5705_PLUS)) {
if (tp->link_up) {
tw32(HOSTCC_STAT_COAL_TICKS,
tp->coal.stats_block_coalesce_usecs);
} else {
tw32(HOSTCC_STAT_COAL_TICKS, 0);
}
}
if (tg3_flag(tp, ASPM_WORKAROUND)) {
val = tr32(PCIE_PWR_MGMT_THRESH);
if (!tp->link_up)
val = (val & ~PCIE_PWR_MGMT_L1_THRESH_MSK) |
tp->pwrmgmt_thresh;
else
val |= PCIE_PWR_MGMT_L1_THRESH_MSK;
tw32(PCIE_PWR_MGMT_THRESH, val);
}
return err;
}
/* tp->lock must be held */
static u64 tg3_refclk_read(struct tg3 *tp)
{
u64 stamp = tr32(TG3_EAV_REF_CLCK_LSB);
return stamp | (u64)tr32(TG3_EAV_REF_CLCK_MSB) << 32;
}
/* tp->lock must be held */
static void tg3_refclk_write(struct tg3 *tp, u64 newval)
{
tw32(TG3_EAV_REF_CLCK_CTL, TG3_EAV_REF_CLCK_CTL_STOP);
tw32(TG3_EAV_REF_CLCK_LSB, newval & 0xffffffff);
tw32(TG3_EAV_REF_CLCK_MSB, newval >> 32);
tw32_f(TG3_EAV_REF_CLCK_CTL, TG3_EAV_REF_CLCK_CTL_RESUME);
}
static inline void tg3_full_lock(struct tg3 *tp, int irq_sync);
static inline void tg3_full_unlock(struct tg3 *tp);
static int tg3_get_ts_info(struct net_device *dev, struct ethtool_ts_info *info)
{
struct tg3 *tp = netdev_priv(dev);
info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
SOF_TIMESTAMPING_RX_SOFTWARE |
SOF_TIMESTAMPING_SOFTWARE;
if (tg3_flag(tp, PTP_CAPABLE)) {
info->so_timestamping |= SOF_TIMESTAMPING_TX_HARDWARE |
SOF_TIMESTAMPING_RX_HARDWARE |
SOF_TIMESTAMPING_RAW_HARDWARE;
}
if (tp->ptp_clock)
info->phc_index = ptp_clock_index(tp->ptp_clock);
else
info->phc_index = -1;
info->tx_types = (1 << HWTSTAMP_TX_OFF) | (1 << HWTSTAMP_TX_ON);
info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
(1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT) |
(1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
(1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT);
return 0;
}
static int tg3_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
{
struct tg3 *tp = container_of(ptp, struct tg3, ptp_info);
bool neg_adj = false;
u32 correction = 0;
if (ppb < 0) {
neg_adj = true;
ppb = -ppb;
}
/* Frequency adjustment is performed using hardware with a 24 bit
* accumulator and a programmable correction value. On each clk, the
* correction value gets added to the accumulator and when it
* overflows, the time counter is incremented/decremented.
*
* So conversion from ppb to correction value is
* ppb * (1 << 24) / 1000000000
*/
correction = div_u64((u64)ppb * (1 << 24), 1000000000ULL) &
TG3_EAV_REF_CLK_CORRECT_MASK;
tg3_full_lock(tp, 0);
if (correction)
tw32(TG3_EAV_REF_CLK_CORRECT_CTL,
TG3_EAV_REF_CLK_CORRECT_EN |
(neg_adj ? TG3_EAV_REF_CLK_CORRECT_NEG : 0) | correction);
else
tw32(TG3_EAV_REF_CLK_CORRECT_CTL, 0);
tg3_full_unlock(tp);
return 0;
}
static int tg3_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
{
struct tg3 *tp = container_of(ptp, struct tg3, ptp_info);
tg3_full_lock(tp, 0);
tp->ptp_adjust += delta;
tg3_full_unlock(tp);
return 0;
}
static int tg3_ptp_gettime(struct ptp_clock_info *ptp, struct timespec *ts)
{
u64 ns;
u32 remainder;
struct tg3 *tp = container_of(ptp, struct tg3, ptp_info);
tg3_full_lock(tp, 0);
ns = tg3_refclk_read(tp);
ns += tp->ptp_adjust;
tg3_full_unlock(tp);
ts->tv_sec = div_u64_rem(ns, 1000000000, &remainder);
ts->tv_nsec = remainder;
return 0;
}
static int tg3_ptp_settime(struct ptp_clock_info *ptp,
const struct timespec *ts)
{
u64 ns;
struct tg3 *tp = container_of(ptp, struct tg3, ptp_info);
ns = timespec_to_ns(ts);
tg3_full_lock(tp, 0);
tg3_refclk_write(tp, ns);
tp->ptp_adjust = 0;
tg3_full_unlock(tp);
return 0;
}
static int tg3_ptp_enable(struct ptp_clock_info *ptp,
struct ptp_clock_request *rq, int on)
{
return -EOPNOTSUPP;
}
static const struct ptp_clock_info tg3_ptp_caps = {
.owner = THIS_MODULE,
.name = "tg3 clock",
.max_adj = 250000000,
.n_alarm = 0,
.n_ext_ts = 0,
.n_per_out = 0,
.pps = 0,
.adjfreq = tg3_ptp_adjfreq,
.adjtime = tg3_ptp_adjtime,
.gettime = tg3_ptp_gettime,
.settime = tg3_ptp_settime,
.enable = tg3_ptp_enable,
};
static void tg3_hwclock_to_timestamp(struct tg3 *tp, u64 hwclock,
struct skb_shared_hwtstamps *timestamp)
{
memset(timestamp, 0, sizeof(struct skb_shared_hwtstamps));
timestamp->hwtstamp = ns_to_ktime((hwclock & TG3_TSTAMP_MASK) +
tp->ptp_adjust);
}
/* tp->lock must be held */
static void tg3_ptp_init(struct tg3 *tp)
{
if (!tg3_flag(tp, PTP_CAPABLE))
return;
/* Initialize the hardware clock to the system time. */
tg3_refclk_write(tp, ktime_to_ns(ktime_get_real()));
tp->ptp_adjust = 0;
tp->ptp_info = tg3_ptp_caps;
}
/* tp->lock must be held */
static void tg3_ptp_resume(struct tg3 *tp)
{
if (!tg3_flag(tp, PTP_CAPABLE))
return;
tg3_refclk_write(tp, ktime_to_ns(ktime_get_real()) + tp->ptp_adjust);
tp->ptp_adjust = 0;
}
static void tg3_ptp_fini(struct tg3 *tp)
{
if (!tg3_flag(tp, PTP_CAPABLE) || !tp->ptp_clock)
return;
ptp_clock_unregister(tp->ptp_clock);
tp->ptp_clock = NULL;
tp->ptp_adjust = 0;
}
static inline int tg3_irq_sync(struct tg3 *tp)
{
return tp->irq_sync;
}
static inline void tg3_rd32_loop(struct tg3 *tp, u32 *dst, u32 off, u32 len)
{
int i;
dst = (u32 *)((u8 *)dst + off);
for (i = 0; i < len; i += sizeof(u32))
*dst++ = tr32(off + i);
}
static void tg3_dump_legacy_regs(struct tg3 *tp, u32 *regs)
{
tg3_rd32_loop(tp, regs, TG3PCI_VENDOR, 0xb0);
tg3_rd32_loop(tp, regs, MAILBOX_INTERRUPT_0, 0x200);
tg3_rd32_loop(tp, regs, MAC_MODE, 0x4f0);
tg3_rd32_loop(tp, regs, SNDDATAI_MODE, 0xe0);
tg3_rd32_loop(tp, regs, SNDDATAC_MODE, 0x04);
tg3_rd32_loop(tp, regs, SNDBDS_MODE, 0x80);
tg3_rd32_loop(tp, regs, SNDBDI_MODE, 0x48);
tg3_rd32_loop(tp, regs, SNDBDC_MODE, 0x04);
tg3_rd32_loop(tp, regs, RCVLPC_MODE, 0x20);
tg3_rd32_loop(tp, regs, RCVLPC_SELLST_BASE, 0x15c);
tg3_rd32_loop(tp, regs, RCVDBDI_MODE, 0x0c);
tg3_rd32_loop(tp, regs, RCVDBDI_JUMBO_BD, 0x3c);
tg3_rd32_loop(tp, regs, RCVDBDI_BD_PROD_IDX_0, 0x44);
tg3_rd32_loop(tp, regs, RCVDCC_MODE, 0x04);
tg3_rd32_loop(tp, regs, RCVBDI_MODE, 0x20);
tg3_rd32_loop(tp, regs, RCVCC_MODE, 0x14);
tg3_rd32_loop(tp, regs, RCVLSC_MODE, 0x08);
tg3_rd32_loop(tp, regs, MBFREE_MODE, 0x08);
tg3_rd32_loop(tp, regs, HOSTCC_MODE, 0x100);
if (tg3_flag(tp, SUPPORT_MSIX))
tg3_rd32_loop(tp, regs, HOSTCC_RXCOL_TICKS_VEC1, 0x180);
tg3_rd32_loop(tp, regs, MEMARB_MODE, 0x10);
tg3_rd32_loop(tp, regs, BUFMGR_MODE, 0x58);
tg3_rd32_loop(tp, regs, RDMAC_MODE, 0x08);
tg3_rd32_loop(tp, regs, WDMAC_MODE, 0x08);
tg3_rd32_loop(tp, regs, RX_CPU_MODE, 0x04);
tg3_rd32_loop(tp, regs, RX_CPU_STATE, 0x04);
tg3_rd32_loop(tp, regs, RX_CPU_PGMCTR, 0x04);
tg3_rd32_loop(tp, regs, RX_CPU_HWBKPT, 0x04);
if (!tg3_flag(tp, 5705_PLUS)) {
tg3_rd32_loop(tp, regs, TX_CPU_MODE, 0x04);
tg3_rd32_loop(tp, regs, TX_CPU_STATE, 0x04);
tg3_rd32_loop(tp, regs, TX_CPU_PGMCTR, 0x04);
}
tg3_rd32_loop(tp, regs, GRCMBOX_INTERRUPT_0, 0x110);
tg3_rd32_loop(tp, regs, FTQ_RESET, 0x120);
tg3_rd32_loop(tp, regs, MSGINT_MODE, 0x0c);
tg3_rd32_loop(tp, regs, DMAC_MODE, 0x04);
tg3_rd32_loop(tp, regs, GRC_MODE, 0x4c);
if (tg3_flag(tp, NVRAM))
tg3_rd32_loop(tp, regs, NVRAM_CMD, 0x24);
}
static void tg3_dump_state(struct tg3 *tp)
{
int i;
u32 *regs;
regs = kzalloc(TG3_REG_BLK_SIZE, GFP_ATOMIC);
if (!regs)
return;
if (tg3_flag(tp, PCI_EXPRESS)) {
/* Read up to but not including private PCI registers */
for (i = 0; i < TG3_PCIE_TLDLPL_PORT; i += sizeof(u32))
regs[i / sizeof(u32)] = tr32(i);
} else
tg3_dump_legacy_regs(tp, regs);
for (i = 0; i < TG3_REG_BLK_SIZE / sizeof(u32); i += 4) {
if (!regs[i + 0] && !regs[i + 1] &&
!regs[i + 2] && !regs[i + 3])
continue;
netdev_err(tp->dev, "0x%08x: 0x%08x, 0x%08x, 0x%08x, 0x%08x\n",
i * 4,
regs[i + 0], regs[i + 1], regs[i + 2], regs[i + 3]);
}
kfree(regs);
for (i = 0; i < tp->irq_cnt; i++) {
struct tg3_napi *tnapi = &tp->napi[i];
/* SW status block */
netdev_err(tp->dev,
"%d: Host status block [%08x:%08x:(%04x:%04x:%04x):(%04x:%04x)]\n",
i,
tnapi->hw_status->status,
tnapi->hw_status->status_tag,
tnapi->hw_status->rx_jumbo_consumer,
tnapi->hw_status->rx_consumer,
tnapi->hw_status->rx_mini_consumer,
tnapi->hw_status->idx[0].rx_producer,
tnapi->hw_status->idx[0].tx_consumer);
netdev_err(tp->dev,
"%d: NAPI info [%08x:%08x:(%04x:%04x:%04x):%04x:(%04x:%04x:%04x:%04x)]\n",
i,
tnapi->last_tag, tnapi->last_irq_tag,
tnapi->tx_prod, tnapi->tx_cons, tnapi->tx_pending,
tnapi->rx_rcb_ptr,
tnapi->prodring.rx_std_prod_idx,
tnapi->prodring.rx_std_cons_idx,
tnapi->prodring.rx_jmb_prod_idx,
tnapi->prodring.rx_jmb_cons_idx);
}
}
/* This is called whenever we suspect that the system chipset is re-
* ordering the sequence of MMIO to the tx send mailbox. The symptom
* is bogus tx completions. We try to recover by setting the
* TG3_FLAG_MBOX_WRITE_REORDER flag and resetting the chip later
* in the workqueue.
*/
static void tg3_tx_recover(struct tg3 *tp)
{
BUG_ON(tg3_flag(tp, MBOX_WRITE_REORDER) ||
tp->write32_tx_mbox == tg3_write_indirect_mbox);
netdev_warn(tp->dev,
"The system may be re-ordering memory-mapped I/O "
"cycles to the network device, attempting to recover. "
"Please report the problem to the driver maintainer "
"and include system chipset information.\n");
spin_lock(&tp->lock);
tg3_flag_set(tp, TX_RECOVERY_PENDING);
spin_unlock(&tp->lock);
}
static inline u32 tg3_tx_avail(struct tg3_napi *tnapi)
{
/* Tell compiler to fetch tx indices from memory. */
barrier();
return tnapi->tx_pending -
((tnapi->tx_prod - tnapi->tx_cons) & (TG3_TX_RING_SIZE - 1));
}
/* Tigon3 never reports partial packet sends. So we do not
* need special logic to handle SKBs that have not had all
* of their frags sent yet, like SunGEM does.
*/
static void tg3_tx(struct tg3_napi *tnapi)
{
struct tg3 *tp = tnapi->tp;
u32 hw_idx = tnapi->hw_status->idx[0].tx_consumer;
u32 sw_idx = tnapi->tx_cons;
struct netdev_queue *txq;
int index = tnapi - tp->napi;
unsigned int pkts_compl = 0, bytes_compl = 0;
if (tg3_flag(tp, ENABLE_TSS))
index--;
txq = netdev_get_tx_queue(tp->dev, index);
while (sw_idx != hw_idx) {
struct tg3_tx_ring_info *ri = &tnapi->tx_buffers[sw_idx];
struct sk_buff *skb = ri->skb;
int i, tx_bug = 0;
if (unlikely(skb == NULL)) {
tg3_tx_recover(tp);
return;
}
if (tnapi->tx_ring[sw_idx].len_flags & TXD_FLAG_HWTSTAMP) {
struct skb_shared_hwtstamps timestamp;
u64 hwclock = tr32(TG3_TX_TSTAMP_LSB);
hwclock |= (u64)tr32(TG3_TX_TSTAMP_MSB) << 32;
tg3_hwclock_to_timestamp(tp, hwclock, &timestamp);
skb_tstamp_tx(skb, &timestamp);
}
pci_unmap_single(tp->pdev,
dma_unmap_addr(ri, mapping),
skb_headlen(skb),
PCI_DMA_TODEVICE);
ri->skb = NULL;
while (ri->fragmented) {
ri->fragmented = false;
sw_idx = NEXT_TX(sw_idx);
ri = &tnapi->tx_buffers[sw_idx];
}
sw_idx = NEXT_TX(sw_idx);
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
ri = &tnapi->tx_buffers[sw_idx];
if (unlikely(ri->skb != NULL || sw_idx == hw_idx))
tx_bug = 1;
pci_unmap_page(tp->pdev,
dma_unmap_addr(ri, mapping),
skb_frag_size(&skb_shinfo(skb)->frags[i]),
PCI_DMA_TODEVICE);
while (ri->fragmented) {
ri->fragmented = false;
sw_idx = NEXT_TX(sw_idx);
ri = &tnapi->tx_buffers[sw_idx];
}
sw_idx = NEXT_TX(sw_idx);
}
pkts_compl++;
bytes_compl += skb->len;
dev_kfree_skb(skb);
if (unlikely(tx_bug)) {
tg3_tx_recover(tp);
return;
}
}
netdev_tx_completed_queue(txq, pkts_compl, bytes_compl);
tnapi->tx_cons = sw_idx;
/* Need to make the tx_cons update visible to tg3_start_xmit()
* before checking for netif_queue_stopped(). Without the
* memory barrier, there is a small possibility that tg3_start_xmit()
* will miss it and cause the queue to be stopped forever.
*/
smp_mb();
if (unlikely(netif_tx_queue_stopped(txq) &&
(tg3_tx_avail(tnapi) > TG3_TX_WAKEUP_THRESH(tnapi)))) {
__netif_tx_lock(txq, smp_processor_id());
if (netif_tx_queue_stopped(txq) &&
(tg3_tx_avail(tnapi) > TG3_TX_WAKEUP_THRESH(tnapi)))
netif_tx_wake_queue(txq);
__netif_tx_unlock(txq);
}
}
static void tg3_frag_free(bool is_frag, void *data)
{
if (is_frag)
put_page(virt_to_head_page(data));
else
kfree(data);
}
static void tg3_rx_data_free(struct tg3 *tp, struct ring_info *ri, u32 map_sz)
{
unsigned int skb_size = SKB_DATA_ALIGN(map_sz + TG3_RX_OFFSET(tp)) +
SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
if (!ri->data)
return;
pci_unmap_single(tp->pdev, dma_unmap_addr(ri, mapping),
map_sz, PCI_DMA_FROMDEVICE);
tg3_frag_free(skb_size <= PAGE_SIZE, ri->data);
ri->data = NULL;
}
/* Returns size of skb allocated or < 0 on error.
*
* We only need to fill in the address because the other members
* of the RX descriptor are invariant, see tg3_init_rings.
*
* Note the purposeful assymetry of cpu vs. chip accesses. For
* posting buffers we only dirty the first cache line of the RX
* descriptor (containing the address). Whereas for the RX status
* buffers the cpu only reads the last cacheline of the RX descriptor
* (to fetch the error flags, vlan tag, checksum, and opaque cookie).
*/
static int tg3_alloc_rx_data(struct tg3 *tp, struct tg3_rx_prodring_set *tpr,
u32 opaque_key, u32 dest_idx_unmasked,
unsigned int *frag_size)
{
struct tg3_rx_buffer_desc *desc;
struct ring_info *map;
u8 *data;
dma_addr_t mapping;
int skb_size, data_size, dest_idx;
switch (opaque_key) {
case RXD_OPAQUE_RING_STD:
dest_idx = dest_idx_unmasked & tp->rx_std_ring_mask;
desc = &tpr->rx_std[dest_idx];
map = &tpr->rx_std_buffers[dest_idx];
data_size = tp->rx_pkt_map_sz;
break;
case RXD_OPAQUE_RING_JUMBO:
dest_idx = dest_idx_unmasked & tp->rx_jmb_ring_mask;
desc = &tpr->rx_jmb[dest_idx].std;
map = &tpr->rx_jmb_buffers[dest_idx];
data_size = TG3_RX_JMB_MAP_SZ;
break;
default:
return -EINVAL;
}
/* Do not overwrite any of the map or rp information
* until we are sure we can commit to a new buffer.
*
* Callers depend upon this behavior and assume that
* we leave everything unchanged if we fail.
*/
skb_size = SKB_DATA_ALIGN(data_size + TG3_RX_OFFSET(tp)) +
SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
if (skb_size <= PAGE_SIZE) {
data = netdev_alloc_frag(skb_size);
*frag_size = skb_size;
} else {
data = kmalloc(skb_size, GFP_ATOMIC);
*frag_size = 0;
}
if (!data)
return -ENOMEM;
mapping = pci_map_single(tp->pdev,
data + TG3_RX_OFFSET(tp),
data_size,
PCI_DMA_FROMDEVICE);
if (unlikely(pci_dma_mapping_error(tp->pdev, mapping))) {
tg3_frag_free(skb_size <= PAGE_SIZE, data);
return -EIO;
}
map->data = data;
dma_unmap_addr_set(map, mapping, mapping);
desc->addr_hi = ((u64)mapping >> 32);
desc->addr_lo = ((u64)mapping & 0xffffffff);
return data_size;
}
/* We only need to move over in the address because the other
* members of the RX descriptor are invariant. See notes above
* tg3_alloc_rx_data for full details.
*/
static void tg3_recycle_rx(struct tg3_napi *tnapi,
struct tg3_rx_prodring_set *dpr,
u32 opaque_key, int src_idx,
u32 dest_idx_unmasked)
{
struct tg3 *tp = tnapi->tp;
struct tg3_rx_buffer_desc *src_desc, *dest_desc;
struct ring_info *src_map, *dest_map;
struct tg3_rx_prodring_set *spr = &tp->napi[0].prodring;
int dest_idx;
switch (opaque_key) {
case RXD_OPAQUE_RING_STD:
dest_idx = dest_idx_unmasked & tp->rx_std_ring_mask;
dest_desc = &dpr->rx_std[dest_idx];
dest_map = &dpr->rx_std_buffers[dest_idx];
src_desc = &spr->rx_std[src_idx];
src_map = &spr->rx_std_buffers[src_idx];
break;
case RXD_OPAQUE_RING_JUMBO:
dest_idx = dest_idx_unmasked & tp->rx_jmb_ring_mask;
dest_desc = &dpr->rx_jmb[dest_idx].std;
dest_map = &dpr->rx_jmb_buffers[dest_idx];
src_desc = &spr->rx_jmb[src_idx].std;
src_map = &spr->rx_jmb_buffers[src_idx];
break;
default:
return;
}
dest_map->data = src_map->data;
dma_unmap_addr_set(dest_map, mapping,
dma_unmap_addr(src_map, mapping));
dest_desc->addr_hi = src_desc->addr_hi;
dest_desc->addr_lo = src_desc->addr_lo;
/* Ensure that the update to the skb happens after the physical
* addresses have been transferred to the new BD location.
*/
smp_wmb();
src_map->data = NULL;
}
/* The RX ring scheme is composed of multiple rings which post fresh
* buffers to the chip, and one special ring the chip uses to report
* status back to the host.
*
* The special ring reports the status of received packets to the
* host. The chip does not write into the original descriptor the
* RX buffer was obtained from. The chip simply takes the original
* descriptor as provided by the host, updates the status and length
* field, then writes this into the next status ring entry.
*
* Each ring the host uses to post buffers to the chip is described
* by a TG3_BDINFO entry in the chips SRAM area. When a packet arrives,
* it is first placed into the on-chip ram. When the packet's length
* is known, it walks down the TG3_BDINFO entries to select the ring.
* Each TG3_BDINFO specifies a MAXLEN field and the first TG3_BDINFO
* which is within the range of the new packet's length is chosen.
*
* The "separate ring for rx status" scheme may sound queer, but it makes
* sense from a cache coherency perspective. If only the host writes
* to the buffer post rings, and only the chip writes to the rx status
* rings, then cache lines never move beyond shared-modified state.
* If both the host and chip were to write into the same ring, cache line
* eviction could occur since both entities want it in an exclusive state.
*/
static int tg3_rx(struct tg3_napi *tnapi, int budget)
{
struct tg3 *tp = tnapi->tp;
u32 work_mask, rx_std_posted = 0;
u32 std_prod_idx, jmb_prod_idx;
u32 sw_idx = tnapi->rx_rcb_ptr;
u16 hw_idx;
int received;
struct tg3_rx_prodring_set *tpr = &tnapi->prodring;
hw_idx = *(tnapi->rx_rcb_prod_idx);
/*
* We need to order the read of hw_idx and the read of
* the opaque cookie.
*/
rmb();
work_mask = 0;
received = 0;
std_prod_idx = tpr->rx_std_prod_idx;
jmb_prod_idx = tpr->rx_jmb_prod_idx;
while (sw_idx != hw_idx && budget > 0) {
struct ring_info *ri;
struct tg3_rx_buffer_desc *desc = &tnapi->rx_rcb[sw_idx];
unsigned int len;
struct sk_buff *skb;
dma_addr_t dma_addr;
u32 opaque_key, desc_idx, *post_ptr;
u8 *data;
u64 tstamp = 0;
desc_idx = desc->opaque & RXD_OPAQUE_INDEX_MASK;
opaque_key = desc->opaque & RXD_OPAQUE_RING_MASK;
if (opaque_key == RXD_OPAQUE_RING_STD) {
ri = &tp->napi[0].prodring.rx_std_buffers[desc_idx];
dma_addr = dma_unmap_addr(ri, mapping);
data = ri->data;
post_ptr = &std_prod_idx;
rx_std_posted++;
} else if (opaque_key == RXD_OPAQUE_RING_JUMBO) {
ri = &tp->napi[0].prodring.rx_jmb_buffers[desc_idx];
dma_addr = dma_unmap_addr(ri, mapping);
data = ri->data;
post_ptr = &jmb_prod_idx;
} else
goto next_pkt_nopost;
work_mask |= opaque_key;
if ((desc->err_vlan & RXD_ERR_MASK) != 0 &&
(desc->err_vlan != RXD_ERR_ODD_NIBBLE_RCVD_MII)) {
drop_it:
tg3_recycle_rx(tnapi, tpr, opaque_key,
desc_idx, *post_ptr);
drop_it_no_recycle:
/* Other statistics kept track of by card. */
tp->rx_dropped++;
goto next_pkt;
}
prefetch(data + TG3_RX_OFFSET(tp));
len = ((desc->idx_len & RXD_LEN_MASK) >> RXD_LEN_SHIFT) -
ETH_FCS_LEN;
if ((desc->type_flags & RXD_FLAG_PTPSTAT_MASK) ==
RXD_FLAG_PTPSTAT_PTPV1 ||
(desc->type_flags & RXD_FLAG_PTPSTAT_MASK) ==
RXD_FLAG_PTPSTAT_PTPV2) {
tstamp = tr32(TG3_RX_TSTAMP_LSB);
tstamp |= (u64)tr32(TG3_RX_TSTAMP_MSB) << 32;
}
if (len > TG3_RX_COPY_THRESH(tp)) {
int skb_size;
unsigned int frag_size;
skb_size = tg3_alloc_rx_data(tp, tpr, opaque_key,
*post_ptr, &frag_size);
if (skb_size < 0)
goto drop_it;
pci_unmap_single(tp->pdev, dma_addr, skb_size,
PCI_DMA_FROMDEVICE);
skb = build_skb(data, frag_size);
if (!skb) {
tg3_frag_free(frag_size != 0, data);
goto drop_it_no_recycle;
}
skb_reserve(skb, TG3_RX_OFFSET(tp));
/* Ensure that the update to the data happens
* after the usage of the old DMA mapping.
*/
smp_wmb();
ri->data = NULL;
} else {
tg3_recycle_rx(tnapi, tpr, opaque_key,
desc_idx, *post_ptr);
skb = netdev_alloc_skb(tp->dev,
len + TG3_RAW_IP_ALIGN);
if (skb == NULL)
goto drop_it_no_recycle;
skb_reserve(skb, TG3_RAW_IP_ALIGN);
pci_dma_sync_single_for_cpu(tp->pdev, dma_addr, len, PCI_DMA_FROMDEVICE);
memcpy(skb->data,
data + TG3_RX_OFFSET(tp),
len);
pci_dma_sync_single_for_device(tp->pdev, dma_addr, len, PCI_DMA_FROMDEVICE);
}
skb_put(skb, len);
if (tstamp)
tg3_hwclock_to_timestamp(tp, tstamp,
skb_hwtstamps(skb));
if ((tp->dev->features & NETIF_F_RXCSUM) &&
(desc->type_flags & RXD_FLAG_TCPUDP_CSUM) &&
(((desc->ip_tcp_csum & RXD_TCPCSUM_MASK)
>> RXD_TCPCSUM_SHIFT) == 0xffff))
skb->ip_summed = CHECKSUM_UNNECESSARY;
else
skb_checksum_none_assert(skb);
skb->protocol = eth_type_trans(skb, tp->dev);
if (len > (tp->dev->mtu + ETH_HLEN) &&
skb->protocol != htons(ETH_P_8021Q)) {
dev_kfree_skb(skb);
goto drop_it_no_recycle;
}
if (desc->type_flags & RXD_FLAG_VLAN &&
!(tp->rx_mode & RX_MODE_KEEP_VLAN_TAG))
__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
desc->err_vlan & RXD_VLAN_MASK);
napi_gro_receive(&tnapi->napi, skb);
received++;
budget--;
next_pkt:
(*post_ptr)++;
if (unlikely(rx_std_posted >= tp->rx_std_max_post)) {
tpr->rx_std_prod_idx = std_prod_idx &
tp->rx_std_ring_mask;
tw32_rx_mbox(TG3_RX_STD_PROD_IDX_REG,
tpr->rx_std_prod_idx);
work_mask &= ~RXD_OPAQUE_RING_STD;
rx_std_posted = 0;
}
next_pkt_nopost:
sw_idx++;
sw_idx &= tp->rx_ret_ring_mask;
/* Refresh hw_idx to see if there is new work */
if (sw_idx == hw_idx) {
hw_idx = *(tnapi->rx_rcb_prod_idx);
rmb();
}
}
/* ACK the status ring. */
tnapi->rx_rcb_ptr = sw_idx;
tw32_rx_mbox(tnapi->consmbox, sw_idx);
/* Refill RX ring(s). */
if (!tg3_flag(tp, ENABLE_RSS)) {
/* Sync BD data before updating mailbox */
wmb();
if (work_mask & RXD_OPAQUE_RING_STD) {
tpr->rx_std_prod_idx = std_prod_idx &
tp->rx_std_ring_mask;
tw32_rx_mbox(TG3_RX_STD_PROD_IDX_REG,
tpr->rx_std_prod_idx);
}
if (work_mask & RXD_OPAQUE_RING_JUMBO) {
tpr->rx_jmb_prod_idx = jmb_prod_idx &
tp->rx_jmb_ring_mask;
tw32_rx_mbox(TG3_RX_JMB_PROD_IDX_REG,
tpr->rx_jmb_prod_idx);
}
mmiowb();
} else if (work_mask) {
/* rx_std_buffers[] and rx_jmb_buffers[] entries must be
* updated before the producer indices can be updated.
*/
smp_wmb();
tpr->rx_std_prod_idx = std_prod_idx & tp->rx_std_ring_mask;
tpr->rx_jmb_prod_idx = jmb_prod_idx & tp->rx_jmb_ring_mask;
if (tnapi != &tp->napi[1]) {
tp->rx_refill = true;
napi_schedule(&tp->napi[1].napi);
}
}
return received;
}
static void tg3_poll_link(struct tg3 *tp)
{
/* handle link change and other phy events */
if (!(tg3_flag(tp, USE_LINKCHG_REG) || tg3_flag(tp, POLL_SERDES))) {
struct tg3_hw_status *sblk = tp->napi[0].hw_status;
if (sblk->status & SD_STATUS_LINK_CHG) {
sblk->status = SD_STATUS_UPDATED |
(sblk->status & ~SD_STATUS_LINK_CHG);
spin_lock(&tp->lock);
if (tg3_flag(tp, USE_PHYLIB)) {
tw32_f(MAC_STATUS,
(MAC_STATUS_SYNC_CHANGED |
MAC_STATUS_CFG_CHANGED |
MAC_STATUS_MI_COMPLETION |
MAC_STATUS_LNKSTATE_CHANGED));
udelay(40);
} else
tg3_setup_phy(tp, false);
spin_unlock(&tp->lock);
}
}
}
static int tg3_rx_prodring_xfer(struct tg3 *tp,
struct tg3_rx_prodring_set *dpr,
struct tg3_rx_prodring_set *spr)
{
u32 si, di, cpycnt, src_prod_idx;
int i, err = 0;
while (1) {
src_prod_idx = spr->rx_std_prod_idx;
/* Make sure updates to the rx_std_buffers[] entries and the
* standard producer index are seen in the correct order.
*/
smp_rmb();
if (spr->rx_std_cons_idx == src_prod_idx)
break;
if (spr->rx_std_cons_idx < src_prod_idx)
cpycnt = src_prod_idx - spr->rx_std_cons_idx;
else
cpycnt = tp->rx_std_ring_mask + 1 -
spr->rx_std_cons_idx;
cpycnt = min(cpycnt,
tp->rx_std_ring_mask + 1 - dpr->rx_std_prod_idx);
si = spr->rx_std_cons_idx;
di = dpr->rx_std_prod_idx;
for (i = di; i < di + cpycnt; i++) {
if (dpr->rx_std_buffers[i].data) {
cpycnt = i - di;
err = -ENOSPC;
break;
}
}
if (!cpycnt)
break;
/* Ensure that updates to the rx_std_buffers ring and the
* shadowed hardware producer ring from tg3_recycle_skb() are
* ordered correctly WRT the skb check above.
*/
smp_rmb();
memcpy(&dpr->rx_std_buffers[di],
&spr->rx_std_buffers[si],
cpycnt * sizeof(struct ring_info));
for (i = 0; i < cpycnt; i++, di++, si++) {
struct tg3_rx_buffer_desc *sbd, *dbd;
sbd = &spr->rx_std[si];
dbd = &dpr->rx_std[di];
dbd->addr_hi = sbd->addr_hi;
dbd->addr_lo = sbd->addr_lo;
}
spr->rx_std_cons_idx = (spr->rx_std_cons_idx + cpycnt) &
tp->rx_std_ring_mask;
dpr->rx_std_prod_idx = (dpr->rx_std_prod_idx + cpycnt) &
tp->rx_std_ring_mask;
}
while (1) {
src_prod_idx = spr->rx_jmb_prod_idx;
/* Make sure updates to the rx_jmb_buffers[] entries and
* the jumbo producer index are seen in the correct order.
*/
smp_rmb();
if (spr->rx_jmb_cons_idx == src_prod_idx)
break;
if (spr->rx_jmb_cons_idx < src_prod_idx)
cpycnt = src_prod_idx - spr->rx_jmb_cons_idx;
else
cpycnt = tp->rx_jmb_ring_mask + 1 -
spr->rx_jmb_cons_idx;
cpycnt = min(cpycnt,
tp->rx_jmb_ring_mask + 1 - dpr->rx_jmb_prod_idx);
si = spr->rx_jmb_cons_idx;
di = dpr->rx_jmb_prod_idx;
for (i = di; i < di + cpycnt; i++) {
if (dpr->rx_jmb_buffers[i].data) {
cpycnt = i - di;
err = -ENOSPC;
break;
}
}
if (!cpycnt)
break;
/* Ensure that updates to the rx_jmb_buffers ring and the
* shadowed hardware producer ring from tg3_recycle_skb() are
* ordered correctly WRT the skb check above.
*/
smp_rmb();
memcpy(&dpr->rx_jmb_buffers[di],
&spr->rx_jmb_buffers[si],
cpycnt * sizeof(struct ring_info));
for (i = 0; i < cpycnt; i++, di++, si++) {
struct tg3_rx_buffer_desc *sbd, *dbd;
sbd = &spr->rx_jmb[si].std;
dbd = &dpr->rx_jmb[di].std;
dbd->addr_hi = sbd->addr_hi;
dbd->addr_lo = sbd->addr_lo;
}
spr->rx_jmb_cons_idx = (spr->rx_jmb_cons_idx + cpycnt) &
tp->rx_jmb_ring_mask;
dpr->rx_jmb_prod_idx = (dpr->rx_jmb_prod_idx + cpycnt) &
tp->rx_jmb_ring_mask;
}
return err;
}
static int tg3_poll_work(struct tg3_napi *tnapi, int work_done, int budget)
{
struct tg3 *tp = tnapi->tp;
/* run TX completion thread */
if (tnapi->hw_status->idx[0].tx_consumer != tnapi->tx_cons) {
tg3_tx(tnapi);
if (unlikely(tg3_flag(tp, TX_RECOVERY_PENDING)))
return work_done;
}
if (!tnapi->rx_rcb_prod_idx)
return work_done;
/* run RX thread, within the bounds set by NAPI.
* All RX "locking" is done by ensuring outside
* code synchronizes with tg3->napi.poll()
*/
if (*(tnapi->rx_rcb_prod_idx) != tnapi->rx_rcb_ptr)
work_done += tg3_rx(tnapi, budget - work_done);
if (tg3_flag(tp, ENABLE_RSS) && tnapi == &tp->napi[1]) {
struct tg3_rx_prodring_set *dpr = &tp->napi[0].prodring;
int i, err = 0;
u32 std_prod_idx = dpr->rx_std_prod_idx;
u32 jmb_prod_idx = dpr->rx_jmb_prod_idx;
tp->rx_refill = false;
for (i = 1; i <= tp->rxq_cnt; i++)
err |= tg3_rx_prodring_xfer(tp, dpr,
&tp->napi[i].prodring);
wmb();
if (std_prod_idx != dpr->rx_std_prod_idx)
tw32_rx_mbox(TG3_RX_STD_PROD_IDX_REG,
dpr->rx_std_prod_idx);
if (jmb_prod_idx != dpr->rx_jmb_prod_idx)
tw32_rx_mbox(TG3_RX_JMB_PROD_IDX_REG,
dpr->rx_jmb_prod_idx);
mmiowb();
if (err)
tw32_f(HOSTCC_MODE, tp->coal_now);
}
return work_done;
}
static inline void tg3_reset_task_schedule(struct tg3 *tp)
{
if (!test_and_set_bit(TG3_FLAG_RESET_TASK_PENDING, tp->tg3_flags))
schedule_work(&tp->reset_task);
}
static inline void tg3_reset_task_cancel(struct tg3 *tp)
{
cancel_work_sync(&tp->reset_task);
tg3_flag_clear(tp, RESET_TASK_PENDING);
tg3_flag_clear(tp, TX_RECOVERY_PENDING);
}
static int tg3_poll_msix(struct napi_struct *napi, int budget)
{
struct tg3_napi *tnapi = container_of(napi, struct tg3_napi, napi);
struct tg3 *tp = tnapi->tp;
int work_done = 0;
struct tg3_hw_status *sblk = tnapi->hw_status;
while (1) {
work_done = tg3_poll_work(tnapi, work_done, budget);
if (unlikely(tg3_flag(tp, TX_RECOVERY_PENDING)))
goto tx_recovery;
if (unlikely(work_done >= budget))
break;
/* tp->last_tag is used in tg3_int_reenable() below
* to tell the hw how much work has been processed,
* so we must read it before checking for more work.
*/
tnapi->last_tag = sblk->status_tag;
tnapi->last_irq_tag = tnapi->last_tag;
rmb();
/* check for RX/TX work to do */
if (likely(sblk->idx[0].tx_consumer == tnapi->tx_cons &&
*(tnapi->rx_rcb_prod_idx) == tnapi->rx_rcb_ptr)) {
/* This test here is not race free, but will reduce
* the number of interrupts by looping again.
*/
if (tnapi == &tp->napi[1] && tp->rx_refill)
continue;
napi_complete(napi);
/* Reenable interrupts. */
tw32_mailbox(tnapi->int_mbox, tnapi->last_tag << 24);
/* This test here is synchronized by napi_schedule()
* and napi_complete() to close the race condition.
*/
if (unlikely(tnapi == &tp->napi[1] && tp->rx_refill)) {
tw32(HOSTCC_MODE, tp->coalesce_mode |
HOSTCC_MODE_ENABLE |
tnapi->coal_now);
}
mmiowb();
break;
}
}
return work_done;
tx_recovery:
/* work_done is guaranteed to be less than budget. */
napi_complete(napi);
tg3_reset_task_schedule(tp);
return work_done;
}
static void tg3_process_error(struct tg3 *tp)
{
u32 val;
bool real_error = false;
if (tg3_flag(tp, ERROR_PROCESSED))
return;
/* Check Flow Attention register */
val = tr32(HOSTCC_FLOW_ATTN);
if (val & ~HOSTCC_FLOW_ATTN_MBUF_LWM) {
netdev_err(tp->dev, "FLOW Attention error. Resetting chip.\n");
real_error = true;
}
if (tr32(MSGINT_STATUS) & ~MSGINT_STATUS_MSI_REQ) {
netdev_err(tp->dev, "MSI Status error. Resetting chip.\n");
real_error = true;
}
if (tr32(RDMAC_STATUS) || tr32(WDMAC_STATUS)) {
netdev_err(tp->dev, "DMA Status error. Resetting chip.\n");
real_error = true;
}
if (!real_error)
return;
tg3_dump_state(tp);
tg3_flag_set(tp, ERROR_PROCESSED);
tg3_reset_task_schedule(tp);
}
static int tg3_poll(struct napi_struct *napi, int budget)
{
struct tg3_napi *tnapi = container_of(napi, struct tg3_napi, napi);
struct tg3 *tp = tnapi->tp;
int work_done = 0;
struct tg3_hw_status *sblk = tnapi->hw_status;
while (1) {
if (sblk->status & SD_STATUS_ERROR)
tg3_process_error(tp);
tg3_poll_link(tp);
work_done = tg3_poll_work(tnapi, work_done, budget);
if (unlikely(tg3_flag(tp, TX_RECOVERY_PENDING)))
goto tx_recovery;
if (unlikely(work_done >= budget))
break;
if (tg3_flag(tp, TAGGED_STATUS)) {
/* tp->last_tag is used in tg3_int_reenable() below
* to tell the hw how much work has been processed,
* so we must read it before checking for more work.
*/
tnapi->last_tag = sblk->status_tag;
tnapi->last_irq_tag = tnapi->last_tag;
rmb();
} else
sblk->status &= ~SD_STATUS_UPDATED;
if (likely(!tg3_has_work(tnapi))) {
napi_complete(napi);
tg3_int_reenable(tnapi);
break;
}
}
return work_done;
tx_recovery:
/* work_done is guaranteed to be less than budget. */
napi_complete(napi);
tg3_reset_task_schedule(tp);
return work_done;
}
static void tg3_napi_disable(struct tg3 *tp)
{
int i;
for (i = tp->irq_cnt - 1; i >= 0; i--)
napi_disable(&tp->napi[i].napi);
}
static void tg3_napi_enable(struct tg3 *tp)
{
int i;
for (i = 0; i < tp->irq_cnt; i++)
napi_enable(&tp->napi[i].napi);
}
static void tg3_napi_init(struct tg3 *tp)
{
int i;
netif_napi_add(tp->dev, &tp->napi[0].napi, tg3_poll, 64);
for (i = 1; i < tp->irq_cnt; i++)
netif_napi_add(tp->dev, &tp->napi[i].napi, tg3_poll_msix, 64);
}
static void tg3_napi_fini(struct tg3 *tp)
{
int i;
for (i = 0; i < tp->irq_cnt; i++)
netif_napi_del(&tp->napi[i].napi);
}
static inline void tg3_netif_stop(struct tg3 *tp)
{
tp->dev->trans_start = jiffies; /* prevent tx timeout */
tg3_napi_disable(tp);
netif_carrier_off(tp->dev);
netif_tx_disable(tp->dev);
}
/* tp->lock must be held */
static inline void tg3_netif_start(struct tg3 *tp)
{
tg3_ptp_resume(tp);
/* NOTE: unconditional netif_tx_wake_all_queues is only
* appropriate so long as all callers are assured to
* have free tx slots (such as after tg3_init_hw)
*/
netif_tx_wake_all_queues(tp->dev);
if (tp->link_up)
netif_carrier_on(tp->dev);
tg3_napi_enable(tp);
tp->napi[0].hw_status->status |= SD_STATUS_UPDATED;
tg3_enable_ints(tp);
}
static void tg3_irq_quiesce(struct tg3 *tp)
{
int i;
BUG_ON(tp->irq_sync);
tp->irq_sync = 1;
smp_mb();
for (i = 0; i < tp->irq_cnt; i++)
synchronize_irq(tp->napi[i].irq_vec);
}
/* Fully shutdown all tg3 driver activity elsewhere in the system.
* If irq_sync is non-zero, then the IRQ handler must be synchronized
* with as well. Most of the time, this is not necessary except when
* shutting down the device.
*/
static inline void tg3_full_lock(struct tg3 *tp, int irq_sync)
{
spin_lock_bh(&tp->lock);
if (irq_sync)
tg3_irq_quiesce(tp);
}
static inline void tg3_full_unlock(struct tg3 *tp)
{
spin_unlock_bh(&tp->lock);
}
/* One-shot MSI handler - Chip automatically disables interrupt
* after sending MSI so driver doesn't have to do it.
*/
static irqreturn_t tg3_msi_1shot(int irq, void *dev_id)
{
struct tg3_napi *tnapi = dev_id;
struct tg3 *tp = tnapi->tp;
prefetch(tnapi->hw_status);
if (tnapi->rx_rcb)
prefetch(&tnapi->rx_rcb[tnapi->rx_rcb_ptr]);
if (likely(!tg3_irq_sync(tp)))
napi_schedule(&tnapi->napi);
return IRQ_HANDLED;
}
/* MSI ISR - No need to check for interrupt sharing and no need to
* flush status block and interrupt mailbox. PCI ordering rules
* guarantee that MSI will arrive after the status block.
*/
static irqreturn_t tg3_msi(int irq, void *dev_id)
{
struct tg3_napi *tnapi = dev_id;
struct tg3 *tp = tnapi->tp;
prefetch(tnapi->hw_status);
if (tnapi->rx_rcb)
prefetch(&tnapi->rx_rcb[tnapi->rx_rcb_ptr]);
/*
* Writing any value to intr-mbox-0 clears PCI INTA# and
* chip-internal interrupt pending events.
* Writing non-zero to intr-mbox-0 additional tells the
* NIC to stop sending us irqs, engaging "in-intr-handler"
* event coalescing.
*/
tw32_mailbox(tnapi->int_mbox, 0x00000001);
if (likely(!tg3_irq_sync(tp)))
napi_schedule(&tnapi->napi);
return IRQ_RETVAL(1);
}
static irqreturn_t tg3_interrupt(int irq, void *dev_id)
{
struct tg3_napi *tnapi = dev_id;
struct tg3 *tp = tnapi->tp;
struct tg3_hw_status *sblk = tnapi->hw_status;
unsigned int handled = 1;
/* In INTx mode, it is possible for the interrupt to arrive at
* the CPU before the status block posted prior to the interrupt.
* Reading the PCI State register will confirm whether the
* interrupt is ours and will flush the status block.
*/
if (unlikely(!(sblk->status & SD_STATUS_UPDATED))) {
if (tg3_flag(tp, CHIP_RESETTING) ||
(tr32(TG3PCI_PCISTATE) & PCISTATE_INT_NOT_ACTIVE)) {
handled = 0;
goto out;
}
}
/*
* Writing any value to intr-mbox-0 clears PCI INTA# and
* chip-internal interrupt pending events.
* Writing non-zero to intr-mbox-0 additional tells the
* NIC to stop sending us irqs, engaging "in-intr-handler"
* event coalescing.
*
* Flush the mailbox to de-assert the IRQ immediately to prevent
* spurious interrupts. The flush impacts performance but
* excessive spurious interrupts can be worse in some cases.
*/
tw32_mailbox_f(MAILBOX_INTERRUPT_0 + TG3_64BIT_REG_LOW, 0x00000001);
if (tg3_irq_sync(tp))
goto out;
sblk->status &= ~SD_STATUS_UPDATED;
if (likely(tg3_has_work(tnapi))) {
prefetch(&tnapi->rx_rcb[tnapi->rx_rcb_ptr]);
napi_schedule(&tnapi->napi);
} else {
/* No work, shared interrupt perhaps? re-enable
* interrupts, and flush that PCI write
*/
tw32_mailbox_f(MAILBOX_INTERRUPT_0 + TG3_64BIT_REG_LOW,
0x00000000);
}
out:
return IRQ_RETVAL(handled);
}
static irqreturn_t tg3_interrupt_tagged(int irq, void *dev_id)
{
struct tg3_napi *tnapi = dev_id;
struct tg3 *tp = tnapi->tp;
struct tg3_hw_status *sblk = tnapi->hw_status;
unsigned int handled = 1;
/* In INTx mode, it is possible for the interrupt to arrive at
* the CPU before the status block posted prior to the interrupt.
* Reading the PCI State register will confirm whether the
* interrupt is ours and will flush the status block.
*/
if (unlikely(sblk->status_tag == tnapi->last_irq_tag)) {
if (tg3_flag(tp, CHIP_RESETTING) ||
(tr32(TG3PCI_PCISTATE) & PCISTATE_INT_NOT_ACTIVE)) {
handled = 0;
goto out;
}
}
/*
* writing any value to intr-mbox-0 clears PCI INTA# and
* chip-internal interrupt pending events.
* writing non-zero to intr-mbox-0 additional tells the
* NIC to stop sending us irqs, engaging "in-intr-handler"
* event coalescing.
*
* Flush the mailbox to de-assert the IRQ immediately to prevent
* spurious interrupts. The flush impacts performance but
* excessive spurious interrupts can be worse in some cases.
*/
tw32_mailbox_f(MAILBOX_INTERRUPT_0 + TG3_64BIT_REG_LOW, 0x00000001);
/*
* In a shared interrupt configuration, sometimes other devices'
* interrupts will scream. We record the current status tag here
* so that the above check can report that the screaming interrupts
* are unhandled. Eventually they will be silenced.
*/
tnapi->last_irq_tag = sblk->status_tag;
if (tg3_irq_sync(tp))
goto out;
prefetch(&tnapi->rx_rcb[tnapi->rx_rcb_ptr]);
napi_schedule(&tnapi->napi);
out:
return IRQ_RETVAL(handled);
}
/* ISR for interrupt test */
static irqreturn_t tg3_test_isr(int irq, void *dev_id)
{
struct tg3_napi *tnapi = dev_id;
struct tg3 *tp = tnapi->tp;
struct tg3_hw_status *sblk = tnapi->hw_status;
if ((sblk->status & SD_STATUS_UPDATED) ||
!(tr32(TG3PCI_PCISTATE) & PCISTATE_INT_NOT_ACTIVE)) {
tg3_disable_ints(tp);
return IRQ_RETVAL(1);
}
return IRQ_RETVAL(0);
}
#ifdef CONFIG_NET_POLL_CONTROLLER
static void tg3_poll_controller(struct net_device *dev)
{
int i;
struct tg3 *tp = netdev_priv(dev);
if (tg3_irq_sync(tp))
return;
for (i = 0; i < tp->irq_cnt; i++)
tg3_interrupt(tp->napi[i].irq_vec, &tp->napi[i]);
}
#endif
static void tg3_tx_timeout(struct net_device *dev)
{
struct tg3 *tp = netdev_priv(dev);
if (netif_msg_tx_err(tp)) {
netdev_err(dev, "transmit timed out, resetting\n");
tg3_dump_state(tp);
}
tg3_reset_task_schedule(tp);
}
/* Test for DMA buffers crossing any 4GB boundaries: 4G, 8G, etc */
static inline int tg3_4g_overflow_test(dma_addr_t mapping, int len)
{
u32 base = (u32) mapping & 0xffffffff;
return (base > 0xffffdcc0) && (base + len + 8 < base);
}
/* Test for TSO DMA buffers that cross into regions which are within MSS bytes
* of any 4GB boundaries: 4G, 8G, etc
*/
static inline int tg3_4g_tso_overflow_test(struct tg3 *tp, dma_addr_t mapping,
u32 len, u32 mss)
{
if (tg3_asic_rev(tp) == ASIC_REV_5762 && mss) {
u32 base = (u32) mapping & 0xffffffff;
return ((base + len + (mss & 0x3fff)) < base);
}
return 0;
}
/* Test for DMA addresses > 40-bit */
static inline int tg3_40bit_overflow_test(struct tg3 *tp, dma_addr_t mapping,
int len)
{
#if defined(CONFIG_HIGHMEM) && (BITS_PER_LONG == 64)
if (tg3_flag(tp, 40BIT_DMA_BUG))
return ((u64) mapping + len) > DMA_BIT_MASK(40);
return 0;
#else
return 0;
#endif
}
static inline void tg3_tx_set_bd(struct tg3_tx_buffer_desc *txbd,
dma_addr_t mapping, u32 len, u32 flags,
u32 mss, u32 vlan)
{
txbd->addr_hi = ((u64) mapping >> 32);
txbd->addr_lo = ((u64) mapping & 0xffffffff);
txbd->len_flags = (len << TXD_LEN_SHIFT) | (flags & 0x0000ffff);
txbd->vlan_tag = (mss << TXD_MSS_SHIFT) | (vlan << TXD_VLAN_TAG_SHIFT);
}
static bool tg3_tx_frag_set(struct tg3_napi *tnapi, u32 *entry, u32 *budget,
dma_addr_t map, u32 len, u32 flags,
u32 mss, u32 vlan)
{
struct tg3 *tp = tnapi->tp;
bool hwbug = false;
if (tg3_flag(tp, SHORT_DMA_BUG) && len <= 8)
hwbug = true;
if (tg3_4g_overflow_test(map, len))
hwbug = true;
if (tg3_4g_tso_overflow_test(tp, map, len, mss))
hwbug = true;
if (tg3_40bit_overflow_test(tp, map, len))
hwbug = true;
if (tp->dma_limit) {
u32 prvidx = *entry;
u32 tmp_flag = flags & ~TXD_FLAG_END;
while (len > tp->dma_limit && *budget) {
u32 frag_len = tp->dma_limit;
len -= tp->dma_limit;
/* Avoid the 8byte DMA problem */
if (len <= 8) {
len += tp->dma_limit / 2;
frag_len = tp->dma_limit / 2;
}
tnapi->tx_buffers[*entry].fragmented = true;
tg3_tx_set_bd(&tnapi->tx_ring[*entry], map,
frag_len, tmp_flag, mss, vlan);
*budget -= 1;
prvidx = *entry;
*entry = NEXT_TX(*entry);
map += frag_len;
}
if (len) {
if (*budget) {
tg3_tx_set_bd(&tnapi->tx_ring[*entry], map,
len, flags, mss, vlan);
*budget -= 1;
*entry = NEXT_TX(*entry);
} else {
hwbug = true;
tnapi->tx_buffers[prvidx].fragmented = false;
}
}
} else {
tg3_tx_set_bd(&tnapi->tx_ring[*entry], map,
len, flags, mss, vlan);
*entry = NEXT_TX(*entry);
}
return hwbug;
}
static void tg3_tx_skb_unmap(struct tg3_napi *tnapi, u32 entry, int last)
{
int i;
struct sk_buff *skb;
struct tg3_tx_ring_info *txb = &tnapi->tx_buffers[entry];
skb = txb->skb;
txb->skb = NULL;
pci_unmap_single(tnapi->tp->pdev,
dma_unmap_addr(txb, mapping),
skb_headlen(skb),
PCI_DMA_TODEVICE);
while (txb->fragmented) {
txb->fragmented = false;
entry = NEXT_TX(entry);
txb = &tnapi->tx_buffers[entry];
}
for (i = 0; i <= last; i++) {
const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
entry = NEXT_TX(entry);
txb = &tnapi->tx_buffers[entry];
pci_unmap_page(tnapi->tp->pdev,
dma_unmap_addr(txb, mapping),
skb_frag_size(frag), PCI_DMA_TODEVICE);
while (txb->fragmented) {
txb->fragmented = false;
entry = NEXT_TX(entry);
txb = &tnapi->tx_buffers[entry];
}
}
}
/* Workaround 4GB and 40-bit hardware DMA bugs. */
static int tigon3_dma_hwbug_workaround(struct tg3_napi *tnapi,
struct sk_buff **pskb,
u32 *entry, u32 *budget,
u32 base_flags, u32 mss, u32 vlan)
{
struct tg3 *tp = tnapi->tp;
struct sk_buff *new_skb, *skb = *pskb;
dma_addr_t new_addr = 0;
int ret = 0;
if (tg3_asic_rev(tp) != ASIC_REV_5701)
new_skb = skb_copy(skb, GFP_ATOMIC);
else {
int more_headroom = 4 - ((unsigned long)skb->data & 3);
new_skb = skb_copy_expand(skb,
skb_headroom(skb) + more_headroom,
skb_tailroom(skb), GFP_ATOMIC);
}
if (!new_skb) {
ret = -1;
} else {
/* New SKB is guaranteed to be linear. */
new_addr = pci_map_single(tp->pdev, new_skb->data, new_skb->len,
PCI_DMA_TODEVICE);
/* Make sure the mapping succeeded */
if (pci_dma_mapping_error(tp->pdev, new_addr)) {
dev_kfree_skb(new_skb);
ret = -1;
} else {
u32 save_entry = *entry;
base_flags |= TXD_FLAG_END;
tnapi->tx_buffers[*entry].skb = new_skb;
dma_unmap_addr_set(&tnapi->tx_buffers[*entry],
mapping, new_addr);
if (tg3_tx_frag_set(tnapi, entry, budget, new_addr,
new_skb->len, base_flags,
mss, vlan)) {
tg3_tx_skb_unmap(tnapi, save_entry, -1);
dev_kfree_skb(new_skb);
ret = -1;
}
}
}
dev_kfree_skb(skb);
*pskb = new_skb;
return ret;
}
static netdev_tx_t tg3_start_xmit(struct sk_buff *, struct net_device *);
/* Use GSO to workaround a rare TSO bug that may be triggered when the
* TSO header is greater than 80 bytes.
*/
static int tg3_tso_bug(struct tg3 *tp, struct sk_buff *skb)
{
struct sk_buff *segs, *nskb;
u32 frag_cnt_est = skb_shinfo(skb)->gso_segs * 3;
/* Estimate the number of fragments in the worst case */
if (unlikely(tg3_tx_avail(&tp->napi[0]) <= frag_cnt_est)) {
netif_stop_queue(tp->dev);
/* netif_tx_stop_queue() must be done before checking
* checking tx index in tg3_tx_avail() below, because in
* tg3_tx(), we update tx index before checking for
* netif_tx_queue_stopped().
*/
smp_mb();
if (tg3_tx_avail(&tp->napi[0]) <= frag_cnt_est)
return NETDEV_TX_BUSY;
netif_wake_queue(tp->dev);
}
segs = skb_gso_segment(skb, tp->dev->features & ~NETIF_F_TSO);
if (IS_ERR(segs))
goto tg3_tso_bug_end;
do {
nskb = segs;
segs = segs->next;
nskb->next = NULL;
tg3_start_xmit(nskb, tp->dev);
} while (segs);
tg3_tso_bug_end:
dev_kfree_skb(skb);
return NETDEV_TX_OK;
}
/* hard_start_xmit for devices that have the 4G bug and/or 40-bit bug and
* support TG3_FLAG_HW_TSO_1 or firmware TSO only.
*/
static netdev_tx_t tg3_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct tg3 *tp = netdev_priv(dev);
u32 len, entry, base_flags, mss, vlan = 0;
u32 budget;
int i = -1, would_hit_hwbug;
dma_addr_t mapping;
struct tg3_napi *tnapi;
struct netdev_queue *txq;
unsigned int last;
txq = netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
tnapi = &tp->napi[skb_get_queue_mapping(skb)];
if (tg3_flag(tp, ENABLE_TSS))
tnapi++;
budget = tg3_tx_avail(tnapi);
/* We are running in BH disabled context with netif_tx_lock
* and TX reclaim runs via tp->napi.poll inside of a software
* interrupt. Furthermore, IRQ processing runs lockless so we have
* no IRQ context deadlocks to worry about either. Rejoice!
*/
if (unlikely(budget <= (skb_shinfo(skb)->nr_frags + 1))) {
if (!netif_tx_queue_stopped(txq)) {
netif_tx_stop_queue(txq);
/* This is a hard error, log it. */
netdev_err(dev,
"BUG! Tx Ring full when queue awake!\n");
}
return NETDEV_TX_BUSY;
}
entry = tnapi->tx_prod;
base_flags = 0;
if (skb->ip_summed == CHECKSUM_PARTIAL)
base_flags |= TXD_FLAG_TCPUDP_CSUM;
mss = skb_shinfo(skb)->gso_size;
if (mss) {
struct iphdr *iph;
u32 tcp_opt_len, hdr_len;
if (skb_header_cloned(skb) &&
pskb_expand_head(skb, 0, 0, GFP_ATOMIC))
goto drop;
iph = ip_hdr(skb);
tcp_opt_len = tcp_optlen(skb);
hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb) - ETH_HLEN;
if (!skb_is_gso_v6(skb)) {
iph->check = 0;
iph->tot_len = htons(mss + hdr_len);
}
if (unlikely((ETH_HLEN + hdr_len) > 80) &&
tg3_flag(tp, TSO_BUG))
return tg3_tso_bug(tp, skb);
base_flags |= (TXD_FLAG_CPU_PRE_DMA |
TXD_FLAG_CPU_POST_DMA);
if (tg3_flag(tp, HW_TSO_1) ||
tg3_flag(tp, HW_TSO_2) ||
tg3_flag(tp, HW_TSO_3)) {
tcp_hdr(skb)->check = 0;
base_flags &= ~TXD_FLAG_TCPUDP_CSUM;
} else
tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
iph->daddr, 0,
IPPROTO_TCP,
0);
if (tg3_flag(tp, HW_TSO_3)) {
mss |= (hdr_len & 0xc) << 12;
if (hdr_len & 0x10)
base_flags |= 0x00000010;
base_flags |= (hdr_len & 0x3e0) << 5;
} else if (tg3_flag(tp, HW_TSO_2))
mss |= hdr_len << 9;
else if (tg3_flag(tp, HW_TSO_1) ||
tg3_asic_rev(tp) == ASIC_REV_5705) {
if (tcp_opt_len || iph->ihl > 5) {
int tsflags;
tsflags = (iph->ihl - 5) + (tcp_opt_len >> 2);
mss |= (tsflags << 11);
}
} else {
if (tcp_opt_len || iph->ihl > 5) {
int tsflags;
tsflags = (iph->ihl - 5) + (tcp_opt_len >> 2);
base_flags |= tsflags << 12;
}
}
}
if (tg3_flag(tp, USE_JUMBO_BDFLAG) &&
!mss && skb->len > VLAN_ETH_FRAME_LEN)
base_flags |= TXD_FLAG_JMB_PKT;
if (vlan_tx_tag_present(skb)) {
base_flags |= TXD_FLAG_VLAN;
vlan = vlan_tx_tag_get(skb);
}
if ((unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) &&
tg3_flag(tp, TX_TSTAMP_EN)) {
skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
base_flags |= TXD_FLAG_HWTSTAMP;
}
len = skb_headlen(skb);
mapping = pci_map_single(tp->pdev, skb->data, len, PCI_DMA_TODEVICE);
if (pci_dma_mapping_error(tp->pdev, mapping))
goto drop;
tnapi->tx_buffers[entry].skb = skb;
dma_unmap_addr_set(&tnapi->tx_buffers[entry], mapping, mapping);
would_hit_hwbug = 0;
if (tg3_flag(tp, 5701_DMA_BUG))
would_hit_hwbug = 1;
if (tg3_tx_frag_set(tnapi, &entry, &budget, mapping, len, base_flags |
((skb_shinfo(skb)->nr_frags == 0) ? TXD_FLAG_END : 0),
mss, vlan)) {
would_hit_hwbug = 1;
} else if (skb_shinfo(skb)->nr_frags > 0) {
u32 tmp_mss = mss;
if (!tg3_flag(tp, HW_TSO_1) &&
!tg3_flag(tp, HW_TSO_2) &&
!tg3_flag(tp, HW_TSO_3))
tmp_mss = 0;
/* Now loop through additional data
* fragments, and queue them.
*/
last = skb_shinfo(skb)->nr_frags - 1;
for (i = 0; i <= last; i++) {
skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
len = skb_frag_size(frag);
mapping = skb_frag_dma_map(&tp->pdev->dev, frag, 0,
len, DMA_TO_DEVICE);
tnapi->tx_buffers[entry].skb = NULL;
dma_unmap_addr_set(&tnapi->tx_buffers[entry], mapping,
mapping);
if (dma_mapping_error(&tp->pdev->dev, mapping))
goto dma_error;
if (!budget ||
tg3_tx_frag_set(tnapi, &entry, &budget, mapping,
len, base_flags |
((i == last) ? TXD_FLAG_END : 0),
tmp_mss, vlan)) {
would_hit_hwbug = 1;
break;
}
}
}
if (would_hit_hwbug) {
tg3_tx_skb_unmap(tnapi, tnapi->tx_prod, i);
/* If the workaround fails due to memory/mapping
* failure, silently drop this packet.
*/
entry = tnapi->tx_prod;
budget = tg3_tx_avail(tnapi);
if (tigon3_dma_hwbug_workaround(tnapi, &skb, &entry, &budget,
base_flags, mss, vlan))
goto drop_nofree;
}
skb_tx_timestamp(skb);
netdev_tx_sent_queue(txq, skb->len);
/* Sync BD data before updating mailbox */
wmb();
/* Packets are ready, update Tx producer idx local and on card. */
tw32_tx_mbox(tnapi->prodmbox, entry);
tnapi->tx_prod = entry;
if (unlikely(tg3_tx_avail(tnapi) <= (MAX_SKB_FRAGS + 1))) {
netif_tx_stop_queue(txq);
/* netif_tx_stop_queue() must be done before checking
* checking tx index in tg3_tx_avail() below, because in
* tg3_tx(), we update tx index before checking for
* netif_tx_queue_stopped().
*/
smp_mb();
if (tg3_tx_avail(tnapi) > TG3_TX_WAKEUP_THRESH(tnapi))
netif_tx_wake_queue(txq);
}
mmiowb();
return NETDEV_TX_OK;
dma_error:
tg3_tx_skb_unmap(tnapi, tnapi->tx_prod, --i);
tnapi->tx_buffers[tnapi->tx_prod].skb = NULL;
drop:
dev_kfree_skb(skb);
drop_nofree:
tp->tx_dropped++;
return NETDEV_TX_OK;
}
static void tg3_mac_loopback(struct tg3 *tp, bool enable)
{
if (enable) {
tp->mac_mode &= ~(MAC_MODE_HALF_DUPLEX |
MAC_MODE_PORT_MODE_MASK);
tp->mac_mode |= MAC_MODE_PORT_INT_LPBACK;
if (!tg3_flag(tp, 5705_PLUS))
tp->mac_mode |= MAC_MODE_LINK_POLARITY;
if (tp->phy_flags & TG3_PHYFLG_10_100_ONLY)
tp->mac_mode |= MAC_MODE_PORT_MODE_MII;
else
tp->mac_mode |= MAC_MODE_PORT_MODE_GMII;
} else {
tp->mac_mode &= ~MAC_MODE_PORT_INT_LPBACK;
if (tg3_flag(tp, 5705_PLUS) ||
(tp->phy_flags & TG3_PHYFLG_PHY_SERDES) ||
tg3_asic_rev(tp) == ASIC_REV_5700)
tp->mac_mode &= ~MAC_MODE_LINK_POLARITY;
}
tw32(MAC_MODE, tp->mac_mode);
udelay(40);
}
static int tg3_phy_lpbk_set(struct tg3 *tp, u32 speed, bool extlpbk)
{
u32 val, bmcr, mac_mode, ptest = 0;
tg3_phy_toggle_apd(tp, false);
tg3_phy_toggle_automdix(tp, false);
if (extlpbk && tg3_phy_set_extloopbk(tp))
return -EIO;
bmcr = BMCR_FULLDPLX;
switch (speed) {
case SPEED_10:
break;
case SPEED_100:
bmcr |= BMCR_SPEED100;
break;
case SPEED_1000:
default:
if (tp->phy_flags & TG3_PHYFLG_IS_FET) {
speed = SPEED_100;
bmcr |= BMCR_SPEED100;
} else {
speed = SPEED_1000;
bmcr |= BMCR_SPEED1000;
}
}
if (extlpbk) {
if (!(tp->phy_flags & TG3_PHYFLG_IS_FET)) {
tg3_readphy(tp, MII_CTRL1000, &val);
val |= CTL1000_AS_MASTER |
CTL1000_ENABLE_MASTER;
tg3_writephy(tp, MII_CTRL1000, val);
} else {
ptest = MII_TG3_FET_PTEST_TRIM_SEL |
MII_TG3_FET_PTEST_TRIM_2;
tg3_writephy(tp, MII_TG3_FET_PTEST, ptest);
}
} else
bmcr |= BMCR_LOOPBACK;
tg3_writephy(tp, MII_BMCR, bmcr);
/* The write needs to be flushed for the FETs */
if (tp->phy_flags & TG3_PHYFLG_IS_FET)
tg3_readphy(tp, MII_BMCR, &bmcr);
udelay(40);
if ((tp->phy_flags & TG3_PHYFLG_IS_FET) &&
tg3_asic_rev(tp) == ASIC_REV_5785) {
tg3_writephy(tp, MII_TG3_FET_PTEST, ptest |
MII_TG3_FET_PTEST_FRC_TX_LINK |
MII_TG3_FET_PTEST_FRC_TX_LOCK);
/* The write needs to be flushed for the AC131 */
tg3_readphy(tp, MII_TG3_FET_PTEST, &val);
}
/* Reset to prevent losing 1st rx packet intermittently */
if ((tp->phy_flags & TG3_PHYFLG_MII_SERDES) &&
tg3_flag(tp, 5780_CLASS)) {
tw32_f(MAC_RX_MODE, RX_MODE_RESET);
udelay(10);
tw32_f(MAC_RX_MODE, tp->rx_mode);
}
mac_mode = tp->mac_mode &
~(MAC_MODE_PORT_MODE_MASK | MAC_MODE_HALF_DUPLEX);
if (speed == SPEED_1000)
mac_mode |= MAC_MODE_PORT_MODE_GMII;
else
mac_mode |= MAC_MODE_PORT_MODE_MII;
if (tg3_asic_rev(tp) == ASIC_REV_5700) {
u32 masked_phy_id = tp->phy_id & TG3_PHY_ID_MASK;
if (masked_phy_id == TG3_PHY_ID_BCM5401)
mac_mode &= ~MAC_MODE_LINK_POLARITY;
else if (masked_phy_id == TG3_PHY_ID_BCM5411)
mac_mode |= MAC_MODE_LINK_POLARITY;
tg3_writephy(tp, MII_TG3_EXT_CTRL,
MII_TG3_EXT_CTRL_LNK3_LED_MODE);
}
tw32(MAC_MODE, mac_mode);
udelay(40);
return 0;
}
static void tg3_set_loopback(struct net_device *dev, netdev_features_t features)
{
struct tg3 *tp = netdev_priv(dev);
if (features & NETIF_F_LOOPBACK) {
if (tp->mac_mode & MAC_MODE_PORT_INT_LPBACK)
return;
spin_lock_bh(&tp->lock);
tg3_mac_loopback(tp, true);
netif_carrier_on(tp->dev);
spin_unlock_bh(&tp->lock);
netdev_info(dev, "Internal MAC loopback mode enabled.\n");
} else {
if (!(tp->mac_mode & MAC_MODE_PORT_INT_LPBACK))
return;
spin_lock_bh(&tp->lock);
tg3_mac_loopback(tp, false);
/* Force link status check */
tg3_setup_phy(tp, true);
spin_unlock_bh(&tp->lock);
netdev_info(dev, "Internal MAC loopback mode disabled.\n");
}
}
static netdev_features_t tg3_fix_features(struct net_device *dev,
netdev_features_t features)
{
struct tg3 *tp = netdev_priv(dev);
if (dev->mtu > ETH_DATA_LEN && tg3_flag(tp, 5780_CLASS))
features &= ~NETIF_F_ALL_TSO;
return features;
}
static int tg3_set_features(struct net_device *dev, netdev_features_t features)
{
netdev_features_t changed = dev->features ^ features;
if ((changed & NETIF_F_LOOPBACK) && netif_running(dev))
tg3_set_loopback(dev, features);
return 0;
}
static void tg3_rx_prodring_free(struct tg3 *tp,
struct tg3_rx_prodring_set *tpr)
{
int i;
if (tpr != &tp->napi[0].prodring) {
for (i = tpr->rx_std_cons_idx; i != tpr->rx_std_prod_idx;
i = (i + 1) & tp->rx_std_ring_mask)
tg3_rx_data_free(tp, &tpr->rx_std_buffers[i],
tp->rx_pkt_map_sz);
if (tg3_flag(tp, JUMBO_CAPABLE)) {
for (i = tpr->rx_jmb_cons_idx;
i != tpr->rx_jmb_prod_idx;
i = (i + 1) & tp->rx_jmb_ring_mask) {
tg3_rx_data_free(tp, &tpr->rx_jmb_buffers[i],
TG3_RX_JMB_MAP_SZ);
}
}
return;
}
for (i = 0; i <= tp->rx_std_ring_mask; i++)
tg3_rx_data_free(tp, &tpr->rx_std_buffers[i],
tp->rx_pkt_map_sz);
if (tg3_flag(tp, JUMBO_CAPABLE) && !tg3_flag(tp, 5780_CLASS)) {
for (i = 0; i <= tp->rx_jmb_ring_mask; i++)
tg3_rx_data_free(tp, &tpr->rx_jmb_buffers[i],
TG3_RX_JMB_MAP_SZ);
}
}
/* Initialize rx rings for packet processing.
*
* The chip has been shut down and the driver detached from
* the networking, so no interrupts or new tx packets will
* end up in the driver. tp->{tx,}lock are held and thus
* we may not sleep.
*/
static int tg3_rx_prodring_alloc(struct tg3 *tp,
struct tg3_rx_prodring_set *tpr)
{
u32 i, rx_pkt_dma_sz;
tpr->rx_std_cons_idx = 0;
tpr->rx_std_prod_idx = 0;
tpr->rx_jmb_cons_idx = 0;
tpr->rx_jmb_prod_idx = 0;
if (tpr != &tp->napi[0].prodring) {
memset(&tpr->rx_std_buffers[0], 0,
TG3_RX_STD_BUFF_RING_SIZE(tp));
if (tpr->rx_jmb_buffers)
memset(&tpr->rx_jmb_buffers[0], 0,
TG3_RX_JMB_BUFF_RING_SIZE(tp));
goto done;
}
/* Zero out all descriptors. */
memset(tpr->rx_std, 0, TG3_RX_STD_RING_BYTES(tp));
rx_pkt_dma_sz = TG3_RX_STD_DMA_SZ;
if (tg3_flag(tp, 5780_CLASS) &&
tp->dev->mtu > ETH_DATA_LEN)
rx_pkt_dma_sz = TG3_RX_JMB_DMA_SZ;
tp->rx_pkt_map_sz = TG3_RX_DMA_TO_MAP_SZ(rx_pkt_dma_sz);
/* Initialize invariants of the rings, we only set this
* stuff once. This works because the card does not
* write into the rx buffer posting rings.
*/
for (i = 0; i <= tp->rx_std_ring_mask; i++) {
struct tg3_rx_buffer_desc *rxd;
rxd = &tpr->rx_std[i];
rxd->idx_len = rx_pkt_dma_sz << RXD_LEN_SHIFT;
rxd->type_flags = (RXD_FLAG_END << RXD_FLAGS_SHIFT);
rxd->opaque = (RXD_OPAQUE_RING_STD |
(i << RXD_OPAQUE_INDEX_SHIFT));
}
/* Now allocate fresh SKBs for each rx ring. */
for (i = 0; i < tp->rx_pending; i++) {
unsigned int frag_size;
if (tg3_alloc_rx_data(tp, tpr, RXD_OPAQUE_RING_STD, i,
&frag_size) < 0) {
netdev_warn(tp->dev,
"Using a smaller RX standard ring. Only "
"%d out of %d buffers were allocated "
"successfully\n", i, tp->rx_pending);
if (i == 0)
goto initfail;
tp->rx_pending = i;
break;
}
}
if (!tg3_flag(tp, JUMBO_CAPABLE) || tg3_flag(tp, 5780_CLASS))
goto done;
memset(tpr->rx_jmb, 0, TG3_RX_JMB_RING_BYTES(tp));
if (!tg3_flag(tp, JUMBO_RING_ENABLE))
goto done;
for (i = 0; i <= tp->rx_jmb_ring_mask; i++) {
struct tg3_rx_buffer_desc *rxd;
rxd = &tpr->rx_jmb[i].std;
rxd->idx_len = TG3_RX_JMB_DMA_SZ << RXD_LEN_SHIFT;
rxd->type_flags = (RXD_FLAG_END << RXD_FLAGS_SHIFT) |
RXD_FLAG_JUMBO;
rxd->opaque = (RXD_OPAQUE_RING_JUMBO |
(i << RXD_OPAQUE_INDEX_SHIFT));
}
for (i = 0; i < tp->rx_jumbo_pending; i++) {
unsigned int frag_size;
if (tg3_alloc_rx_data(tp, tpr, RXD_OPAQUE_RING_JUMBO, i,
&frag_size) < 0) {
netdev_warn(tp->dev,
"Using a smaller RX jumbo ring. Only %d "
"out of %d buffers were allocated "
"successfully\n", i, tp->rx_jumbo_pending);
if (i == 0)
goto initfail;
tp->rx_jumbo_pending = i;
break;
}
}
done:
return 0;
initfail:
tg3_rx_prodring_free(tp, tpr);
return -ENOMEM;
}
static void tg3_rx_prodring_fini(struct tg3 *tp,
struct tg3_rx_prodring_set *tpr)
{
kfree(tpr->rx_std_buffers);
tpr->rx_std_buffers = NULL;
kfree(tpr->rx_jmb_buffers);
tpr->rx_jmb_buffers = NULL;
if (tpr->rx_std) {
dma_free_coherent(&tp->pdev->dev, TG3_RX_STD_RING_BYTES(tp),
tpr->rx_std, tpr->rx_std_mapping);
tpr->rx_std = NULL;
}
if (tpr->rx_jmb) {
dma_free_coherent(&tp->pdev->dev, TG3_RX_JMB_RING_BYTES(tp),
tpr->rx_jmb, tpr->rx_jmb_mapping);
tpr->rx_jmb = NULL;
}
}
static int tg3_rx_prodring_init(struct tg3 *tp,
struct tg3_rx_prodring_set *tpr)
{
tpr->rx_std_buffers = kzalloc(TG3_RX_STD_BUFF_RING_SIZE(tp),
GFP_KERNEL);
if (!tpr->rx_std_buffers)
return -ENOMEM;
tpr->rx_std = dma_alloc_coherent(&tp->pdev->dev,
TG3_RX_STD_RING_BYTES(tp),
&tpr->rx_std_mapping,
GFP_KERNEL);
if (!tpr->rx_std)
goto err_out;
if (tg3_flag(tp, JUMBO_CAPABLE) && !tg3_flag(tp, 5780_CLASS)) {
tpr->rx_jmb_buffers = kzalloc(TG3_RX_JMB_BUFF_RING_SIZE(tp),
GFP_KERNEL);
if (!tpr->rx_jmb_buffers)
goto err_out;
tpr->rx_jmb = dma_alloc_coherent(&tp->pdev->dev,
TG3_RX_JMB_RING_BYTES(tp),
&tpr->rx_jmb_mapping,
GFP_KERNEL);
if (!tpr->rx_jmb)
goto err_out;
}
return 0;
err_out:
tg3_rx_prodring_fini(tp, tpr);
return -ENOMEM;
}
/* Free up pending packets in all rx/tx rings.
*
* The chip has been shut down and the driver detached from
* the networking, so no interrupts or new tx packets will
* end up in the driver. tp->{tx,}lock is not held and we are not
* in an interrupt context and thus may sleep.
*/
static void tg3_free_rings(struct tg3 *tp)
{
int i, j;
for (j = 0; j < tp->irq_cnt; j++) {
struct tg3_napi *tnapi = &tp->napi[j];
tg3_rx_prodring_free(tp, &tnapi->prodring);
if (!tnapi->tx_buffers)
continue;
for (i = 0; i < TG3_TX_RING_SIZE; i++) {
struct sk_buff *skb = tnapi->tx_buffers[i].skb;
if (!skb)
continue;
tg3_tx_skb_unmap(tnapi, i,
skb_shinfo(skb)->nr_frags - 1);
dev_kfree_skb_any(skb);
}
netdev_tx_reset_queue(netdev_get_tx_queue(tp->dev, j));
}
}
/* Initialize tx/rx rings for packet processing.
*
* The chip has been shut down and the driver detached from
* the networking, so no interrupts or new tx packets will
* end up in the driver. tp->{tx,}lock are held and thus
* we may not sleep.
*/
static int tg3_init_rings(struct tg3 *tp)
{
int i;
/* Free up all the SKBs. */
tg3_free_rings(tp);
for (i = 0; i < tp->irq_cnt; i++) {
struct tg3_napi *tnapi = &tp->napi[i];
tnapi->last_tag = 0;
tnapi->last_irq_tag = 0;
tnapi->hw_status->status = 0;
tnapi->hw_status->status_tag = 0;
memset(tnapi->hw_status, 0, TG3_HW_STATUS_SIZE);
tnapi->tx_prod = 0;
tnapi->tx_cons = 0;
if (tnapi->tx_ring)
memset(tnapi->tx_ring, 0, TG3_TX_RING_BYTES);
tnapi->rx_rcb_ptr = 0;
if (tnapi->rx_rcb)
memset(tnapi->rx_rcb, 0, TG3_RX_RCB_RING_BYTES(tp));
if (tg3_rx_prodring_alloc(tp, &tnapi->prodring)) {
tg3_free_rings(tp);
return -ENOMEM;
}
}
return 0;
}
static void tg3_mem_tx_release(struct tg3 *tp)
{
int i;
for (i = 0; i < tp->irq_max; i++) {
struct tg3_napi *tnapi = &tp->napi[i];
if (tnapi->tx_ring) {
dma_free_coherent(&tp->pdev->dev, TG3_TX_RING_BYTES,
tnapi->tx_ring, tnapi->tx_desc_mapping);
tnapi->tx_ring = NULL;
}
kfree(tnapi->tx_buffers);
tnapi->tx_buffers = NULL;
}
}
static int tg3_mem_tx_acquire(struct tg3 *tp)
{
int i;
struct tg3_napi *tnapi = &tp->napi[0];
/* If multivector TSS is enabled, vector 0 does not handle
* tx interrupts. Don't allocate any resources for it.
*/
if (tg3_flag(tp, ENABLE_TSS))
tnapi++;
for (i = 0; i < tp->txq_cnt; i++, tnapi++) {
tnapi->tx_buffers = kzalloc(sizeof(struct tg3_tx_ring_info) *
TG3_TX_RING_SIZE, GFP_KERNEL);
if (!tnapi->tx_buffers)
goto err_out;
tnapi->tx_ring = dma_alloc_coherent(&tp->pdev->dev,
TG3_TX_RING_BYTES,
&tnapi->tx_desc_mapping,
GFP_KERNEL);
if (!tnapi->tx_ring)
goto err_out;
}
return 0;
err_out:
tg3_mem_tx_release(tp);
return -ENOMEM;
}
static void tg3_mem_rx_release(struct tg3 *tp)
{
int i;
for (i = 0; i < tp->irq_max; i++) {
struct tg3_napi *tnapi = &tp->napi[i];
tg3_rx_prodring_fini(tp, &tnapi->prodring);
if (!tnapi->rx_rcb)
continue;
dma_free_coherent(&tp->pdev->dev,
TG3_RX_RCB_RING_BYTES(tp),
tnapi->rx_rcb,
tnapi->rx_rcb_mapping);
tnapi->rx_rcb = NULL;
}
}
static int tg3_mem_rx_acquire(struct tg3 *tp)
{
unsigned int i, limit;
limit = tp->rxq_cnt;
/* If RSS is enabled, we need a (dummy) producer ring
* set on vector zero. This is the true hw prodring.
*/
if (tg3_flag(tp, ENABLE_RSS))
limit++;
for (i = 0; i < limit; i++) {
struct tg3_napi *tnapi = &tp->napi[i];
if (tg3_rx_prodring_init(tp, &tnapi->prodring))
goto err_out;
/* If multivector RSS is enabled, vector 0
* does not handle rx or tx interrupts.
* Don't allocate any resources for it.
*/
if (!i && tg3_flag(tp, ENABLE_RSS))
continue;
tnapi->rx_rcb = dma_alloc_coherent(&tp->pdev->dev,
TG3_RX_RCB_RING_BYTES(tp),
&tnapi->rx_rcb_mapping,
GFP_KERNEL | __GFP_ZERO);
if (!tnapi->rx_rcb)
goto err_out;
}
return 0;
err_out:
tg3_mem_rx_release(tp);
return -ENOMEM;
}
/*
* Must not be invoked with interrupt sources disabled and
* the hardware shutdown down.
*/
static void tg3_free_consistent(struct tg3 *tp)
{
int i;
for (i = 0; i < tp->irq_cnt; i++) {
struct tg3_napi *tnapi = &tp->napi[i];
if (tnapi->hw_status) {
dma_free_coherent(&tp->pdev->dev, TG3_HW_STATUS_SIZE,
tnapi->hw_status,
tnapi->status_mapping);
tnapi->hw_status = NULL;
}
}
tg3_mem_rx_release(tp);
tg3_mem_tx_release(tp);
if (tp->hw_stats) {
dma_free_coherent(&tp->pdev->dev, sizeof(struct tg3_hw_stats),
tp->hw_stats, tp->stats_mapping);
tp->hw_stats = NULL;
}
}
/*
* Must not be invoked with interrupt sources disabled and
* the hardware shutdown down. Can sleep.
*/
static int tg3_alloc_consistent(struct tg3 *tp)
{
int i;
tp->hw_stats = dma_alloc_coherent(&tp->pdev->dev,
sizeof(struct tg3_hw_stats),
&tp->stats_mapping,
GFP_KERNEL | __GFP_ZERO);
if (!tp->hw_stats)
goto err_out;
for (i = 0; i < tp->irq_cnt; i++) {
struct tg3_napi *tnapi = &tp->napi[i];
struct tg3_hw_status *sblk;
tnapi->hw_status = dma_alloc_coherent(&tp->pdev->dev,
TG3_HW_STATUS_SIZE,
&tnapi->status_mapping,
GFP_KERNEL | __GFP_ZERO);
if (!tnapi->hw_status)
goto err_out;
sblk = tnapi->hw_status;
if (tg3_flag(tp, ENABLE_RSS)) {
u16 *prodptr = NULL;
/*
* When RSS is enabled, the status block format changes
* slightly. The "rx_jumbo_consumer", "reserved",
* and "rx_mini_consumer" members get mapped to the
* other three rx return ring producer indexes.
*/
switch (i) {
case 1:
prodptr = &sblk->idx[0].rx_producer;
break;
case 2:
prodptr = &sblk->rx_jumbo_consumer;
break;
case 3:
prodptr = &sblk->reserved;
break;
case 4:
prodptr = &sblk->rx_mini_consumer;
break;
}
tnapi->rx_rcb_prod_idx = prodptr;
} else {
tnapi->rx_rcb_prod_idx = &sblk->idx[0].rx_producer;
}
}
if (tg3_mem_tx_acquire(tp) || tg3_mem_rx_acquire(tp))
goto err_out;
return 0;
err_out:
tg3_free_consistent(tp);
return -ENOMEM;
}
#define MAX_WAIT_CNT 1000
/* To stop a block, clear the enable bit and poll till it
* clears. tp->lock is held.
*/
static int tg3_stop_block(struct tg3 *tp, unsigned long ofs, u32 enable_bit, bool silent)
{
unsigned int i;
u32 val;
if (tg3_flag(tp, 5705_PLUS)) {
switch (ofs) {
case RCVLSC_MODE:
case DMAC_MODE:
case MBFREE_MODE:
case BUFMGR_MODE:
case MEMARB_MODE:
/* We can't enable/disable these bits of the
* 5705/5750, just say success.
*/
return 0;
default:
break;
}
}
val = tr32(ofs);
val &= ~enable_bit;
tw32_f(ofs, val);
for (i = 0; i < MAX_WAIT_CNT; i++) {
udelay(100);
val = tr32(ofs);
if ((val & enable_bit) == 0)
break;
}
if (i == MAX_WAIT_CNT && !silent) {
dev_err(&tp->pdev->dev,
"tg3_stop_block timed out, ofs=%lx enable_bit=%x\n",
ofs, enable_bit);
return -ENODEV;
}
return 0;
}
/* tp->lock is held. */
static int tg3_abort_hw(struct tg3 *tp, bool silent)
{
int i, err;
tg3_disable_ints(tp);
tp->rx_mode &= ~RX_MODE_ENABLE;
tw32_f(MAC_RX_MODE, tp->rx_mode);
udelay(10);
err = tg3_stop_block(tp, RCVBDI_MODE, RCVBDI_MODE_ENABLE, silent);
err |= tg3_stop_block(tp, RCVLPC_MODE, RCVLPC_MODE_ENABLE, silent);
err |= tg3_stop_block(tp, RCVLSC_MODE, RCVLSC_MODE_ENABLE, silent);
err |= tg3_stop_block(tp, RCVDBDI_MODE, RCVDBDI_MODE_ENABLE, silent);
err |= tg3_stop_block(tp, RCVDCC_MODE, RCVDCC_MODE_ENABLE, silent);
err |= tg3_stop_block(tp, RCVCC_MODE, RCVCC_MODE_ENABLE, silent);
err |= tg3_stop_block(tp, SNDBDS_MODE, SNDBDS_MODE_ENABLE, silent);
err |= tg3_stop_block(tp, SNDBDI_MODE, SNDBDI_MODE_ENABLE, silent);
err |= tg3_stop_block(tp, SNDDATAI_MODE, SNDDATAI_MODE_ENABLE, silent);
err |= tg3_stop_block(tp, RDMAC_MODE, RDMAC_MODE_ENABLE, silent);
err |= tg3_stop_block(tp, SNDDATAC_MODE, SNDDATAC_MODE_ENABLE, silent);
err |= tg3_stop_block(tp, DMAC_MODE, DMAC_MODE_ENABLE, silent);
err |= tg3_stop_block(tp, SNDBDC_MODE, SNDBDC_MODE_ENABLE, silent);
tp->mac_mode &= ~MAC_MODE_TDE_ENABLE;
tw32_f(MAC_MODE, tp->mac_mode);
udelay(40);
tp->tx_mode &= ~TX_MODE_ENABLE;
tw32_f(MAC_TX_MODE, tp->tx_mode);
for (i = 0; i < MAX_WAIT_CNT; i++) {
udelay(100);
if (!(tr32(MAC_TX_MODE) & TX_MODE_ENABLE))
break;
}
if (i >= MAX_WAIT_CNT) {
dev_err(&tp->pdev->dev,
"%s timed out, TX_MODE_ENABLE will not clear "
"MAC_TX_MODE=%08x\n", __func__, tr32(MAC_TX_MODE));
err |= -ENODEV;
}
err |= tg3_stop_block(tp, HOSTCC_MODE, HOSTCC_MODE_ENABLE, silent);
err |= tg3_stop_block(tp, WDMAC_MODE, WDMAC_MODE_ENABLE, silent);
err |= tg3_stop_block(tp, MBFREE_MODE, MBFREE_MODE_ENABLE, silent);
tw32(FTQ_RESET, 0xffffffff);
tw32(FTQ_RESET, 0x00000000);
err |= tg3_stop_block(tp, BUFMGR_MODE, BUFMGR_MODE_ENABLE, silent);
err |= tg3_stop_block(tp, MEMARB_MODE, MEMARB_MODE_ENABLE, silent);
for (i = 0; i < tp->irq_cnt; i++) {
struct tg3_napi *tnapi = &tp->napi[i];
if (tnapi->hw_status)
memset(tnapi->hw_status, 0, TG3_HW_STATUS_SIZE);
}
return err;
}
/* Save PCI command register before chip reset */
static void tg3_save_pci_state(struct tg3 *tp)
{
pci_read_config_word(tp->pdev, PCI_COMMAND, &tp->pci_cmd);
}
/* Restore PCI state after chip reset */
static void tg3_restore_pci_state(struct tg3 *tp)
{
u32 val;
/* Re-enable indirect register accesses. */
pci_write_config_dword(tp->pdev, TG3PCI_MISC_HOST_CTRL,
tp->misc_host_ctrl);
/* Set MAX PCI retry to zero. */
val = (PCISTATE_ROM_ENABLE | PCISTATE_ROM_RETRY_ENABLE);
if (tg3_chip_rev_id(tp) == CHIPREV_ID_5704_A0 &&
tg3_flag(tp, PCIX_MODE))
val |= PCISTATE_RETRY_SAME_DMA;
/* Allow reads and writes to the APE register and memory space. */
if (tg3_flag(tp, ENABLE_APE))
val |= PCISTATE_ALLOW_APE_CTLSPC_WR |
PCISTATE_ALLOW_APE_SHMEM_WR |
PCISTATE_ALLOW_APE_PSPACE_WR;
pci_write_config_dword(tp->pdev, TG3PCI_PCISTATE, val);
pci_write_config_word(tp->pdev, PCI_COMMAND, tp->pci_cmd);
if (!tg3_flag(tp, PCI_EXPRESS)) {
pci_write_config_byte(tp->pdev, PCI_CACHE_LINE_SIZE,
tp->pci_cacheline_sz);
pci_write_config_byte(tp->pdev, PCI_LATENCY_TIMER,
tp->pci_lat_timer);
}
/* Make sure PCI-X relaxed ordering bit is clear. */
if (tg3_flag(tp, PCIX_MODE)) {
u16 pcix_cmd;
pci_read_config_word(tp->pdev, tp->pcix_cap + PCI_X_CMD,
&pcix_cmd);
pcix_cmd &= ~PCI_X_CMD_ERO;
pci_write_config_word(tp->pdev, tp->pcix_cap + PCI_X_CMD,
pcix_cmd);
}
if (tg3_flag(tp, 5780_CLASS)) {
/* Chip reset on 5780 will reset MSI enable bit,
* so need to restore it.
*/
if (tg3_flag(tp, USING_MSI)) {
u16 ctrl;
pci_read_config_word(tp->pdev,
tp->msi_cap + PCI_MSI_FLAGS,
&ctrl);
pci_write_config_word(tp->pdev,
tp->msi_cap + PCI_MSI_FLAGS,
ctrl | PCI_MSI_FLAGS_ENABLE);
val = tr32(MSGINT_MODE);
tw32(MSGINT_MODE, val | MSGINT_MODE_ENABLE);
}
}
}
/* tp->lock is held. */
static int tg3_chip_reset(struct tg3 *tp)
{
u32 val;
void (*write_op)(struct tg3 *, u32, u32);
int i, err;
tg3_nvram_lock(tp);
tg3_ape_lock(tp, TG3_APE_LOCK_GRC);
/* No matching tg3_nvram_unlock() after this because
* chip reset below will undo the nvram lock.
*/
tp->nvram_lock_cnt = 0;
/* GRC_MISC_CFG core clock reset will clear the memory
* enable bit in PCI register 4 and the MSI enable bit
* on some chips, so we save relevant registers here.
*/
tg3_save_pci_state(tp);
if (tg3_asic_rev(tp) == ASIC_REV_5752 ||
tg3_flag(tp, 5755_PLUS))
tw32(GRC_FASTBOOT_PC, 0);
/*
* We must avoid the readl() that normally takes place.
* It locks machines, causes machine checks, and other
* fun things. So, temporarily disable the 5701
* hardware workaround, while we do the reset.
*/
write_op = tp->write32;
if (write_op == tg3_write_flush_reg32)
tp->write32 = tg3_write32;
/* Prevent the irq handler from reading or writing PCI registers
* during chip reset when the memory enable bit in the PCI command
* register may be cleared. The chip does not generate interrupt
* at this time, but the irq handler may still be called due to irq
* sharing or irqpoll.
*/
tg3_flag_set(tp, CHIP_RESETTING);
for (i = 0; i < tp->irq_cnt; i++) {
struct tg3_napi *tnapi = &tp->napi[i];
if (tnapi->hw_status) {
tnapi->hw_status->status = 0;
tnapi->hw_status->status_tag = 0;
}
tnapi->last_tag = 0;
tnapi->last_irq_tag = 0;
}
smp_mb();
for (i = 0; i < tp->irq_cnt; i++)
synchronize_irq(tp->napi[i].irq_vec);
if (tg3_asic_rev(tp) == ASIC_REV_57780) {
val = tr32(TG3_PCIE_LNKCTL) & ~TG3_PCIE_LNKCTL_L1_PLL_PD_EN;
tw32(TG3_PCIE_LNKCTL, val | TG3_PCIE_LNKCTL_L1_PLL_PD_DIS);
}
/* do the reset */
val = GRC_MISC_CFG_CORECLK_RESET;
if (tg3_flag(tp, PCI_EXPRESS)) {
/* Force PCIe 1.0a mode */
if (tg3_asic_rev(tp) != ASIC_REV_5785 &&
!tg3_flag(tp, 57765_PLUS) &&
tr32(TG3_PCIE_PHY_TSTCTL) ==
(TG3_PCIE_PHY_TSTCTL_PCIE10 | TG3_PCIE_PHY_TSTCTL_PSCRAM))
tw32(TG3_PCIE_PHY_TSTCTL, TG3_PCIE_PHY_TSTCTL_PSCRAM);
if (tg3_chip_rev_id(tp) != CHIPREV_ID_5750_A0) {
tw32(GRC_MISC_CFG, (1 << 29));
val |= (1 << 29);
}
}
if (tg3_asic_rev(tp) == ASIC_REV_5906) {
tw32(VCPU_STATUS, tr32(VCPU_STATUS) | VCPU_STATUS_DRV_RESET);
tw32(GRC_VCPU_EXT_CTRL,
tr32(GRC_VCPU_EXT_CTRL) & ~GRC_VCPU_EXT_CTRL_HALT_CPU);
}
/* Manage gphy power for all CPMU absent PCIe devices. */
if (tg3_flag(tp, 5705_PLUS) && !tg3_flag(tp, CPMU_PRESENT))
val |= GRC_MISC_CFG_KEEP_GPHY_POWER;
tw32(GRC_MISC_CFG, val);
/* restore 5701 hardware bug workaround write method */
tp->write32 = write_op;
/* Unfortunately, we have to delay before the PCI read back.
* Some 575X chips even will not respond to a PCI cfg access
* when the reset command is given to the chip.
*
* How do these hardware designers expect things to work
* properly if the PCI write is posted for a long period
* of time? It is always necessary to have some method by
* which a register read back can occur to push the write
* out which does the reset.
*
* For most tg3 variants the trick below was working.
* Ho hum...
*/
udelay(120);
/* Flush PCI posted writes. The normal MMIO registers
* are inaccessible at this time so this is the only
* way to make this reliably (actually, this is no longer
* the case, see above). I tried to use indirect
* register read/write but this upset some 5701 variants.
*/
pci_read_config_dword(tp->pdev, PCI_COMMAND, &val);
udelay(120);
if (tg3_flag(tp, PCI_EXPRESS) && pci_is_pcie(tp->pdev)) {
u16 val16;
if (tg3_chip_rev_id(tp) == CHIPREV_ID_5750_A0) {
int j;
u32 cfg_val;
/* Wait for link training to complete. */
for (j = 0; j < 5000; j++)
udelay(100);
pci_read_config_dword(tp->pdev, 0xc4, &cfg_val);
pci_write_config_dword(tp->pdev, 0xc4,
cfg_val | (1 << 15));
}
/* Clear the "no snoop" and "relaxed ordering" bits. */
val16 = PCI_EXP_DEVCTL_RELAX_EN | PCI_EXP_DEVCTL_NOSNOOP_EN;
/*
* Older PCIe devices only support the 128 byte
* MPS setting. Enforce the restriction.
*/
if (!tg3_flag(tp, CPMU_PRESENT))
val16 |= PCI_EXP_DEVCTL_PAYLOAD;
pcie_capability_clear_word(tp->pdev, PCI_EXP_DEVCTL, val16);
/* Clear error status */
pcie_capability_write_word(tp->pdev, PCI_EXP_DEVSTA,
PCI_EXP_DEVSTA_CED |
PCI_EXP_DEVSTA_NFED |
PCI_EXP_DEVSTA_FED |
PCI_EXP_DEVSTA_URD);
}
tg3_restore_pci_state(tp);
tg3_flag_clear(tp, CHIP_RESETTING);
tg3_flag_clear(tp, ERROR_PROCESSED);
val = 0;
if (tg3_flag(tp, 5780_CLASS))
val = tr32(MEMARB_MODE);
tw32(MEMARB_MODE, val | MEMARB_MODE_ENABLE);
if (tg3_chip_rev_id(tp) == CHIPREV_ID_5750_A3) {
tg3_stop_fw(tp);
tw32(0x5000, 0x400);
}
if (tg3_flag(tp, IS_SSB_CORE)) {
/*
* BCM4785: In order to avoid repercussions from using
* potentially defective internal ROM, stop the Rx RISC CPU,
* which is not required.
*/
tg3_stop_fw(tp);
tg3_halt_cpu(tp, RX_CPU_BASE);
}
tw32(GRC_MODE, tp->grc_mode);
if (tg3_chip_rev_id(tp) == CHIPREV_ID_5705_A0) {
val = tr32(0xc4);
tw32(0xc4, val | (1 << 15));
}
if ((tp->nic_sram_data_cfg & NIC_SRAM_DATA_CFG_MINI_PCI) != 0 &&
tg3_asic_rev(tp) == ASIC_REV_5705) {
tp->pci_clock_ctrl |= CLOCK_CTRL_CLKRUN_OENABLE;
if (tg3_chip_rev_id(tp) == CHIPREV_ID_5705_A0)
tp->pci_clock_ctrl |= CLOCK_CTRL_FORCE_CLKRUN;
tw32(TG3PCI_CLOCK_CTRL, tp->pci_clock_ctrl);
}
if (tp->phy_flags & TG3_PHYFLG_PHY_SERDES) {
tp->mac_mode = MAC_MODE_PORT_MODE_TBI;
val = tp->mac_mode;
} else if (tp->phy_flags & TG3_PHYFLG_MII_SERDES) {
tp->mac_mode = MAC_MODE_PORT_MODE_GMII;
val = tp->mac_mode;
} else
val = 0;
tw32_f(MAC_MODE, val);
udelay(40);
tg3_ape_unlock(tp, TG3_APE_LOCK_GRC);
err = tg3_poll_fw(tp);
if (err)
return err;
tg3_mdio_start(tp);
if (tg3_flag(tp, PCI_EXPRESS) &&
tg3_chip_rev_id(tp) != CHIPREV_ID_5750_A0 &&
tg3_asic_rev(tp) != ASIC_REV_5785 &&
!tg3_flag(tp, 57765_PLUS)) {
val = tr32(0x7c00);
tw32(0x7c00, val | (1 << 25));
}
if (tg3_asic_rev(tp) == ASIC_REV_5720) {
val = tr32(TG3_CPMU_CLCK_ORIDE);
tw32(TG3_CPMU_CLCK_ORIDE, val & ~CPMU_CLCK_ORIDE_MAC_ORIDE_EN);
}
/* Reprobe ASF enable state. */
tg3_flag_clear(tp, ENABLE_ASF);
tp->phy_flags &= ~(TG3_PHYFLG_1G_ON_VAUX_OK |
TG3_PHYFLG_KEEP_LINK_ON_PWRDN);
tg3_flag_clear(tp, ASF_NEW_HANDSHAKE);
tg3_read_mem(tp, NIC_SRAM_DATA_SIG, &val);
if (val == NIC_SRAM_DATA_SIG_MAGIC) {
u32 nic_cfg;
tg3_read_mem(tp, NIC_SRAM_DATA_CFG, &nic_cfg);
if (nic_cfg & NIC_SRAM_DATA_CFG_ASF_ENABLE) {
tg3_flag_set(tp, ENABLE_ASF);
tp->last_event_jiffies = jiffies;
if (tg3_flag(tp, 5750_PLUS))
tg3_flag_set(tp, ASF_NEW_HANDSHAKE);
tg3_read_mem(tp, NIC_SRAM_DATA_CFG_3, &nic_cfg);
if (nic_cfg & NIC_SRAM_1G_ON_VAUX_OK)
tp->phy_flags |= TG3_PHYFLG_1G_ON_VAUX_OK;
if (nic_cfg & NIC_SRAM_LNK_FLAP_AVOID)
tp->phy_flags |= TG3_PHYFLG_KEEP_LINK_ON_PWRDN;
}
}
return 0;
}
static void tg3_get_nstats(struct tg3 *, struct rtnl_link_stats64 *);
static void tg3_get_estats(struct tg3 *, struct tg3_ethtool_stats *);
/* tp->lock is held. */
static int tg3_halt(struct tg3 *tp, int kind, bool silent)
{
int err;
tg3_stop_fw(tp);
tg3_write_sig_pre_reset(tp, kind);
tg3_abort_hw(tp, silent);
err = tg3_chip_reset(tp);
__tg3_set_mac_addr(tp, false);
tg3_write_sig_legacy(tp, kind);
tg3_write_sig_post_reset(tp, kind);
if (tp->hw_stats) {
/* Save the stats across chip resets... */
tg3_get_nstats(tp, &tp->net_stats_prev);
tg3_get_estats(tp, &tp->estats_prev);
/* And make sure the next sample is new data */
memset(tp->hw_stats, 0, sizeof(struct tg3_hw_stats));
}
if (err)
return err;
return 0;
}
static int tg3_set_mac_addr(struct net_device *dev, void *p)
{
struct tg3 *tp = netdev_priv(dev);
struct sockaddr *addr = p;
int err = 0;
bool skip_mac_1 = false;
if (!is_valid_ether_addr(addr->sa_data))
return -EADDRNOTAVAIL;
memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
if (!netif_running(dev))
return 0;
if (tg3_flag(tp, ENABLE_ASF)) {
u32 addr0_high, addr0_low, addr1_high, addr1_low;
addr0_high = tr32(MAC_ADDR_0_HIGH);
addr0_low = tr32(MAC_ADDR_0_LOW);
addr1_high = tr32(MAC_ADDR_1_HIGH);
addr1_low = tr32(MAC_ADDR_1_LOW);
/* Skip MAC addr 1 if ASF is using it. */
if ((addr0_high != addr1_high || addr0_low != addr1_low) &&
!(addr1_high == 0 && addr1_low == 0))
skip_mac_1 = true;
}
spin_lock_bh(&tp->lock);
__tg3_set_mac_addr(tp, skip_mac_1);
spin_unlock_bh(&tp->lock);
return err;
}
/* tp->lock is held. */
static void tg3_set_bdinfo(struct tg3 *tp, u32 bdinfo_addr,
dma_addr_t mapping, u32 maxlen_flags,
u32 nic_addr)
{
tg3_write_mem(tp,
(bdinfo_addr + TG3_BDINFO_HOST_ADDR + TG3_64BIT_REG_HIGH),
((u64) mapping >> 32));
tg3_write_mem(tp,
(bdinfo_addr + TG3_BDINFO_HOST_ADDR + TG3_64BIT_REG_LOW),
((u64) mapping & 0xffffffff));
tg3_write_mem(tp,
(bdinfo_addr + TG3_BDINFO_MAXLEN_FLAGS),
maxlen_flags);
if (!tg3_flag(tp, 5705_PLUS))
tg3_write_mem(tp,
(bdinfo_addr + TG3_BDINFO_NIC_ADDR),
nic_addr);
}
static void tg3_coal_tx_init(struct tg3 *tp, struct ethtool_coalesce *ec)
{
int i = 0;
if (!tg3_flag(tp, ENABLE_TSS)) {
tw32(HOSTCC_TXCOL_TICKS, ec->tx_coalesce_usecs);
tw32(HOSTCC_TXMAX_FRAMES, ec->tx_max_coalesced_frames);
tw32(HOSTCC_TXCOAL_MAXF_INT, ec->tx_max_coalesced_frames_irq);
} else {
tw32(HOSTCC_TXCOL_TICKS, 0);
tw32(HOSTCC_TXMAX_FRAMES, 0);
tw32(HOSTCC_TXCOAL_MAXF_INT, 0);
for (; i < tp->txq_cnt; i++) {
u32 reg;
reg = HOSTCC_TXCOL_TICKS_VEC1 + i * 0x18;
tw32(reg, ec->tx_coalesce_usecs);
reg = HOSTCC_TXMAX_FRAMES_VEC1 + i * 0x18;
tw32(reg, ec->tx_max_coalesced_frames);
reg = HOSTCC_TXCOAL_MAXF_INT_VEC1 + i * 0x18;
tw32(reg, ec->tx_max_coalesced_frames_irq);
}
}
for (; i < tp->irq_max - 1; i++) {
tw32(HOSTCC_TXCOL_TICKS_VEC1 + i * 0x18, 0);
tw32(HOSTCC_TXMAX_FRAMES_VEC1 + i * 0x18, 0);
tw32(HOSTCC_TXCOAL_MAXF_INT_VEC1 + i * 0x18, 0);
}
}
static void tg3_coal_rx_init(struct tg3 *tp, struct ethtool_coalesce *ec)
{
int i = 0;
u32 limit = tp->rxq_cnt;
if (!tg3_flag(tp, ENABLE_RSS)) {
tw32(HOSTCC_RXCOL_TICKS, ec->rx_coalesce_usecs);
tw32(HOSTCC_RXMAX_FRAMES, ec->rx_max_coalesced_frames);
tw32(HOSTCC_RXCOAL_MAXF_INT, ec->rx_max_coalesced_frames_irq);
limit--;
} else {
tw32(HOSTCC_RXCOL_TICKS, 0);
tw32(HOSTCC_RXMAX_FRAMES, 0);
tw32(HOSTCC_RXCOAL_MAXF_INT, 0);
}
for (; i < limit; i++) {
u32 reg;
reg = HOSTCC_RXCOL_TICKS_VEC1 + i * 0x18;
tw32(reg, ec->rx_coalesce_usecs);
reg = HOSTCC_RXMAX_FRAMES_VEC1 + i * 0x18;
tw32(reg, ec->rx_max_coalesced_frames);
reg = HOSTCC_RXCOAL_MAXF_INT_VEC1 + i * 0x18;
tw32(reg, ec->rx_max_coalesced_frames_irq);
}
for (; i < tp->irq_max - 1; i++) {
tw32(HOSTCC_RXCOL_TICKS_VEC1 + i * 0x18, 0);
tw32(HOSTCC_RXMAX_FRAMES_VEC1 + i * 0x18, 0);
tw32(HOSTCC_RXCOAL_MAXF_INT_VEC1 + i * 0x18, 0);
}
}
static void __tg3_set_coalesce(struct tg3 *tp, struct ethtool_coalesce *ec)
{
tg3_coal_tx_init(tp, ec);
tg3_coal_rx_init(tp, ec);
if (!tg3_flag(tp, 5705_PLUS)) {
u32 val = ec->stats_block_coalesce_usecs;
tw32(HOSTCC_RXCOAL_TICK_INT, ec->rx_coalesce_usecs_irq);
tw32(HOSTCC_TXCOAL_TICK_INT, ec->tx_coalesce_usecs_irq);
if (!tp->link_up)
val = 0;
tw32(HOSTCC_STAT_COAL_TICKS, val);
}
}
/* tp->lock is held. */
static void tg3_rings_reset(struct tg3 *tp)
{
int i;
u32 stblk, txrcb, rxrcb, limit;
struct tg3_napi *tnapi = &tp->napi[0];
/* Disable all transmit rings but the first. */
if (!tg3_flag(tp, 5705_PLUS))
limit = NIC_SRAM_SEND_RCB + TG3_BDINFO_SIZE * 16;
else if (tg3_flag(tp, 5717_PLUS))
limit = NIC_SRAM_SEND_RCB + TG3_BDINFO_SIZE * 4;
else if (tg3_flag(tp, 57765_CLASS) ||
tg3_asic_rev(tp) == ASIC_REV_5762)
limit = NIC_SRAM_SEND_RCB + TG3_BDINFO_SIZE * 2;
else
limit = NIC_SRAM_SEND_RCB + TG3_BDINFO_SIZE;
for (txrcb = NIC_SRAM_SEND_RCB + TG3_BDINFO_SIZE;
txrcb < limit; txrcb += TG3_BDINFO_SIZE)
tg3_write_mem(tp, txrcb + TG3_BDINFO_MAXLEN_FLAGS,
BDINFO_FLAGS_DISABLED);
/* Disable all receive return rings but the first. */
if (tg3_flag(tp, 5717_PLUS))
limit = NIC_SRAM_RCV_RET_RCB + TG3_BDINFO_SIZE * 17;
else if (!tg3_flag(tp, 5705_PLUS))
limit = NIC_SRAM_RCV_RET_RCB + TG3_BDINFO_SIZE * 16;
else if (tg3_asic_rev(tp) == ASIC_REV_5755 ||
tg3_asic_rev(tp) == ASIC_REV_5762 ||
tg3_flag(tp, 57765_CLASS))
limit = NIC_SRAM_RCV_RET_RCB + TG3_BDINFO_SIZE * 4;
else
limit = NIC_SRAM_RCV_RET_RCB + TG3_BDINFO_SIZE;
for (rxrcb = NIC_SRAM_RCV_RET_RCB + TG3_BDINFO_SIZE;
rxrcb < limit; rxrcb += TG3_BDINFO_SIZE)
tg3_write_mem(tp, rxrcb + TG3_BDINFO_MAXLEN_FLAGS,
BDINFO_FLAGS_DISABLED);
/* Disable interrupts */
tw32_mailbox_f(tp->napi[0].int_mbox, 1);
tp->napi[0].chk_msi_cnt = 0;
tp->napi[0].last_rx_cons = 0;
tp->napi[0].last_tx_cons = 0;
/* Zero mailbox registers. */
if (tg3_flag(tp, SUPPORT_MSIX)) {
for (i = 1; i < tp->irq_max; i++) {
tp->napi[i].tx_prod = 0;
tp->napi[i].tx_cons = 0;
if (tg3_flag(tp, ENABLE_TSS))
tw32_mailbox(tp->napi[i].prodmbox, 0);
tw32_rx_mbox(tp->napi[i].consmbox, 0);
tw32_mailbox_f(tp->napi[i].int_mbox, 1);
tp->napi[i].chk_msi_cnt = 0;
tp->napi[i].last_rx_cons = 0;
tp->napi[i].last_tx_cons = 0;
}
if (!tg3_flag(tp, ENABLE_TSS))
tw32_mailbox(tp->napi[0].prodmbox, 0);
} else {
tp->napi[0].tx_prod = 0;
tp->napi[0].tx_cons = 0;
tw32_mailbox(tp->napi[0].prodmbox, 0);
tw32_rx_mbox(tp->napi[0].consmbox, 0);
}
/* Make sure the NIC-based send BD rings are disabled. */
if (!tg3_flag(tp, 5705_PLUS)) {
u32 mbox = MAILBOX_SNDNIC_PROD_IDX_0 + TG3_64BIT_REG_LOW;
for (i = 0; i < 16; i++)
tw32_tx_mbox(mbox + i * 8, 0);
}
txrcb = NIC_SRAM_SEND_RCB;
rxrcb = NIC_SRAM_RCV_RET_RCB;
/* Clear status block in ram. */
memset(tnapi->hw_status, 0, TG3_HW_STATUS_SIZE);
/* Set status block DMA address */
tw32(HOSTCC_STATUS_BLK_HOST_ADDR + TG3_64BIT_REG_HIGH,
((u64) tnapi->status_mapping >> 32));
tw32(HOSTCC_STATUS_BLK_HOST_ADDR + TG3_64BIT_REG_LOW,
((u64) tnapi->status_mapping & 0xffffffff));
if (tnapi->tx_ring) {
tg3_set_bdinfo(tp, txrcb, tnapi->tx_desc_mapping,
(TG3_TX_RING_SIZE <<
BDINFO_FLAGS_MAXLEN_SHIFT),
NIC_SRAM_TX_BUFFER_DESC);
txrcb += TG3_BDINFO_SIZE;
}
if (tnapi->rx_rcb) {
tg3_set_bdinfo(tp, rxrcb, tnapi->rx_rcb_mapping,
(tp->rx_ret_ring_mask + 1) <<
BDINFO_FLAGS_MAXLEN_SHIFT, 0);
rxrcb += TG3_BDINFO_SIZE;
}
stblk = HOSTCC_STATBLCK_RING1;
for (i = 1, tnapi++; i < tp->irq_cnt; i++, tnapi++) {
u64 mapping = (u64)tnapi->status_mapping;
tw32(stblk + TG3_64BIT_REG_HIGH, mapping >> 32);
tw32(stblk + TG3_64BIT_REG_LOW, mapping & 0xffffffff);
/* Clear status block in ram. */
memset(tnapi->hw_status, 0, TG3_HW_STATUS_SIZE);
if (tnapi->tx_ring) {
tg3_set_bdinfo(tp, txrcb, tnapi->tx_desc_mapping,
(TG3_TX_RING_SIZE <<
BDINFO_FLAGS_MAXLEN_SHIFT),
NIC_SRAM_TX_BUFFER_DESC);
txrcb += TG3_BDINFO_SIZE;
}
tg3_set_bdinfo(tp, rxrcb, tnapi->rx_rcb_mapping,
((tp->rx_ret_ring_mask + 1) <<
BDINFO_FLAGS_MAXLEN_SHIFT), 0);
stblk += 8;
rxrcb += TG3_BDINFO_SIZE;
}
}
static void tg3_setup_rxbd_thresholds(struct tg3 *tp)
{
u32 val, bdcache_maxcnt, host_rep_thresh, nic_rep_thresh;
if (!tg3_flag(tp, 5750_PLUS) ||
tg3_flag(tp, 5780_CLASS) ||
tg3_asic_rev(tp) == ASIC_REV_5750 ||
tg3_asic_rev(tp) == ASIC_REV_5752 ||
tg3_flag(tp, 57765_PLUS))
bdcache_maxcnt = TG3_SRAM_RX_STD_BDCACHE_SIZE_5700;
else if (tg3_asic_rev(tp) == ASIC_REV_5755 ||
tg3_asic_rev(tp) == ASIC_REV_5787)
bdcache_maxcnt = TG3_SRAM_RX_STD_BDCACHE_SIZE_5755;
else
bdcache_maxcnt = TG3_SRAM_RX_STD_BDCACHE_SIZE_5906;
nic_rep_thresh = min(bdcache_maxcnt / 2, tp->rx_std_max_post);
host_rep_thresh = max_t(u32, tp->rx_pending / 8, 1);
val = min(nic_rep_thresh, host_rep_thresh);
tw32(RCVBDI_STD_THRESH, val);
if (tg3_flag(tp, 57765_PLUS))
tw32(STD_REPLENISH_LWM, bdcache_maxcnt);
if (!tg3_flag(tp, JUMBO_CAPABLE) || tg3_flag(tp, 5780_CLASS))
return;
bdcache_maxcnt = TG3_SRAM_RX_JMB_BDCACHE_SIZE_5700;
host_rep_thresh = max_t(u32, tp->rx_jumbo_pending / 8, 1);
val = min(bdcache_maxcnt / 2, host_rep_thresh);
tw32(RCVBDI_JUMBO_THRESH, val);
if (tg3_flag(tp, 57765_PLUS))
tw32(JMB_REPLENISH_LWM, bdcache_maxcnt);
}
static inline u32 calc_crc(unsigned char *buf, int len)
{
u32 reg;
u32 tmp;
int j, k;
reg = 0xffffffff;
for (j = 0; j < len; j++) {
reg ^= buf[j];
for (k = 0; k < 8; k++) {
tmp = reg & 0x01;
reg >>= 1;
if (tmp)
reg ^= 0xedb88320;
}
}
return ~reg;
}
static void tg3_set_multi(struct tg3 *tp, unsigned int accept_all)
{
/* accept or reject all multicast frames */
tw32(MAC_HASH_REG_0, accept_all ? 0xffffffff : 0);
tw32(MAC_HASH_REG_1, accept_all ? 0xffffffff : 0);
tw32(MAC_HASH_REG_2, accept_all ? 0xffffffff : 0);
tw32(MAC_HASH_REG_3, accept_all ? 0xffffffff : 0);
}
static void __tg3_set_rx_mode(struct net_device *dev)
{
struct tg3 *tp = netdev_priv(dev);
u32 rx_mode;
rx_mode = tp->rx_mode & ~(RX_MODE_PROMISC |
RX_MODE_KEEP_VLAN_TAG);
#if !defined(CONFIG_VLAN_8021Q) && !defined(CONFIG_VLAN_8021Q_MODULE)
/* When ASF is in use, we always keep the RX_MODE_KEEP_VLAN_TAG
* flag clear.
*/
if (!tg3_flag(tp, ENABLE_ASF))
rx_mode |= RX_MODE_KEEP_VLAN_TAG;
#endif
if (dev->flags & IFF_PROMISC) {
/* Promiscuous mode. */
rx_mode |= RX_MODE_PROMISC;
} else if (dev->flags & IFF_ALLMULTI) {
/* Accept all multicast. */
tg3_set_multi(tp, 1);
} else if (netdev_mc_empty(dev)) {
/* Reject all multicast. */
tg3_set_multi(tp, 0);
} else {
/* Accept one or more multicast(s). */
struct netdev_hw_addr *ha;
u32 mc_filter[4] = { 0, };
u32 regidx;
u32 bit;
u32 crc;
netdev_for_each_mc_addr(ha, dev) {
crc = calc_crc(ha->addr, ETH_ALEN);
bit = ~crc & 0x7f;
regidx = (bit & 0x60) >> 5;
bit &= 0x1f;
mc_filter[regidx] |= (1 << bit);
}
tw32(MAC_HASH_REG_0, mc_filter[0]);
tw32(MAC_HASH_REG_1, mc_filter[1]);
tw32(MAC_HASH_REG_2, mc_filter[2]);
tw32(MAC_HASH_REG_3, mc_filter[3]);
}
if (rx_mode != tp->rx_mode) {
tp->rx_mode = rx_mode;
tw32_f(MAC_RX_MODE, rx_mode);
udelay(10);
}
}
static void tg3_rss_init_dflt_indir_tbl(struct tg3 *tp, u32 qcnt)
{
int i;
for (i = 0; i < TG3_RSS_INDIR_TBL_SIZE; i++)
tp->rss_ind_tbl[i] = ethtool_rxfh_indir_default(i, qcnt);
}
static void tg3_rss_check_indir_tbl(struct tg3 *tp)
{
int i;
if (!tg3_flag(tp, SUPPORT_MSIX))
return;
if (tp->rxq_cnt == 1) {
memset(&tp->rss_ind_tbl[0], 0, sizeof(tp->rss_ind_tbl));
return;
}
/* Validate table against current IRQ count */
for (i = 0; i < TG3_RSS_INDIR_TBL_SIZE; i++) {
if (tp->rss_ind_tbl[i] >= tp->rxq_cnt)
break;
}
if (i != TG3_RSS_INDIR_TBL_SIZE)
tg3_rss_init_dflt_indir_tbl(tp, tp->rxq_cnt);
}
static void tg3_rss_write_indir_tbl(struct tg3 *tp)
{
int i = 0;
u32 reg = MAC_RSS_INDIR_TBL_0;
while (i < TG3_RSS_INDIR_TBL_SIZE) {
u32 val = tp->rss_ind_tbl[i];
i++;
for (; i % 8; i++) {
val <<= 4;
val |= tp->rss_ind_tbl[i];
}
tw32(reg, val);
reg += 4;
}
}
/* tp->lock is held. */
static int tg3_reset_hw(struct tg3 *tp, bool reset_phy)
{
u32 val, rdmac_mode;
int i, err, limit;
struct tg3_rx_prodring_set *tpr = &tp->napi[0].prodring;
tg3_disable_ints(tp);
tg3_stop_fw(tp);
tg3_write_sig_pre_reset(tp, RESET_KIND_INIT);
if (tg3_flag(tp, INIT_COMPLETE))
tg3_abort_hw(tp, 1);
/* Enable MAC control of LPI */
if (tp->phy_flags & TG3_PHYFLG_EEE_CAP) {
val = TG3_CPMU_EEE_LNKIDL_PCIE_NL0 |
TG3_CPMU_EEE_LNKIDL_UART_IDL;
if (tg3_chip_rev_id(tp) == CHIPREV_ID_57765_A0)
val |= TG3_CPMU_EEE_LNKIDL_APE_TX_MT;
tw32_f(TG3_CPMU_EEE_LNKIDL_CTRL, val);
tw32_f(TG3_CPMU_EEE_CTRL,
TG3_CPMU_EEE_CTRL_EXIT_20_1_US);
val = TG3_CPMU_EEEMD_ERLY_L1_XIT_DET |
TG3_CPMU_EEEMD_LPI_IN_TX |
TG3_CPMU_EEEMD_LPI_IN_RX |
TG3_CPMU_EEEMD_EEE_ENABLE;
if (tg3_asic_rev(tp) != ASIC_REV_5717)
val |= TG3_CPMU_EEEMD_SND_IDX_DET_EN;
if (tg3_flag(tp, ENABLE_APE))
val |= TG3_CPMU_EEEMD_APE_TX_DET_EN;
tw32_f(TG3_CPMU_EEE_MODE, val);
tw32_f(TG3_CPMU_EEE_DBTMR1,
TG3_CPMU_DBTMR1_PCIEXIT_2047US |
TG3_CPMU_DBTMR1_LNKIDLE_2047US);
tw32_f(TG3_CPMU_EEE_DBTMR2,
TG3_CPMU_DBTMR2_APE_TX_2047US |
TG3_CPMU_DBTMR2_TXIDXEQ_2047US);
}
if ((tp->phy_flags & TG3_PHYFLG_KEEP_LINK_ON_PWRDN) &&
!(tp->phy_flags & TG3_PHYFLG_USER_CONFIGURED)) {
tg3_phy_pull_config(tp);
tp->phy_flags |= TG3_PHYFLG_USER_CONFIGURED;
}
if (reset_phy)
tg3_phy_reset(tp);
err = tg3_chip_reset(tp);
if (err)
return err;
tg3_write_sig_legacy(tp, RESET_KIND_INIT);
if (tg3_chip_rev(tp) == CHIPREV_5784_AX) {
val = tr32(TG3_CPMU_CTRL);
val &= ~(CPMU_CTRL_LINK_AWARE_MODE | CPMU_CTRL_LINK_IDLE_MODE);
tw32(TG3_CPMU_CTRL, val);
val = tr32(TG3_CPMU_LSPD_10MB_CLK);
val &= ~CPMU_LSPD_10MB_MACCLK_MASK;
val |= CPMU_LSPD_10MB_MACCLK_6_25;
tw32(TG3_CPMU_LSPD_10MB_CLK, val);
val = tr32(TG3_CPMU_LNK_AWARE_PWRMD);
val &= ~CPMU_LNK_AWARE_MACCLK_MASK;
val |= CPMU_LNK_AWARE_MACCLK_6_25;
tw32(TG3_CPMU_LNK_AWARE_PWRMD, val);
val = tr32(TG3_CPMU_HST_ACC);
val &= ~CPMU_HST_ACC_MACCLK_MASK;
val |= CPMU_HST_ACC_MACCLK_6_25;
tw32(TG3_CPMU_HST_ACC, val);
}
if (tg3_asic_rev(tp) == ASIC_REV_57780) {
val = tr32(PCIE_PWR_MGMT_THRESH) & ~PCIE_PWR_MGMT_L1_THRESH_MSK;
val |= PCIE_PWR_MGMT_EXT_ASPM_TMR_EN |
PCIE_PWR_MGMT_L1_THRESH_4MS;
tw32(PCIE_PWR_MGMT_THRESH, val);
val = tr32(TG3_PCIE_EIDLE_DELAY) & ~TG3_PCIE_EIDLE_DELAY_MASK;
tw32(TG3_PCIE_EIDLE_DELAY, val | TG3_PCIE_EIDLE_DELAY_13_CLKS);
tw32(TG3_CORR_ERR_STAT, TG3_CORR_ERR_STAT_CLEAR);
val = tr32(TG3_PCIE_LNKCTL) & ~TG3_PCIE_LNKCTL_L1_PLL_PD_EN;
tw32(TG3_PCIE_LNKCTL, val | TG3_PCIE_LNKCTL_L1_PLL_PD_DIS);
}
if (tg3_flag(tp, L1PLLPD_EN)) {
u32 grc_mode = tr32(GRC_MODE);
/* Access the lower 1K of PL PCIE block registers. */
val = grc_mode & ~GRC_MODE_PCIE_PORT_MASK;
tw32(GRC_MODE, val | GRC_MODE_PCIE_PL_SEL);
val = tr32(TG3_PCIE_TLDLPL_PORT + TG3_PCIE_PL_LO_PHYCTL1);
tw32(TG3_PCIE_TLDLPL_PORT + TG3_PCIE_PL_LO_PHYCTL1,
val | TG3_PCIE_PL_LO_PHYCTL1_L1PLLPD_EN);
tw32(GRC_MODE, grc_mode);
}
if (tg3_flag(tp, 57765_CLASS)) {
if (tg3_chip_rev_id(tp) == CHIPREV_ID_57765_A0) {
u32 grc_mode = tr32(GRC_MODE);
/* Access the lower 1K of PL PCIE block registers. */
val = grc_mode & ~GRC_MODE_PCIE_PORT_MASK;
tw32(GRC_MODE, val | GRC_MODE_PCIE_PL_SEL);
val = tr32(TG3_PCIE_TLDLPL_PORT +
TG3_PCIE_PL_LO_PHYCTL5);
tw32(TG3_PCIE_TLDLPL_PORT + TG3_PCIE_PL_LO_PHYCTL5,
val | TG3_PCIE_PL_LO_PHYCTL5_DIS_L2CLKREQ);
tw32(GRC_MODE, grc_mode);
}
if (tg3_chip_rev(tp) != CHIPREV_57765_AX) {
u32 grc_mode;
/* Fix transmit hangs */
val = tr32(TG3_CPMU_PADRNG_CTL);
val |= TG3_CPMU_PADRNG_CTL_RDIV2;
tw32(TG3_CPMU_PADRNG_CTL, val);
grc_mode = tr32(GRC_MODE);
/* Access the lower 1K of DL PCIE block registers. */
val = grc_mode & ~GRC_MODE_PCIE_PORT_MASK;
tw32(GRC_MODE, val | GRC_MODE_PCIE_DL_SEL);
val = tr32(TG3_PCIE_TLDLPL_PORT +
TG3_PCIE_DL_LO_FTSMAX);
val &= ~TG3_PCIE_DL_LO_FTSMAX_MSK;
tw32(TG3_PCIE_TLDLPL_PORT + TG3_PCIE_DL_LO_FTSMAX,
val | TG3_PCIE_DL_LO_FTSMAX_VAL);
tw32(GRC_MODE, grc_mode);
}
val = tr32(TG3_CPMU_LSPD_10MB_CLK);
val &= ~CPMU_LSPD_10MB_MACCLK_MASK;
val |= CPMU_LSPD_10MB_MACCLK_6_25;
tw32(TG3_CPMU_LSPD_10MB_CLK, val);
}
/* This works around an issue with Athlon chipsets on
* B3 tigon3 silicon. This bit has no effect on any
* other revision. But do not set this on PCI Express
* chips and don't even touch the clocks if the CPMU is present.
*/
if (!tg3_flag(tp, CPMU_PRESENT)) {
if (!tg3_flag(tp, PCI_EXPRESS))
tp->pci_clock_ctrl |= CLOCK_CTRL_DELAY_PCI_GRANT;
tw32_f(TG3PCI_CLOCK_CTRL, tp->pci_clock_ctrl);
}
if (tg3_chip_rev_id(tp) == CHIPREV_ID_5704_A0 &&
tg3_flag(tp, PCIX_MODE)) {
val = tr32(TG3PCI_PCISTATE);
val |= PCISTATE_RETRY_SAME_DMA;
tw32(TG3PCI_PCISTATE, val);
}
if (tg3_flag(tp, ENABLE_APE)) {
/* Allow reads and writes to the
* APE register and memory space.
*/
val = tr32(TG3PCI_PCISTATE);
val |= PCISTATE_ALLOW_APE_CTLSPC_WR |
PCISTATE_ALLOW_APE_SHMEM_WR |
PCISTATE_ALLOW_APE_PSPACE_WR;
tw32(TG3PCI_PCISTATE, val);
}
if (tg3_chip_rev(tp) == CHIPREV_5704_BX) {
/* Enable some hw fixes. */
val = tr32(TG3PCI_MSI_DATA);
val |= (1 << 26) | (1 << 28) | (1 << 29);
tw32(TG3PCI_MSI_DATA, val);
}
/* Descriptor ring init may make accesses to the
* NIC SRAM area to setup the TX descriptors, so we
* can only do this after the hardware has been
* successfully reset.
*/
err = tg3_init_rings(tp);
if (err)
return err;
if (tg3_flag(tp, 57765_PLUS)) {
val = tr32(TG3PCI_DMA_RW_CTRL) &
~DMA_RWCTRL_DIS_CACHE_ALIGNMENT;
if (tg3_chip_rev_id(tp) == CHIPREV_ID_57765_A0)
val &= ~DMA_RWCTRL_CRDRDR_RDMA_MRRS_MSK;
if (!tg3_flag(tp, 57765_CLASS) &&
tg3_asic_rev(tp) != ASIC_REV_5717 &&
tg3_asic_rev(tp) != ASIC_REV_5762)
val |= DMA_RWCTRL_TAGGED_STAT_WA;
tw32(TG3PCI_DMA_RW_CTRL, val | tp->dma_rwctrl);
} else if (tg3_asic_rev(tp) != ASIC_REV_5784 &&
tg3_asic_rev(tp) != ASIC_REV_5761) {
/* This value is determined during the probe time DMA
* engine test, tg3_test_dma.
*/
tw32(TG3PCI_DMA_RW_CTRL, tp->dma_rwctrl);
}
tp->grc_mode &= ~(GRC_MODE_HOST_SENDBDS |
GRC_MODE_4X_NIC_SEND_RINGS |
GRC_MODE_NO_TX_PHDR_CSUM |
GRC_MODE_NO_RX_PHDR_CSUM);
tp->grc_mode |= GRC_MODE_HOST_SENDBDS;
/* Pseudo-header checksum is done by hardware logic and not
* the offload processers, so make the chip do the pseudo-
* header checksums on receive. For transmit it is more
* convenient to do the pseudo-header checksum in software
* as Linux does that on transmit for us in all cases.
*/
tp->grc_mode |= GRC_MODE_NO_TX_PHDR_CSUM;
val = GRC_MODE_IRQ_ON_MAC_ATTN | GRC_MODE_HOST_STACKUP;
if (tp->rxptpctl)
tw32(TG3_RX_PTP_CTL,
tp->rxptpctl | TG3_RX_PTP_CTL_HWTS_INTERLOCK);
if (tg3_flag(tp, PTP_CAPABLE))
val |= GRC_MODE_TIME_SYNC_ENABLE;
tw32(GRC_MODE, tp->grc_mode | val);
/* Setup the timer prescalar register. Clock is always 66Mhz. */
val = tr32(GRC_MISC_CFG);
val &= ~0xff;
val |= (65 << GRC_MISC_CFG_PRESCALAR_SHIFT);
tw32(GRC_MISC_CFG, val);
/* Initialize MBUF/DESC pool. */
if (tg3_flag(tp, 5750_PLUS)) {
/* Do nothing. */
} else if (tg3_asic_rev(tp) != ASIC_REV_5705) {
tw32(BUFMGR_MB_POOL_ADDR, NIC_SRAM_MBUF_POOL_BASE);
if (tg3_asic_rev(tp) == ASIC_REV_5704)
tw32(BUFMGR_MB_POOL_SIZE, NIC_SRAM_MBUF_POOL_SIZE64);
else
tw32(BUFMGR_MB_POOL_SIZE, NIC_SRAM_MBUF_POOL_SIZE96);
tw32(BUFMGR_DMA_DESC_POOL_ADDR, NIC_SRAM_DMA_DESC_POOL_BASE);
tw32(BUFMGR_DMA_DESC_POOL_SIZE, NIC_SRAM_DMA_DESC_POOL_SIZE);
} else if (tg3_flag(tp, TSO_CAPABLE)) {
int fw_len;
fw_len = tp->fw_len;
fw_len = (fw_len + (0x80 - 1)) & ~(0x80 - 1);
tw32(BUFMGR_MB_POOL_ADDR,
NIC_SRAM_MBUF_POOL_BASE5705 + fw_len);
tw32(BUFMGR_MB_POOL_SIZE,
NIC_SRAM_MBUF_POOL_SIZE5705 - fw_len - 0xa00);
}
if (tp->dev->mtu <= ETH_DATA_LEN) {
tw32(BUFMGR_MB_RDMA_LOW_WATER,
tp->bufmgr_config.mbuf_read_dma_low_water);
tw32(BUFMGR_MB_MACRX_LOW_WATER,
tp->bufmgr_config.mbuf_mac_rx_low_water);
tw32(BUFMGR_MB_HIGH_WATER,
tp->bufmgr_config.mbuf_high_water);
} else {
tw32(BUFMGR_MB_RDMA_LOW_WATER,
tp->bufmgr_config.mbuf_read_dma_low_water_jumbo);
tw32(BUFMGR_MB_MACRX_LOW_WATER,
tp->bufmgr_config.mbuf_mac_rx_low_water_jumbo);
tw32(BUFMGR_MB_HIGH_WATER,
tp->bufmgr_config.mbuf_high_water_jumbo);
}
tw32(BUFMGR_DMA_LOW_WATER,
tp->bufmgr_config.dma_low_water);
tw32(BUFMGR_DMA_HIGH_WATER,
tp->bufmgr_config.dma_high_water);
val = BUFMGR_MODE_ENABLE | BUFMGR_MODE_ATTN_ENABLE;
if (tg3_asic_rev(tp) == ASIC_REV_5719)
val |= BUFMGR_MODE_NO_TX_UNDERRUN;
if (tg3_asic_rev(tp) == ASIC_REV_5717 ||
tg3_chip_rev_id(tp) == CHIPREV_ID_5719_A0 ||
tg3_chip_rev_id(tp) == CHIPREV_ID_5720_A0)
val |= BUFMGR_MODE_MBLOW_ATTN_ENAB;
tw32(BUFMGR_MODE, val);
for (i = 0; i < 2000; i++) {
if (tr32(BUFMGR_MODE) & BUFMGR_MODE_ENABLE)
break;
udelay(10);
}
if (i >= 2000) {
netdev_err(tp->dev, "%s cannot enable BUFMGR\n", __func__);
return -ENODEV;
}
if (tg3_chip_rev_id(tp) == CHIPREV_ID_5906_A1)
tw32(ISO_PKT_TX, (tr32(ISO_PKT_TX) & ~0x3) | 0x2);
tg3_setup_rxbd_thresholds(tp);
/* Initialize TG3_BDINFO's at:
* RCVDBDI_STD_BD: standard eth size rx ring
* RCVDBDI_JUMBO_BD: jumbo frame rx ring
* RCVDBDI_MINI_BD: small frame rx ring (??? does not work)
*
* like so:
* TG3_BDINFO_HOST_ADDR: high/low parts of DMA address of ring
* TG3_BDINFO_MAXLEN_FLAGS: (rx max buffer size << 16) |
* ring attribute flags
* TG3_BDINFO_NIC_ADDR: location of descriptors in nic SRAM
*
* Standard receive ring @ NIC_SRAM_RX_BUFFER_DESC, 512 entries.
* Jumbo receive ring @ NIC_SRAM_RX_JUMBO_BUFFER_DESC, 256 entries.
*
* The size of each ring is fixed in the firmware, but the location is
* configurable.
*/
tw32(RCVDBDI_STD_BD + TG3_BDINFO_HOST_ADDR + TG3_64BIT_REG_HIGH,
((u64) tpr->rx_std_mapping >> 32));
tw32(RCVDBDI_STD_BD + TG3_BDINFO_HOST_ADDR + TG3_64BIT_REG_LOW,
((u64) tpr->rx_std_mapping & 0xffffffff));
if (!tg3_flag(tp, 5717_PLUS))
tw32(RCVDBDI_STD_BD + TG3_BDINFO_NIC_ADDR,
NIC_SRAM_RX_BUFFER_DESC);
/* Disable the mini ring */
if (!tg3_flag(tp, 5705_PLUS))
tw32(RCVDBDI_MINI_BD + TG3_BDINFO_MAXLEN_FLAGS,
BDINFO_FLAGS_DISABLED);
/* Program the jumbo buffer descriptor ring control
* blocks on those devices that have them.
*/
if (tg3_chip_rev_id(tp) == CHIPREV_ID_5719_A0 ||
(tg3_flag(tp, JUMBO_CAPABLE) && !tg3_flag(tp, 5780_CLASS))) {
if (tg3_flag(tp, JUMBO_RING_ENABLE)) {
tw32(RCVDBDI_JUMBO_BD + TG3_BDINFO_HOST_ADDR + TG3_64BIT_REG_HIGH,
((u64) tpr->rx_jmb_mapping >> 32));
tw32(RCVDBDI_JUMBO_BD + TG3_BDINFO_HOST_ADDR + TG3_64BIT_REG_LOW,
((u64) tpr->rx_jmb_mapping & 0xffffffff));
val = TG3_RX_JMB_RING_SIZE(tp) <<
BDINFO_FLAGS_MAXLEN_SHIFT;
tw32(RCVDBDI_JUMBO_BD + TG3_BDINFO_MAXLEN_FLAGS,
val | BDINFO_FLAGS_USE_EXT_RECV);
if (!tg3_flag(tp, USE_JUMBO_BDFLAG) ||
tg3_flag(tp, 57765_CLASS) ||
tg3_asic_rev(tp) == ASIC_REV_5762)
tw32(RCVDBDI_JUMBO_BD + TG3_BDINFO_NIC_ADDR,
NIC_SRAM_RX_JUMBO_BUFFER_DESC);
} else {
tw32(RCVDBDI_JUMBO_BD + TG3_BDINFO_MAXLEN_FLAGS,
BDINFO_FLAGS_DISABLED);
}
if (tg3_flag(tp, 57765_PLUS)) {
val = TG3_RX_STD_RING_SIZE(tp);
val <<= BDINFO_FLAGS_MAXLEN_SHIFT;
val |= (TG3_RX_STD_DMA_SZ << 2);
} else
val = TG3_RX_STD_DMA_SZ << BDINFO_FLAGS_MAXLEN_SHIFT;
} else
val = TG3_RX_STD_MAX_SIZE_5700 << BDINFO_FLAGS_MAXLEN_SHIFT;
tw32(RCVDBDI_STD_BD + TG3_BDINFO_MAXLEN_FLAGS, val);
tpr->rx_std_prod_idx = tp->rx_pending;
tw32_rx_mbox(TG3_RX_STD_PROD_IDX_REG, tpr->rx_std_prod_idx);
tpr->rx_jmb_prod_idx =
tg3_flag(tp, JUMBO_RING_ENABLE) ? tp->rx_jumbo_pending : 0;
tw32_rx_mbox(TG3_RX_JMB_PROD_IDX_REG, tpr->rx_jmb_prod_idx);
tg3_rings_reset(tp);
/* Initialize MAC address and backoff seed. */
__tg3_set_mac_addr(tp, false);
/* MTU + ethernet header + FCS + optional VLAN tag */
tw32(MAC_RX_MTU_SIZE,
tp->dev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
/* The slot time is changed by tg3_setup_phy if we
* run at gigabit with half duplex.
*/
val = (2 << TX_LENGTHS_IPG_CRS_SHIFT) |
(6 << TX_LENGTHS_IPG_SHIFT) |
(32 << TX_LENGTHS_SLOT_TIME_SHIFT);
if (tg3_asic_rev(tp) == ASIC_REV_5720 ||
tg3_asic_rev(tp) == ASIC_REV_5762)
val |= tr32(MAC_TX_LENGTHS) &
(TX_LENGTHS_JMB_FRM_LEN_MSK |
TX_LENGTHS_CNT_DWN_VAL_MSK);
tw32(MAC_TX_LENGTHS, val);
/* Receive rules. */
tw32(MAC_RCV_RULE_CFG, RCV_RULE_CFG_DEFAULT_CLASS);
tw32(RCVLPC_CONFIG, 0x0181);
/* Calculate RDMAC_MODE setting early, we need it to determine
* the RCVLPC_STATE_ENABLE mask.
*/
rdmac_mode = (RDMAC_MODE_ENABLE | RDMAC_MODE_TGTABORT_ENAB |
RDMAC_MODE_MSTABORT_ENAB | RDMAC_MODE_PARITYERR_ENAB |
RDMAC_MODE_ADDROFLOW_ENAB | RDMAC_MODE_FIFOOFLOW_ENAB |
RDMAC_MODE_FIFOURUN_ENAB | RDMAC_MODE_FIFOOREAD_ENAB |
RDMAC_MODE_LNGREAD_ENAB);
if (tg3_asic_rev(tp) == ASIC_REV_5717)
rdmac_mode |= RDMAC_MODE_MULT_DMA_RD_DIS;
if (tg3_asic_rev(tp) == ASIC_REV_5784 ||
tg3_asic_rev(tp) == ASIC_REV_5785 ||
tg3_asic_rev(tp) == ASIC_REV_57780)
rdmac_mode |= RDMAC_MODE_BD_SBD_CRPT_ENAB |
RDMAC_MODE_MBUF_RBD_CRPT_ENAB |
RDMAC_MODE_MBUF_SBD_CRPT_ENAB;
if (tg3_asic_rev(tp) == ASIC_REV_5705 &&
tg3_chip_rev_id(tp) != CHIPREV_ID_5705_A0) {
if (tg3_flag(tp, TSO_CAPABLE) &&
tg3_asic_rev(tp) == ASIC_REV_5705) {
rdmac_mode |= RDMAC_MODE_FIFO_SIZE_128;
} else if (!(tr32(TG3PCI_PCISTATE) & PCISTATE_BUS_SPEED_HIGH) &&
!tg3_flag(tp, IS_5788)) {
rdmac_mode |= RDMAC_MODE_FIFO_LONG_BURST;
}
}
if (tg3_flag(tp, PCI_EXPRESS))
rdmac_mode |= RDMAC_MODE_FIFO_LONG_BURST;
if (tg3_asic_rev(tp) == ASIC_REV_57766) {
tp->dma_limit = 0;
if (tp->dev->mtu <= ETH_DATA_LEN) {
rdmac_mode |= RDMAC_MODE_JMB_2K_MMRR;
tp->dma_limit = TG3_TX_BD_DMA_MAX_2K;
}
}
if (tg3_flag(tp, HW_TSO_1) ||
tg3_flag(tp, HW_TSO_2) ||
tg3_flag(tp, HW_TSO_3))
rdmac_mode |= RDMAC_MODE_IPV4_LSO_EN;
if (tg3_flag(tp, 57765_PLUS) ||
tg3_asic_rev(tp) == ASIC_REV_5785 ||
tg3_asic_rev(tp) == ASIC_REV_57780)
rdmac_mode |= RDMAC_MODE_IPV6_LSO_EN;
if (tg3_asic_rev(tp) == ASIC_REV_5720 ||
tg3_asic_rev(tp) == ASIC_REV_5762)
rdmac_mode |= tr32(RDMAC_MODE) & RDMAC_MODE_H2BNC_VLAN_DET;
if (tg3_asic_rev(tp) == ASIC_REV_5761 ||
tg3_asic_rev(tp) == ASIC_REV_5784 ||
tg3_asic_rev(tp) == ASIC_REV_5785 ||
tg3_asic_rev(tp) == ASIC_REV_57780 ||
tg3_flag(tp, 57765_PLUS)) {
u32 tgtreg;
if (tg3_asic_rev(tp) == ASIC_REV_5762)
tgtreg = TG3_RDMA_RSRVCTRL_REG2;
else
tgtreg = TG3_RDMA_RSRVCTRL_REG;
val = tr32(tgtreg);
if (tg3_chip_rev_id(tp) == CHIPREV_ID_5719_A0 ||
tg3_asic_rev(tp) == ASIC_REV_5762) {
val &= ~(TG3_RDMA_RSRVCTRL_TXMRGN_MASK |
TG3_RDMA_RSRVCTRL_FIFO_LWM_MASK |
TG3_RDMA_RSRVCTRL_FIFO_HWM_MASK);
val |= TG3_RDMA_RSRVCTRL_TXMRGN_320B |
TG3_RDMA_RSRVCTRL_FIFO_LWM_1_5K |
TG3_RDMA_RSRVCTRL_FIFO_HWM_1_5K;
}
tw32(tgtreg, val | TG3_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
}
if (tg3_asic_rev(tp) == ASIC_REV_5719 ||
tg3_asic_rev(tp) == ASIC_REV_5720 ||
tg3_asic_rev(tp) == ASIC_REV_5762) {
u32 tgtreg;
if (tg3_asic_rev(tp) == ASIC_REV_5762)
tgtreg = TG3_LSO_RD_DMA_CRPTEN_CTRL2;
else
tgtreg = TG3_LSO_RD_DMA_CRPTEN_CTRL;
val = tr32(tgtreg);
tw32(tgtreg, val |
TG3_LSO_RD_DMA_CRPTEN_CTRL_BLEN_BD_4K |
TG3_LSO_RD_DMA_CRPTEN_CTRL_BLEN_LSO_4K);
}
/* Receive/send statistics. */
if (tg3_flag(tp, 5750_PLUS)) {
val = tr32(RCVLPC_STATS_ENABLE);
val &= ~RCVLPC_STATSENAB_DACK_FIX;
tw32(RCVLPC_STATS_ENABLE, val);
} else if ((rdmac_mode & RDMAC_MODE_FIFO_SIZE_128) &&
tg3_flag(tp, TSO_CAPABLE)) {
val = tr32(RCVLPC_STATS_ENABLE);
val &= ~RCVLPC_STATSENAB_LNGBRST_RFIX;
tw32(RCVLPC_STATS_ENABLE, val);
} else {
tw32(RCVLPC_STATS_ENABLE, 0xffffff);
}
tw32(RCVLPC_STATSCTRL, RCVLPC_STATSCTRL_ENABLE);
tw32(SNDDATAI_STATSENAB, 0xffffff);
tw32(SNDDATAI_STATSCTRL,
(SNDDATAI_SCTRL_ENABLE |
SNDDATAI_SCTRL_FASTUPD));
/* Setup host coalescing engine. */
tw32(HOSTCC_MODE, 0);
for (i = 0; i < 2000; i++) {
if (!(tr32(HOSTCC_MODE) & HOSTCC_MODE_ENABLE))
break;
udelay(10);
}
__tg3_set_coalesce(tp, &tp->coal);
if (!tg3_flag(tp, 5705_PLUS)) {
/* Status/statistics block address. See tg3_timer,
* the tg3_periodic_fetch_stats call there, and
* tg3_get_stats to see how this works for 5705/5750 chips.
*/
tw32(HOSTCC_STATS_BLK_HOST_ADDR + TG3_64BIT_REG_HIGH,
((u64) tp->stats_mapping >> 32));
tw32(HOSTCC_STATS_BLK_HOST_ADDR + TG3_64BIT_REG_LOW,
((u64) tp->stats_mapping & 0xffffffff));
tw32(HOSTCC_STATS_BLK_NIC_ADDR, NIC_SRAM_STATS_BLK);
tw32(HOSTCC_STATUS_BLK_NIC_ADDR, NIC_SRAM_STATUS_BLK);
/* Clear statistics and status block memory areas */
for (i = NIC_SRAM_STATS_BLK;
i < NIC_SRAM_STATUS_BLK + TG3_HW_STATUS_SIZE;
i += sizeof(u32)) {
tg3_write_mem(tp, i, 0);
udelay(40);
}
}
tw32(HOSTCC_MODE, HOSTCC_MODE_ENABLE | tp->coalesce_mode);
tw32(RCVCC_MODE, RCVCC_MODE_ENABLE | RCVCC_MODE_ATTN_ENABLE);
tw32(RCVLPC_MODE, RCVLPC_MODE_ENABLE);
if (!tg3_flag(tp, 5705_PLUS))
tw32(RCVLSC_MODE, RCVLSC_MODE_ENABLE | RCVLSC_MODE_ATTN_ENABLE);
if (tp->phy_flags & TG3_PHYFLG_MII_SERDES) {
tp->phy_flags &= ~TG3_PHYFLG_PARALLEL_DETECT;
/* reset to prevent losing 1st rx packet intermittently */
tw32_f(MAC_RX_MODE, RX_MODE_RESET);
udelay(10);
}
tp->mac_mode |= MAC_MODE_TXSTAT_ENABLE | MAC_MODE_RXSTAT_ENABLE |
MAC_MODE_TDE_ENABLE | MAC_MODE_RDE_ENABLE |
MAC_MODE_FHDE_ENABLE;
if (tg3_flag(tp, ENABLE_APE))
tp->mac_mode |= MAC_MODE_APE_TX_EN | MAC_MODE_APE_RX_EN;
if (!tg3_flag(tp, 5705_PLUS) &&
!(tp->phy_flags & TG3_PHYFLG_PHY_SERDES) &&
tg3_asic_rev(tp) != ASIC_REV_5700)
tp->mac_mode |= MAC_MODE_LINK_POLARITY;
tw32_f(MAC_MODE, tp->mac_mode | MAC_MODE_RXSTAT_CLEAR | MAC_MODE_TXSTAT_CLEAR);
udelay(40);
/* tp->grc_local_ctrl is partially set up during tg3_get_invariants().
* If TG3_FLAG_IS_NIC is zero, we should read the
* register to preserve the GPIO settings for LOMs. The GPIOs,
* whether used as inputs or outputs, are set by boot code after
* reset.
*/
if (!tg3_flag(tp, IS_NIC)) {
u32 gpio_mask;
gpio_mask = GRC_LCLCTRL_GPIO_OE0 | GRC_LCLCTRL_GPIO_OE1 |
GRC_LCLCTRL_GPIO_OE2 | GRC_LCLCTRL_GPIO_OUTPUT0 |
GRC_LCLCTRL_GPIO_OUTPUT1 | GRC_LCLCTRL_GPIO_OUTPUT2;
if (tg3_asic_rev(tp) == ASIC_REV_5752)
gpio_mask |= GRC_LCLCTRL_GPIO_OE3 |
GRC_LCLCTRL_GPIO_OUTPUT3;
if (tg3_asic_rev(tp) == ASIC_REV_5755)
gpio_mask |= GRC_LCLCTRL_GPIO_UART_SEL;
tp->grc_local_ctrl &= ~gpio_mask;
tp->grc_local_ctrl |= tr32(GRC_LOCAL_CTRL) & gpio_mask;
/* GPIO1 must be driven high for eeprom write protect */
if (tg3_flag(tp, EEPROM_WRITE_PROT))
tp->grc_local_ctrl |= (GRC_LCLCTRL_GPIO_OE1 |
GRC_LCLCTRL_GPIO_OUTPUT1);
}
tw32_f(GRC_LOCAL_CTRL, tp->grc_local_ctrl);
udelay(100);
if (tg3_flag(tp, USING_MSIX)) {
val = tr32(MSGINT_MODE);
val |= MSGINT_MODE_ENABLE;
if (tp->irq_cnt > 1)
val |= MSGINT_MODE_MULTIVEC_EN;
if (!tg3_flag(tp, 1SHOT_MSI))
val |= MSGINT_MODE_ONE_SHOT_DISABLE;
tw32(MSGINT_MODE, val);
}
if (!tg3_flag(tp, 5705_PLUS)) {
tw32_f(DMAC_MODE, DMAC_MODE_ENABLE);
udelay(40);
}
val = (WDMAC_MODE_ENABLE | WDMAC_MODE_TGTABORT_ENAB |
WDMAC_MODE_MSTABORT_ENAB | WDMAC_MODE_PARITYERR_ENAB |
WDMAC_MODE_ADDROFLOW_ENAB | WDMAC_MODE_FIFOOFLOW_ENAB |
WDMAC_MODE_FIFOURUN_ENAB | WDMAC_MODE_FIFOOREAD_ENAB |
WDMAC_MODE_LNGREAD_ENAB);
if (tg3_asic_rev(tp) == ASIC_REV_5705 &&
tg3_chip_rev_id(tp) != CHIPREV_ID_5705_A0) {
if (tg3_flag(tp, TSO_CAPABLE) &&
(tg3_chip_rev_id(tp) == CHIPREV_ID_5705_A1 ||
tg3_chip_rev_id(tp) == CHIPREV_ID_5705_A2)) {
/* nothing */
} else if (!(tr32(TG3PCI_PCISTATE) & PCISTATE_BUS_SPEED_HIGH) &&
!tg3_flag(tp, IS_5788)) {
val |= WDMAC_MODE_RX_ACCEL;
}
}
/* Enable host coalescing bug fix */
if (tg3_flag(tp, 5755_PLUS))
val |= WDMAC_MODE_STATUS_TAG_FIX;
if (tg3_asic_rev(tp) == ASIC_REV_5785)
val |= WDMAC_MODE_BURST_ALL_DATA;
tw32_f(WDMAC_MODE, val);
udelay(40);
if (tg3_flag(tp, PCIX_MODE)) {
u16 pcix_cmd;
pci_read_config_word(tp->pdev, tp->pcix_cap + PCI_X_CMD,
&pcix_cmd);
if (tg3_asic_rev(tp) == ASIC_REV_5703) {
pcix_cmd &= ~PCI_X_CMD_MAX_READ;
pcix_cmd |= PCI_X_CMD_READ_2K;
} else if (tg3_asic_rev(tp) == ASIC_REV_5704) {
pcix_cmd &= ~(PCI_X_CMD_MAX_SPLIT | PCI_X_CMD_MAX_READ);
pcix_cmd |= PCI_X_CMD_READ_2K;
}
pci_write_config_word(tp->pdev, tp->pcix_cap + PCI_X_CMD,
pcix_cmd);
}
tw32_f(RDMAC_MODE, rdmac_mode);
udelay(40);
if (tg3_asic_rev(tp) == ASIC_REV_5719) {
for (i = 0; i < TG3_NUM_RDMA_CHANNELS; i++) {
if (tr32(TG3_RDMA_LENGTH + (i << 2)) > TG3_MAX_MTU(tp))
break;
}
if (i < TG3_NUM_RDMA_CHANNELS) {
val = tr32(TG3_LSO_RD_DMA_CRPTEN_CTRL);
val |= TG3_LSO_RD_DMA_TX_LENGTH_WA;
tw32(TG3_LSO_RD_DMA_CRPTEN_CTRL, val);
tg3_flag_set(tp, 5719_RDMA_BUG);
}
}
tw32(RCVDCC_MODE, RCVDCC_MODE_ENABLE | RCVDCC_MODE_ATTN_ENABLE);
if (!tg3_flag(tp, 5705_PLUS))
tw32(MBFREE_MODE, MBFREE_MODE_ENABLE);
if (tg3_asic_rev(tp) == ASIC_REV_5761)
tw32(SNDDATAC_MODE,
SNDDATAC_MODE_ENABLE | SNDDATAC_MODE_CDELAY);
else
tw32(SNDDATAC_MODE, SNDDATAC_MODE_ENABLE);
tw32(SNDBDC_MODE, SNDBDC_MODE_ENABLE | SNDBDC_MODE_ATTN_ENABLE);
tw32(RCVBDI_MODE, RCVBDI_MODE_ENABLE | RCVBDI_MODE_RCB_ATTN_ENAB);
val = RCVDBDI_MODE_ENABLE | RCVDBDI_MODE_INV_RING_SZ;
if (tg3_flag(tp, LRG_PROD_RING_CAP))
val |= RCVDBDI_MODE_LRG_RING_SZ;
tw32(RCVDBDI_MODE, val);
tw32(SNDDATAI_MODE, SNDDATAI_MODE_ENABLE);
if (tg3_flag(tp, HW_TSO_1) ||
tg3_flag(tp, HW_TSO_2) ||
tg3_flag(tp, HW_TSO_3))
tw32(SNDDATAI_MODE, SNDDATAI_MODE_ENABLE | 0x8);
val = SNDBDI_MODE_ENABLE | SNDBDI_MODE_ATTN_ENABLE;
if (tg3_flag(tp, ENABLE_TSS))
val |= SNDBDI_MODE_MULTI_TXQ_EN;
tw32(SNDBDI_MODE, val);
tw32(SNDBDS_MODE, SNDBDS_MODE_ENABLE | SNDBDS_MODE_ATTN_ENABLE);
if (tg3_chip_rev_id(tp) == CHIPREV_ID_5701_A0) {
err = tg3_load_5701_a0_firmware_fix(tp);
if (err)
return err;
}
if (tg3_asic_rev(tp) == ASIC_REV_57766) {
/* Ignore any errors for the firmware download. If download
* fails, the device will operate with EEE disabled
*/
tg3_load_57766_firmware(tp);
}
if (tg3_flag(tp, TSO_CAPABLE)) {
err = tg3_load_tso_firmware(tp);
if (err)
return err;
}
tp->tx_mode = TX_MODE_ENABLE;
if (tg3_flag(tp, 5755_PLUS) ||
tg3_asic_rev(tp) == ASIC_REV_5906)
tp->tx_mode |= TX_MODE_MBUF_LOCKUP_FIX;
if (tg3_asic_rev(tp) == ASIC_REV_5720 ||
tg3_asic_rev(tp) == ASIC_REV_5762) {
val = TX_MODE_JMB_FRM_LEN | TX_MODE_CNT_DN_MODE;
tp->tx_mode &= ~val;
tp->tx_mode |= tr32(MAC_TX_MODE) & val;
}
tw32_f(MAC_TX_MODE, tp->tx_mode);
udelay(100);
if (tg3_flag(tp, ENABLE_RSS)) {
tg3_rss_write_indir_tbl(tp);
/* Setup the "secret" hash key. */
tw32(MAC_RSS_HASH_KEY_0, 0x5f865437);
tw32(MAC_RSS_HASH_KEY_1, 0xe4ac62cc);
tw32(MAC_RSS_HASH_KEY_2, 0x50103a45);
tw32(MAC_RSS_HASH_KEY_3, 0x36621985);
tw32(MAC_RSS_HASH_KEY_4, 0xbf14c0e8);
tw32(MAC_RSS_HASH_KEY_5, 0x1bc27a1e);
tw32(MAC_RSS_HASH_KEY_6, 0x84f4b556);
tw32(MAC_RSS_HASH_KEY_7, 0x094ea6fe);
tw32(MAC_RSS_HASH_KEY_8, 0x7dda01e7);
tw32(MAC_RSS_HASH_KEY_9, 0xc04d7481);
}
tp->rx_mode = RX_MODE_ENABLE;
if (tg3_flag(tp, 5755_PLUS))
tp->rx_mode |= RX_MODE_IPV6_CSUM_ENABLE;
if (tg3_flag(tp, ENABLE_RSS))
tp->rx_mode |= RX_MODE_RSS_ENABLE |
RX_MODE_RSS_ITBL_HASH_BITS_7 |
RX_MODE_RSS_IPV6_HASH_EN |
RX_MODE_RSS_TCP_IPV6_HASH_EN |
RX_MODE_RSS_IPV4_HASH_EN |
RX_MODE_RSS_TCP_IPV4_HASH_EN;
tw32_f(MAC_RX_MODE, tp->rx_mode);
udelay(10);
tw32(MAC_LED_CTRL, tp->led_ctrl);
tw32(MAC_MI_STAT, MAC_MI_STAT_LNKSTAT_ATTN_ENAB);
if (tp->phy_flags & TG3_PHYFLG_PHY_SERDES) {
tw32_f(MAC_RX_MODE, RX_MODE_RESET);
udelay(10);
}
tw32_f(MAC_RX_MODE, tp->rx_mode);
udelay(10);
if (tp->phy_flags & TG3_PHYFLG_PHY_SERDES) {
if ((tg3_asic_rev(tp) == ASIC_REV_5704) &&
!(tp->phy_flags & TG3_PHYFLG_SERDES_PREEMPHASIS)) {
/* Set drive transmission level to 1.2V */
/* only if the signal pre-emphasis bit is not set */
val = tr32(MAC_SERDES_CFG);
val &= 0xfffff000;
val |= 0x880;
tw32(MAC_SERDES_CFG, val);
}
if (tg3_chip_rev_id(tp) == CHIPREV_ID_5703_A1)
tw32(MAC_SERDES_CFG, 0x616000);
}
/* Prevent chip from dropping frames when flow control
* is enabled.
*/
if (tg3_flag(tp, 57765_CLASS))
val = 1;
else
val = 2;
tw32_f(MAC_LOW_WMARK_MAX_RX_FRAME, val);
if (tg3_asic_rev(tp) == ASIC_REV_5704 &&
(tp->phy_flags & TG3_PHYFLG_PHY_SERDES)) {
/* Use hardware link auto-negotiation */
tg3_flag_set(tp, HW_AUTONEG);
}
if ((tp->phy_flags & TG3_PHYFLG_MII_SERDES) &&
tg3_asic_rev(tp) == ASIC_REV_5714) {
u32 tmp;
tmp = tr32(SERDES_RX_CTRL);
tw32(SERDES_RX_CTRL, tmp | SERDES_RX_SIG_DETECT);
tp->grc_local_ctrl &= ~GRC_LCLCTRL_USE_EXT_SIG_DETECT;
tp->grc_local_ctrl |= GRC_LCLCTRL_USE_SIG_DETECT;
tw32(GRC_LOCAL_CTRL, tp->grc_local_ctrl);
}
if (!tg3_flag(tp, USE_PHYLIB)) {
if (tp->phy_flags & TG3_PHYFLG_IS_LOW_POWER)
tp->phy_flags &= ~TG3_PHYFLG_IS_LOW_POWER;
err = tg3_setup_phy(tp, false);
if (err)
return err;
if (!(tp->phy_flags & TG3_PHYFLG_PHY_SERDES) &&
!(tp->phy_flags & TG3_PHYFLG_IS_FET)) {
u32 tmp;
/* Clear CRC stats. */
if (!tg3_readphy(tp, MII_TG3_TEST1, &tmp)) {
tg3_writephy(tp, MII_TG3_TEST1,
tmp | MII_TG3_TEST1_CRC_EN);
tg3_readphy(tp, MII_TG3_RXR_COUNTERS, &tmp);
}
}
}
__tg3_set_rx_mode(tp->dev);
/* Initialize receive rules. */
tw32(MAC_RCV_RULE_0, 0xc2000000 & RCV_RULE_DISABLE_MASK);
tw32(MAC_RCV_VALUE_0, 0xffffffff & RCV_RULE_DISABLE_MASK);
tw32(MAC_RCV_RULE_1, 0x86000004 & RCV_RULE_DISABLE_MASK);
tw32(MAC_RCV_VALUE_1, 0xffffffff & RCV_RULE_DISABLE_MASK);
if (tg3_flag(tp, 5705_PLUS) && !tg3_flag(tp, 5780_CLASS))
limit = 8;
else
limit = 16;
if (tg3_flag(tp, ENABLE_ASF))
limit -= 4;
switch (limit) {
case 16:
tw32(MAC_RCV_RULE_15, 0); tw32(MAC_RCV_VALUE_15, 0);
case 15:
tw32(MAC_RCV_RULE_14, 0); tw32(MAC_RCV_VALUE_14, 0);
case 14:
tw32(MAC_RCV_RULE_13, 0); tw32(MAC_RCV_VALUE_13, 0);
case 13:
tw32(MAC_RCV_RULE_12, 0); tw32(MAC_RCV_VALUE_12, 0);
case 12:
tw32(MAC_RCV_RULE_11, 0); tw32(MAC_RCV_VALUE_11, 0);
case 11:
tw32(MAC_RCV_RULE_10, 0); tw32(MAC_RCV_VALUE_10, 0);
case 10:
tw32(MAC_RCV_RULE_9, 0); tw32(MAC_RCV_VALUE_9, 0);
case 9:
tw32(MAC_RCV_RULE_8, 0); tw32(MAC_RCV_VALUE_8, 0);
case 8:
tw32(MAC_RCV_RULE_7, 0); tw32(MAC_RCV_VALUE_7, 0);
case 7:
tw32(MAC_RCV_RULE_6, 0); tw32(MAC_RCV_VALUE_6, 0);
case 6:
tw32(MAC_RCV_RULE_5, 0); tw32(MAC_RCV_VALUE_5, 0);
case 5:
tw32(MAC_RCV_RULE_4, 0); tw32(MAC_RCV_VALUE_4, 0);
case 4:
/* tw32(MAC_RCV_RULE_3, 0); tw32(MAC_RCV_VALUE_3, 0); */
case 3:
/* tw32(MAC_RCV_RULE_2, 0); tw32(MAC_RCV_VALUE_2, 0); */
case 2:
case 1:
default:
break;
}
if (tg3_flag(tp, ENABLE_APE))
/* Write our heartbeat update interval to APE. */
tg3_ape_write32(tp, TG3_APE_HOST_HEARTBEAT_INT_MS,
APE_HOST_HEARTBEAT_INT_DISABLE);
tg3_write_sig_post_reset(tp, RESET_KIND_INIT);
return 0;
}
/* Called at device open time to get the chip ready for
* packet processing. Invoked with tp->lock held.
*/
static int tg3_init_hw(struct tg3 *tp, bool reset_phy)
{
tg3_switch_clocks(tp);
tw32(TG3PCI_MEM_WIN_BASE_ADDR, 0);
return tg3_reset_hw(tp, reset_phy);
}
static void tg3_sd_scan_scratchpad(struct tg3 *tp, struct tg3_ocir *ocir)
{
int i;
for (i = 0; i < TG3_SD_NUM_RECS; i++, ocir++) {
u32 off = i * TG3_OCIR_LEN, len = TG3_OCIR_LEN;
tg3_ape_scratchpad_read(tp, (u32 *) ocir, off, len);
off += len;
if (ocir->signature != TG3_OCIR_SIG_MAGIC ||
!(ocir->version_flags & TG3_OCIR_FLAG_ACTIVE))
memset(ocir, 0, TG3_OCIR_LEN);
}
}
/* sysfs attributes for hwmon */
static ssize_t tg3_show_temp(struct device *dev,
struct device_attribute *devattr, char *buf)
{
struct pci_dev *pdev = to_pci_dev(dev);
struct net_device *netdev = pci_get_drvdata(pdev);
struct tg3 *tp = netdev_priv(netdev);
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
u32 temperature;
spin_lock_bh(&tp->lock);
tg3_ape_scratchpad_read(tp, &temperature, attr->index,
sizeof(temperature));
spin_unlock_bh(&tp->lock);
return sprintf(buf, "%u\n", temperature);
}
static SENSOR_DEVICE_ATTR(temp1_input, S_IRUGO, tg3_show_temp, NULL,
TG3_TEMP_SENSOR_OFFSET);
static SENSOR_DEVICE_ATTR(temp1_crit, S_IRUGO, tg3_show_temp, NULL,
TG3_TEMP_CAUTION_OFFSET);
static SENSOR_DEVICE_ATTR(temp1_max, S_IRUGO, tg3_show_temp, NULL,
TG3_TEMP_MAX_OFFSET);
static struct attribute *tg3_attributes[] = {
&sensor_dev_attr_temp1_input.dev_attr.attr,
&sensor_dev_attr_temp1_crit.dev_attr.attr,
&sensor_dev_attr_temp1_max.dev_attr.attr,
NULL
};
static const struct attribute_group tg3_group = {
.attrs = tg3_attributes,
};
static void tg3_hwmon_close(struct tg3 *tp)
{
if (tp->hwmon_dev) {
hwmon_device_unregister(tp->hwmon_dev);
tp->hwmon_dev = NULL;
sysfs_remove_group(&tp->pdev->dev.kobj, &tg3_group);
}
}
static void tg3_hwmon_open(struct tg3 *tp)
{
int i, err;
u32 size = 0;
struct pci_dev *pdev = tp->pdev;
struct tg3_ocir ocirs[TG3_SD_NUM_RECS];
tg3_sd_scan_scratchpad(tp, ocirs);
for (i = 0; i < TG3_SD_NUM_RECS; i++) {
if (!ocirs[i].src_data_length)
continue;
size += ocirs[i].src_hdr_length;
size += ocirs[i].src_data_length;
}
if (!size)
return;
/* Register hwmon sysfs hooks */
err = sysfs_create_group(&pdev->dev.kobj, &tg3_group);
if (err) {
dev_err(&pdev->dev, "Cannot create sysfs group, aborting\n");
return;
}
tp->hwmon_dev = hwmon_device_register(&pdev->dev);
if (IS_ERR(tp->hwmon_dev)) {
tp->hwmon_dev = NULL;
dev_err(&pdev->dev, "Cannot register hwmon device, aborting\n");
sysfs_remove_group(&pdev->dev.kobj, &tg3_group);
}
}
#define TG3_STAT_ADD32(PSTAT, REG) \
do { u32 __val = tr32(REG); \
(PSTAT)->low += __val; \
if ((PSTAT)->low < __val) \
(PSTAT)->high += 1; \
} while (0)
static void tg3_periodic_fetch_stats(struct tg3 *tp)
{
struct tg3_hw_stats *sp = tp->hw_stats;
if (!tp->link_up)
return;
TG3_STAT_ADD32(&sp->tx_octets, MAC_TX_STATS_OCTETS);
TG3_STAT_ADD32(&sp->tx_collisions, MAC_TX_STATS_COLLISIONS);
TG3_STAT_ADD32(&sp->tx_xon_sent, MAC_TX_STATS_XON_SENT);
TG3_STAT_ADD32(&sp->tx_xoff_sent, MAC_TX_STATS_XOFF_SENT);
TG3_STAT_ADD32(&sp->tx_mac_errors, MAC_TX_STATS_MAC_ERRORS);
TG3_STAT_ADD32(&sp->tx_single_collisions, MAC_TX_STATS_SINGLE_COLLISIONS);
TG3_STAT_ADD32(&sp->tx_mult_collisions, MAC_TX_STATS_MULT_COLLISIONS);
TG3_STAT_ADD32(&sp->tx_deferred, MAC_TX_STATS_DEFERRED);
TG3_STAT_ADD32(&sp->tx_excessive_collisions, MAC_TX_STATS_EXCESSIVE_COL);
TG3_STAT_ADD32(&sp->tx_late_collisions, MAC_TX_STATS_LATE_COL);
TG3_STAT_ADD32(&sp->tx_ucast_packets, MAC_TX_STATS_UCAST);
TG3_STAT_ADD32(&sp->tx_mcast_packets, MAC_TX_STATS_MCAST);
TG3_STAT_ADD32(&sp->tx_bcast_packets, MAC_TX_STATS_BCAST);
if (unlikely(tg3_flag(tp, 5719_RDMA_BUG) &&
(sp->tx_ucast_packets.low + sp->tx_mcast_packets.low +
sp->tx_bcast_packets.low) > TG3_NUM_RDMA_CHANNELS)) {
u32 val;
val = tr32(TG3_LSO_RD_DMA_CRPTEN_CTRL);
val &= ~TG3_LSO_RD_DMA_TX_LENGTH_WA;
tw32(TG3_LSO_RD_DMA_CRPTEN_CTRL, val);
tg3_flag_clear(tp, 5719_RDMA_BUG);
}
TG3_STAT_ADD32(&sp->rx_octets, MAC_RX_STATS_OCTETS);
TG3_STAT_ADD32(&sp->rx_fragments, MAC_RX_STATS_FRAGMENTS);
TG3_STAT_ADD32(&sp->rx_ucast_packets, MAC_RX_STATS_UCAST);
TG3_STAT_ADD32(&sp->rx_mcast_packets, MAC_RX_STATS_MCAST);
TG3_STAT_ADD32(&sp->rx_bcast_packets, MAC_RX_STATS_BCAST);
TG3_STAT_ADD32(&sp->rx_fcs_errors, MAC_RX_STATS_FCS_ERRORS);
TG3_STAT_ADD32(&sp->rx_align_errors, MAC_RX_STATS_ALIGN_ERRORS);
TG3_STAT_ADD32(&sp->rx_xon_pause_rcvd, MAC_RX_STATS_XON_PAUSE_RECVD);
TG3_STAT_ADD32(&sp->rx_xoff_pause_rcvd, MAC_RX_STATS_XOFF_PAUSE_RECVD);
TG3_STAT_ADD32(&sp->rx_mac_ctrl_rcvd, MAC_RX_STATS_MAC_CTRL_RECVD);
TG3_STAT_ADD32(&sp->rx_xoff_entered, MAC_RX_STATS_XOFF_ENTERED);
TG3_STAT_ADD32(&sp->rx_frame_too_long_errors, MAC_RX_STATS_FRAME_TOO_LONG);
TG3_STAT_ADD32(&sp->rx_jabbers, MAC_RX_STATS_JABBERS);
TG3_STAT_ADD32(&sp->rx_undersize_packets, MAC_RX_STATS_UNDERSIZE);
TG3_STAT_ADD32(&sp->rxbds_empty, RCVLPC_NO_RCV_BD_CNT);
if (tg3_asic_rev(tp) != ASIC_REV_5717 &&
tg3_chip_rev_id(tp) != CHIPREV_ID_5719_A0 &&
tg3_chip_rev_id(tp) != CHIPREV_ID_5720_A0) {
TG3_STAT_ADD32(&sp->rx_discards, RCVLPC_IN_DISCARDS_CNT);
} else {
u32 val = tr32(HOSTCC_FLOW_ATTN);
val = (val & HOSTCC_FLOW_ATTN_MBUF_LWM) ? 1 : 0;
if (val) {
tw32(HOSTCC_FLOW_ATTN, HOSTCC_FLOW_ATTN_MBUF_LWM);
sp->rx_discards.low += val;
if (sp->rx_discards.low < val)
sp->rx_discards.high += 1;
}
sp->mbuf_lwm_thresh_hit = sp->rx_discards;
}
TG3_STAT_ADD32(&sp->rx_errors, RCVLPC_IN_ERRORS_CNT);
}
static void tg3_chk_missed_msi(struct tg3 *tp)
{
u32 i;
for (i = 0; i < tp->irq_cnt; i++) {
struct tg3_napi *tnapi = &tp->napi[i];
if (tg3_has_work(tnapi)) {
if (tnapi->last_rx_cons == tnapi->rx_rcb_ptr &&
tnapi->last_tx_cons == tnapi->tx_cons) {
if (tnapi->chk_msi_cnt < 1) {
tnapi->chk_msi_cnt++;
return;
}
tg3_msi(0, tnapi);
}
}
tnapi->chk_msi_cnt = 0;
tnapi->last_rx_cons = tnapi->rx_rcb_ptr;
tnapi->last_tx_cons = tnapi->tx_cons;
}
}
static void tg3_timer(unsigned long __opaque)
{
struct tg3 *tp = (struct tg3 *) __opaque;
if (tp->irq_sync || tg3_flag(tp, RESET_TASK_PENDING))
goto restart_timer;
spin_lock(&tp->lock);
if (tg3_asic_rev(tp) == ASIC_REV_5717 ||
tg3_flag(tp, 57765_CLASS))
tg3_chk_missed_msi(tp);
if (tg3_flag(tp, FLUSH_POSTED_WRITES)) {
/* BCM4785: Flush posted writes from GbE to host memory. */
tr32(HOSTCC_MODE);
}
if (!tg3_flag(tp, TAGGED_STATUS)) {
/* All of this garbage is because when using non-tagged
* IRQ status the mailbox/status_block protocol the chip
* uses with the cpu is race prone.
*/
if (tp->napi[0].hw_status->status & SD_STATUS_UPDATED) {
tw32(GRC_LOCAL_CTRL,
tp->grc_local_ctrl | GRC_LCLCTRL_SETINT);
} else {
tw32(HOSTCC_MODE, tp->coalesce_mode |
HOSTCC_MODE_ENABLE | HOSTCC_MODE_NOW);
}
if (!(tr32(WDMAC_MODE) & WDMAC_MODE_ENABLE)) {
spin_unlock(&tp->lock);
tg3_reset_task_schedule(tp);
goto restart_timer;
}
}
/* This part only runs once per second. */
if (!--tp->timer_counter) {
if (tg3_flag(tp, 5705_PLUS))
tg3_periodic_fetch_stats(tp);
if (tp->setlpicnt && !--tp->setlpicnt)
tg3_phy_eee_enable(tp);
if (tg3_flag(tp, USE_LINKCHG_REG)) {
u32 mac_stat;
int phy_event;
mac_stat = tr32(MAC_STATUS);
phy_event = 0;
if (tp->phy_flags & TG3_PHYFLG_USE_MI_INTERRUPT) {
if (mac_stat & MAC_STATUS_MI_INTERRUPT)
phy_event = 1;
} else if (mac_stat & MAC_STATUS_LNKSTATE_CHANGED)
phy_event = 1;
if (phy_event)
tg3_setup_phy(tp, false);
} else if (tg3_flag(tp, POLL_SERDES)) {
u32 mac_stat = tr32(MAC_STATUS);
int need_setup = 0;
if (tp->link_up &&
(mac_stat & MAC_STATUS_LNKSTATE_CHANGED)) {
need_setup = 1;
}
if (!tp->link_up &&
(mac_stat & (MAC_STATUS_PCS_SYNCED |
MAC_STATUS_SIGNAL_DET))) {
need_setup = 1;
}
if (need_setup) {
if (!tp->serdes_counter) {
tw32_f(MAC_MODE,
(tp->mac_mode &
~MAC_MODE_PORT_MODE_MASK));
udelay(40);
tw32_f(MAC_MODE, tp->mac_mode);
udelay(40);
}
tg3_setup_phy(tp, false);
}
} else if ((tp->phy_flags & TG3_PHYFLG_MII_SERDES) &&
tg3_flag(tp, 5780_CLASS)) {
tg3_serdes_parallel_detect(tp);
}
tp->timer_counter = tp->timer_multiplier;
}
/* Heartbeat is only sent once every 2 seconds.
*
* The heartbeat is to tell the ASF firmware that the host
* driver is still alive. In the event that the OS crashes,
* ASF needs to reset the hardware to free up the FIFO space
* that may be filled with rx packets destined for the host.
* If the FIFO is full, ASF will no longer function properly.
*
* Unintended resets have been reported on real time kernels
* where the timer doesn't run on time. Netpoll will also have
* same problem.
*
* The new FWCMD_NICDRV_ALIVE3 command tells the ASF firmware
* to check the ring condition when the heartbeat is expiring
* before doing the reset. This will prevent most unintended
* resets.
*/
if (!--tp->asf_counter) {
if (tg3_flag(tp, ENABLE_ASF) && !tg3_flag(tp, ENABLE_APE)) {
tg3_wait_for_event_ack(tp);
tg3_write_mem(tp, NIC_SRAM_FW_CMD_MBOX,
FWCMD_NICDRV_ALIVE3);
tg3_write_mem(tp, NIC_SRAM_FW_CMD_LEN_MBOX, 4);
tg3_write_mem(tp, NIC_SRAM_FW_CMD_DATA_MBOX,
TG3_FW_UPDATE_TIMEOUT_SEC);
tg3_generate_fw_event(tp);
}
tp->asf_counter = tp->asf_multiplier;
}
spin_unlock(&tp->lock);
restart_timer:
tp->timer.expires = jiffies + tp->timer_offset;
add_timer(&tp->timer);
}
static void tg3_timer_init(struct tg3 *tp)
{
if (tg3_flag(tp, TAGGED_STATUS) &&
tg3_asic_rev(tp) != ASIC_REV_5717 &&
!tg3_flag(tp, 57765_CLASS))
tp->timer_offset = HZ;
else
tp->timer_offset = HZ / 10;
BUG_ON(tp->timer_offset > HZ);
tp->timer_multiplier = (HZ / tp->timer_offset);
tp->asf_multiplier = (HZ / tp->timer_offset) *
TG3_FW_UPDATE_FREQ_SEC;
init_timer(&tp->timer);
tp->timer.data = (unsigned long) tp;
tp->timer.function = tg3_timer;
}
static void tg3_timer_start(struct tg3 *tp)
{
tp->asf_counter = tp->asf_multiplier;
tp->timer_counter = tp->timer_multiplier;
tp->timer.expires = jiffies + tp->timer_offset;
add_timer(&tp->timer);
}
static void tg3_timer_stop(struct tg3 *tp)
{
del_timer_sync(&tp->timer);
}
/* Restart hardware after configuration changes, self-test, etc.
* Invoked with tp->lock held.
*/
static int tg3_restart_hw(struct tg3 *tp, bool reset_phy)
__releases(tp->lock)
__acquires(tp->lock)
{
int err;
err = tg3_init_hw(tp, reset_phy);
if (err) {
netdev_err(tp->dev,
"Failed to re-initialize device, aborting\n");
tg3_halt(tp, RESET_KIND_SHUTDOWN, 1);
tg3_full_unlock(tp);
tg3_timer_stop(tp);
tp->irq_sync = 0;
tg3_napi_enable(tp);
dev_close(tp->dev);
tg3_full_lock(tp, 0);
}
return err;
}
static void tg3_reset_task(struct work_struct *work)
{
struct tg3 *tp = container_of(work, struct tg3, reset_task);
int err;
tg3_full_lock(tp, 0);
if (!netif_running(tp->dev)) {
tg3_flag_clear(tp, RESET_TASK_PENDING);
tg3_full_unlock(tp);
return;
}
tg3_full_unlock(tp);
tg3_phy_stop(tp);
tg3_netif_stop(tp);
tg3_full_lock(tp, 1);
if (tg3_flag(tp, TX_RECOVERY_PENDING)) {
tp->write32_tx_mbox = tg3_write32_tx_mbox;
tp->write32_rx_mbox = tg3_write_flush_reg32;
tg3_flag_set(tp, MBOX_WRITE_REORDER);
tg3_flag_clear(tp, TX_RECOVERY_PENDING);
}
tg3_halt(tp, RESET_KIND_SHUTDOWN, 0);
err = tg3_init_hw(tp, true);
if (err)
goto out;
tg3_netif_start(tp);
out:
tg3_full_unlock(tp);
if (!err)
tg3_phy_start(tp);
tg3_flag_clear(tp, RESET_TASK_PENDING);
}
static int tg3_request_irq(struct tg3 *tp, int irq_num)
{
irq_handler_t fn;
unsigned long flags;
char *name;
struct tg3_napi *tnapi = &tp->napi[irq_num];
if (tp->irq_cnt == 1)
name = tp->dev->name;
else {
name = &tnapi->irq_lbl[0];
snprintf(name, IFNAMSIZ, "%s-%d", tp->dev->name, irq_num);
name[IFNAMSIZ-1] = 0;
}
if (tg3_flag(tp, USING_MSI) || tg3_flag(tp, USING_MSIX)) {
fn = tg3_msi;
if (tg3_flag(tp, 1SHOT_MSI))
fn = tg3_msi_1shot;
flags = 0;
} else {
fn = tg3_interrupt;
if (tg3_flag(tp, TAGGED_STATUS))
fn = tg3_interrupt_tagged;
flags = IRQF_SHARED;
}
return request_irq(tnapi->irq_vec, fn, flags, name, tnapi);
}
static int tg3_test_interrupt(struct tg3 *tp)
{
struct tg3_napi *tnapi = &tp->napi[0];
struct net_device *dev = tp->dev;
int err, i, intr_ok = 0;
u32 val;
if (!netif_running(dev))
return -ENODEV;
tg3_disable_ints(tp);
free_irq(tnapi->irq_vec, tnapi);
/*
* Turn off MSI one shot mode. Otherwise this test has no
* observable way to know whether the interrupt was delivered.
*/
if (tg3_flag(tp, 57765_PLUS)) {
val = tr32(MSGINT_MODE) | MSGINT_MODE_ONE_SHOT_DISABLE;
tw32(MSGINT_MODE, val);
}
err = request_irq(tnapi->irq_vec, tg3_test_isr,
IRQF_SHARED, dev->name, tnapi);
if (err)
return err;
tnapi->hw_status->status &= ~SD_STATUS_UPDATED;
tg3_enable_ints(tp);
tw32_f(HOSTCC_MODE, tp->coalesce_mode | HOSTCC_MODE_ENABLE |
tnapi->coal_now);
for (i = 0; i < 5; i++) {
u32 int_mbox, misc_host_ctrl;
int_mbox = tr32_mailbox(tnapi->int_mbox);
misc_host_ctrl = tr32(TG3PCI_MISC_HOST_CTRL);
if ((int_mbox != 0) ||
(misc_host_ctrl & MISC_HOST_CTRL_MASK_PCI_INT)) {
intr_ok = 1;
break;
}
if (tg3_flag(tp, 57765_PLUS) &&
tnapi->hw_status->status_tag != tnapi->last_tag)
tw32_mailbox_f(tnapi->int_mbox, tnapi->last_tag << 24);
msleep(10);
}
tg3_disable_ints(tp);
free_irq(tnapi->irq_vec, tnapi);
err = tg3_request_irq(tp, 0);
if (err)
return err;
if (intr_ok) {
/* Reenable MSI one shot mode. */
if (tg3_flag(tp, 57765_PLUS) && tg3_flag(tp, 1SHOT_MSI)) {
val = tr32(MSGINT_MODE) & ~MSGINT_MODE_ONE_SHOT_DISABLE;
tw32(MSGINT_MODE, val);
}
return 0;
}
return -EIO;
}
/* Returns 0 if MSI test succeeds or MSI test fails and INTx mode is
* successfully restored
*/
static int tg3_test_msi(struct tg3 *tp)
{
int err;
u16 pci_cmd;
if (!tg3_flag(tp, USING_MSI))
return 0;
/* Turn off SERR reporting in case MSI terminates with Master
* Abort.
*/
pci_read_config_word(tp->pdev, PCI_COMMAND, &pci_cmd);
pci_write_config_word(tp->pdev, PCI_COMMAND,
pci_cmd & ~PCI_COMMAND_SERR);
err = tg3_test_interrupt(tp);
pci_write_config_word(tp->pdev, PCI_COMMAND, pci_cmd);
if (!err)
return 0;
/* other failures */
if (err != -EIO)
return err;
/* MSI test failed, go back to INTx mode */
netdev_warn(tp->dev, "No interrupt was generated using MSI. Switching "
"to INTx mode. Please report this failure to the PCI "
"maintainer and include system chipset information\n");
free_irq(tp->napi[0].irq_vec, &tp->napi[0]);
pci_disable_msi(tp->pdev);
tg3_flag_clear(tp, USING_MSI);
tp->napi[0].irq_vec = tp->pdev->irq;
err = tg3_request_irq(tp, 0);
if (err)
return err;
/* Need to reset the chip because the MSI cycle may have terminated
* with Master Abort.
*/
tg3_full_lock(tp, 1);
tg3_halt(tp, RESET_KIND_SHUTDOWN, 1);
err = tg3_init_hw(tp, true);
tg3_full_unlock(tp);
if (err)
free_irq(tp->napi[0].irq_vec, &tp->napi[0]);
return err;
}
static int tg3_request_firmware(struct tg3 *tp)
{
const struct tg3_firmware_hdr *fw_hdr;
if (request_firmware(&tp->fw, tp->fw_needed, &tp->pdev->dev)) {
netdev_err(tp->dev, "Failed to load firmware \"%s\"\n",
tp->fw_needed);
return -ENOENT;
}
fw_hdr = (struct tg3_firmware_hdr *)tp->fw->data;
/* Firmware blob starts with version numbers, followed by
* start address and _full_ length including BSS sections
* (which must be longer than the actual data, of course
*/
tp->fw_len = be32_to_cpu(fw_hdr->len); /* includes bss */
if (tp->fw_len < (tp->fw->size - TG3_FW_HDR_LEN)) {
netdev_err(tp->dev, "bogus length %d in \"%s\"\n",
tp->fw_len, tp->fw_needed);
release_firmware(tp->fw);
tp->fw = NULL;
return -EINVAL;
}
/* We no longer need firmware; we have it. */
tp->fw_needed = NULL;
return 0;
}
static u32 tg3_irq_count(struct tg3 *tp)
{
u32 irq_cnt = max(tp->rxq_cnt, tp->txq_cnt);
if (irq_cnt > 1) {
/* We want as many rx rings enabled as there are cpus.
* In multiqueue MSI-X mode, the first MSI-X vector
* only deals with link interrupts, etc, so we add
* one to the number of vectors we are requesting.
*/
irq_cnt = min_t(unsigned, irq_cnt + 1, tp->irq_max);
}
return irq_cnt;
}
static bool tg3_enable_msix(struct tg3 *tp)
{
int i, rc;
struct msix_entry msix_ent[TG3_IRQ_MAX_VECS];
tp->txq_cnt = tp->txq_req;
tp->rxq_cnt = tp->rxq_req;
if (!tp->rxq_cnt)
tp->rxq_cnt = netif_get_num_default_rss_queues();
if (tp->rxq_cnt > tp->rxq_max)
tp->rxq_cnt = tp->rxq_max;
/* Disable multiple TX rings by default. Simple round-robin hardware
* scheduling of the TX rings can cause starvation of rings with
* small packets when other rings have TSO or jumbo packets.
*/
if (!tp->txq_req)
tp->txq_cnt = 1;
tp->irq_cnt = tg3_irq_count(tp);
for (i = 0; i < tp->irq_max; i++) {
msix_ent[i].entry = i;
msix_ent[i].vector = 0;
}
rc = pci_enable_msix(tp->pdev, msix_ent, tp->irq_cnt);
if (rc < 0) {
return false;
} else if (rc != 0) {
if (pci_enable_msix(tp->pdev, msix_ent, rc))
return false;
netdev_notice(tp->dev, "Requested %d MSI-X vectors, received %d\n",
tp->irq_cnt, rc);
tp->irq_cnt = rc;
tp->rxq_cnt = max(rc - 1, 1);
if (tp->txq_cnt)
tp->txq_cnt = min(tp->rxq_cnt, tp->txq_max);
}
for (i = 0; i < tp->irq_max; i++)
tp->napi[i].irq_vec = msix_ent[i].vector;
if (netif_set_real_num_rx_queues(tp->dev, tp->rxq_cnt)) {
pci_disable_msix(tp->pdev);
return false;
}
if (tp->irq_cnt == 1)
return true;
tg3_flag_set(tp, ENABLE_RSS);
if (tp->txq_cnt > 1)
tg3_flag_set(tp, ENABLE_TSS);
netif_set_real_num_tx_queues(tp->dev, tp->txq_cnt);
return true;
}
static void tg3_ints_init(struct tg3 *tp)
{
if ((tg3_flag(tp, SUPPORT_MSI) || tg3_flag(tp, SUPPORT_MSIX)) &&
!tg3_flag(tp, TAGGED_STATUS)) {
/* All MSI supporting chips should support tagged
* status. Assert that this is the case.
*/
netdev_warn(tp->dev,
"MSI without TAGGED_STATUS? Not using MSI\n");
goto defcfg;
}
if (tg3_flag(tp, SUPPORT_MSIX) && tg3_enable_msix(tp))
tg3_flag_set(tp, USING_MSIX);
else if (tg3_flag(tp, SUPPORT_MSI) && pci_enable_msi(tp->pdev) == 0)
tg3_flag_set(tp, USING_MSI);
if (tg3_flag(tp, USING_MSI) || tg3_flag(tp, USING_MSIX)) {
u32 msi_mode = tr32(MSGINT_MODE);
if (tg3_flag(tp, USING_MSIX) && tp->irq_cnt > 1)
msi_mode |= MSGINT_MODE_MULTIVEC_EN;
if (!tg3_flag(tp, 1SHOT_MSI))
msi_mode |= MSGINT_MODE_ONE_SHOT_DISABLE;
tw32(MSGINT_MODE, msi_mode | MSGINT_MODE_ENABLE);
}
defcfg:
if (!tg3_flag(tp, USING_MSIX)) {
tp->irq_cnt = 1;
tp->napi[0].irq_vec = tp->pdev->irq;
}
if (tp->irq_cnt == 1) {
tp->txq_cnt = 1;
tp->rxq_cnt = 1;
netif_set_real_num_tx_queues(tp->dev, 1);
netif_set_real_num_rx_queues(tp->dev, 1);
}
}
static void tg3_ints_fini(struct tg3 *tp)
{
if (tg3_flag(tp, USING_MSIX))
pci_disable_msix(tp->pdev);
else if (tg3_flag(tp, USING_MSI))
pci_disable_msi(tp->pdev);
tg3_flag_clear(tp, USING_MSI);
tg3_flag_clear(tp, USING_MSIX);
tg3_flag_clear(tp, ENABLE_RSS);
tg3_flag_clear(tp, ENABLE_TSS);
}
static int tg3_start(struct tg3 *tp, bool reset_phy, bool test_irq,
bool init)
{
struct net_device *dev = tp->dev;
int i, err;
/*
* Setup interrupts first so we know how
* many NAPI resources to allocate
*/
tg3_ints_init(tp);
tg3_rss_check_indir_tbl(tp);
/* The placement of this call is tied
* to the setup and use of Host TX descriptors.
*/
err = tg3_alloc_consistent(tp);
if (err)
goto err_out1;
tg3_napi_init(tp);
tg3_napi_enable(tp);
for (i = 0; i < tp->irq_cnt; i++) {
struct tg3_napi *tnapi = &tp->napi[i];
err = tg3_request_irq(tp, i);
if (err) {
for (i--; i >= 0; i--) {
tnapi = &tp->napi[i];
free_irq(tnapi->irq_vec, tnapi);
}
goto err_out2;
}
}
tg3_full_lock(tp, 0);
err = tg3_init_hw(tp, reset_phy);
if (err) {
tg3_halt(tp, RESET_KIND_SHUTDOWN, 1);
tg3_free_rings(tp);
}
tg3_full_unlock(tp);
if (err)
goto err_out3;
if (test_irq && tg3_flag(tp, USING_MSI)) {
err = tg3_test_msi(tp);
if (err) {
tg3_full_lock(tp, 0);
tg3_halt(tp, RESET_KIND_SHUTDOWN, 1);
tg3_free_rings(tp);
tg3_full_unlock(tp);
goto err_out2;
}
if (!tg3_flag(tp, 57765_PLUS) && tg3_flag(tp, USING_MSI)) {
u32 val = tr32(PCIE_TRANSACTION_CFG);
tw32(PCIE_TRANSACTION_CFG,
val | PCIE_TRANS_CFG_1SHOT_MSI);
}
}
tg3_phy_start(tp);
tg3_hwmon_open(tp);
tg3_full_lock(tp, 0);
tg3_timer_start(tp);
tg3_flag_set(tp, INIT_COMPLETE);
tg3_enable_ints(tp);
if (init)
tg3_ptp_init(tp);
else
tg3_ptp_resume(tp);
tg3_full_unlock(tp);
netif_tx_start_all_queues(dev);
/*
* Reset loopback feature if it was turned on while the device was down
* make sure that it's installed properly now.
*/
if (dev->features & NETIF_F_LOOPBACK)
tg3_set_loopback(dev, dev->features);
return 0;
err_out3:
for (i = tp->irq_cnt - 1; i >= 0; i--) {
struct tg3_napi *tnapi = &tp->napi[i];
free_irq(tnapi->irq_vec, tnapi);
}
err_out2:
tg3_napi_disable(tp);
tg3_napi_fini(tp);
tg3_free_consistent(tp);
err_out1:
tg3_ints_fini(tp);
return err;
}
static void tg3_stop(struct tg3 *tp)
{
int i;
tg3_reset_task_cancel(tp);
tg3_netif_stop(tp);
tg3_timer_stop(tp);
tg3_hwmon_close(tp);
tg3_phy_stop(tp);
tg3_full_lock(tp, 1);
tg3_disable_ints(tp);
tg3_halt(tp, RESET_KIND_SHUTDOWN, 1);
tg3_free_rings(tp);
tg3_flag_clear(tp, INIT_COMPLETE);
tg3_full_unlock(tp);
for (i = tp->irq_cnt - 1; i >= 0; i--) {
struct tg3_napi *tnapi = &tp->napi[i];
free_irq(tnapi->irq_vec, tnapi);
}
tg3_ints_fini(tp);
tg3_napi_fini(tp);
tg3_free_consistent(tp);
}
static int tg3_open(struct net_device *dev)
{
struct tg3 *tp = netdev_priv(dev);
int err;
if (tp->fw_needed) {
err = tg3_request_firmware(tp);
if (tg3_asic_rev(tp) == ASIC_REV_57766) {
if (err) {
netdev_warn(tp->dev, "EEE capability disabled\n");
tp->phy_flags &= ~TG3_PHYFLG_EEE_CAP;
} else if (!(tp->phy_flags & TG3_PHYFLG_EEE_CAP)) {
netdev_warn(tp->dev, "EEE capability restored\n");
tp->phy_flags |= TG3_PHYFLG_EEE_CAP;
}
} else if (tg3_chip_rev_id(tp) == CHIPREV_ID_5701_A0) {
if (err)
return err;
} else if (err) {
netdev_warn(tp->dev, "TSO capability disabled\n");
tg3_flag_clear(tp, TSO_CAPABLE);
} else if (!tg3_flag(tp, TSO_CAPABLE)) {
netdev_notice(tp->dev, "TSO capability restored\n");
tg3_flag_set(tp, TSO_CAPABLE);
}
}
tg3_carrier_off(tp);
err = tg3_power_up(tp);
if (err)
return err;
tg3_full_lock(tp, 0);
tg3_disable_ints(tp);
tg3_flag_clear(tp, INIT_COMPLETE);
tg3_full_unlock(tp);
err = tg3_start(tp,
!(tp->phy_flags & TG3_PHYFLG_KEEP_LINK_ON_PWRDN),
true, true);
if (err) {
tg3_frob_aux_power(tp, false);
pci_set_power_state(tp->pdev, PCI_D3hot);
}
if (tg3_flag(tp, PTP_CAPABLE)) {
tp->ptp_clock = ptp_clock_register(&tp->ptp_info,
&tp->pdev->dev);
if (IS_ERR(tp->ptp_clock))
tp->ptp_clock = NULL;
}
return err;
}
static int tg3_close(struct net_device *dev)
{
struct tg3 *tp = netdev_priv(dev);
tg3_ptp_fini(tp);
tg3_stop(tp);
/* Clear stats across close / open calls */
memset(&tp->net_stats_prev, 0, sizeof(tp->net_stats_prev));
memset(&tp->estats_prev, 0, sizeof(tp->estats_prev));
tg3_power_down(tp);
tg3_carrier_off(tp);
return 0;
}
static inline u64 get_stat64(tg3_stat64_t *val)
{
return ((u64)val->high << 32) | ((u64)val->low);
}
static u64 tg3_calc_crc_errors(struct tg3 *tp)
{
struct tg3_hw_stats *hw_stats = tp->hw_stats;
if (!(tp->phy_flags & TG3_PHYFLG_PHY_SERDES) &&
(tg3_asic_rev(tp) == ASIC_REV_5700 ||
tg3_asic_rev(tp) == ASIC_REV_5701)) {
u32 val;
if (!tg3_readphy(tp, MII_TG3_TEST1, &val)) {
tg3_writephy(tp, MII_TG3_TEST1,
val | MII_TG3_TEST1_CRC_EN);
tg3_readphy(tp, MII_TG3_RXR_COUNTERS, &val);
} else
val = 0;
tp->phy_crc_errors += val;
return tp->phy_crc_errors;
}
return get_stat64(&hw_stats->rx_fcs_errors);
}
#define ESTAT_ADD(member) \
estats->member = old_estats->member + \
get_stat64(&hw_stats->member)
static void tg3_get_estats(struct tg3 *tp, struct tg3_ethtool_stats *estats)
{
struct tg3_ethtool_stats *old_estats = &tp->estats_prev;
struct tg3_hw_stats *hw_stats = tp->hw_stats;
ESTAT_ADD(rx_octets);
ESTAT_ADD(rx_fragments);
ESTAT_ADD(rx_ucast_packets);
ESTAT_ADD(rx_mcast_packets);
ESTAT_ADD(rx_bcast_packets);
ESTAT_ADD(rx_fcs_errors);
ESTAT_ADD(rx_align_errors);
ESTAT_ADD(rx_xon_pause_rcvd);
ESTAT_ADD(rx_xoff_pause_rcvd);
ESTAT_ADD(rx_mac_ctrl_rcvd);
ESTAT_ADD(rx_xoff_entered);
ESTAT_ADD(rx_frame_too_long_errors);
ESTAT_ADD(rx_jabbers);
ESTAT_ADD(rx_undersize_packets);
ESTAT_ADD(rx_in_length_errors);
ESTAT_ADD(rx_out_length_errors);
ESTAT_ADD(rx_64_or_less_octet_packets);
ESTAT_ADD(rx_65_to_127_octet_packets);
ESTAT_ADD(rx_128_to_255_octet_packets);
ESTAT_ADD(rx_256_to_511_octet_packets);
ESTAT_ADD(rx_512_to_1023_octet_packets);
ESTAT_ADD(rx_1024_to_1522_octet_packets);
ESTAT_ADD(rx_1523_to_2047_octet_packets);
ESTAT_ADD(rx_2048_to_4095_octet_packets);
ESTAT_ADD(rx_4096_to_8191_octet_packets);
ESTAT_ADD(rx_8192_to_9022_octet_packets);
ESTAT_ADD(tx_octets);
ESTAT_ADD(tx_collisions);
ESTAT_ADD(tx_xon_sent);
ESTAT_ADD(tx_xoff_sent);
ESTAT_ADD(tx_flow_control);
ESTAT_ADD(tx_mac_errors);
ESTAT_ADD(tx_single_collisions);
ESTAT_ADD(tx_mult_collisions);
ESTAT_ADD(tx_deferred);
ESTAT_ADD(tx_excessive_collisions);
ESTAT_ADD(tx_late_collisions);
ESTAT_ADD(tx_collide_2times);
ESTAT_ADD(tx_collide_3times);
ESTAT_ADD(tx_collide_4times);
ESTAT_ADD(tx_collide_5times);
ESTAT_ADD(tx_collide_6times);
ESTAT_ADD(tx_collide_7times);
ESTAT_ADD(tx_collide_8times);
ESTAT_ADD(tx_collide_9times);
ESTAT_ADD(tx_collide_10times);
ESTAT_ADD(tx_collide_11times);
ESTAT_ADD(tx_collide_12times);
ESTAT_ADD(tx_collide_13times);
ESTAT_ADD(tx_collide_14times);
ESTAT_ADD(tx_collide_15times);
ESTAT_ADD(tx_ucast_packets);
ESTAT_ADD(tx_mcast_packets);
ESTAT_ADD(tx_bcast_packets);
ESTAT_ADD(tx_carrier_sense_errors);
ESTAT_ADD(tx_discards);
ESTAT_ADD(tx_errors);
ESTAT_ADD(dma_writeq_full);
ESTAT_ADD(dma_write_prioq_full);
ESTAT_ADD(rxbds_empty);
ESTAT_ADD(rx_discards);
ESTAT_ADD(rx_errors);
ESTAT_ADD(rx_threshold_hit);
ESTAT_ADD(dma_readq_full);
ESTAT_ADD(dma_read_prioq_full);
ESTAT_ADD(tx_comp_queue_full);
ESTAT_ADD(ring_set_send_prod_index);
ESTAT_ADD(ring_status_update);
ESTAT_ADD(nic_irqs);
ESTAT_ADD(nic_avoided_irqs);
ESTAT_ADD(nic_tx_threshold_hit);
ESTAT_ADD(mbuf_lwm_thresh_hit);
}
static void tg3_get_nstats(struct tg3 *tp, struct rtnl_link_stats64 *stats)
{
struct rtnl_link_stats64 *old_stats = &tp->net_stats_prev;
struct tg3_hw_stats *hw_stats = tp->hw_stats;
stats->rx_packets = old_stats->rx_packets +
get_stat64(&hw_stats->rx_ucast_packets) +
get_stat64(&hw_stats->rx_mcast_packets) +
get_stat64(&hw_stats->rx_bcast_packets);
stats->tx_packets = old_stats->tx_packets +
get_stat64(&hw_stats->tx_ucast_packets) +
get_stat64(&hw_stats->tx_mcast_packets) +
get_stat64(&hw_stats->tx_bcast_packets);
stats->rx_bytes = old_stats->rx_bytes +
get_stat64(&hw_stats->rx_octets);
stats->tx_bytes = old_stats->tx_bytes +
get_stat64(&hw_stats->tx_octets);
stats->rx_errors = old_stats->rx_errors +
get_stat64(&hw_stats->rx_errors);
stats->tx_errors = old_stats->tx_errors +
get_stat64(&hw_stats->tx_errors) +
get_stat64(&hw_stats->tx_mac_errors) +
get_stat64(&hw_stats->tx_carrier_sense_errors) +
get_stat64(&hw_stats->tx_discards);
stats->multicast = old_stats->multicast +
get_stat64(&hw_stats->rx_mcast_packets);
stats->collisions = old_stats->collisions +
get_stat64(&hw_stats->tx_collisions);
stats->rx_length_errors = old_stats->rx_length_errors +
get_stat64(&hw_stats->rx_frame_too_long_errors) +
get_stat64(&hw_stats->rx_undersize_packets);
stats->rx_over_errors = old_stats->rx_over_errors +
get_stat64(&hw_stats->rxbds_empty);
stats->rx_frame_errors = old_stats->rx_frame_errors +
get_stat64(&hw_stats->rx_align_errors);
stats->tx_aborted_errors = old_stats->tx_aborted_errors +
get_stat64(&hw_stats->tx_discards);
stats->tx_carrier_errors = old_stats->tx_carrier_errors +
get_stat64(&hw_stats->tx_carrier_sense_errors);
stats->rx_crc_errors = old_stats->rx_crc_errors +
tg3_calc_crc_errors(tp);
stats->rx_missed_errors = old_stats->rx_missed_errors +
get_stat64(&hw_stats->rx_discards);
stats->rx_dropped = tp->rx_dropped;
stats->tx_dropped = tp->tx_dropped;
}
static int tg3_get_regs_len(struct net_device *dev)
{
return TG3_REG_BLK_SIZE;
}
static void tg3_get_regs(struct net_device *dev,
struct ethtool_regs *regs, void *_p)
{
struct tg3 *tp = netdev_priv(dev);
regs->version = 0;
memset(_p, 0, TG3_REG_BLK_SIZE);
if (tp->phy_flags & TG3_PHYFLG_IS_LOW_POWER)
return;
tg3_full_lock(tp, 0);
tg3_dump_legacy_regs(tp, (u32 *)_p);
tg3_full_unlock(tp);
}
static int tg3_get_eeprom_len(struct net_device *dev)
{
struct tg3 *tp = netdev_priv(dev);
return tp->nvram_size;
}
static int tg3_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, u8 *data)
{
struct tg3 *tp = netdev_priv(dev);
int ret;
u8 *pd;
u32 i, offset, len, b_offset, b_count;
__be32 val;
if (tg3_flag(tp, NO_NVRAM))
return -EINVAL;
if (tp->phy_flags & TG3_PHYFLG_IS_LOW_POWER)
return -EAGAIN;
offset = eeprom->offset;
len = eeprom->len;
eeprom->len = 0;
eeprom->magic = TG3_EEPROM_MAGIC;
if (offset & 3) {
/* adjustments to start on required 4 byte boundary */
b_offset = offset & 3;
b_count = 4 - b_offset;
if (b_count > len) {
/* i.e. offset=1 len=2 */
b_count = len;
}
ret = tg3_nvram_read_be32(tp, offset-b_offset, &val);
if (ret)
return ret;
memcpy(data, ((char *)&val) + b_offset, b_count);
len -= b_count;
offset += b_count;
eeprom->len += b_count;
}
/* read bytes up to the last 4 byte boundary */
pd = &data[eeprom->len];
for (i = 0; i < (len - (len & 3)); i += 4) {
ret = tg3_nvram_read_be32(tp, offset + i, &val);
if (ret) {
eeprom->len += i;
return ret;
}
memcpy(pd + i, &val, 4);
}
eeprom->len += i;
if (len & 3) {
/* read last bytes not ending on 4 byte boundary */
pd = &data[eeprom->len];
b_count = len & 3;
b_offset = offset + len - b_count;
ret = tg3_nvram_read_be32(tp, b_offset, &val);
if (ret)
return ret;
memcpy(pd, &val, b_count);
eeprom->len += b_count;
}
return 0;
}
static int tg3_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, u8 *data)
{
struct tg3 *tp = netdev_priv(dev);
int ret;
u32 offset, len, b_offset, odd_len;
u8 *buf;
__be32 start, end;
if (tp->phy_flags & TG3_PHYFLG_IS_LOW_POWER)
return -EAGAIN;
if (tg3_flag(tp, NO_NVRAM) ||
eeprom->magic != TG3_EEPROM_MAGIC)
return -EINVAL;
offset = eeprom->offset;
len = eeprom->len;
if ((b_offset = (offset & 3))) {
/* adjustments to start on required 4 byte boundary */
ret = tg3_nvram_read_be32(tp, offset-b_offset, &start);
if (ret)
return ret;
len += b_offset;
offset &= ~3;
if (len < 4)
len = 4;
}
odd_len = 0;
if (len & 3) {
/* adjustments to end on required 4 byte boundary */
odd_len = 1;
len = (len + 3) & ~3;
ret = tg3_nvram_read_be32(tp, offset+len-4, &end);
if (ret)
return ret;
}
buf = data;
if (b_offset || odd_len) {
buf = kmalloc(len, GFP_KERNEL);
if (!buf)
return -ENOMEM;
if (b_offset)
memcpy(buf, &start, 4);
if (odd_len)
memcpy(buf+len-4, &end, 4);
memcpy(buf + b_offset, data, eeprom->len);
}
ret = tg3_nvram_write_block(tp, offset, len, buf);
if (buf != data)
kfree(buf);
return ret;
}
static int tg3_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
struct tg3 *tp = netdev_priv(dev);
if (tg3_flag(tp, USE_PHYLIB)) {
struct phy_device *phydev;
if (!(tp->phy_flags & TG3_PHYFLG_IS_CONNECTED))
return -EAGAIN;
phydev = tp->mdio_bus->phy_map[TG3_PHY_MII_ADDR];
return phy_ethtool_gset(phydev, cmd);
}
cmd->supported = (SUPPORTED_Autoneg);
if (!(tp->phy_flags & TG3_PHYFLG_10_100_ONLY))
cmd->supported |= (SUPPORTED_1000baseT_Half |
SUPPORTED_1000baseT_Full);
if (!(tp->phy_flags & TG3_PHYFLG_ANY_SERDES)) {
cmd->supported |= (SUPPORTED_100baseT_Half |
SUPPORTED_100baseT_Full |
SUPPORTED_10baseT_Half |
SUPPORTED_10baseT_Full |
SUPPORTED_TP);
cmd->port = PORT_TP;
} else {
cmd->supported |= SUPPORTED_FIBRE;
cmd->port = PORT_FIBRE;
}
cmd->advertising = tp->link_config.advertising;
if (tg3_flag(tp, PAUSE_AUTONEG)) {
if (tp->link_config.flowctrl & FLOW_CTRL_RX) {
if (tp->link_config.flowctrl & FLOW_CTRL_TX) {
cmd->advertising |= ADVERTISED_Pause;
} else {
cmd->advertising |= ADVERTISED_Pause |
ADVERTISED_Asym_Pause;
}
} else if (tp->link_config.flowctrl & FLOW_CTRL_TX) {
cmd->advertising |= ADVERTISED_Asym_Pause;
}
}
if (netif_running(dev) && tp->link_up) {
ethtool_cmd_speed_set(cmd, tp->link_config.active_speed);
cmd->duplex = tp->link_config.active_duplex;
cmd->lp_advertising = tp->link_config.rmt_adv;
if (!(tp->phy_flags & TG3_PHYFLG_ANY_SERDES)) {
if (tp->phy_flags & TG3_PHYFLG_MDIX_STATE)
cmd->eth_tp_mdix = ETH_TP_MDI_X;
else
cmd->eth_tp_mdix = ETH_TP_MDI;
}
} else {
ethtool_cmd_speed_set(cmd, SPEED_UNKNOWN);
cmd->duplex = DUPLEX_UNKNOWN;
cmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
}
cmd->phy_address = tp->phy_addr;
cmd->transceiver = XCVR_INTERNAL;
cmd->autoneg = tp->link_config.autoneg;
cmd->maxtxpkt = 0;
cmd->maxrxpkt = 0;
return 0;
}
static int tg3_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
struct tg3 *tp = netdev_priv(dev);
u32 speed = ethtool_cmd_speed(cmd);
if (tg3_flag(tp, USE_PHYLIB)) {
struct phy_device *phydev;
if (!(tp->phy_flags & TG3_PHYFLG_IS_CONNECTED))
return -EAGAIN;
phydev = tp->mdio_bus->phy_map[TG3_PHY_MII_ADDR];
return phy_ethtool_sset(phydev, cmd);
}
if (cmd->autoneg != AUTONEG_ENABLE &&
cmd->autoneg != AUTONEG_DISABLE)
return -EINVAL;
if (cmd->autoneg == AUTONEG_DISABLE &&
cmd->duplex != DUPLEX_FULL &&
cmd->duplex != DUPLEX_HALF)
return -EINVAL;
if (cmd->autoneg == AUTONEG_ENABLE) {
u32 mask = ADVERTISED_Autoneg |
ADVERTISED_Pause |
ADVERTISED_Asym_Pause;
if (!(tp->phy_flags & TG3_PHYFLG_10_100_ONLY))
mask |= ADVERTISED_1000baseT_Half |
ADVERTISED_1000baseT_Full;
if (!(tp->phy_flags & TG3_PHYFLG_ANY_SERDES))
mask |= ADVERTISED_100baseT_Half |
ADVERTISED_100baseT_Full |
ADVERTISED_10baseT_Half |
ADVERTISED_10baseT_Full |
ADVERTISED_TP;
else
mask |= ADVERTISED_FIBRE;
if (cmd->advertising & ~mask)
return -EINVAL;
mask &= (ADVERTISED_1000baseT_Half |
ADVERTISED_1000baseT_Full |
ADVERTISED_100baseT_Half |
ADVERTISED_100baseT_Full |
ADVERTISED_10baseT_Half |
ADVERTISED_10baseT_Full);
cmd->advertising &= mask;
} else {
if (tp->phy_flags & TG3_PHYFLG_ANY_SERDES) {
if (speed != SPEED_1000)
return -EINVAL;
if (cmd->duplex != DUPLEX_FULL)
return -EINVAL;
} else {
if (speed != SPEED_100 &&
speed != SPEED_10)
return -EINVAL;
}
}
tg3_full_lock(tp, 0);
tp->link_config.autoneg = cmd->autoneg;
if (cmd->autoneg == AUTONEG_ENABLE) {
tp->link_config.advertising = (cmd->advertising |
ADVERTISED_Autoneg);
tp->link_config.speed = SPEED_UNKNOWN;
tp->link_config.duplex = DUPLEX_UNKNOWN;
} else {
tp->link_config.advertising = 0;
tp->link_config.speed = speed;
tp->link_config.duplex = cmd->duplex;
}
tp->phy_flags |= TG3_PHYFLG_USER_CONFIGURED;
tg3_warn_mgmt_link_flap(tp);
if (netif_running(dev))
tg3_setup_phy(tp, true);
tg3_full_unlock(tp);
return 0;
}
static void tg3_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
{
struct tg3 *tp = netdev_priv(dev);
strlcpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver));
strlcpy(info->version, DRV_MODULE_VERSION, sizeof(info->version));
strlcpy(info->fw_version, tp->fw_ver, sizeof(info->fw_version));
strlcpy(info->bus_info, pci_name(tp->pdev), sizeof(info->bus_info));
}
static void tg3_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
{
struct tg3 *tp = netdev_priv(dev);
if (tg3_flag(tp, WOL_CAP) && device_can_wakeup(&tp->pdev->dev))
wol->supported = WAKE_MAGIC;
else
wol->supported = 0;
wol->wolopts = 0;
if (tg3_flag(tp, WOL_ENABLE) && device_can_wakeup(&tp->pdev->dev))
wol->wolopts = WAKE_MAGIC;
memset(&wol->sopass, 0, sizeof(wol->sopass));
}
static int tg3_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
{
struct tg3 *tp = netdev_priv(dev);
struct device *dp = &tp->pdev->dev;
if (wol->wolopts & ~WAKE_MAGIC)
return -EINVAL;
if ((wol->wolopts & WAKE_MAGIC) &&
!(tg3_flag(tp, WOL_CAP) && device_can_wakeup(dp)))
return -EINVAL;
device_set_wakeup_enable(dp, wol->wolopts & WAKE_MAGIC);
spin_lock_bh(&tp->lock);
if (device_may_wakeup(dp))
tg3_flag_set(tp, WOL_ENABLE);
else
tg3_flag_clear(tp, WOL_ENABLE);
spin_unlock_bh(&tp->lock);
return 0;
}
static u32 tg3_get_msglevel(struct net_device *dev)
{
struct tg3 *tp = netdev_priv(dev);
return tp->msg_enable;
}
static void tg3_set_msglevel(struct net_device *dev, u32 value)
{
struct tg3 *tp = netdev_priv(dev);
tp->msg_enable = value;
}
static int tg3_nway_reset(struct net_device *dev)
{
struct tg3 *tp = netdev_priv(dev);
int r;
if (!netif_running(dev))
return -EAGAIN;
if (tp->phy_flags & TG3_PHYFLG_PHY_SERDES)
return -EINVAL;
tg3_warn_mgmt_link_flap(tp);
if (tg3_flag(tp, USE_PHYLIB)) {
if (!(tp->phy_flags & TG3_PHYFLG_IS_CONNECTED))
return -EAGAIN;
r = phy_start_aneg(tp->mdio_bus->phy_map[TG3_PHY_MII_ADDR]);
} else {
u32 bmcr;
spin_lock_bh(&tp->lock);
r = -EINVAL;
tg3_readphy(tp, MII_BMCR, &bmcr);
if (!tg3_readphy(tp, MII_BMCR, &bmcr) &&
((bmcr & BMCR_ANENABLE) ||
(tp->phy_flags & TG3_PHYFLG_PARALLEL_DETECT))) {
tg3_writephy(tp, MII_BMCR, bmcr | BMCR_ANRESTART |
BMCR_ANENABLE);
r = 0;
}
spin_unlock_bh(&tp->lock);
}
return r;
}
static void tg3_get_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
{
struct tg3 *tp = netdev_priv(dev);
ering->rx_max_pending = tp->rx_std_ring_mask;
if (tg3_flag(tp, JUMBO_RING_ENABLE))
ering->rx_jumbo_max_pending = tp->rx_jmb_ring_mask;
else
ering->rx_jumbo_max_pending = 0;
ering->tx_max_pending = TG3_TX_RING_SIZE - 1;
ering->rx_pending = tp->rx_pending;
if (tg3_flag(tp, JUMBO_RING_ENABLE))
ering->rx_jumbo_pending = tp->rx_jumbo_pending;
else
ering->rx_jumbo_pending = 0;
ering->tx_pending = tp->napi[0].tx_pending;
}
static int tg3_set_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
{
struct tg3 *tp = netdev_priv(dev);
int i, irq_sync = 0, err = 0;
if ((ering->rx_pending > tp->rx_std_ring_mask) ||
(ering->rx_jumbo_pending > tp->rx_jmb_ring_mask) ||
(ering->tx_pending > TG3_TX_RING_SIZE - 1) ||
(ering->tx_pending <= MAX_SKB_FRAGS) ||
(tg3_flag(tp, TSO_BUG) &&
(ering->tx_pending <= (MAX_SKB_FRAGS * 3))))
return -EINVAL;
if (netif_running(dev)) {
tg3_phy_stop(tp);
tg3_netif_stop(tp);
irq_sync = 1;
}
tg3_full_lock(tp, irq_sync);
tp->rx_pending = ering->rx_pending;
if (tg3_flag(tp, MAX_RXPEND_64) &&
tp->rx_pending > 63)
tp->rx_pending = 63;
tp->rx_jumbo_pending = ering->rx_jumbo_pending;
for (i = 0; i < tp->irq_max; i++)
tp->napi[i].tx_pending = ering->tx_pending;
if (netif_running(dev)) {
tg3_halt(tp, RESET_KIND_SHUTDOWN, 1);
err = tg3_restart_hw(tp, false);
if (!err)
tg3_netif_start(tp);
}
tg3_full_unlock(tp);
if (irq_sync && !err)
tg3_phy_start(tp);
return err;
}
static void tg3_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
{
struct tg3 *tp = netdev_priv(dev);
epause->autoneg = !!tg3_flag(tp, PAUSE_AUTONEG);
if (tp->link_config.flowctrl & FLOW_CTRL_RX)
epause->rx_pause = 1;
else
epause->rx_pause = 0;
if (tp->link_config.flowctrl & FLOW_CTRL_TX)
epause->tx_pause = 1;
else
epause->tx_pause = 0;
}
static int tg3_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
{
struct tg3 *tp = netdev_priv(dev);
int err = 0;
if (tp->link_config.autoneg == AUTONEG_ENABLE)
tg3_warn_mgmt_link_flap(tp);
if (tg3_flag(tp, USE_PHYLIB)) {
u32 newadv;
struct phy_device *phydev;
phydev = tp->mdio_bus->phy_map[TG3_PHY_MII_ADDR];
if (!(phydev->supported & SUPPORTED_Pause) ||
(!(phydev->supported & SUPPORTED_Asym_Pause) &&
(epause->rx_pause != epause->tx_pause)))
return -EINVAL;
tp->link_config.flowctrl = 0;
if (epause->rx_pause) {
tp->link_config.flowctrl |= FLOW_CTRL_RX;
if (epause->tx_pause) {
tp->link_config.flowctrl |= FLOW_CTRL_TX;
newadv = ADVERTISED_Pause;
} else
newadv = ADVERTISED_Pause |
ADVERTISED_Asym_Pause;
} else if (epause->tx_pause) {
tp->link_config.flowctrl |= FLOW_CTRL_TX;
newadv = ADVERTISED_Asym_Pause;
} else
newadv = 0;
if (epause->autoneg)
tg3_flag_set(tp, PAUSE_AUTONEG);
else
tg3_flag_clear(tp, PAUSE_AUTONEG);
if (tp->phy_flags & TG3_PHYFLG_IS_CONNECTED) {
u32 oldadv = phydev->advertising &
(ADVERTISED_Pause | ADVERTISED_Asym_Pause);
if (oldadv != newadv) {
phydev->advertising &=
~(ADVERTISED_Pause |
ADVERTISED_Asym_Pause);
phydev->advertising |= newadv;
if (phydev->autoneg) {
/*
* Always renegotiate the link to
* inform our link partner of our
* flow control settings, even if the
* flow control is forced. Let
* tg3_adjust_link() do the final
* flow control setup.
*/
return phy_start_aneg(phydev);
}
}
if (!epause->autoneg)
tg3_setup_flow_control(tp, 0, 0);
} else {
tp->link_config.advertising &=
~(ADVERTISED_Pause |
ADVERTISED_Asym_Pause);
tp->link_config.advertising |= newadv;
}
} else {
int irq_sync = 0;
if (netif_running(dev)) {
tg3_netif_stop(tp);
irq_sync = 1;
}
tg3_full_lock(tp, irq_sync);
if (epause->autoneg)
tg3_flag_set(tp, PAUSE_AUTONEG);
else
tg3_flag_clear(tp, PAUSE_AUTONEG);
if (epause->rx_pause)
tp->link_config.flowctrl |= FLOW_CTRL_RX;
else
tp->link_config.flowctrl &= ~FLOW_CTRL_RX;
if (epause->tx_pause)
tp->link_config.flowctrl |= FLOW_CTRL_TX;
else
tp->link_config.flowctrl &= ~FLOW_CTRL_TX;
if (netif_running(dev)) {
tg3_halt(tp, RESET_KIND_SHUTDOWN, 1);
err = tg3_restart_hw(tp, false);
if (!err)
tg3_netif_start(tp);
}
tg3_full_unlock(tp);
}
tp->phy_flags |= TG3_PHYFLG_USER_CONFIGURED;
return err;
}
static int tg3_get_sset_count(struct net_device *dev, int sset)
{
switch (sset) {
case ETH_SS_TEST:
return TG3_NUM_TEST;
case ETH_SS_STATS:
return TG3_NUM_STATS;
default:
return -EOPNOTSUPP;
}
}
static int tg3_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
u32 *rules __always_unused)
{
struct tg3 *tp = netdev_priv(dev);
if (!tg3_flag(tp, SUPPORT_MSIX))
return -EOPNOTSUPP;
switch (info->cmd) {
case ETHTOOL_GRXRINGS:
if (netif_running(tp->dev))
info->data = tp->rxq_cnt;
else {
info->data = num_online_cpus();
if (info->data > TG3_RSS_MAX_NUM_QS)
info->data = TG3_RSS_MAX_NUM_QS;
}
/* The first interrupt vector only
* handles link interrupts.
*/
info->data -= 1;
return 0;
default:
return -EOPNOTSUPP;
}
}
static u32 tg3_get_rxfh_indir_size(struct net_device *dev)
{
u32 size = 0;
struct tg3 *tp = netdev_priv(dev);
if (tg3_flag(tp, SUPPORT_MSIX))
size = TG3_RSS_INDIR_TBL_SIZE;
return size;
}
static int tg3_get_rxfh_indir(struct net_device *dev, u32 *indir)
{
struct tg3 *tp = netdev_priv(dev);
int i;
for (i = 0; i < TG3_RSS_INDIR_TBL_SIZE; i++)
indir[i] = tp->rss_ind_tbl[i];
return 0;
}
static int tg3_set_rxfh_indir(struct net_device *dev, const u32 *indir)
{
struct tg3 *tp = netdev_priv(dev);
size_t i;
for (i = 0; i < TG3_RSS_INDIR_TBL_SIZE; i++)
tp->rss_ind_tbl[i] = indir[i];
if (!netif_running(dev) || !tg3_flag(tp, ENABLE_RSS))
return 0;
/* It is legal to write the indirection
* table while the device is running.
*/
tg3_full_lock(tp, 0);
tg3_rss_write_indir_tbl(tp);
tg3_full_unlock(tp);
return 0;
}
static void tg3_get_channels(struct net_device *dev,
struct ethtool_channels *channel)
{
struct tg3 *tp = netdev_priv(dev);
u32 deflt_qs = netif_get_num_default_rss_queues();
channel->max_rx = tp->rxq_max;
channel->max_tx = tp->txq_max;
if (netif_running(dev)) {
channel->rx_count = tp->rxq_cnt;
channel->tx_count = tp->txq_cnt;
} else {
if (tp->rxq_req)
channel->rx_count = tp->rxq_req;
else
channel->rx_count = min(deflt_qs, tp->rxq_max);
if (tp->txq_req)
channel->tx_count = tp->txq_req;
else
channel->tx_count = min(deflt_qs, tp->txq_max);
}
}
static int tg3_set_channels(struct net_device *dev,
struct ethtool_channels *channel)
{
struct tg3 *tp = netdev_priv(dev);
if (!tg3_flag(tp, SUPPORT_MSIX))
return -EOPNOTSUPP;
if (channel->rx_count > tp->rxq_max ||
channel->tx_count > tp->txq_max)
return -EINVAL;
tp->rxq_req = channel->rx_count;
tp->txq_req = channel->tx_count;
if (!netif_running(dev))
return 0;
tg3_stop(tp);
tg3_carrier_off(tp);
tg3_start(tp, true, false, false);
return 0;
}
static void tg3_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
{
switch (stringset) {
case ETH_SS_STATS:
memcpy(buf, &ethtool_stats_keys, sizeof(ethtool_stats_keys));
break;
case ETH_SS_TEST:
memcpy(buf, &ethtool_test_keys, sizeof(ethtool_test_keys));
break;
default:
WARN_ON(1); /* we need a WARN() */
break;
}
}
static int tg3_set_phys_id(struct net_device *dev,
enum ethtool_phys_id_state state)
{
struct tg3 *tp = netdev_priv(dev);
if (!netif_running(tp->dev))
return -EAGAIN;
switch (state) {
case ETHTOOL_ID_ACTIVE:
return 1; /* cycle on/off once per second */
case ETHTOOL_ID_ON:
tw32(MAC_LED_CTRL, LED_CTRL_LNKLED_OVERRIDE |
LED_CTRL_1000MBPS_ON |
LED_CTRL_100MBPS_ON |
LED_CTRL_10MBPS_ON |
LED_CTRL_TRAFFIC_OVERRIDE |
LED_CTRL_TRAFFIC_BLINK |
LED_CTRL_TRAFFIC_LED);
break;
case ETHTOOL_ID_OFF:
tw32(MAC_LED_CTRL, LED_CTRL_LNKLED_OVERRIDE |
LED_CTRL_TRAFFIC_OVERRIDE);
break;
case ETHTOOL_ID_INACTIVE:
tw32(MAC_LED_CTRL, tp->led_ctrl);
break;
}
return 0;
}
static void tg3_get_ethtool_stats(struct net_device *dev,
struct ethtool_stats *estats, u64 *tmp_stats)
{
struct tg3 *tp = netdev_priv(dev);
if (tp->hw_stats)
tg3_get_estats(tp, (struct tg3_ethtool_stats *)tmp_stats);
else
memset(tmp_stats, 0, sizeof(struct tg3_ethtool_stats));
}
static __be32 *tg3_vpd_readblock(struct tg3 *tp, u32 *vpdlen)
{
int i;
__be32 *buf;
u32 offset = 0, len = 0;
u32 magic, val;
if (tg3_flag(tp, NO_NVRAM) || tg3_nvram_read(tp, 0, &magic))
return NULL;
if (magic == TG3_EEPROM_MAGIC) {
for (offset = TG3_NVM_DIR_START;
offset < TG3_NVM_DIR_END;
offset += TG3_NVM_DIRENT_SIZE) {
if (tg3_nvram_read(tp, offset, &val))
return NULL;
if ((val >> TG3_NVM_DIRTYPE_SHIFT) ==
TG3_NVM_DIRTYPE_EXTVPD)
break;
}
if (offset != TG3_NVM_DIR_END) {
len = (val & TG3_NVM_DIRTYPE_LENMSK) * 4;
if (tg3_nvram_read(tp, offset + 4, &offset))
return NULL;
offset = tg3_nvram_logical_addr(tp, offset);
}
}
if (!offset || !len) {
offset = TG3_NVM_VPD_OFF;
len = TG3_NVM_VPD_LEN;
}
buf = kmalloc(len, GFP_KERNEL);
if (buf == NULL)
return NULL;
if (magic == TG3_EEPROM_MAGIC) {
for (i = 0; i < len; i += 4) {
/* The data is in little-endian format in NVRAM.
* Use the big-endian read routines to preserve
* the byte order as it exists in NVRAM.
*/
if (tg3_nvram_read_be32(tp, offset + i, &buf[i/4]))
goto error;
}
} else {
u8 *ptr;
ssize_t cnt;
unsigned int pos = 0;
ptr = (u8 *)&buf[0];
for (i = 0; pos < len && i < 3; i++, pos += cnt, ptr += cnt) {
cnt = pci_read_vpd(tp->pdev, pos,
len - pos, ptr);
if (cnt == -ETIMEDOUT || cnt == -EINTR)
cnt = 0;
else if (cnt < 0)
goto error;
}
if (pos != len)
goto error;
}
*vpdlen = len;
return buf;
error:
kfree(buf);
return NULL;
}
#define NVRAM_TEST_SIZE 0x100
#define NVRAM_SELFBOOT_FORMAT1_0_SIZE 0x14
#define NVRAM_SELFBOOT_FORMAT1_2_SIZE 0x18
#define NVRAM_SELFBOOT_FORMAT1_3_SIZE 0x1c
#define NVRAM_SELFBOOT_FORMAT1_4_SIZE 0x20
#define NVRAM_SELFBOOT_FORMAT1_5_SIZE 0x24
#define NVRAM_SELFBOOT_FORMAT1_6_SIZE 0x50
#define NVRAM_SELFBOOT_HW_SIZE 0x20
#define NVRAM_SELFBOOT_DATA_SIZE 0x1c
static int tg3_test_nvram(struct tg3 *tp)
{
u32 csum, magic, len;
__be32 *buf;
int i, j, k, err = 0, size;
if (tg3_flag(tp, NO_NVRAM))
return 0;
if (tg3_nvram_read(tp, 0, &magic) != 0)
return -EIO;
if (magic == TG3_EEPROM_MAGIC)
size = NVRAM_TEST_SIZE;
else if ((magic & TG3_EEPROM_MAGIC_FW_MSK) == TG3_EEPROM_MAGIC_FW) {
if ((magic & TG3_EEPROM_SB_FORMAT_MASK) ==
TG3_EEPROM_SB_FORMAT_1) {
switch (magic & TG3_EEPROM_SB_REVISION_MASK) {
case TG3_EEPROM_SB_REVISION_0:
size = NVRAM_SELFBOOT_FORMAT1_0_SIZE;
break;
case TG3_EEPROM_SB_REVISION_2:
size = NVRAM_SELFBOOT_FORMAT1_2_SIZE;
break;
case TG3_EEPROM_SB_REVISION_3:
size = NVRAM_SELFBOOT_FORMAT1_3_SIZE;
break;
case TG3_EEPROM_SB_REVISION_4:
size = NVRAM_SELFBOOT_FORMAT1_4_SIZE;
break;
case TG3_EEPROM_SB_REVISION_5:
size = NVRAM_SELFBOOT_FORMAT1_5_SIZE;
break;
case TG3_EEPROM_SB_REVISION_6:
size = NVRAM_SELFBOOT_FORMAT1_6_SIZE;
break;
default:
return -EIO;
}
} else
return 0;
} else if ((magic & TG3_EEPROM_MAGIC_HW_MSK) == TG3_EEPROM_MAGIC_HW)
size = NVRAM_SELFBOOT_HW_SIZE;
else
return -EIO;
buf = kmalloc(size, GFP_KERNEL);
if (buf == NULL)
return -ENOMEM;
err = -EIO;
for (i = 0, j = 0; i < size; i += 4, j++) {
err = tg3_nvram_read_be32(tp, i, &buf[j]);
if (err)
break;
}
if (i < size)
goto out;
/* Selfboot format */
magic = be32_to_cpu(buf[0]);
if ((magic & TG3_EEPROM_MAGIC_FW_MSK) ==
TG3_EEPROM_MAGIC_FW) {
u8 *buf8 = (u8 *) buf, csum8 = 0;
if ((magic & TG3_EEPROM_SB_REVISION_MASK) ==
TG3_EEPROM_SB_REVISION_2) {
/* For rev 2, the csum doesn't include the MBA. */
for (i = 0; i < TG3_EEPROM_SB_F1R2_MBA_OFF; i++)
csum8 += buf8[i];
for (i = TG3_EEPROM_SB_F1R2_MBA_OFF + 4; i < size; i++)
csum8 += buf8[i];
} else {
for (i = 0; i < size; i++)
csum8 += buf8[i];
}
if (csum8 == 0) {
err = 0;
goto out;
}
err = -EIO;
goto out;
}
if ((magic & TG3_EEPROM_MAGIC_HW_MSK) ==
TG3_EEPROM_MAGIC_HW) {
u8 data[NVRAM_SELFBOOT_DATA_SIZE];
u8 parity[NVRAM_SELFBOOT_DATA_SIZE];
u8 *buf8 = (u8 *) buf;
/* Separate the parity bits and the data bytes. */
for (i = 0, j = 0, k = 0; i < NVRAM_SELFBOOT_HW_SIZE; i++) {
if ((i == 0) || (i == 8)) {
int l;
u8 msk;
for (l = 0, msk = 0x80; l < 7; l++, msk >>= 1)
parity[k++] = buf8[i] & msk;
i++;
} else if (i == 16) {
int l;
u8 msk;
for (l = 0, msk = 0x20; l < 6; l++, msk >>= 1)
parity[k++] = buf8[i] & msk;
i++;
for (l = 0, msk = 0x80; l < 8; l++, msk >>= 1)
parity[k++] = buf8[i] & msk;
i++;
}
data[j++] = buf8[i];
}
err = -EIO;
for (i = 0; i < NVRAM_SELFBOOT_DATA_SIZE; i++) {
u8 hw8 = hweight8(data[i]);
if ((hw8 & 0x1) && parity[i])
goto out;
else if (!(hw8 & 0x1) && !parity[i])
goto out;
}
err = 0;
goto out;
}
err = -EIO;
/* Bootstrap checksum at offset 0x10 */
csum = calc_crc((unsigned char *) buf, 0x10);
if (csum != le32_to_cpu(buf[0x10/4]))
goto out;
/* Manufacturing block starts at offset 0x74, checksum at 0xfc */
csum = calc_crc((unsigned char *) &buf[0x74/4], 0x88);
if (csum != le32_to_cpu(buf[0xfc/4]))
goto out;
kfree(buf);
buf = tg3_vpd_readblock(tp, &len);
if (!buf)
return -ENOMEM;
i = pci_vpd_find_tag((u8 *)buf, 0, len, PCI_VPD_LRDT_RO_DATA);
if (i > 0) {
j = pci_vpd_lrdt_size(&((u8 *)buf)[i]);
if (j < 0)
goto out;
if (i + PCI_VPD_LRDT_TAG_SIZE + j > len)
goto out;
i += PCI_VPD_LRDT_TAG_SIZE;
j = pci_vpd_find_info_keyword((u8 *)buf, i, j,
PCI_VPD_RO_KEYWORD_CHKSUM);
if (j > 0) {
u8 csum8 = 0;
j += PCI_VPD_INFO_FLD_HDR_SIZE;
for (i = 0; i <= j; i++)
csum8 += ((u8 *)buf)[i];
if (csum8)
goto out;
}
}
err = 0;
out:
kfree(buf);
return err;
}
#define TG3_SERDES_TIMEOUT_SEC 2
#define TG3_COPPER_TIMEOUT_SEC 6
static int tg3_test_link(struct tg3 *tp)
{
int i, max;
if (!netif_running(tp->dev))
return -ENODEV;
if (tp->phy_flags & TG3_PHYFLG_ANY_SERDES)
max = TG3_SERDES_TIMEOUT_SEC;
else
max = TG3_COPPER_TIMEOUT_SEC;
for (i = 0; i < max; i++) {
if (tp->link_up)
return 0;
if (msleep_interruptible(1000))
break;
}
return -EIO;
}
/* Only test the commonly used registers */
static int tg3_test_registers(struct tg3 *tp)
{
int i, is_5705, is_5750;
u32 offset, read_mask, write_mask, val, save_val, read_val;
static struct {
u16 offset;
u16 flags;
#define TG3_FL_5705 0x1
#define TG3_FL_NOT_5705 0x2
#define TG3_FL_NOT_5788 0x4
#define TG3_FL_NOT_5750 0x8
u32 read_mask;
u32 write_mask;
} reg_tbl[] = {
/* MAC Control Registers */
{ MAC_MODE, TG3_FL_NOT_5705,
0x00000000, 0x00ef6f8c },
{ MAC_MODE, TG3_FL_5705,
0x00000000, 0x01ef6b8c },
{ MAC_STATUS, TG3_FL_NOT_5705,
0x03800107, 0x00000000 },
{ MAC_STATUS, TG3_FL_5705,
0x03800100, 0x00000000 },
{ MAC_ADDR_0_HIGH, 0x0000,
0x00000000, 0x0000ffff },
{ MAC_ADDR_0_LOW, 0x0000,
0x00000000, 0xffffffff },
{ MAC_RX_MTU_SIZE, 0x0000,
0x00000000, 0x0000ffff },
{ MAC_TX_MODE, 0x0000,
0x00000000, 0x00000070 },
{ MAC_TX_LENGTHS, 0x0000,
0x00000000, 0x00003fff },
{ MAC_RX_MODE, TG3_FL_NOT_5705,
0x00000000, 0x000007fc },
{ MAC_RX_MODE, TG3_FL_5705,
0x00000000, 0x000007dc },
{ MAC_HASH_REG_0, 0x0000,
0x00000000, 0xffffffff },
{ MAC_HASH_REG_1, 0x0000,
0x00000000, 0xffffffff },
{ MAC_HASH_REG_2, 0x0000,
0x00000000, 0xffffffff },
{ MAC_HASH_REG_3, 0x0000,
0x00000000, 0xffffffff },
/* Receive Data and Receive BD Initiator Control Registers. */
{ RCVDBDI_JUMBO_BD+0, TG3_FL_NOT_5705,
0x00000000, 0xffffffff },
{ RCVDBDI_JUMBO_BD+4, TG3_FL_NOT_5705,
0x00000000, 0xffffffff },
{ RCVDBDI_JUMBO_BD+8, TG3_FL_NOT_5705,
0x00000000, 0x00000003 },
{ RCVDBDI_JUMBO_BD+0xc, TG3_FL_NOT_5705,
0x00000000, 0xffffffff },
{ RCVDBDI_STD_BD+0, 0x0000,
0x00000000, 0xffffffff },
{ RCVDBDI_STD_BD+4, 0x0000,
0x00000000, 0xffffffff },
{ RCVDBDI_STD_BD+8, 0x0000,
0x00000000, 0xffff0002 },
{ RCVDBDI_STD_BD+0xc, 0x0000,
0x00000000, 0xffffffff },
/* Receive BD Initiator Control Registers. */
{ RCVBDI_STD_THRESH, TG3_FL_NOT_5705,
0x00000000, 0xffffffff },
{ RCVBDI_STD_THRESH, TG3_FL_5705,
0x00000000, 0x000003ff },
{ RCVBDI_JUMBO_THRESH, TG3_FL_NOT_5705,
0x00000000, 0xffffffff },
/* Host Coalescing Control Registers. */
{ HOSTCC_MODE, TG3_FL_NOT_5705,
0x00000000, 0x00000004 },
{ HOSTCC_MODE, TG3_FL_5705,
0x00000000, 0x000000f6 },
{ HOSTCC_RXCOL_TICKS, TG3_FL_NOT_5705,
0x00000000, 0xffffffff },
{ HOSTCC_RXCOL_TICKS, TG3_FL_5705,
0x00000000, 0x000003ff },
{ HOSTCC_TXCOL_TICKS, TG3_FL_NOT_5705,
0x00000000, 0xffffffff },
{ HOSTCC_TXCOL_TICKS, TG3_FL_5705,
0x00000000, 0x000003ff },
{ HOSTCC_RXMAX_FRAMES, TG3_FL_NOT_5705,
0x00000000, 0xffffffff },
{ HOSTCC_RXMAX_FRAMES, TG3_FL_5705 | TG3_FL_NOT_5788,
0x00000000, 0x000000ff },
{ HOSTCC_TXMAX_FRAMES, TG3_FL_NOT_5705,
0x00000000, 0xffffffff },
{ HOSTCC_TXMAX_FRAMES, TG3_FL_5705 | TG3_FL_NOT_5788,
0x00000000, 0x000000ff },
{ HOSTCC_RXCOAL_TICK_INT, TG3_FL_NOT_5705,
0x00000000, 0xffffffff },
{ HOSTCC_TXCOAL_TICK_INT, TG3_FL_NOT_5705,
0x00000000, 0xffffffff },
{ HOSTCC_RXCOAL_MAXF_INT, TG3_FL_NOT_5705,
0x00000000, 0xffffffff },
{ HOSTCC_RXCOAL_MAXF_INT, TG3_FL_5705 | TG3_FL_NOT_5788,
0x00000000, 0x000000ff },
{ HOSTCC_TXCOAL_MAXF_INT, TG3_FL_NOT_5705,
0x00000000, 0xffffffff },
{ HOSTCC_TXCOAL_MAXF_INT, TG3_FL_5705 | TG3_FL_NOT_5788,
0x00000000, 0x000000ff },
{ HOSTCC_STAT_COAL_TICKS, TG3_FL_NOT_5705,
0x00000000, 0xffffffff },
{ HOSTCC_STATS_BLK_HOST_ADDR, TG3_FL_NOT_5705,
0x00000000, 0xffffffff },
{ HOSTCC_STATS_BLK_HOST_ADDR+4, TG3_FL_NOT_5705,
0x00000000, 0xffffffff },
{ HOSTCC_STATUS_BLK_HOST_ADDR, 0x0000,
0x00000000, 0xffffffff },
{ HOSTCC_STATUS_BLK_HOST_ADDR+4, 0x0000,
0x00000000, 0xffffffff },
{ HOSTCC_STATS_BLK_NIC_ADDR, 0x0000,
0xffffffff, 0x00000000 },
{ HOSTCC_STATUS_BLK_NIC_ADDR, 0x0000,
0xffffffff, 0x00000000 },
/* Buffer Manager Control Registers. */
{ BUFMGR_MB_POOL_ADDR, TG3_FL_NOT_5750,
0x00000000, 0x007fff80 },
{ BUFMGR_MB_POOL_SIZE, TG3_FL_NOT_5750,
0x00000000, 0x007fffff },
{ BUFMGR_MB_RDMA_LOW_WATER, 0x0000,
0x00000000, 0x0000003f },
{ BUFMGR_MB_MACRX_LOW_WATER, 0x0000,
0x00000000, 0x000001ff },
{ BUFMGR_MB_HIGH_WATER, 0x0000,
0x00000000, 0x000001ff },
{ BUFMGR_DMA_DESC_POOL_ADDR, TG3_FL_NOT_5705,
0xffffffff, 0x00000000 },
{ BUFMGR_DMA_DESC_POOL_SIZE, TG3_FL_NOT_5705,
0xffffffff, 0x00000000 },
/* Mailbox Registers */
{ GRCMBOX_RCVSTD_PROD_IDX+4, 0x0000,
0x00000000, 0x000001ff },
{ GRCMBOX_RCVJUMBO_PROD_IDX+4, TG3_FL_NOT_5705,
0x00000000, 0x000001ff },
{ GRCMBOX_RCVRET_CON_IDX_0+4, 0x0000,
0x00000000, 0x000007ff },
{ GRCMBOX_SNDHOST_PROD_IDX_0+4, 0x0000,
0x00000000, 0x000001ff },
{ 0xffff, 0x0000, 0x00000000, 0x00000000 },
};
is_5705 = is_5750 = 0;
if (tg3_flag(tp, 5705_PLUS)) {
is_5705 = 1;
if (tg3_flag(tp, 5750_PLUS))
is_5750 = 1;
}
for (i = 0; reg_tbl[i].offset != 0xffff; i++) {
if (is_5705 && (reg_tbl[i].flags & TG3_FL_NOT_5705))
continue;
if (!is_5705 && (reg_tbl[i].flags & TG3_FL_5705))
continue;
if (tg3_flag(tp, IS_5788) &&
(reg_tbl[i].flags & TG3_FL_NOT_5788))
continue;
if (is_5750 && (reg_tbl[i].flags & TG3_FL_NOT_5750))
continue;
offset = (u32) reg_tbl[i].offset;
read_mask = reg_tbl[i].read_mask;
write_mask = reg_tbl[i].write_mask;
/* Save the original register content */
save_val = tr32(offset);
/* Determine the read-only value. */
read_val = save_val & read_mask;
/* Write zero to the register, then make sure the read-only bits
* are not changed and the read/write bits are all zeros.
*/
tw32(offset, 0);
val = tr32(offset);
/* Test the read-only and read/write bits. */
if (((val & read_mask) != read_val) || (val & write_mask))
goto out;
/* Write ones to all the bits defined by RdMask and WrMask, then
* make sure the read-only bits are not changed and the
* read/write bits are all ones.
*/
tw32(offset, read_mask | write_mask);
val = tr32(offset);
/* Test the read-only bits. */
if ((val & read_mask) != read_val)
goto out;
/* Test the read/write bits. */
if ((val & write_mask) != write_mask)
goto out;
tw32(offset, save_val);
}
return 0;
out:
if (netif_msg_hw(tp))
netdev_err(tp->dev,
"Register test failed at offset %x\n", offset);
tw32(offset, save_val);
return -EIO;
}
static int tg3_do_mem_test(struct tg3 *tp, u32 offset, u32 len)
{
static const u32 test_pattern[] = { 0x00000000, 0xffffffff, 0xaa55a55a };
int i;
u32 j;
for (i = 0; i < ARRAY_SIZE(test_pattern); i++) {
for (j = 0; j < len; j += 4) {
u32 val;
tg3_write_mem(tp, offset + j, test_pattern[i]);
tg3_read_mem(tp, offset + j, &val);
if (val != test_pattern[i])
return -EIO;
}
}
return 0;
}
static int tg3_test_memory(struct tg3 *tp)
{
static struct mem_entry {
u32 offset;
u32 len;
} mem_tbl_570x[] = {
{ 0x00000000, 0x00b50},
{ 0x00002000, 0x1c000},
{ 0xffffffff, 0x00000}
}, mem_tbl_5705[] = {
{ 0x00000100, 0x0000c},
{ 0x00000200, 0x00008},
{ 0x00004000, 0x00800},
{ 0x00006000, 0x01000},
{ 0x00008000, 0x02000},
{ 0x00010000, 0x0e000},
{ 0xffffffff, 0x00000}
}, mem_tbl_5755[] = {
{ 0x00000200, 0x00008},
{ 0x00004000, 0x00800},
{ 0x00006000, 0x00800},
{ 0x00008000, 0x02000},
{ 0x00010000, 0x0c000},
{ 0xffffffff, 0x00000}
}, mem_tbl_5906[] = {
{ 0x00000200, 0x00008},
{ 0x00004000, 0x00400},
{ 0x00006000, 0x00400},
{ 0x00008000, 0x01000},
{ 0x00010000, 0x01000},
{ 0xffffffff, 0x00000}
}, mem_tbl_5717[] = {
{ 0x00000200, 0x00008},
{ 0x00010000, 0x0a000},
{ 0x00020000, 0x13c00},
{ 0xffffffff, 0x00000}
}, mem_tbl_57765[] = {
{ 0x00000200, 0x00008},
{ 0x00004000, 0x00800},
{ 0x00006000, 0x09800},
{ 0x00010000, 0x0a000},
{ 0xffffffff, 0x00000}
};
struct mem_entry *mem_tbl;
int err = 0;
int i;
if (tg3_flag(tp, 5717_PLUS))
mem_tbl = mem_tbl_5717;
else if (tg3_flag(tp, 57765_CLASS) ||
tg3_asic_rev(tp) == ASIC_REV_5762)
mem_tbl = mem_tbl_57765;
else if (tg3_flag(tp, 5755_PLUS))
mem_tbl = mem_tbl_5755;
else if (tg3_asic_rev(tp) == ASIC_REV_5906)
mem_tbl = mem_tbl_5906;
else if (tg3_flag(tp, 5705_PLUS))
mem_tbl = mem_tbl_5705;
else
mem_tbl = mem_tbl_570x;
for (i = 0; mem_tbl[i].offset != 0xffffffff; i++) {
err = tg3_do_mem_test(tp, mem_tbl[i].offset, mem_tbl[i].len);
if (err)
break;
}
return err;
}
#define TG3_TSO_MSS 500
#define TG3_TSO_IP_HDR_LEN 20
#define TG3_TSO_TCP_HDR_LEN 20
#define TG3_TSO_TCP_OPT_LEN 12
static const u8 tg3_tso_header[] = {
0x08, 0x00,
0x45, 0x00, 0x00, 0x00,
0x00, 0x00, 0x40, 0x00,
0x40, 0x06, 0x00, 0x00,
0x0a, 0x00, 0x00, 0x01,
0x0a, 0x00, 0x00, 0x02,
0x0d, 0x00, 0xe0, 0x00,
0x00, 0x00, 0x01, 0x00,
0x00, 0x00, 0x02, 0x00,
0x80, 0x10, 0x10, 0x00,
0x14, 0x09, 0x00, 0x00,
0x01, 0x01, 0x08, 0x0a,
0x11, 0x11, 0x11, 0x11,
0x11, 0x11, 0x11, 0x11,
};
static int tg3_run_loopback(struct tg3 *tp, u32 pktsz, bool tso_loopback)
{
u32 rx_start_idx, rx_idx, tx_idx, opaque_key;
u32 base_flags = 0, mss = 0, desc_idx, coal_now, data_off, val;
u32 budget;
struct sk_buff *skb;
u8 *tx_data, *rx_data;
dma_addr_t map;
int num_pkts, tx_len, rx_len, i, err;
struct tg3_rx_buffer_desc *desc;
struct tg3_napi *tnapi, *rnapi;
struct tg3_rx_prodring_set *tpr = &tp->napi[0].prodring;
tnapi = &tp->napi[0];
rnapi = &tp->napi[0];
if (tp->irq_cnt > 1) {
if (tg3_flag(tp, ENABLE_RSS))
rnapi = &tp->napi[1];
if (tg3_flag(tp, ENABLE_TSS))
tnapi = &tp->napi[1];
}
coal_now = tnapi->coal_now | rnapi->coal_now;
err = -EIO;
tx_len = pktsz;
skb = netdev_alloc_skb(tp->dev, tx_len);
if (!skb)
return -ENOMEM;
tx_data = skb_put(skb, tx_len);
memcpy(tx_data, tp->dev->dev_addr, 6);
memset(tx_data + 6, 0x0, 8);
tw32(MAC_RX_MTU_SIZE, tx_len + ETH_FCS_LEN);
if (tso_loopback) {
struct iphdr *iph = (struct iphdr *)&tx_data[ETH_HLEN];
u32 hdr_len = TG3_TSO_IP_HDR_LEN + TG3_TSO_TCP_HDR_LEN +
TG3_TSO_TCP_OPT_LEN;
memcpy(tx_data + ETH_ALEN * 2, tg3_tso_header,
sizeof(tg3_tso_header));
mss = TG3_TSO_MSS;
val = tx_len - ETH_ALEN * 2 - sizeof(tg3_tso_header);
num_pkts = DIV_ROUND_UP(val, TG3_TSO_MSS);
/* Set the total length field in the IP header */
iph->tot_len = htons((u16)(mss + hdr_len));
base_flags = (TXD_FLAG_CPU_PRE_DMA |
TXD_FLAG_CPU_POST_DMA);
if (tg3_flag(tp, HW_TSO_1) ||
tg3_flag(tp, HW_TSO_2) ||
tg3_flag(tp, HW_TSO_3)) {
struct tcphdr *th;
val = ETH_HLEN + TG3_TSO_IP_HDR_LEN;
th = (struct tcphdr *)&tx_data[val];
th->check = 0;
} else
base_flags |= TXD_FLAG_TCPUDP_CSUM;
if (tg3_flag(tp, HW_TSO_3)) {
mss |= (hdr_len & 0xc) << 12;
if (hdr_len & 0x10)
base_flags |= 0x00000010;
base_flags |= (hdr_len & 0x3e0) << 5;
} else if (tg3_flag(tp, HW_TSO_2))
mss |= hdr_len << 9;
else if (tg3_flag(tp, HW_TSO_1) ||
tg3_asic_rev(tp) == ASIC_REV_5705) {
mss |= (TG3_TSO_TCP_OPT_LEN << 9);
} else {
base_flags |= (TG3_TSO_TCP_OPT_LEN << 10);
}
data_off = ETH_ALEN * 2 + sizeof(tg3_tso_header);
} else {
num_pkts = 1;
data_off = ETH_HLEN;
if (tg3_flag(tp, USE_JUMBO_BDFLAG) &&
tx_len > VLAN_ETH_FRAME_LEN)
base_flags |= TXD_FLAG_JMB_PKT;
}
for (i = data_off; i < tx_len; i++)
tx_data[i] = (u8) (i & 0xff);
map = pci_map_single(tp->pdev, skb->data, tx_len, PCI_DMA_TODEVICE);
if (pci_dma_mapping_error(tp->pdev, map)) {
dev_kfree_skb(skb);
return -EIO;
}
val = tnapi->tx_prod;
tnapi->tx_buffers[val].skb = skb;
dma_unmap_addr_set(&tnapi->tx_buffers[val], mapping, map);
tw32_f(HOSTCC_MODE, tp->coalesce_mode | HOSTCC_MODE_ENABLE |
rnapi->coal_now);
udelay(10);
rx_start_idx = rnapi->hw_status->idx[0].rx_producer;
budget = tg3_tx_avail(tnapi);
if (tg3_tx_frag_set(tnapi, &val, &budget, map, tx_len,
base_flags | TXD_FLAG_END, mss, 0)) {
tnapi->tx_buffers[val].skb = NULL;
dev_kfree_skb(skb);
return -EIO;
}
tnapi->tx_prod++;
/* Sync BD data before updating mailbox */
wmb();
tw32_tx_mbox(tnapi->prodmbox, tnapi->tx_prod);
tr32_mailbox(tnapi->prodmbox);
udelay(10);
/* 350 usec to allow enough time on some 10/100 Mbps devices. */
for (i = 0; i < 35; i++) {
tw32_f(HOSTCC_MODE, tp->coalesce_mode | HOSTCC_MODE_ENABLE |
coal_now);
udelay(10);
tx_idx = tnapi->hw_status->idx[0].tx_consumer;
rx_idx = rnapi->hw_status->idx[0].rx_producer;
if ((tx_idx == tnapi->tx_prod) &&
(rx_idx == (rx_start_idx + num_pkts)))
break;
}
tg3_tx_skb_unmap(tnapi, tnapi->tx_prod - 1, -1);
dev_kfree_skb(skb);
if (tx_idx != tnapi->tx_prod)
goto out;
if (rx_idx != rx_start_idx + num_pkts)
goto out;
val = data_off;
while (rx_idx != rx_start_idx) {
desc = &rnapi->rx_rcb[rx_start_idx++];
desc_idx = desc->opaque & RXD_OPAQUE_INDEX_MASK;
opaque_key = desc->opaque & RXD_OPAQUE_RING_MASK;
if ((desc->err_vlan & RXD_ERR_MASK) != 0 &&
(desc->err_vlan != RXD_ERR_ODD_NIBBLE_RCVD_MII))
goto out;
rx_len = ((desc->idx_len & RXD_LEN_MASK) >> RXD_LEN_SHIFT)
- ETH_FCS_LEN;
if (!tso_loopback) {
if (rx_len != tx_len)
goto out;
if (pktsz <= TG3_RX_STD_DMA_SZ - ETH_FCS_LEN) {
if (opaque_key != RXD_OPAQUE_RING_STD)
goto out;
} else {
if (opaque_key != RXD_OPAQUE_RING_JUMBO)
goto out;
}
} else if ((desc->type_flags & RXD_FLAG_TCPUDP_CSUM) &&
(desc->ip_tcp_csum & RXD_TCPCSUM_MASK)
>> RXD_TCPCSUM_SHIFT != 0xffff) {
goto out;
}
if (opaque_key == RXD_OPAQUE_RING_STD) {
rx_data = tpr->rx_std_buffers[desc_idx].data;
map = dma_unmap_addr(&tpr->rx_std_buffers[desc_idx],
mapping);
} else if (opaque_key == RXD_OPAQUE_RING_JUMBO) {
rx_data = tpr->rx_jmb_buffers[desc_idx].data;
map = dma_unmap_addr(&tpr->rx_jmb_buffers[desc_idx],
mapping);
} else
goto out;
pci_dma_sync_single_for_cpu(tp->pdev, map, rx_len,
PCI_DMA_FROMDEVICE);
rx_data += TG3_RX_OFFSET(tp);
for (i = data_off; i < rx_len; i++, val++) {
if (*(rx_data + i) != (u8) (val & 0xff))
goto out;
}
}
err = 0;
/* tg3_free_rings will unmap and free the rx_data */
out:
return err;
}
#define TG3_STD_LOOPBACK_FAILED 1
#define TG3_JMB_LOOPBACK_FAILED 2
#define TG3_TSO_LOOPBACK_FAILED 4
#define TG3_LOOPBACK_FAILED \
(TG3_STD_LOOPBACK_FAILED | \
TG3_JMB_LOOPBACK_FAILED | \
TG3_TSO_LOOPBACK_FAILED)
static int tg3_test_loopback(struct tg3 *tp, u64 *data, bool do_extlpbk)
{
int err = -EIO;
u32 eee_cap;
u32 jmb_pkt_sz = 9000;
if (tp->dma_limit)
jmb_pkt_sz = tp->dma_limit - ETH_HLEN;
eee_cap = tp->phy_flags & TG3_PHYFLG_EEE_CAP;
tp->phy_flags &= ~TG3_PHYFLG_EEE_CAP;
if (!netif_running(tp->dev)) {
data[TG3_MAC_LOOPB_TEST] = TG3_LOOPBACK_FAILED;
data[TG3_PHY_LOOPB_TEST] = TG3_LOOPBACK_FAILED;
if (do_extlpbk)
data[TG3_EXT_LOOPB_TEST] = TG3_LOOPBACK_FAILED;
goto done;
}
err = tg3_reset_hw(tp, true);
if (err) {
data[TG3_MAC_LOOPB_TEST] = TG3_LOOPBACK_FAILED;
data[TG3_PHY_LOOPB_TEST] = TG3_LOOPBACK_FAILED;
if (do_extlpbk)
data[TG3_EXT_LOOPB_TEST] = TG3_LOOPBACK_FAILED;
goto done;
}
if (tg3_flag(tp, ENABLE_RSS)) {
int i;
/* Reroute all rx packets to the 1st queue */
for (i = MAC_RSS_INDIR_TBL_0;
i < MAC_RSS_INDIR_TBL_0 + TG3_RSS_INDIR_TBL_SIZE; i += 4)
tw32(i, 0x0);
}
/* HW errata - mac loopback fails in some cases on 5780.
* Normal traffic and PHY loopback are not affected by
* errata. Also, the MAC loopback test is deprecated for
* all newer ASIC revisions.
*/
if (tg3_asic_rev(tp) != ASIC_REV_5780 &&
!tg3_flag(tp, CPMU_PRESENT)) {
tg3_mac_loopback(tp, true);
if (tg3_run_loopback(tp, ETH_FRAME_LEN, false))
data[TG3_MAC_LOOPB_TEST] |= TG3_STD_LOOPBACK_FAILED;
if (tg3_flag(tp, JUMBO_RING_ENABLE) &&
tg3_run_loopback(tp, jmb_pkt_sz + ETH_HLEN, false))
data[TG3_MAC_LOOPB_TEST] |= TG3_JMB_LOOPBACK_FAILED;
tg3_mac_loopback(tp, false);
}
if (!(tp->phy_flags & TG3_PHYFLG_PHY_SERDES) &&
!tg3_flag(tp, USE_PHYLIB)) {
int i;
tg3_phy_lpbk_set(tp, 0, false);
/* Wait for link */
for (i = 0; i < 100; i++) {
if (tr32(MAC_TX_STATUS) & TX_STATUS_LINK_UP)
break;
mdelay(1);
}
if (tg3_run_loopback(tp, ETH_FRAME_LEN, false))
data[TG3_PHY_LOOPB_TEST] |= TG3_STD_LOOPBACK_FAILED;
if (tg3_flag(tp, TSO_CAPABLE) &&
tg3_run_loopback(tp, ETH_FRAME_LEN, true))
data[TG3_PHY_LOOPB_TEST] |= TG3_TSO_LOOPBACK_FAILED;
if (tg3_flag(tp, JUMBO_RING_ENABLE) &&
tg3_run_loopback(tp, jmb_pkt_sz + ETH_HLEN, false))
data[TG3_PHY_LOOPB_TEST] |= TG3_JMB_LOOPBACK_FAILED;
if (do_extlpbk) {
tg3_phy_lpbk_set(tp, 0, true);
/* All link indications report up, but the hardware
* isn't really ready for about 20 msec. Double it
* to be sure.
*/
mdelay(40);
if (tg3_run_loopback(tp, ETH_FRAME_LEN, false))
data[TG3_EXT_LOOPB_TEST] |=
TG3_STD_LOOPBACK_FAILED;
if (tg3_flag(tp, TSO_CAPABLE) &&
tg3_run_loopback(tp, ETH_FRAME_LEN, true))
data[TG3_EXT_LOOPB_TEST] |=
TG3_TSO_LOOPBACK_FAILED;
if (tg3_flag(tp, JUMBO_RING_ENABLE) &&
tg3_run_loopback(tp, jmb_pkt_sz + ETH_HLEN, false))
data[TG3_EXT_LOOPB_TEST] |=
TG3_JMB_LOOPBACK_FAILED;
}
/* Re-enable gphy autopowerdown. */
if (tp->phy_flags & TG3_PHYFLG_ENABLE_APD)
tg3_phy_toggle_apd(tp, true);
}
err = (data[TG3_MAC_LOOPB_TEST] | data[TG3_PHY_LOOPB_TEST] |
data[TG3_EXT_LOOPB_TEST]) ? -EIO : 0;
done:
tp->phy_flags |= eee_cap;
return err;
}
static void tg3_self_test(struct net_device *dev, struct ethtool_test *etest,
u64 *data)
{
struct tg3 *tp = netdev_priv(dev);
bool doextlpbk = etest->flags & ETH_TEST_FL_EXTERNAL_LB;
if ((tp->phy_flags & TG3_PHYFLG_IS_LOW_POWER) &&
tg3_power_up(tp)) {
etest->flags |= ETH_TEST_FL_FAILED;
memset(data, 1, sizeof(u64) * TG3_NUM_TEST);
return;
}
memset(data, 0, sizeof(u64) * TG3_NUM_TEST);
if (tg3_test_nvram(tp) != 0) {
etest->flags |= ETH_TEST_FL_FAILED;
data[TG3_NVRAM_TEST] = 1;
}
if (!doextlpbk && tg3_test_link(tp)) {
etest->flags |= ETH_TEST_FL_FAILED;
data[TG3_LINK_TEST] = 1;
}
if (etest->flags & ETH_TEST_FL_OFFLINE) {
int err, err2 = 0, irq_sync = 0;
if (netif_running(dev)) {
tg3_phy_stop(tp);
tg3_netif_stop(tp);
irq_sync = 1;
}
tg3_full_lock(tp, irq_sync);
tg3_halt(tp, RESET_KIND_SUSPEND, 1);
err = tg3_nvram_lock(tp);
tg3_halt_cpu(tp, RX_CPU_BASE);
if (!tg3_flag(tp, 5705_PLUS))
tg3_halt_cpu(tp, TX_CPU_BASE);
if (!err)
tg3_nvram_unlock(tp);
if (tp->phy_flags & TG3_PHYFLG_MII_SERDES)
tg3_phy_reset(tp);
if (tg3_test_registers(tp) != 0) {
etest->flags |= ETH_TEST_FL_FAILED;
data[TG3_REGISTER_TEST] = 1;
}
if (tg3_test_memory(tp) != 0) {
etest->flags |= ETH_TEST_FL_FAILED;
data[TG3_MEMORY_TEST] = 1;
}
if (doextlpbk)
etest->flags |= ETH_TEST_FL_EXTERNAL_LB_DONE;
if (tg3_test_loopback(tp, data, doextlpbk))
etest->flags |= ETH_TEST_FL_FAILED;
tg3_full_unlock(tp);
if (tg3_test_interrupt(tp) != 0) {
etest->flags |= ETH_TEST_FL_FAILED;
data[TG3_INTERRUPT_TEST] = 1;
}
tg3_full_lock(tp, 0);
tg3_halt(tp, RESET_KIND_SHUTDOWN, 1);
if (netif_running(dev)) {
tg3_flag_set(tp, INIT_COMPLETE);
err2 = tg3_restart_hw(tp, true);
if (!err2)
tg3_netif_start(tp);
}
tg3_full_unlock(tp);
if (irq_sync && !err2)
tg3_phy_start(tp);
}
if (tp->phy_flags & TG3_PHYFLG_IS_LOW_POWER)
tg3_power_down(tp);
}
static int tg3_hwtstamp_ioctl(struct net_device *dev,
struct ifreq *ifr, int cmd)
{
struct tg3 *tp = netdev_priv(dev);
struct hwtstamp_config stmpconf;
if (!tg3_flag(tp, PTP_CAPABLE))
return -EINVAL;
if (copy_from_user(&stmpconf, ifr->ifr_data, sizeof(stmpconf)))
return -EFAULT;
if (stmpconf.flags)
return -EINVAL;
switch (stmpconf.tx_type) {
case HWTSTAMP_TX_ON:
tg3_flag_set(tp, TX_TSTAMP_EN);
break;
case HWTSTAMP_TX_OFF:
tg3_flag_clear(tp, TX_TSTAMP_EN);
break;
default:
return -ERANGE;
}
switch (stmpconf.rx_filter) {
case HWTSTAMP_FILTER_NONE:
tp->rxptpctl = 0;
break;
case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
tp->rxptpctl = TG3_RX_PTP_CTL_RX_PTP_V1_EN |
TG3_RX_PTP_CTL_ALL_V1_EVENTS;
break;
case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
tp->rxptpctl = TG3_RX_PTP_CTL_RX_PTP_V1_EN |
TG3_RX_PTP_CTL_SYNC_EVNT;
break;
case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
tp->rxptpctl = TG3_RX_PTP_CTL_RX_PTP_V1_EN |
TG3_RX_PTP_CTL_DELAY_REQ;
break;
case HWTSTAMP_FILTER_PTP_V2_EVENT:
tp->rxptpctl = TG3_RX_PTP_CTL_RX_PTP_V2_EN |
TG3_RX_PTP_CTL_ALL_V2_EVENTS;
break;
case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
tp->rxptpctl = TG3_RX_PTP_CTL_RX_PTP_V2_L2_EN |
TG3_RX_PTP_CTL_ALL_V2_EVENTS;
break;
case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
tp->rxptpctl = TG3_RX_PTP_CTL_RX_PTP_V2_L4_EN |
TG3_RX_PTP_CTL_ALL_V2_EVENTS;
break;
case HWTSTAMP_FILTER_PTP_V2_SYNC:
tp->rxptpctl = TG3_RX_PTP_CTL_RX_PTP_V2_EN |
TG3_RX_PTP_CTL_SYNC_EVNT;
break;
case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
tp->rxptpctl = TG3_RX_PTP_CTL_RX_PTP_V2_L2_EN |
TG3_RX_PTP_CTL_SYNC_EVNT;
break;
case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
tp->rxptpctl = TG3_RX_PTP_CTL_RX_PTP_V2_L4_EN |
TG3_RX_PTP_CTL_SYNC_EVNT;
break;
case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
tp->rxptpctl = TG3_RX_PTP_CTL_RX_PTP_V2_EN |
TG3_RX_PTP_CTL_DELAY_REQ;
break;
case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
tp->rxptpctl = TG3_RX_PTP_CTL_RX_PTP_V2_L2_EN |
TG3_RX_PTP_CTL_DELAY_REQ;
break;
case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
tp->rxptpctl = TG3_RX_PTP_CTL_RX_PTP_V2_L4_EN |
TG3_RX_PTP_CTL_DELAY_REQ;
break;
default:
return -ERANGE;
}
if (netif_running(dev) && tp->rxptpctl)
tw32(TG3_RX_PTP_CTL,
tp->rxptpctl | TG3_RX_PTP_CTL_HWTS_INTERLOCK);
return copy_to_user(ifr->ifr_data, &stmpconf, sizeof(stmpconf)) ?
-EFAULT : 0;
}
static int tg3_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{
struct mii_ioctl_data *data = if_mii(ifr);
struct tg3 *tp = netdev_priv(dev);
int err;
if (tg3_flag(tp, USE_PHYLIB)) {
struct phy_device *phydev;
if (!(tp->phy_flags & TG3_PHYFLG_IS_CONNECTED))
return -EAGAIN;
phydev = tp->mdio_bus->phy_map[TG3_PHY_MII_ADDR];
return phy_mii_ioctl(phydev, ifr, cmd);
}
switch (cmd) {
case SIOCGMIIPHY:
data->phy_id = tp->phy_addr;
/* fallthru */
case SIOCGMIIREG: {
u32 mii_regval;
if (tp->phy_flags & TG3_PHYFLG_PHY_SERDES)
break; /* We have no PHY */
if (!netif_running(dev))
return -EAGAIN;
spin_lock_bh(&tp->lock);
err = __tg3_readphy(tp, data->phy_id & 0x1f,
data->reg_num & 0x1f, &mii_regval);
spin_unlock_bh(&tp->lock);
data->val_out = mii_regval;
return err;
}
case SIOCSMIIREG:
if (tp->phy_flags & TG3_PHYFLG_PHY_SERDES)
break; /* We have no PHY */
if (!netif_running(dev))
return -EAGAIN;
spin_lock_bh(&tp->lock);
err = __tg3_writephy(tp, data->phy_id & 0x1f,
data->reg_num & 0x1f, data->val_in);
spin_unlock_bh(&tp->lock);
return err;
case SIOCSHWTSTAMP:
return tg3_hwtstamp_ioctl(dev, ifr, cmd);
default:
/* do nothing */
break;
}
return -EOPNOTSUPP;
}
static int tg3_get_coalesce(struct net_device *dev, struct ethtool_coalesce *ec)
{
struct tg3 *tp = netdev_priv(dev);
memcpy(ec, &tp->coal, sizeof(*ec));
return 0;
}
static int tg3_set_coalesce(struct net_device *dev, struct ethtool_coalesce *ec)
{
struct tg3 *tp = netdev_priv(dev);
u32 max_rxcoal_tick_int = 0, max_txcoal_tick_int = 0;
u32 max_stat_coal_ticks = 0, min_stat_coal_ticks = 0;
if (!tg3_flag(tp, 5705_PLUS)) {
max_rxcoal_tick_int = MAX_RXCOAL_TICK_INT;
max_txcoal_tick_int = MAX_TXCOAL_TICK_INT;
max_stat_coal_ticks = MAX_STAT_COAL_TICKS;
min_stat_coal_ticks = MIN_STAT_COAL_TICKS;
}
if ((ec->rx_coalesce_usecs > MAX_RXCOL_TICKS) ||
(ec->tx_coalesce_usecs > MAX_TXCOL_TICKS) ||
(ec->rx_max_coalesced_frames > MAX_RXMAX_FRAMES) ||
(ec->tx_max_coalesced_frames > MAX_TXMAX_FRAMES) ||
(ec->rx_coalesce_usecs_irq > max_rxcoal_tick_int) ||
(ec->tx_coalesce_usecs_irq > max_txcoal_tick_int) ||
(ec->rx_max_coalesced_frames_irq > MAX_RXCOAL_MAXF_INT) ||
(ec->tx_max_coalesced_frames_irq > MAX_TXCOAL_MAXF_INT) ||
(ec->stats_block_coalesce_usecs > max_stat_coal_ticks) ||
(ec->stats_block_coalesce_usecs < min_stat_coal_ticks))
return -EINVAL;
/* No rx interrupts will be generated if both are zero */
if ((ec->rx_coalesce_usecs == 0) &&
(ec->rx_max_coalesced_frames == 0))
return -EINVAL;
/* No tx interrupts will be generated if both are zero */
if ((ec->tx_coalesce_usecs == 0) &&
(ec->tx_max_coalesced_frames == 0))
return -EINVAL;
/* Only copy relevant parameters, ignore all others. */
tp->coal.rx_coalesce_usecs = ec->rx_coalesce_usecs;
tp->coal.tx_coalesce_usecs = ec->tx_coalesce_usecs;
tp->coal.rx_max_coalesced_frames = ec->rx_max_coalesced_frames;
tp->coal.tx_max_coalesced_frames = ec->tx_max_coalesced_frames;
tp->coal.rx_coalesce_usecs_irq = ec->rx_coalesce_usecs_irq;
tp->coal.tx_coalesce_usecs_irq = ec->tx_coalesce_usecs_irq;
tp->coal.rx_max_coalesced_frames_irq = ec->rx_max_coalesced_frames_irq;
tp->coal.tx_max_coalesced_frames_irq = ec->tx_max_coalesced_frames_irq;
tp->coal.stats_block_coalesce_usecs = ec->stats_block_coalesce_usecs;
if (netif_running(dev)) {
tg3_full_lock(tp, 0);
__tg3_set_coalesce(tp, &tp->coal);
tg3_full_unlock(tp);
}
return 0;
}
static const struct ethtool_ops tg3_ethtool_ops = {
.get_settings = tg3_get_settings,
.set_settings = tg3_set_settings,
.get_drvinfo = tg3_get_drvinfo,
.get_regs_len = tg3_get_regs_len,
.get_regs = tg3_get_regs,
.get_wol = tg3_get_wol,
.set_wol = tg3_set_wol,
.get_msglevel = tg3_get_msglevel,
.set_msglevel = tg3_set_msglevel,
.nway_reset = tg3_nway_reset,
.get_link = ethtool_op_get_link,
.get_eeprom_len = tg3_get_eeprom_len,
.get_eeprom = tg3_get_eeprom,
.set_eeprom = tg3_set_eeprom,
.get_ringparam = tg3_get_ringparam,
.set_ringparam = tg3_set_ringparam,
.get_pauseparam = tg3_get_pauseparam,
.set_pauseparam = tg3_set_pauseparam,
.self_test = tg3_self_test,
.get_strings = tg3_get_strings,
.set_phys_id = tg3_set_phys_id,
.get_ethtool_stats = tg3_get_ethtool_stats,
.get_coalesce = tg3_get_coalesce,
.set_coalesce = tg3_set_coalesce,
.get_sset_count = tg3_get_sset_count,
.get_rxnfc = tg3_get_rxnfc,
.get_rxfh_indir_size = tg3_get_rxfh_indir_size,
.get_rxfh_indir = tg3_get_rxfh_indir,
.set_rxfh_indir = tg3_set_rxfh_indir,
.get_channels = tg3_get_channels,
.set_channels = tg3_set_channels,
.get_ts_info = tg3_get_ts_info,
};
static struct rtnl_link_stats64 *tg3_get_stats64(struct net_device *dev,
struct rtnl_link_stats64 *stats)
{
struct tg3 *tp = netdev_priv(dev);
spin_lock_bh(&tp->lock);
if (!tp->hw_stats) {
spin_unlock_bh(&tp->lock);
return &tp->net_stats_prev;
}
tg3_get_nstats(tp, stats);
spin_unlock_bh(&tp->lock);
return stats;
}
static void tg3_set_rx_mode(struct net_device *dev)
{
struct tg3 *tp = netdev_priv(dev);
if (!netif_running(dev))
return;
tg3_full_lock(tp, 0);
__tg3_set_rx_mode(dev);
tg3_full_unlock(tp);
}
static inline void tg3_set_mtu(struct net_device *dev, struct tg3 *tp,
int new_mtu)
{
dev->mtu = new_mtu;
if (new_mtu > ETH_DATA_LEN) {
if (tg3_flag(tp, 5780_CLASS)) {
netdev_update_features(dev);
tg3_flag_clear(tp, TSO_CAPABLE);
} else {
tg3_flag_set(tp, JUMBO_RING_ENABLE);
}
} else {
if (tg3_flag(tp, 5780_CLASS)) {
tg3_flag_set(tp, TSO_CAPABLE);
netdev_update_features(dev);
}
tg3_flag_clear(tp, JUMBO_RING_ENABLE);
}
}
static int tg3_change_mtu(struct net_device *dev, int new_mtu)
{
struct tg3 *tp = netdev_priv(dev);
int err;
bool reset_phy = false;
if (new_mtu < TG3_MIN_MTU || new_mtu > TG3_MAX_MTU(tp))
return -EINVAL;
if (!netif_running(dev)) {
/* We'll just catch it later when the
* device is up'd.
*/
tg3_set_mtu(dev, tp, new_mtu);
return 0;
}
tg3_phy_stop(tp);
tg3_netif_stop(tp);
tg3_full_lock(tp, 1);
tg3_halt(tp, RESET_KIND_SHUTDOWN, 1);
tg3_set_mtu(dev, tp, new_mtu);
/* Reset PHY, otherwise the read DMA engine will be in a mode that
* breaks all requests to 256 bytes.
*/
if (tg3_asic_rev(tp) == ASIC_REV_57766)
reset_phy = true;
err = tg3_restart_hw(tp, reset_phy);
if (!err)
tg3_netif_start(tp);
tg3_full_unlock(tp);
if (!err)
tg3_phy_start(tp);
return err;
}
static const struct net_device_ops tg3_netdev_ops = {
.ndo_open = tg3_open,
.ndo_stop = tg3_close,
.ndo_start_xmit = tg3_start_xmit,
.ndo_get_stats64 = tg3_get_stats64,
.ndo_validate_addr = eth_validate_addr,
.ndo_set_rx_mode = tg3_set_rx_mode,
.ndo_set_mac_address = tg3_set_mac_addr,
.ndo_do_ioctl = tg3_ioctl,
.ndo_tx_timeout = tg3_tx_timeout,
.ndo_change_mtu = tg3_change_mtu,
.ndo_fix_features = tg3_fix_features,
.ndo_set_features = tg3_set_features,
#ifdef CONFIG_NET_POLL_CONTROLLER
.ndo_poll_controller = tg3_poll_controller,
#endif
};
static void tg3_get_eeprom_size(struct tg3 *tp)
{
u32 cursize, val, magic;
tp->nvram_size = EEPROM_CHIP_SIZE;
if (tg3_nvram_read(tp, 0, &magic) != 0)
return;
if ((magic != TG3_EEPROM_MAGIC) &&
((magic & TG3_EEPROM_MAGIC_FW_MSK) != TG3_EEPROM_MAGIC_FW) &&
((magic & TG3_EEPROM_MAGIC_HW_MSK) != TG3_EEPROM_MAGIC_HW))
return;
/*
* Size the chip by reading offsets at increasing powers of two.
* When we encounter our validation signature, we know the addressing
* has wrapped around, and thus have our chip size.
*/
cursize = 0x10;
while (cursize < tp->nvram_size) {
if (tg3_nvram_read(tp, cursize, &val) != 0)
return;
if (val == magic)
break;
cursize <<= 1;
}
tp->nvram_size = cursize;
}
static void tg3_get_nvram_size(struct tg3 *tp)
{
u32 val;
if (tg3_flag(tp, NO_NVRAM) || tg3_nvram_read(tp, 0, &val) != 0)
return;
/* Selfboot format */
if (val != TG3_EEPROM_MAGIC) {
tg3_get_eeprom_size(tp);
return;
}
if (tg3_nvram_read(tp, 0xf0, &val) == 0) {
if (val != 0) {
/* This is confusing. We want to operate on the
* 16-bit value at offset 0xf2. The tg3_nvram_read()
* call will read from NVRAM and byteswap the data
* according to the byteswapping settings for all
* other register accesses. This ensures the data we
* want will always reside in the lower 16-bits.
* However, the data in NVRAM is in LE format, which
* means the data from the NVRAM read will always be
* opposite the endianness of the CPU. The 16-bit
* byteswap then brings the data to CPU endianness.
*/
tp->nvram_size = swab16((u16)(val & 0x0000ffff)) * 1024;
return;
}
}
tp->nvram_size = TG3_NVRAM_SIZE_512KB;
}
static void tg3_get_nvram_info(struct tg3 *tp)
{
u32 nvcfg1;
nvcfg1 = tr32(NVRAM_CFG1);
if (nvcfg1 & NVRAM_CFG1_FLASHIF_ENAB) {
tg3_flag_set(tp, FLASH);
} else {
nvcfg1 &= ~NVRAM_CFG1_COMPAT_BYPASS;
tw32(NVRAM_CFG1, nvcfg1);
}
if (tg3_asic_rev(tp) == ASIC_REV_5750 ||
tg3_flag(tp, 5780_CLASS)) {
switch (nvcfg1 & NVRAM_CFG1_VENDOR_MASK) {
case FLASH_VENDOR_ATMEL_FLASH_BUFFERED:
tp->nvram_jedecnum = JEDEC_ATMEL;
tp->nvram_pagesize = ATMEL_AT45DB0X1B_PAGE_SIZE;
tg3_flag_set(tp, NVRAM_BUFFERED);
break;
case FLASH_VENDOR_ATMEL_FLASH_UNBUFFERED:
tp->nvram_jedecnum = JEDEC_ATMEL;
tp->nvram_pagesize = ATMEL_AT25F512_PAGE_SIZE;
break;
case FLASH_VENDOR_ATMEL_EEPROM:
tp->nvram_jedecnum = JEDEC_ATMEL;
tp->nvram_pagesize = ATMEL_AT24C512_CHIP_SIZE;
tg3_flag_set(tp, NVRAM_BUFFERED);
break;
case FLASH_VENDOR_ST:
tp->nvram_jedecnum = JEDEC_ST;
tp->nvram_pagesize = ST_M45PEX0_PAGE_SIZE;
tg3_flag_set(tp, NVRAM_BUFFERED);
break;
case FLASH_VENDOR_SAIFUN:
tp->nvram_jedecnum = JEDEC_SAIFUN;
tp->nvram_pagesize = SAIFUN_SA25F0XX_PAGE_SIZE;
break;
case FLASH_VENDOR_SST_SMALL:
case FLASH_VENDOR_SST_LARGE:
tp->nvram_jedecnum = JEDEC_SST;
tp->nvram_pagesize = SST_25VF0X0_PAGE_SIZE;
break;
}
} else {
tp->nvram_jedecnum = JEDEC_ATMEL;
tp->nvram_pagesize = ATMEL_AT45DB0X1B_PAGE_SIZE;
tg3_flag_set(tp, NVRAM_BUFFERED);
}
}
static void tg3_nvram_get_pagesize(struct tg3 *tp, u32 nvmcfg1)
{
switch (nvmcfg1 & NVRAM_CFG1_5752PAGE_SIZE_MASK) {
case FLASH_5752PAGE_SIZE_256:
tp->nvram_pagesize = 256;
break;
case FLASH_5752PAGE_SIZE_512:
tp->nvram_pagesize = 512;
break;
case FLASH_5752PAGE_SIZE_1K:
tp->nvram_pagesize = 1024;
break;
case FLASH_5752PAGE_SIZE_2K:
tp->nvram_pagesize = 2048;
break;
case FLASH_5752PAGE_SIZE_4K:
tp->nvram_pagesize = 4096;
break;
case FLASH_5752PAGE_SIZE_264:
tp->nvram_pagesize = 264;
break;
case FLASH_5752PAGE_SIZE_528:
tp->nvram_pagesize = 528;
break;
}
}
static void tg3_get_5752_nvram_info(struct tg3 *tp)
{
u32 nvcfg1;
nvcfg1 = tr32(NVRAM_CFG1);
/* NVRAM protection for TPM */
if (nvcfg1 & (1 << 27))
tg3_flag_set(tp, PROTECTED_NVRAM);
switch (nvcfg1 & NVRAM_CFG1_5752VENDOR_MASK) {
case FLASH_5752VENDOR_ATMEL_EEPROM_64KHZ:
case FLASH_5752VENDOR_ATMEL_EEPROM_376KHZ:
tp->nvram_jedecnum = JEDEC_ATMEL;
tg3_flag_set(tp, NVRAM_BUFFERED);
break;
case FLASH_5752VENDOR_ATMEL_FLASH_BUFFERED:
tp->nvram_jedecnum = JEDEC_ATMEL;
tg3_flag_set(tp, NVRAM_BUFFERED);
tg3_flag_set(tp, FLASH);
break;
case FLASH_5752VENDOR_ST_M45PE10:
case FLASH_5752VENDOR_ST_M45PE20:
case FLASH_5752VENDOR_ST_M45PE40:
tp->nvram_jedecnum = JEDEC_ST;
tg3_flag_set(tp, NVRAM_BUFFERED);
tg3_flag_set(tp, FLASH);
break;
}
if (tg3_flag(tp, FLASH)) {
tg3_nvram_get_pagesize(tp, nvcfg1);
} else {
/* For eeprom, set pagesize to maximum eeprom size */
tp->nvram_pagesize = ATMEL_AT24C512_CHIP_SIZE;
nvcfg1 &= ~NVRAM_CFG1_COMPAT_BYPASS;
tw32(NVRAM_CFG1, nvcfg1);
}
}
static void tg3_get_5755_nvram_info(struct tg3 *tp)
{
u32 nvcfg1, protect = 0;
nvcfg1 = tr32(NVRAM_CFG1);
/* NVRAM protection for TPM */
if (nvcfg1 & (1 << 27)) {
tg3_flag_set(tp, PROTECTED_NVRAM);
protect = 1;
}
nvcfg1 &= NVRAM_CFG1_5752VENDOR_MASK;
switch (nvcfg1) {
case FLASH_5755VENDOR_ATMEL_FLASH_1:
case FLASH_5755VENDOR_ATMEL_FLASH_2:
case FLASH_5755VENDOR_ATMEL_FLASH_3:
case FLASH_5755VENDOR_ATMEL_FLASH_5:
tp->nvram_jedecnum = JEDEC_ATMEL;
tg3_flag_set(tp, NVRAM_BUFFERED);
tg3_flag_set(tp, FLASH);
tp->nvram_pagesize = 264;
if (nvcfg1 == FLASH_5755VENDOR_ATMEL_FLASH_1 ||
nvcfg1 == FLASH_5755VENDOR_ATMEL_FLASH_5)
tp->nvram_size = (protect ? 0x3e200 :
TG3_NVRAM_SIZE_512KB);
else if (nvcfg1 == FLASH_5755VENDOR_ATMEL_FLASH_2)
tp->nvram_size = (protect ? 0x1f200 :
TG3_NVRAM_SIZE_256KB);
else
tp->nvram_size = (protect ? 0x1f200 :
TG3_NVRAM_SIZE_128KB);
break;
case FLASH_5752VENDOR_ST_M45PE10:
case FLASH_5752VENDOR_ST_M45PE20:
case FLASH_5752VENDOR_ST_M45PE40:
tp->nvram_jedecnum = JEDEC_ST;
tg3_flag_set(tp, NVRAM_BUFFERED);
tg3_flag_set(tp, FLASH);
tp->nvram_pagesize = 256;
if (nvcfg1 == FLASH_5752VENDOR_ST_M45PE10)
tp->nvram_size = (protect ?
TG3_NVRAM_SIZE_64KB :
TG3_NVRAM_SIZE_128KB);
else if (nvcfg1 == FLASH_5752VENDOR_ST_M45PE20)
tp->nvram_size = (protect ?
TG3_NVRAM_SIZE_64KB :
TG3_NVRAM_SIZE_256KB);
else
tp->nvram_size = (protect ?
TG3_NVRAM_SIZE_128KB :
TG3_NVRAM_SIZE_512KB);
break;
}
}
static void tg3_get_5787_nvram_info(struct tg3 *tp)
{
u32 nvcfg1;
nvcfg1 = tr32(NVRAM_CFG1);
switch (nvcfg1 & NVRAM_CFG1_5752VENDOR_MASK) {
case FLASH_5787VENDOR_ATMEL_EEPROM_64KHZ:
case FLASH_5787VENDOR_ATMEL_EEPROM_376KHZ:
case FLASH_5787VENDOR_MICRO_EEPROM_64KHZ:
case FLASH_5787VENDOR_MICRO_EEPROM_376KHZ:
tp->nvram_jedecnum = JEDEC_ATMEL;
tg3_flag_set(tp, NVRAM_BUFFERED);
tp->nvram_pagesize = ATMEL_AT24C512_CHIP_SIZE;
nvcfg1 &= ~NVRAM_CFG1_COMPAT_BYPASS;
tw32(NVRAM_CFG1, nvcfg1);
break;
case FLASH_5752VENDOR_ATMEL_FLASH_BUFFERED:
case FLASH_5755VENDOR_ATMEL_FLASH_1:
case FLASH_5755VENDOR_ATMEL_FLASH_2:
case FLASH_5755VENDOR_ATMEL_FLASH_3:
tp->nvram_jedecnum = JEDEC_ATMEL;
tg3_flag_set(tp, NVRAM_BUFFERED);
tg3_flag_set(tp, FLASH);
tp->nvram_pagesize = 264;
break;
case FLASH_5752VENDOR_ST_M45PE10:
case FLASH_5752VENDOR_ST_M45PE20:
case FLASH_5752VENDOR_ST_M45PE40:
tp->nvram_jedecnum = JEDEC_ST;
tg3_flag_set(tp, NVRAM_BUFFERED);
tg3_flag_set(tp, FLASH);
tp->nvram_pagesize = 256;
break;
}
}
static void tg3_get_5761_nvram_info(struct tg3 *tp)
{
u32 nvcfg1, protect = 0;
nvcfg1 = tr32(NVRAM_CFG1);
/* NVRAM protection for TPM */
if (nvcfg1 & (1 << 27)) {
tg3_flag_set(tp, PROTECTED_NVRAM);
protect = 1;
}
nvcfg1 &= NVRAM_CFG1_5752VENDOR_MASK;
switch (nvcfg1) {
case FLASH_5761VENDOR_ATMEL_ADB021D:
case FLASH_5761VENDOR_ATMEL_ADB041D:
case FLASH_5761VENDOR_ATMEL_ADB081D:
case FLASH_5761VENDOR_ATMEL_ADB161D:
case FLASH_5761VENDOR_ATMEL_MDB021D:
case FLASH_5761VENDOR_ATMEL_MDB041D:
case FLASH_5761VENDOR_ATMEL_MDB081D:
case FLASH_5761VENDOR_ATMEL_MDB161D:
tp->nvram_jedecnum = JEDEC_ATMEL;
tg3_flag_set(tp, NVRAM_BUFFERED);
tg3_flag_set(tp, FLASH);
tg3_flag_set(tp, NO_NVRAM_ADDR_TRANS);
tp->nvram_pagesize = 256;
break;
case FLASH_5761VENDOR_ST_A_M45PE20:
case FLASH_5761VENDOR_ST_A_M45PE40:
case FLASH_5761VENDOR_ST_A_M45PE80:
case FLASH_5761VENDOR_ST_A_M45PE16:
case FLASH_5761VENDOR_ST_M_M45PE20:
case FLASH_5761VENDOR_ST_M_M45PE40:
case FLASH_5761VENDOR_ST_M_M45PE80:
case FLASH_5761VENDOR_ST_M_M45PE16:
tp->nvram_jedecnum = JEDEC_ST;
tg3_flag_set(tp, NVRAM_BUFFERED);
tg3_flag_set(tp, FLASH);
tp->nvram_pagesize = 256;
break;
}
if (protect) {
tp->nvram_size = tr32(NVRAM_ADDR_LOCKOUT);
} else {
switch (nvcfg1) {
case FLASH_5761VENDOR_ATMEL_ADB161D:
case FLASH_5761VENDOR_ATMEL_MDB161D:
case FLASH_5761VENDOR_ST_A_M45PE16:
case FLASH_5761VENDOR_ST_M_M45PE16:
tp->nvram_size = TG3_NVRAM_SIZE_2MB;
break;
case FLASH_5761VENDOR_ATMEL_ADB081D:
case FLASH_5761VENDOR_ATMEL_MDB081D:
case FLASH_5761VENDOR_ST_A_M45PE80:
case FLASH_5761VENDOR_ST_M_M45PE80:
tp->nvram_size = TG3_NVRAM_SIZE_1MB;
break;
case FLASH_5761VENDOR_ATMEL_ADB041D:
case FLASH_5761VENDOR_ATMEL_MDB041D:
case FLASH_5761VENDOR_ST_A_M45PE40:
case FLASH_5761VENDOR_ST_M_M45PE40:
tp->nvram_size = TG3_NVRAM_SIZE_512KB;
break;
case FLASH_5761VENDOR_ATMEL_ADB021D:
case FLASH_5761VENDOR_ATMEL_MDB021D:
case FLASH_5761VENDOR_ST_A_M45PE20:
case FLASH_5761VENDOR_ST_M_M45PE20:
tp->nvram_size = TG3_NVRAM_SIZE_256KB;
break;
}
}
}
static void tg3_get_5906_nvram_info(struct tg3 *tp)
{
tp->nvram_jedecnum = JEDEC_ATMEL;
tg3_flag_set(tp, NVRAM_BUFFERED);
tp->nvram_pagesize = ATMEL_AT24C512_CHIP_SIZE;
}
static void tg3_get_57780_nvram_info(struct tg3 *tp)
{
u32 nvcfg1;
nvcfg1 = tr32(NVRAM_CFG1);
switch (nvcfg1 & NVRAM_CFG1_5752VENDOR_MASK) {
case FLASH_5787VENDOR_ATMEL_EEPROM_376KHZ:
case FLASH_5787VENDOR_MICRO_EEPROM_376KHZ:
tp->nvram_jedecnum = JEDEC_ATMEL;
tg3_flag_set(tp, NVRAM_BUFFERED);
tp->nvram_pagesize = ATMEL_AT24C512_CHIP_SIZE;
nvcfg1 &= ~NVRAM_CFG1_COMPAT_BYPASS;
tw32(NVRAM_CFG1, nvcfg1);
return;
case FLASH_5752VENDOR_ATMEL_FLASH_BUFFERED:
case FLASH_57780VENDOR_ATMEL_AT45DB011D:
case FLASH_57780VENDOR_ATMEL_AT45DB011B:
case FLASH_57780VENDOR_ATMEL_AT45DB021D:
case FLASH_57780VENDOR_ATMEL_AT45DB021B:
case FLASH_57780VENDOR_ATMEL_AT45DB041D:
case FLASH_57780VENDOR_ATMEL_AT45DB041B:
tp->nvram_jedecnum = JEDEC_ATMEL;
tg3_flag_set(tp, NVRAM_BUFFERED);
tg3_flag_set(tp, FLASH);
switch (nvcfg1 & NVRAM_CFG1_5752VENDOR_MASK) {
case FLASH_5752VENDOR_ATMEL_FLASH_BUFFERED:
case FLASH_57780VENDOR_ATMEL_AT45DB011D:
case FLASH_57780VENDOR_ATMEL_AT45DB011B:
tp->nvram_size = TG3_NVRAM_SIZE_128KB;
break;
case FLASH_57780VENDOR_ATMEL_AT45DB021D:
case FLASH_57780VENDOR_ATMEL_AT45DB021B:
tp->nvram_size = TG3_NVRAM_SIZE_256KB;
break;
case FLASH_57780VENDOR_ATMEL_AT45DB041D:
case FLASH_57780VENDOR_ATMEL_AT45DB041B:
tp->nvram_size = TG3_NVRAM_SIZE_512KB;
break;
}
break;
case FLASH_5752VENDOR_ST_M45PE10:
case FLASH_5752VENDOR_ST_M45PE20:
case FLASH_5752VENDOR_ST_M45PE40:
tp->nvram_jedecnum = JEDEC_ST;
tg3_flag_set(tp, NVRAM_BUFFERED);
tg3_flag_set(tp, FLASH);
switch (nvcfg1 & NVRAM_CFG1_5752VENDOR_MASK) {
case FLASH_5752VENDOR_ST_M45PE10:
tp->nvram_size = TG3_NVRAM_SIZE_128KB;
break;
case FLASH_5752VENDOR_ST_M45PE20:
tp->nvram_size = TG3_NVRAM_SIZE_256KB;
break;
case FLASH_5752VENDOR_ST_M45PE40:
tp->nvram_size = TG3_NVRAM_SIZE_512KB;
break;
}
break;
default:
tg3_flag_set(tp, NO_NVRAM);
return;
}
tg3_nvram_get_pagesize(tp, nvcfg1);
if (tp->nvram_pagesize != 264 && tp->nvram_pagesize != 528)
tg3_flag_set(tp, NO_NVRAM_ADDR_TRANS);
}
static void tg3_get_5717_nvram_info(struct tg3 *tp)
{
u32 nvcfg1;
nvcfg1 = tr32(NVRAM_CFG1);
switch (nvcfg1 & NVRAM_CFG1_5752VENDOR_MASK) {
case FLASH_5717VENDOR_ATMEL_EEPROM:
case FLASH_5717VENDOR_MICRO_EEPROM:
tp->nvram_jedecnum = JEDEC_ATMEL;
tg3_flag_set(tp, NVRAM_BUFFERED);
tp->nvram_pagesize = ATMEL_AT24C512_CHIP_SIZE;
nvcfg1 &= ~NVRAM_CFG1_COMPAT_BYPASS;
tw32(NVRAM_CFG1, nvcfg1);
return;
case FLASH_5717VENDOR_ATMEL_MDB011D:
case FLASH_5717VENDOR_ATMEL_ADB011B:
case FLASH_5717VENDOR_ATMEL_ADB011D:
case FLASH_5717VENDOR_ATMEL_MDB021D:
case FLASH_5717VENDOR_ATMEL_ADB021B:
case FLASH_5717VENDOR_ATMEL_ADB021D:
case FLASH_5717VENDOR_ATMEL_45USPT:
tp->nvram_jedecnum = JEDEC_ATMEL;
tg3_flag_set(tp, NVRAM_BUFFERED);
tg3_flag_set(tp, FLASH);
switch (nvcfg1 & NVRAM_CFG1_5752VENDOR_MASK) {
case FLASH_5717VENDOR_ATMEL_MDB021D:
/* Detect size with tg3_nvram_get_size() */
break;
case FLASH_5717VENDOR_ATMEL_ADB021B:
case FLASH_5717VENDOR_ATMEL_ADB021D:
tp->nvram_size = TG3_NVRAM_SIZE_256KB;
break;
default:
tp->nvram_size = TG3_NVRAM_SIZE_128KB;
break;
}
break;
case FLASH_5717VENDOR_ST_M_M25PE10:
case FLASH_5717VENDOR_ST_A_M25PE10:
case FLASH_5717VENDOR_ST_M_M45PE10:
case FLASH_5717VENDOR_ST_A_M45PE10:
case FLASH_5717VENDOR_ST_M_M25PE20:
case FLASH_5717VENDOR_ST_A_M25PE20:
case FLASH_5717VENDOR_ST_M_M45PE20:
case FLASH_5717VENDOR_ST_A_M45PE20:
case FLASH_5717VENDOR_ST_25USPT:
case FLASH_5717VENDOR_ST_45USPT:
tp->nvram_jedecnum = JEDEC_ST;
tg3_flag_set(tp, NVRAM_BUFFERED);
tg3_flag_set(tp, FLASH);
switch (nvcfg1 & NVRAM_CFG1_5752VENDOR_MASK) {
case FLASH_5717VENDOR_ST_M_M25PE20:
case FLASH_5717VENDOR_ST_M_M45PE20:
/* Detect size with tg3_nvram_get_size() */
break;
case FLASH_5717VENDOR_ST_A_M25PE20:
case FLASH_5717VENDOR_ST_A_M45PE20:
tp->nvram_size = TG3_NVRAM_SIZE_256KB;
break;
default:
tp->nvram_size = TG3_NVRAM_SIZE_128KB;
break;
}
break;
default:
tg3_flag_set(tp, NO_NVRAM);
return;
}
tg3_nvram_get_pagesize(tp, nvcfg1);
if (tp->nvram_pagesize != 264 && tp->nvram_pagesize != 528)
tg3_flag_set(tp, NO_NVRAM_ADDR_TRANS);
}
static void tg3_get_5720_nvram_info(struct tg3 *tp)
{
u32 nvcfg1, nvmpinstrp;
nvcfg1 = tr32(NVRAM_CFG1);
nvmpinstrp = nvcfg1 & NVRAM_CFG1_5752VENDOR_MASK;
if (tg3_asic_rev(tp) == ASIC_REV_5762) {
if (!(nvcfg1 & NVRAM_CFG1_5762VENDOR_MASK)) {
tg3_flag_set(tp, NO_NVRAM);
return;
}
switch (nvmpinstrp) {
case FLASH_5762_EEPROM_HD:
nvmpinstrp = FLASH_5720_EEPROM_HD;
break;
case FLASH_5762_EEPROM_LD:
nvmpinstrp = FLASH_5720_EEPROM_LD;
break;
case FLASH_5720VENDOR_M_ST_M45PE20:
/* This pinstrap supports multiple sizes, so force it
* to read the actual size from location 0xf0.
*/
nvmpinstrp = FLASH_5720VENDOR_ST_45USPT;
break;
}
}
switch (nvmpinstrp) {
case FLASH_5720_EEPROM_HD:
case FLASH_5720_EEPROM_LD:
tp->nvram_jedecnum = JEDEC_ATMEL;
tg3_flag_set(tp, NVRAM_BUFFERED);
nvcfg1 &= ~NVRAM_CFG1_COMPAT_BYPASS;
tw32(NVRAM_CFG1, nvcfg1);
if (nvmpinstrp == FLASH_5720_EEPROM_HD)
tp->nvram_pagesize = ATMEL_AT24C512_CHIP_SIZE;
else
tp->nvram_pagesize = ATMEL_AT24C02_CHIP_SIZE;
return;
case FLASH_5720VENDOR_M_ATMEL_DB011D:
case FLASH_5720VENDOR_A_ATMEL_DB011B:
case FLASH_5720VENDOR_A_ATMEL_DB011D:
case FLASH_5720VENDOR_M_ATMEL_DB021D:
case FLASH_5720VENDOR_A_ATMEL_DB021B:
case FLASH_5720VENDOR_A_ATMEL_DB021D:
case FLASH_5720VENDOR_M_ATMEL_DB041D:
case FLASH_5720VENDOR_A_ATMEL_DB041B:
case FLASH_5720VENDOR_A_ATMEL_DB041D:
case FLASH_5720VENDOR_M_ATMEL_DB081D:
case FLASH_5720VENDOR_A_ATMEL_DB081D:
case FLASH_5720VENDOR_ATMEL_45USPT:
tp->nvram_jedecnum = JEDEC_ATMEL;
tg3_flag_set(tp, NVRAM_BUFFERED);
tg3_flag_set(tp, FLASH);
switch (nvmpinstrp) {
case FLASH_5720VENDOR_M_ATMEL_DB021D:
case FLASH_5720VENDOR_A_ATMEL_DB021B:
case FLASH_5720VENDOR_A_ATMEL_DB021D:
tp->nvram_size = TG3_NVRAM_SIZE_256KB;
break;
case FLASH_5720VENDOR_M_ATMEL_DB041D:
case FLASH_5720VENDOR_A_ATMEL_DB041B:
case FLASH_5720VENDOR_A_ATMEL_DB041D:
tp->nvram_size = TG3_NVRAM_SIZE_512KB;
break;
case FLASH_5720VENDOR_M_ATMEL_DB081D:
case FLASH_5720VENDOR_A_ATMEL_DB081D:
tp->nvram_size = TG3_NVRAM_SIZE_1MB;
break;
default:
if (tg3_asic_rev(tp) != ASIC_REV_5762)
tp->nvram_size = TG3_NVRAM_SIZE_128KB;
break;
}
break;
case FLASH_5720VENDOR_M_ST_M25PE10:
case FLASH_5720VENDOR_M_ST_M45PE10:
case FLASH_5720VENDOR_A_ST_M25PE10:
case FLASH_5720VENDOR_A_ST_M45PE10:
case FLASH_5720VENDOR_M_ST_M25PE20:
case FLASH_5720VENDOR_M_ST_M45PE20:
case FLASH_5720VENDOR_A_ST_M25PE20:
case FLASH_5720VENDOR_A_ST_M45PE20:
case FLASH_5720VENDOR_M_ST_M25PE40:
case FLASH_5720VENDOR_M_ST_M45PE40:
case FLASH_5720VENDOR_A_ST_M25PE40:
case FLASH_5720VENDOR_A_ST_M45PE40:
case FLASH_5720VENDOR_M_ST_M25PE80:
case FLASH_5720VENDOR_M_ST_M45PE80:
case FLASH_5720VENDOR_A_ST_M25PE80:
case FLASH_5720VENDOR_A_ST_M45PE80:
case FLASH_5720VENDOR_ST_25USPT:
case FLASH_5720VENDOR_ST_45USPT:
tp->nvram_jedecnum = JEDEC_ST;
tg3_flag_set(tp, NVRAM_BUFFERED);
tg3_flag_set(tp, FLASH);
switch (nvmpinstrp) {
case FLASH_5720VENDOR_M_ST_M25PE20:
case FLASH_5720VENDOR_M_ST_M45PE20:
case FLASH_5720VENDOR_A_ST_M25PE20:
case FLASH_5720VENDOR_A_ST_M45PE20:
tp->nvram_size = TG3_NVRAM_SIZE_256KB;
break;
case FLASH_5720VENDOR_M_ST_M25PE40:
case FLASH_5720VENDOR_M_ST_M45PE40:
case FLASH_5720VENDOR_A_ST_M25PE40:
case FLASH_5720VENDOR_A_ST_M45PE40:
tp->nvram_size = TG3_NVRAM_SIZE_512KB;
break;
case FLASH_5720VENDOR_M_ST_M25PE80:
case FLASH_5720VENDOR_M_ST_M45PE80:
case FLASH_5720VENDOR_A_ST_M25PE80:
case FLASH_5720VENDOR_A_ST_M45PE80:
tp->nvram_size = TG3_NVRAM_SIZE_1MB;
break;
default:
if (tg3_asic_rev(tp) != ASIC_REV_5762)
tp->nvram_size = TG3_NVRAM_SIZE_128KB;
break;
}
break;
default:
tg3_flag_set(tp, NO_NVRAM);
return;
}
tg3_nvram_get_pagesize(tp, nvcfg1);
if (tp->nvram_pagesize != 264 && tp->nvram_pagesize != 528)
tg3_flag_set(tp, NO_NVRAM_ADDR_TRANS);
if (tg3_asic_rev(tp) == ASIC_REV_5762) {
u32 val;
if (tg3_nvram_read(tp, 0, &val))
return;
if (val != TG3_EEPROM_MAGIC &&
(val & TG3_EEPROM_MAGIC_FW_MSK) != TG3_EEPROM_MAGIC_FW)
tg3_flag_set(tp, NO_NVRAM);
}
}
/* Chips other than 5700/5701 use the NVRAM for fetching info. */
static void tg3_nvram_init(struct tg3 *tp)
{
if (tg3_flag(tp, IS_SSB_CORE)) {
/* No NVRAM and EEPROM on the SSB Broadcom GigE core. */
tg3_flag_clear(tp, NVRAM);
tg3_flag_clear(tp, NVRAM_BUFFERED);
tg3_flag_set(tp, NO_NVRAM);
return;
}
tw32_f(GRC_EEPROM_ADDR,
(EEPROM_ADDR_FSM_RESET |
(EEPROM_DEFAULT_CLOCK_PERIOD <<
EEPROM_ADDR_CLKPERD_SHIFT)));
msleep(1);
/* Enable seeprom accesses. */
tw32_f(GRC_LOCAL_CTRL,
tr32(GRC_LOCAL_CTRL) | GRC_LCLCTRL_AUTO_SEEPROM);
udelay(100);
if (tg3_asic_rev(tp) != ASIC_REV_5700 &&
tg3_asic_rev(tp) != ASIC_REV_5701) {
tg3_flag_set(tp, NVRAM);
if (tg3_nvram_lock(tp)) {
netdev_warn(tp->dev,
"Cannot get nvram lock, %s failed\n",
__func__);
return;
}
tg3_enable_nvram_access(tp);
tp->nvram_size = 0;
if (tg3_asic_rev(tp) == ASIC_REV_5752)
tg3_get_5752_nvram_info(tp);
else if (tg3_asic_rev(tp) == ASIC_REV_5755)
tg3_get_5755_nvram_info(tp);
else if (tg3_asic_rev(tp) == ASIC_REV_5787 ||
tg3_asic_rev(tp) == ASIC_REV_5784 ||
tg3_asic_rev(tp) == ASIC_REV_5785)
tg3_get_5787_nvram_info(tp);
else if (tg3_asic_rev(tp) == ASIC_REV_5761)
tg3_get_5761_nvram_info(tp);
else if (tg3_asic_rev(tp) == ASIC_REV_5906)
tg3_get_5906_nvram_info(tp);
else if (tg3_asic_rev(tp) == ASIC_REV_57780 ||
tg3_flag(tp, 57765_CLASS))
tg3_get_57780_nvram_info(tp);
else if (tg3_asic_rev(tp) == ASIC_REV_5717 ||
tg3_asic_rev(tp) == ASIC_REV_5719)
tg3_get_5717_nvram_info(tp);
else if (tg3_asic_rev(tp) == ASIC_REV_5720 ||
tg3_asic_rev(tp) == ASIC_REV_5762)
tg3_get_5720_nvram_info(tp);
else
tg3_get_nvram_info(tp);
if (tp->nvram_size == 0)
tg3_get_nvram_size(tp);
tg3_disable_nvram_access(tp);
tg3_nvram_unlock(tp);
} else {
tg3_flag_clear(tp, NVRAM);
tg3_flag_clear(tp, NVRAM_BUFFERED);
tg3_get_eeprom_size(tp);
}
}
struct subsys_tbl_ent {
u16 subsys_vendor, subsys_devid;
u32 phy_id;
};
static struct subsys_tbl_ent subsys_id_to_phy_id[] = {
/* Broadcom boards. */
{ TG3PCI_SUBVENDOR_ID_BROADCOM,
TG3PCI_SUBDEVICE_ID_BROADCOM_95700A6, TG3_PHY_ID_BCM5401 },
{ TG3PCI_SUBVENDOR_ID_BROADCOM,
TG3PCI_SUBDEVICE_ID_BROADCOM_95701A5, TG3_PHY_ID_BCM5701 },
{ TG3PCI_SUBVENDOR_ID_BROADCOM,
TG3PCI_SUBDEVICE_ID_BROADCOM_95700T6, TG3_PHY_ID_BCM8002 },
{ TG3PCI_SUBVENDOR_ID_BROADCOM,
TG3PCI_SUBDEVICE_ID_BROADCOM_95700A9, 0 },
{ TG3PCI_SUBVENDOR_ID_BROADCOM,
TG3PCI_SUBDEVICE_ID_BROADCOM_95701T1, TG3_PHY_ID_BCM5701 },
{ TG3PCI_SUBVENDOR_ID_BROADCOM,
TG3PCI_SUBDEVICE_ID_BROADCOM_95701T8, TG3_PHY_ID_BCM5701 },
{ TG3PCI_SUBVENDOR_ID_BROADCOM,
TG3PCI_SUBDEVICE_ID_BROADCOM_95701A7, 0 },
{ TG3PCI_SUBVENDOR_ID_BROADCOM,
TG3PCI_SUBDEVICE_ID_BROADCOM_95701A10, TG3_PHY_ID_BCM5701 },
{ TG3PCI_SUBVENDOR_ID_BROADCOM,
TG3PCI_SUBDEVICE_ID_BROADCOM_95701A12, TG3_PHY_ID_BCM5701 },
{ TG3PCI_SUBVENDOR_ID_BROADCOM,
TG3PCI_SUBDEVICE_ID_BROADCOM_95703AX1, TG3_PHY_ID_BCM5703 },
{ TG3PCI_SUBVENDOR_ID_BROADCOM,
TG3PCI_SUBDEVICE_ID_BROADCOM_95703AX2, TG3_PHY_ID_BCM5703 },
/* 3com boards. */
{ TG3PCI_SUBVENDOR_ID_3COM,
TG3PCI_SUBDEVICE_ID_3COM_3C996T, TG3_PHY_ID_BCM5401 },
{ TG3PCI_SUBVENDOR_ID_3COM,
TG3PCI_SUBDEVICE_ID_3COM_3C996BT, TG3_PHY_ID_BCM5701 },
{ TG3PCI_SUBVENDOR_ID_3COM,
TG3PCI_SUBDEVICE_ID_3COM_3C996SX, 0 },
{ TG3PCI_SUBVENDOR_ID_3COM,
TG3PCI_SUBDEVICE_ID_3COM_3C1000T, TG3_PHY_ID_BCM5701 },
{ TG3PCI_SUBVENDOR_ID_3COM,
TG3PCI_SUBDEVICE_ID_3COM_3C940BR01, TG3_PHY_ID_BCM5701 },
/* DELL boards. */
{ TG3PCI_SUBVENDOR_ID_DELL,
TG3PCI_SUBDEVICE_ID_DELL_VIPER, TG3_PHY_ID_BCM5401 },
{ TG3PCI_SUBVENDOR_ID_DELL,
TG3PCI_SUBDEVICE_ID_DELL_JAGUAR, TG3_PHY_ID_BCM5401 },
{ TG3PCI_SUBVENDOR_ID_DELL,
TG3PCI_SUBDEVICE_ID_DELL_MERLOT, TG3_PHY_ID_BCM5411 },
{ TG3PCI_SUBVENDOR_ID_DELL,
TG3PCI_SUBDEVICE_ID_DELL_SLIM_MERLOT, TG3_PHY_ID_BCM5411 },
/* Compaq boards. */
{ TG3PCI_SUBVENDOR_ID_COMPAQ,
TG3PCI_SUBDEVICE_ID_COMPAQ_BANSHEE, TG3_PHY_ID_BCM5701 },
{ TG3PCI_SUBVENDOR_ID_COMPAQ,
TG3PCI_SUBDEVICE_ID_COMPAQ_BANSHEE_2, TG3_PHY_ID_BCM5701 },
{ TG3PCI_SUBVENDOR_ID_COMPAQ,
TG3PCI_SUBDEVICE_ID_COMPAQ_CHANGELING, 0 },
{ TG3PCI_SUBVENDOR_ID_COMPAQ,
TG3PCI_SUBDEVICE_ID_COMPAQ_NC7780, TG3_PHY_ID_BCM5701 },
{ TG3PCI_SUBVENDOR_ID_COMPAQ,
TG3PCI_SUBDEVICE_ID_COMPAQ_NC7780_2, TG3_PHY_ID_BCM5701 },
/* IBM boards. */
{ TG3PCI_SUBVENDOR_ID_IBM,
TG3PCI_SUBDEVICE_ID_IBM_5703SAX2, 0 }
};
static struct subsys_tbl_ent *tg3_lookup_by_subsys(struct tg3 *tp)
{
int i;
for (i = 0; i < ARRAY_SIZE(subsys_id_to_phy_id); i++) {
if ((subsys_id_to_phy_id[i].subsys_vendor ==
tp->pdev->subsystem_vendor) &&
(subsys_id_to_phy_id[i].subsys_devid ==
tp->pdev->subsystem_device))
return &subsys_id_to_phy_id[i];
}
return NULL;
}
static void tg3_get_eeprom_hw_cfg(struct tg3 *tp)
{
u32 val;
tp->phy_id = TG3_PHY_ID_INVALID;
tp->led_ctrl = LED_CTRL_MODE_PHY_1;
/* Assume an onboard device and WOL capable by default. */
tg3_flag_set(tp, EEPROM_WRITE_PROT);
tg3_flag_set(tp, WOL_CAP);
if (tg3_asic_rev(tp) == ASIC_REV_5906) {
if (!(tr32(PCIE_TRANSACTION_CFG) & PCIE_TRANS_CFG_LOM)) {
tg3_flag_clear(tp, EEPROM_WRITE_PROT);
tg3_flag_set(tp, IS_NIC);
}
val = tr32(VCPU_CFGSHDW);
if (val & VCPU_CFGSHDW_ASPM_DBNC)
tg3_flag_set(tp, ASPM_WORKAROUND);
if ((val & VCPU_CFGSHDW_WOL_ENABLE) &&
(val & VCPU_CFGSHDW_WOL_MAGPKT)) {
tg3_flag_set(tp, WOL_ENABLE);
device_set_wakeup_enable(&tp->pdev->dev, true);
}
goto done;
}
tg3_read_mem(tp, NIC_SRAM_DATA_SIG, &val);
if (val == NIC_SRAM_DATA_SIG_MAGIC) {
u32 nic_cfg, led_cfg;
u32 nic_phy_id, ver, cfg2 = 0, cfg4 = 0, eeprom_phy_id;
int eeprom_phy_serdes = 0;
tg3_read_mem(tp, NIC_SRAM_DATA_CFG, &nic_cfg);
tp->nic_sram_data_cfg = nic_cfg;
tg3_read_mem(tp, NIC_SRAM_DATA_VER, &ver);
ver >>= NIC_SRAM_DATA_VER_SHIFT;
if (tg3_asic_rev(tp) != ASIC_REV_5700 &&
tg3_asic_rev(tp) != ASIC_REV_5701 &&
tg3_asic_rev(tp) != ASIC_REV_5703 &&
(ver > 0) && (ver < 0x100))
tg3_read_mem(tp, NIC_SRAM_DATA_CFG_2, &cfg2);
if (tg3_asic_rev(tp) == ASIC_REV_5785)
tg3_read_mem(tp, NIC_SRAM_DATA_CFG_4, &cfg4);
if ((nic_cfg & NIC_SRAM_DATA_CFG_PHY_TYPE_MASK) ==
NIC_SRAM_DATA_CFG_PHY_TYPE_FIBER)
eeprom_phy_serdes = 1;
tg3_read_mem(tp, NIC_SRAM_DATA_PHY_ID, &nic_phy_id);
if (nic_phy_id != 0) {
u32 id1 = nic_phy_id & NIC_SRAM_DATA_PHY_ID1_MASK;
u32 id2 = nic_phy_id & NIC_SRAM_DATA_PHY_ID2_MASK;
eeprom_phy_id = (id1 >> 16) << 10;
eeprom_phy_id |= (id2 & 0xfc00) << 16;
eeprom_phy_id |= (id2 & 0x03ff) << 0;
} else
eeprom_phy_id = 0;
tp->phy_id = eeprom_phy_id;
if (eeprom_phy_serdes) {
if (!tg3_flag(tp, 5705_PLUS))
tp->phy_flags |= TG3_PHYFLG_PHY_SERDES;
else
tp->phy_flags |= TG3_PHYFLG_MII_SERDES;
}
if (tg3_flag(tp, 5750_PLUS))
led_cfg = cfg2 & (NIC_SRAM_DATA_CFG_LED_MODE_MASK |
SHASTA_EXT_LED_MODE_MASK);
else
led_cfg = nic_cfg & NIC_SRAM_DATA_CFG_LED_MODE_MASK;
switch (led_cfg) {
default:
case NIC_SRAM_DATA_CFG_LED_MODE_PHY_1:
tp->led_ctrl = LED_CTRL_MODE_PHY_1;
break;
case NIC_SRAM_DATA_CFG_LED_MODE_PHY_2:
tp->led_ctrl = LED_CTRL_MODE_PHY_2;
break;
case NIC_SRAM_DATA_CFG_LED_MODE_MAC:
tp->led_ctrl = LED_CTRL_MODE_MAC;
/* Default to PHY_1_MODE if 0 (MAC_MODE) is
* read on some older 5700/5701 bootcode.
*/
if (tg3_asic_rev(tp) == ASIC_REV_5700 ||
tg3_asic_rev(tp) == ASIC_REV_5701)
tp->led_ctrl = LED_CTRL_MODE_PHY_1;
break;
case SHASTA_EXT_LED_SHARED:
tp->led_ctrl = LED_CTRL_MODE_SHARED;
if (tg3_chip_rev_id(tp) != CHIPREV_ID_5750_A0 &&
tg3_chip_rev_id(tp) != CHIPREV_ID_5750_A1)
tp->led_ctrl |= (LED_CTRL_MODE_PHY_1 |
LED_CTRL_MODE_PHY_2);
break;
case SHASTA_EXT_LED_MAC:
tp->led_ctrl = LED_CTRL_MODE_SHASTA_MAC;
break;
case SHASTA_EXT_LED_COMBO:
tp->led_ctrl = LED_CTRL_MODE_COMBO;
if (tg3_chip_rev_id(tp) != CHIPREV_ID_5750_A0)
tp->led_ctrl |= (LED_CTRL_MODE_PHY_1 |
LED_CTRL_MODE_PHY_2);
break;
}
if ((tg3_asic_rev(tp) == ASIC_REV_5700 ||
tg3_asic_rev(tp) == ASIC_REV_5701) &&
tp->pdev->subsystem_vendor == PCI_VENDOR_ID_DELL)
tp->led_ctrl = LED_CTRL_MODE_PHY_2;
if (tg3_chip_rev(tp) == CHIPREV_5784_AX)
tp->led_ctrl = LED_CTRL_MODE_PHY_1;
if (nic_cfg & NIC_SRAM_DATA_CFG_EEPROM_WP) {
tg3_flag_set(tp, EEPROM_WRITE_PROT);
if ((tp->pdev->subsystem_vendor ==
PCI_VENDOR_ID_ARIMA) &&
(tp->pdev->subsystem_device == 0x205a ||
tp->pdev->subsystem_device == 0x2063))
tg3_flag_clear(tp, EEPROM_WRITE_PROT);
} else {
tg3_flag_clear(tp, EEPROM_WRITE_PROT);
tg3_flag_set(tp, IS_NIC);
}
if (nic_cfg & NIC_SRAM_DATA_CFG_ASF_ENABLE) {
tg3_flag_set(tp, ENABLE_ASF);
if (tg3_flag(tp, 5750_PLUS))
tg3_flag_set(tp, ASF_NEW_HANDSHAKE);
}
if ((nic_cfg & NIC_SRAM_DATA_CFG_APE_ENABLE) &&
tg3_flag(tp, 5750_PLUS))
tg3_flag_set(tp, ENABLE_APE);
if (tp->phy_flags & TG3_PHYFLG_ANY_SERDES &&
!(nic_cfg & NIC_SRAM_DATA_CFG_FIBER_WOL))
tg3_flag_clear(tp, WOL_CAP);
if (tg3_flag(tp, WOL_CAP) &&
(nic_cfg & NIC_SRAM_DATA_CFG_WOL_ENABLE)) {
tg3_flag_set(tp, WOL_ENABLE);
device_set_wakeup_enable(&tp->pdev->dev, true);
}
if (cfg2 & (1 << 17))
tp->phy_flags |= TG3_PHYFLG_CAPACITIVE_COUPLING;
/* serdes signal pre-emphasis in register 0x590 set by */
/* bootcode if bit 18 is set */
if (cfg2 & (1 << 18))
tp->phy_flags |= TG3_PHYFLG_SERDES_PREEMPHASIS;
if ((tg3_flag(tp, 57765_PLUS) ||
(tg3_asic_rev(tp) == ASIC_REV_5784 &&
tg3_chip_rev(tp) != CHIPREV_5784_AX)) &&
(cfg2 & NIC_SRAM_DATA_CFG_2_APD_EN))
tp->phy_flags |= TG3_PHYFLG_ENABLE_APD;
if (tg3_flag(tp, PCI_EXPRESS)) {
u32 cfg3;
tg3_read_mem(tp, NIC_SRAM_DATA_CFG_3, &cfg3);
if (tg3_asic_rev(tp) != ASIC_REV_5785 &&
!tg3_flag(tp, 57765_PLUS) &&
(cfg3 & NIC_SRAM_ASPM_DEBOUNCE))
tg3_flag_set(tp, ASPM_WORKAROUND);
if (cfg3 & NIC_SRAM_LNK_FLAP_AVOID)
tp->phy_flags |= TG3_PHYFLG_KEEP_LINK_ON_PWRDN;
if (cfg3 & NIC_SRAM_1G_ON_VAUX_OK)
tp->phy_flags |= TG3_PHYFLG_1G_ON_VAUX_OK;
}
if (cfg4 & NIC_SRAM_RGMII_INBAND_DISABLE)
tg3_flag_set(tp, RGMII_INBAND_DISABLE);
if (cfg4 & NIC_SRAM_RGMII_EXT_IBND_RX_EN)
tg3_flag_set(tp, RGMII_EXT_IBND_RX_EN);
if (cfg4 & NIC_SRAM_RGMII_EXT_IBND_TX_EN)
tg3_flag_set(tp, RGMII_EXT_IBND_TX_EN);
}
done:
if (tg3_flag(tp, WOL_CAP))
device_set_wakeup_enable(&tp->pdev->dev,
tg3_flag(tp, WOL_ENABLE));
else
device_set_wakeup_capable(&tp->pdev->dev, false);
}
static int tg3_ape_otp_read(struct tg3 *tp, u32 offset, u32 *val)
{
int i, err;
u32 val2, off = offset * 8;
err = tg3_nvram_lock(tp);
if (err)
return err;
tg3_ape_write32(tp, TG3_APE_OTP_ADDR, off | APE_OTP_ADDR_CPU_ENABLE);
tg3_ape_write32(tp, TG3_APE_OTP_CTRL, APE_OTP_CTRL_PROG_EN |
APE_OTP_CTRL_CMD_RD | APE_OTP_CTRL_START);
tg3_ape_read32(tp, TG3_APE_OTP_CTRL);
udelay(10);
for (i = 0; i < 100; i++) {
val2 = tg3_ape_read32(tp, TG3_APE_OTP_STATUS);
if (val2 & APE_OTP_STATUS_CMD_DONE) {
*val = tg3_ape_read32(tp, TG3_APE_OTP_RD_DATA);
break;
}
udelay(10);
}
tg3_ape_write32(tp, TG3_APE_OTP_CTRL, 0);
tg3_nvram_unlock(tp);
if (val2 & APE_OTP_STATUS_CMD_DONE)
return 0;
return -EBUSY;
}
static int tg3_issue_otp_command(struct tg3 *tp, u32 cmd)
{
int i;
u32 val;
tw32(OTP_CTRL, cmd | OTP_CTRL_OTP_CMD_START);
tw32(OTP_CTRL, cmd);
/* Wait for up to 1 ms for command to execute. */
for (i = 0; i < 100; i++) {
val = tr32(OTP_STATUS);
if (val & OTP_STATUS_CMD_DONE)
break;
udelay(10);
}
return (val & OTP_STATUS_CMD_DONE) ? 0 : -EBUSY;
}
/* Read the gphy configuration from the OTP region of the chip. The gphy
* configuration is a 32-bit value that straddles the alignment boundary.
* We do two 32-bit reads and then shift and merge the results.
*/
static u32 tg3_read_otp_phycfg(struct tg3 *tp)
{
u32 bhalf_otp, thalf_otp;
tw32(OTP_MODE, OTP_MODE_OTP_THRU_GRC);
if (tg3_issue_otp_command(tp, OTP_CTRL_OTP_CMD_INIT))
return 0;
tw32(OTP_ADDRESS, OTP_ADDRESS_MAGIC1);
if (tg3_issue_otp_command(tp, OTP_CTRL_OTP_CMD_READ))
return 0;
thalf_otp = tr32(OTP_READ_DATA);
tw32(OTP_ADDRESS, OTP_ADDRESS_MAGIC2);
if (tg3_issue_otp_command(tp, OTP_CTRL_OTP_CMD_READ))
return 0;
bhalf_otp = tr32(OTP_READ_DATA);
return ((thalf_otp & 0x0000ffff) << 16) | (bhalf_otp >> 16);
}
static void tg3_phy_init_link_config(struct tg3 *tp)
{
u32 adv = ADVERTISED_Autoneg;
if (!(tp->phy_flags & TG3_PHYFLG_10_100_ONLY))
adv |= ADVERTISED_1000baseT_Half |
ADVERTISED_1000baseT_Full;
if (!(tp->phy_flags & TG3_PHYFLG_ANY_SERDES))
adv |= ADVERTISED_100baseT_Half |
ADVERTISED_100baseT_Full |
ADVERTISED_10baseT_Half |
ADVERTISED_10baseT_Full |
ADVERTISED_TP;
else
adv |= ADVERTISED_FIBRE;
tp->link_config.advertising = adv;
tp->link_config.speed = SPEED_UNKNOWN;
tp->link_config.duplex = DUPLEX_UNKNOWN;
tp->link_config.autoneg = AUTONEG_ENABLE;
tp->link_config.active_speed = SPEED_UNKNOWN;
tp->link_config.active_duplex = DUPLEX_UNKNOWN;
tp->old_link = -1;
}
static int tg3_phy_probe(struct tg3 *tp)
{
u32 hw_phy_id_1, hw_phy_id_2;
u32 hw_phy_id, hw_phy_id_masked;
int err;
/* flow control autonegotiation is default behavior */
tg3_flag_set(tp, PAUSE_AUTONEG);
tp->link_config.flowctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
if (tg3_flag(tp, ENABLE_APE)) {
switch (tp->pci_fn) {
case 0:
tp->phy_ape_lock = TG3_APE_LOCK_PHY0;
break;
case 1:
tp->phy_ape_lock = TG3_APE_LOCK_PHY1;
break;
case 2:
tp->phy_ape_lock = TG3_APE_LOCK_PHY2;
break;
case 3:
tp->phy_ape_lock = TG3_APE_LOCK_PHY3;
break;
}
}
if (!tg3_flag(tp, ENABLE_ASF) &&
!(tp->phy_flags & TG3_PHYFLG_ANY_SERDES) &&
!(tp->phy_flags & TG3_PHYFLG_10_100_ONLY))
tp->phy_flags &= ~(TG3_PHYFLG_1G_ON_VAUX_OK |
TG3_PHYFLG_KEEP_LINK_ON_PWRDN);
if (tg3_flag(tp, USE_PHYLIB))
return tg3_phy_init(tp);
/* Reading the PHY ID register can conflict with ASF
* firmware access to the PHY hardware.
*/
err = 0;
if (tg3_flag(tp, ENABLE_ASF) || tg3_flag(tp, ENABLE_APE)) {
hw_phy_id = hw_phy_id_masked = TG3_PHY_ID_INVALID;
} else {
/* Now read the physical PHY_ID from the chip and verify
* that it is sane. If it doesn't look good, we fall back
* to either the hard-coded table based PHY_ID and failing
* that the value found in the eeprom area.
*/
err |= tg3_readphy(tp, MII_PHYSID1, &hw_phy_id_1);
err |= tg3_readphy(tp, MII_PHYSID2, &hw_phy_id_2);
hw_phy_id = (hw_phy_id_1 & 0xffff) << 10;
hw_phy_id |= (hw_phy_id_2 & 0xfc00) << 16;
hw_phy_id |= (hw_phy_id_2 & 0x03ff) << 0;
hw_phy_id_masked = hw_phy_id & TG3_PHY_ID_MASK;
}
if (!err && TG3_KNOWN_PHY_ID(hw_phy_id_masked)) {
tp->phy_id = hw_phy_id;
if (hw_phy_id_masked == TG3_PHY_ID_BCM8002)
tp->phy_flags |= TG3_PHYFLG_PHY_SERDES;
else
tp->phy_flags &= ~TG3_PHYFLG_PHY_SERDES;
} else {
if (tp->phy_id != TG3_PHY_ID_INVALID) {
/* Do nothing, phy ID already set up in
* tg3_get_eeprom_hw_cfg().
*/
} else {
struct subsys_tbl_ent *p;
/* No eeprom signature? Try the hardcoded
* subsys device table.
*/
p = tg3_lookup_by_subsys(tp);
if (p) {
tp->phy_id = p->phy_id;
} else if (!tg3_flag(tp, IS_SSB_CORE)) {
/* For now we saw the IDs 0xbc050cd0,
* 0xbc050f80 and 0xbc050c30 on devices
* connected to an BCM4785 and there are
* probably more. Just assume that the phy is
* supported when it is connected to a SSB core
* for now.
*/
return -ENODEV;
}
if (!tp->phy_id ||
tp->phy_id == TG3_PHY_ID_BCM8002)
tp->phy_flags |= TG3_PHYFLG_PHY_SERDES;
}
}
if (!(tp->phy_flags & TG3_PHYFLG_ANY_SERDES) &&
(tg3_asic_rev(tp) == ASIC_REV_5719 ||
tg3_asic_rev(tp) == ASIC_REV_5720 ||
tg3_asic_rev(tp) == ASIC_REV_57766 ||
tg3_asic_rev(tp) == ASIC_REV_5762 ||
(tg3_asic_rev(tp) == ASIC_REV_5717 &&
tg3_chip_rev_id(tp) != CHIPREV_ID_5717_A0) ||
(tg3_asic_rev(tp) == ASIC_REV_57765 &&
tg3_chip_rev_id(tp) != CHIPREV_ID_57765_A0)))
tp->phy_flags |= TG3_PHYFLG_EEE_CAP;
tg3_phy_init_link_config(tp);
if (!(tp->phy_flags & TG3_PHYFLG_KEEP_LINK_ON_PWRDN) &&
!(tp->phy_flags & TG3_PHYFLG_ANY_SERDES) &&
!tg3_flag(tp, ENABLE_APE) &&
!tg3_flag(tp, ENABLE_ASF)) {
u32 bmsr, dummy;
tg3_readphy(tp, MII_BMSR, &bmsr);
if (!tg3_readphy(tp, MII_BMSR, &bmsr) &&
(bmsr & BMSR_LSTATUS))
goto skip_phy_reset;
err = tg3_phy_reset(tp);
if (err)
return err;
tg3_phy_set_wirespeed(tp);
if (!tg3_phy_copper_an_config_ok(tp, &dummy)) {
tg3_phy_autoneg_cfg(tp, tp->link_config.advertising,
tp->link_config.flowctrl);
tg3_writephy(tp, MII_BMCR,
BMCR_ANENABLE | BMCR_ANRESTART);
}
}
skip_phy_reset:
if ((tp->phy_id & TG3_PHY_ID_MASK) == TG3_PHY_ID_BCM5401) {
err = tg3_init_5401phy_dsp(tp);
if (err)
return err;
err = tg3_init_5401phy_dsp(tp);
}
return err;
}
static void tg3_read_vpd(struct tg3 *tp)
{
u8 *vpd_data;
unsigned int block_end, rosize, len;
u32 vpdlen;
int j, i = 0;
vpd_data = (u8 *)tg3_vpd_readblock(tp, &vpdlen);
if (!vpd_data)
goto out_no_vpd;
i = pci_vpd_find_tag(vpd_data, 0, vpdlen, PCI_VPD_LRDT_RO_DATA);
if (i < 0)
goto out_not_found;
rosize = pci_vpd_lrdt_size(&vpd_data[i]);
block_end = i + PCI_VPD_LRDT_TAG_SIZE + rosize;
i += PCI_VPD_LRDT_TAG_SIZE;
if (block_end > vpdlen)
goto out_not_found;
j = pci_vpd_find_info_keyword(vpd_data, i, rosize,
PCI_VPD_RO_KEYWORD_MFR_ID);
if (j > 0) {
len = pci_vpd_info_field_size(&vpd_data[j]);
j += PCI_VPD_INFO_FLD_HDR_SIZE;
if (j + len > block_end || len != 4 ||
memcmp(&vpd_data[j], "1028", 4))
goto partno;
j = pci_vpd_find_info_keyword(vpd_data, i, rosize,
PCI_VPD_RO_KEYWORD_VENDOR0);
if (j < 0)
goto partno;
len = pci_vpd_info_field_size(&vpd_data[j]);
j += PCI_VPD_INFO_FLD_HDR_SIZE;
if (j + len > block_end)
goto partno;
if (len >= sizeof(tp->fw_ver))
len = sizeof(tp->fw_ver) - 1;
memset(tp->fw_ver, 0, sizeof(tp->fw_ver));
snprintf(tp->fw_ver, sizeof(tp->fw_ver), "%.*s bc ", len,
&vpd_data[j]);
}
partno:
i = pci_vpd_find_info_keyword(vpd_data, i, rosize,
PCI_VPD_RO_KEYWORD_PARTNO);
if (i < 0)
goto out_not_found;
len = pci_vpd_info_field_size(&vpd_data[i]);
i += PCI_VPD_INFO_FLD_HDR_SIZE;
if (len > TG3_BPN_SIZE ||
(len + i) > vpdlen)
goto out_not_found;
memcpy(tp->board_part_number, &vpd_data[i], len);
out_not_found:
kfree(vpd_data);
if (tp->board_part_number[0])
return;
out_no_vpd:
if (tg3_asic_rev(tp) == ASIC_REV_5717) {
if (tp->pdev->device == TG3PCI_DEVICE_TIGON3_5717 ||
tp->pdev->device == TG3PCI_DEVICE_TIGON3_5717_C)
strcpy(tp->board_part_number, "BCM5717");
else if (tp->pdev->device == TG3PCI_DEVICE_TIGON3_5718)
strcpy(tp->board_part_number, "BCM5718");
else
goto nomatch;
} else if (tg3_asic_rev(tp) == ASIC_REV_57780) {
if (tp->pdev->device == TG3PCI_DEVICE_TIGON3_57780)
strcpy(tp->board_part_number, "BCM57780");
else if (tp->pdev->device == TG3PCI_DEVICE_TIGON3_57760)
strcpy(tp->board_part_number, "BCM57760");
else if (tp->pdev->device == TG3PCI_DEVICE_TIGON3_57790)
strcpy(tp->board_part_number, "BCM57790");
else if (tp->pdev->device == TG3PCI_DEVICE_TIGON3_57788)
strcpy(tp->board_part_number, "BCM57788");
else
goto nomatch;
} else if (tg3_asic_rev(tp) == ASIC_REV_57765) {
if (tp->pdev->device == TG3PCI_DEVICE_TIGON3_57761)
strcpy(tp->board_part_number, "BCM57761");
else if (tp->pdev->device == TG3PCI_DEVICE_TIGON3_57765)
strcpy(tp->board_part_number, "BCM57765");
else if (tp->pdev->device == TG3PCI_DEVICE_TIGON3_57781)
strcpy(tp->board_part_number, "BCM57781");
else if (tp->pdev->device == TG3PCI_DEVICE_TIGON3_57785)
strcpy(tp->board_part_number, "BCM57785");
else if (tp->pdev->device == TG3PCI_DEVICE_TIGON3_57791)
strcpy(tp->board_part_number, "BCM57791");
else if (tp->pdev->device == TG3PCI_DEVICE_TIGON3_57795)
strcpy(tp->board_part_number, "BCM57795");
else
goto nomatch;
} else if (tg3_asic_rev(tp) == ASIC_REV_57766) {
if (tp->pdev->device == TG3PCI_DEVICE_TIGON3_57762)
strcpy(tp->board_part_number, "BCM57762");
else if (tp->pdev->device == TG3PCI_DEVICE_TIGON3_57766)
strcpy(tp->board_part_number, "BCM57766");
else if (tp->pdev->device == TG3PCI_DEVICE_TIGON3_57782)
strcpy(tp->board_part_number, "BCM57782");
else if (tp->pdev->device == TG3PCI_DEVICE_TIGON3_57786)
strcpy(tp->board_part_number, "BCM57786");
else
goto nomatch;
} else if (tg3_asic_rev(tp) == ASIC_REV_5906) {
strcpy(tp->board_part_number, "BCM95906");
} else {
nomatch:
strcpy(tp->board_part_number, "none");
}
}
static int tg3_fw_img_is_valid(struct tg3 *tp, u32 offset)
{
u32 val;
if (tg3_nvram_read(tp, offset, &val) ||
(val & 0xfc000000) != 0x0c000000 ||
tg3_nvram_read(tp, offset + 4, &val) ||
val != 0)
return 0;
return 1;
}
static void tg3_read_bc_ver(struct tg3 *tp)
{
u32 val, offset, start, ver_offset;
int i, dst_off;
bool newver = false;
if (tg3_nvram_read(tp, 0xc, &offset) ||
tg3_nvram_read(tp, 0x4, &start))
return;
offset = tg3_nvram_logical_addr(tp, offset);
if (tg3_nvram_read(tp, offset, &val))
return;
if ((val & 0xfc000000) == 0x0c000000) {
if (tg3_nvram_read(tp, offset + 4, &val))
return;
if (val == 0)
newver = true;
}
dst_off = strlen(tp->fw_ver);
if (newver) {
if (TG3_VER_SIZE - dst_off < 16 ||
tg3_nvram_read(tp, offset + 8, &ver_offset))
return;
offset = offset + ver_offset - start;
for (i = 0; i < 16; i += 4) {
__be32 v;
if (tg3_nvram_read_be32(tp, offset + i, &v))
return;
memcpy(tp->fw_ver + dst_off + i, &v, sizeof(v));
}
} else {
u32 major, minor;
if (tg3_nvram_read(tp, TG3_NVM_PTREV_BCVER, &ver_offset))
return;
major = (ver_offset & TG3_NVM_BCVER_MAJMSK) >>
TG3_NVM_BCVER_MAJSFT;
minor = ver_offset & TG3_NVM_BCVER_MINMSK;
snprintf(&tp->fw_ver[dst_off], TG3_VER_SIZE - dst_off,
"v%d.%02d", major, minor);
}
}
static void tg3_read_hwsb_ver(struct tg3 *tp)
{
u32 val, major, minor;
/* Use native endian representation */
if (tg3_nvram_read(tp, TG3_NVM_HWSB_CFG1, &val))
return;
major = (val & TG3_NVM_HWSB_CFG1_MAJMSK) >>
TG3_NVM_HWSB_CFG1_MAJSFT;
minor = (val & TG3_NVM_HWSB_CFG1_MINMSK) >>
TG3_NVM_HWSB_CFG1_MINSFT;
snprintf(&tp->fw_ver[0], 32, "sb v%d.%02d", major, minor);
}
static void tg3_read_sb_ver(struct tg3 *tp, u32 val)
{
u32 offset, major, minor, build;
strncat(tp->fw_ver, "sb", TG3_VER_SIZE - strlen(tp->fw_ver) - 1);
if ((val & TG3_EEPROM_SB_FORMAT_MASK) != TG3_EEPROM_SB_FORMAT_1)
return;
switch (val & TG3_EEPROM_SB_REVISION_MASK) {
case TG3_EEPROM_SB_REVISION_0:
offset = TG3_EEPROM_SB_F1R0_EDH_OFF;
break;
case TG3_EEPROM_SB_REVISION_2:
offset = TG3_EEPROM_SB_F1R2_EDH_OFF;
break;
case TG3_EEPROM_SB_REVISION_3:
offset = TG3_EEPROM_SB_F1R3_EDH_OFF;
break;
case TG3_EEPROM_SB_REVISION_4:
offset = TG3_EEPROM_SB_F1R4_EDH_OFF;
break;
case TG3_EEPROM_SB_REVISION_5:
offset = TG3_EEPROM_SB_F1R5_EDH_OFF;
break;
case TG3_EEPROM_SB_REVISION_6:
offset = TG3_EEPROM_SB_F1R6_EDH_OFF;
break;
default:
return;
}
if (tg3_nvram_read(tp, offset, &val))
return;
build = (val & TG3_EEPROM_SB_EDH_BLD_MASK) >>
TG3_EEPROM_SB_EDH_BLD_SHFT;
major = (val & TG3_EEPROM_SB_EDH_MAJ_MASK) >>
TG3_EEPROM_SB_EDH_MAJ_SHFT;
minor = val & TG3_EEPROM_SB_EDH_MIN_MASK;
if (minor > 99 || build > 26)
return;
offset = strlen(tp->fw_ver);
snprintf(&tp->fw_ver[offset], TG3_VER_SIZE - offset,
" v%d.%02d", major, minor);
if (build > 0) {
offset = strlen(tp->fw_ver);
if (offset < TG3_VER_SIZE - 1)
tp->fw_ver[offset] = 'a' + build - 1;
}
}
static void tg3_read_mgmtfw_ver(struct tg3 *tp)
{
u32 val, offset, start;
int i, vlen;
for (offset = TG3_NVM_DIR_START;
offset < TG3_NVM_DIR_END;
offset += TG3_NVM_DIRENT_SIZE) {
if (tg3_nvram_read(tp, offset, &val))
return;
if ((val >> TG3_NVM_DIRTYPE_SHIFT) == TG3_NVM_DIRTYPE_ASFINI)
break;
}
if (offset == TG3_NVM_DIR_END)
return;
if (!tg3_flag(tp, 5705_PLUS))
start = 0x08000000;
else if (tg3_nvram_read(tp, offset - 4, &start))
return;
if (tg3_nvram_read(tp, offset + 4, &offset) ||
!tg3_fw_img_is_valid(tp, offset) ||
tg3_nvram_read(tp, offset + 8, &val))
return;
offset += val - start;
vlen = strlen(tp->fw_ver);
tp->fw_ver[vlen++] = ',';
tp->fw_ver[vlen++] = ' ';
for (i = 0; i < 4; i++) {
__be32 v;
if (tg3_nvram_read_be32(tp, offset, &v))
return;
offset += sizeof(v);
if (vlen > TG3_VER_SIZE - sizeof(v)) {
memcpy(&tp->fw_ver[vlen], &v, TG3_VER_SIZE - vlen);
break;
}
memcpy(&tp->fw_ver[vlen], &v, sizeof(v));
vlen += sizeof(v);
}
}
static void tg3_probe_ncsi(struct tg3 *tp)
{
u32 apedata;
apedata = tg3_ape_read32(tp, TG3_APE_SEG_SIG);
if (apedata != APE_SEG_SIG_MAGIC)
return;
apedata = tg3_ape_read32(tp, TG3_APE_FW_STATUS);
if (!(apedata & APE_FW_STATUS_READY))
return;
if (tg3_ape_read32(tp, TG3_APE_FW_FEATURES) & TG3_APE_FW_FEATURE_NCSI)
tg3_flag_set(tp, APE_HAS_NCSI);
}
static void tg3_read_dash_ver(struct tg3 *tp)
{
int vlen;
u32 apedata;
char *fwtype;
apedata = tg3_ape_read32(tp, TG3_APE_FW_VERSION);
if (tg3_flag(tp, APE_HAS_NCSI))
fwtype = "NCSI";
else if (tp->pdev->device == TG3PCI_DEVICE_TIGON3_5725)
fwtype = "SMASH";
else
fwtype = "DASH";
vlen = strlen(tp->fw_ver);
snprintf(&tp->fw_ver[vlen], TG3_VER_SIZE - vlen, " %s v%d.%d.%d.%d",
fwtype,
(apedata & APE_FW_VERSION_MAJMSK) >> APE_FW_VERSION_MAJSFT,
(apedata & APE_FW_VERSION_MINMSK) >> APE_FW_VERSION_MINSFT,
(apedata & APE_FW_VERSION_REVMSK) >> APE_FW_VERSION_REVSFT,
(apedata & APE_FW_VERSION_BLDMSK));
}
static void tg3_read_otp_ver(struct tg3 *tp)
{
u32 val, val2;
if (tg3_asic_rev(tp) != ASIC_REV_5762)
return;
if (!tg3_ape_otp_read(tp, OTP_ADDRESS_MAGIC0, &val) &&
!tg3_ape_otp_read(tp, OTP_ADDRESS_MAGIC0 + 4, &val2) &&
TG3_OTP_MAGIC0_VALID(val)) {
u64 val64 = (u64) val << 32 | val2;
u32 ver = 0;
int i, vlen;
for (i = 0; i < 7; i++) {
if ((val64 & 0xff) == 0)
break;
ver = val64 & 0xff;
val64 >>= 8;
}
vlen = strlen(tp->fw_ver);
snprintf(&tp->fw_ver[vlen], TG3_VER_SIZE - vlen, " .%02d", ver);
}
}
static void tg3_read_fw_ver(struct tg3 *tp)
{
u32 val;
bool vpd_vers = false;
if (tp->fw_ver[0] != 0)
vpd_vers = true;
if (tg3_flag(tp, NO_NVRAM)) {
strcat(tp->fw_ver, "sb");
tg3_read_otp_ver(tp);
return;
}
if (tg3_nvram_read(tp, 0, &val))
return;
if (val == TG3_EEPROM_MAGIC)
tg3_read_bc_ver(tp);
else if ((val & TG3_EEPROM_MAGIC_FW_MSK) == TG3_EEPROM_MAGIC_FW)
tg3_read_sb_ver(tp, val);
else if ((val & TG3_EEPROM_MAGIC_HW_MSK) == TG3_EEPROM_MAGIC_HW)
tg3_read_hwsb_ver(tp);
if (tg3_flag(tp, ENABLE_ASF)) {
if (tg3_flag(tp, ENABLE_APE)) {
tg3_probe_ncsi(tp);
if (!vpd_vers)
tg3_read_dash_ver(tp);
} else if (!vpd_vers) {
tg3_read_mgmtfw_ver(tp);
}
}
tp->fw_ver[TG3_VER_SIZE - 1] = 0;
}
static inline u32 tg3_rx_ret_ring_size(struct tg3 *tp)
{
if (tg3_flag(tp, LRG_PROD_RING_CAP))
return TG3_RX_RET_MAX_SIZE_5717;
else if (tg3_flag(tp, JUMBO_CAPABLE) && !tg3_flag(tp, 5780_CLASS))
return TG3_RX_RET_MAX_SIZE_5700;
else
return TG3_RX_RET_MAX_SIZE_5705;
}
static DEFINE_PCI_DEVICE_TABLE(tg3_write_reorder_chipsets) = {
{ PCI_DEVICE(PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_FE_GATE_700C) },
{ PCI_DEVICE(PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_8131_BRIDGE) },
{ PCI_DEVICE(PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_8385_0) },
{ },
};
static struct pci_dev *tg3_find_peer(struct tg3 *tp)
{
struct pci_dev *peer;
unsigned int func, devnr = tp->pdev->devfn & ~7;
for (func = 0; func < 8; func++) {
peer = pci_get_slot(tp->pdev->bus, devnr | func);
if (peer && peer != tp->pdev)
break;
pci_dev_put(peer);
}
/* 5704 can be configured in single-port mode, set peer to
* tp->pdev in that case.
*/
if (!peer) {
peer = tp->pdev;
return peer;
}
/*
* We don't need to keep the refcount elevated; there's no way
* to remove one half of this device without removing the other
*/
pci_dev_put(peer);
return peer;
}
static void tg3_detect_asic_rev(struct tg3 *tp, u32 misc_ctrl_reg)
{
tp->pci_chip_rev_id = misc_ctrl_reg >> MISC_HOST_CTRL_CHIPREV_SHIFT;
if (tg3_asic_rev(tp) == ASIC_REV_USE_PROD_ID_REG) {
u32 reg;
/* All devices that use the alternate
* ASIC REV location have a CPMU.
*/
tg3_flag_set(tp, CPMU_PRESENT);
if (tp->pdev->device == TG3PCI_DEVICE_TIGON3_5717 ||
tp->pdev->device == TG3PCI_DEVICE_TIGON3_5717_C ||
tp->pdev->device == TG3PCI_DEVICE_TIGON3_5718 ||
tp->pdev->device == TG3PCI_DEVICE_TIGON3_5719 ||
tp->pdev->device == TG3PCI_DEVICE_TIGON3_5720 ||
tp->pdev->device == TG3PCI_DEVICE_TIGON3_5762 ||
tp->pdev->device == TG3PCI_DEVICE_TIGON3_5725 ||
tp->pdev->device == TG3PCI_DEVICE_TIGON3_5727)
reg = TG3PCI_GEN2_PRODID_ASICREV;
else if (tp->pdev->device == TG3PCI_DEVICE_TIGON3_57781 ||
tp->pdev->device == TG3PCI_DEVICE_TIGON3_57785 ||
tp->pdev->device == TG3PCI_DEVICE_TIGON3_57761 ||
tp->pdev->device == TG3PCI_DEVICE_TIGON3_57765 ||
tp->pdev->device == TG3PCI_DEVICE_TIGON3_57791 ||
tp->pdev->device == TG3PCI_DEVICE_TIGON3_57795 ||
tp->pdev->device == TG3PCI_DEVICE_TIGON3_57762 ||
tp->pdev->device == TG3PCI_DEVICE_TIGON3_57766 ||
tp->pdev->device == TG3PCI_DEVICE_TIGON3_57782 ||
tp->pdev->device == TG3PCI_DEVICE_TIGON3_57786)
reg = TG3PCI_GEN15_PRODID_ASICREV;
else
reg = TG3PCI_PRODID_ASICREV;
pci_read_config_dword(tp->pdev, reg, &tp->pci_chip_rev_id);
}
/* Wrong chip ID in 5752 A0. This code can be removed later
* as A0 is not in production.
*/
if (tg3_chip_rev_id(tp) == CHIPREV_ID_5752_A0_HW)
tp->pci_chip_rev_id = CHIPREV_ID_5752_A0;
if (tg3_chip_rev_id(tp) == CHIPREV_ID_5717_C0)
tp->pci_chip_rev_id = CHIPREV_ID_5720_A0;
if (tg3_asic_rev(tp) == ASIC_REV_5717 ||
tg3_asic_rev(tp) == ASIC_REV_5719 ||
tg3_asic_rev(tp) == ASIC_REV_5720)
tg3_flag_set(tp, 5717_PLUS);
if (tg3_asic_rev(tp) == ASIC_REV_57765 ||
tg3_asic_rev(tp) == ASIC_REV_57766)
tg3_flag_set(tp, 57765_CLASS);
if (tg3_flag(tp, 57765_CLASS) || tg3_flag(tp, 5717_PLUS) ||
tg3_asic_rev(tp) == ASIC_REV_5762)
tg3_flag_set(tp, 57765_PLUS);
/* Intentionally exclude ASIC_REV_5906 */
if (tg3_asic_rev(tp) == ASIC_REV_5755 ||
tg3_asic_rev(tp) == ASIC_REV_5787 ||
tg3_asic_rev(tp) == ASIC_REV_5784 ||
tg3_asic_rev(tp) == ASIC_REV_5761 ||
tg3_asic_rev(tp) == ASIC_REV_5785 ||
tg3_asic_rev(tp) == ASIC_REV_57780 ||
tg3_flag(tp, 57765_PLUS))
tg3_flag_set(tp, 5755_PLUS);
if (tg3_asic_rev(tp) == ASIC_REV_5780 ||
tg3_asic_rev(tp) == ASIC_REV_5714)
tg3_flag_set(tp, 5780_CLASS);
if (tg3_asic_rev(tp) == ASIC_REV_5750 ||
tg3_asic_rev(tp) == ASIC_REV_5752 ||
tg3_asic_rev(tp) == ASIC_REV_5906 ||
tg3_flag(tp, 5755_PLUS) ||
tg3_flag(tp, 5780_CLASS))
tg3_flag_set(tp, 5750_PLUS);
if (tg3_asic_rev(tp) == ASIC_REV_5705 ||
tg3_flag(tp, 5750_PLUS))
tg3_flag_set(tp, 5705_PLUS);
}
static bool tg3_10_100_only_device(struct tg3 *tp,
const struct pci_device_id *ent)
{
u32 grc_misc_cfg = tr32(GRC_MISC_CFG) & GRC_MISC_CFG_BOARD_ID_MASK;
if ((tg3_asic_rev(tp) == ASIC_REV_5703 &&
(grc_misc_cfg == 0x8000 || grc_misc_cfg == 0x4000)) ||
(tp->phy_flags & TG3_PHYFLG_IS_FET))
return true;
if (ent->driver_data & TG3_DRV_DATA_FLAG_10_100_ONLY) {
if (tg3_asic_rev(tp) == ASIC_REV_5705) {
if (ent->driver_data & TG3_DRV_DATA_FLAG_5705_10_100)
return true;
} else {
return true;
}
}
return false;
}
static int tg3_get_invariants(struct tg3 *tp, const struct pci_device_id *ent)
{
u32 misc_ctrl_reg;
u32 pci_state_reg, grc_misc_cfg;
u32 val;
u16 pci_cmd;
int err;
/* Force memory write invalidate off. If we leave it on,
* then on 5700_BX chips we have to enable a workaround.
* The workaround is to set the TG3PCI_DMA_RW_CTRL boundary
* to match the cacheline size. The Broadcom driver have this
* workaround but turns MWI off all the times so never uses
* it. This seems to suggest that the workaround is insufficient.
*/
pci_read_config_word(tp->pdev, PCI_COMMAND, &pci_cmd);
pci_cmd &= ~PCI_COMMAND_INVALIDATE;
pci_write_config_word(tp->pdev, PCI_COMMAND, pci_cmd);
/* Important! -- Make sure register accesses are byteswapped
* correctly. Also, for those chips that require it, make
* sure that indirect register accesses are enabled before
* the first operation.
*/
pci_read_config_dword(tp->pdev, TG3PCI_MISC_HOST_CTRL,
&misc_ctrl_reg);
tp->misc_host_ctrl |= (misc_ctrl_reg &
MISC_HOST_CTRL_CHIPREV);
pci_write_config_dword(tp->pdev, TG3PCI_MISC_HOST_CTRL,
tp->misc_host_ctrl);
tg3_detect_asic_rev(tp, misc_ctrl_reg);
/* If we have 5702/03 A1 or A2 on certain ICH chipsets,
* we need to disable memory and use config. cycles
* only to access all registers. The 5702/03 chips
* can mistakenly decode the special cycles from the
* ICH chipsets as memory write cycles, causing corruption
* of register and memory space. Only certain ICH bridges
* will drive special cycles with non-zero data during the
* address phase which can fall within the 5703's address
* range. This is not an ICH bug as the PCI spec allows
* non-zero address during special cycles. However, only
* these ICH bridges are known to drive non-zero addresses
* during special cycles.
*
* Since special cycles do not cross PCI bridges, we only
* enable this workaround if the 5703 is on the secondary
* bus of these ICH bridges.
*/
if ((tg3_chip_rev_id(tp) == CHIPREV_ID_5703_A1) ||
(tg3_chip_rev_id(tp) == CHIPREV_ID_5703_A2)) {
static struct tg3_dev_id {
u32 vendor;
u32 device;
u32 rev;
} ich_chipsets[] = {
{ PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82801AA_8,
PCI_ANY_ID },
{ PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82801AB_8,
PCI_ANY_ID },
{ PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82801BA_11,
0xa },
{ PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82801BA_6,
PCI_ANY_ID },
{ },
};
struct tg3_dev_id *pci_id = &ich_chipsets[0];
struct pci_dev *bridge = NULL;
while (pci_id->vendor != 0) {
bridge = pci_get_device(pci_id->vendor, pci_id->device,
bridge);
if (!bridge) {
pci_id++;
continue;
}
if (pci_id->rev != PCI_ANY_ID) {
if (bridge->revision > pci_id->rev)
continue;
}
if (bridge->subordinate &&
(bridge->subordinate->number ==
tp->pdev->bus->number)) {
tg3_flag_set(tp, ICH_WORKAROUND);
pci_dev_put(bridge);
break;
}
}
}
if (tg3_asic_rev(tp) == ASIC_REV_5701) {
static struct tg3_dev_id {
u32 vendor;
u32 device;
} bridge_chipsets[] = {
{ PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_PXH_0 },
{ PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_PXH_1 },
{ },
};
struct tg3_dev_id *pci_id = &bridge_chipsets[0];
struct pci_dev *bridge = NULL;
while (pci_id->vendor != 0) {
bridge = pci_get_device(pci_id->vendor,
pci_id->device,
bridge);
if (!bridge) {
pci_id++;
continue;
}
if (bridge->subordinate &&
(bridge->subordinate->number <=
tp->pdev->bus->number) &&
(bridge->subordinate->busn_res.end >=
tp->pdev->bus->number)) {
tg3_flag_set(tp, 5701_DMA_BUG);
pci_dev_put(bridge);
break;
}
}
}
/* The EPB bridge inside 5714, 5715, and 5780 cannot support
* DMA addresses > 40-bit. This bridge may have other additional
* 57xx devices behind it in some 4-port NIC designs for example.
* Any tg3 device found behind the bridge will also need the 40-bit
* DMA workaround.
*/
if (tg3_flag(tp, 5780_CLASS)) {
tg3_flag_set(tp, 40BIT_DMA_BUG);
tp->msi_cap = pci_find_capability(tp->pdev, PCI_CAP_ID_MSI);
} else {
struct pci_dev *bridge = NULL;
do {
bridge = pci_get_device(PCI_VENDOR_ID_SERVERWORKS,
PCI_DEVICE_ID_SERVERWORKS_EPB,
bridge);
if (bridge && bridge->subordinate &&
(bridge->subordinate->number <=
tp->pdev->bus->number) &&
(bridge->subordinate->busn_res.end >=
tp->pdev->bus->number)) {
tg3_flag_set(tp, 40BIT_DMA_BUG);
pci_dev_put(bridge);
break;
}
} while (bridge);
}
if (tg3_asic_rev(tp) == ASIC_REV_5704 ||
tg3_asic_rev(tp) == ASIC_REV_5714)
tp->pdev_peer = tg3_find_peer(tp);
/* Determine TSO capabilities */
if (tg3_chip_rev_id(tp) == CHIPREV_ID_5719_A0)
; /* Do nothing. HW bug. */
else if (tg3_flag(tp, 57765_PLUS))
tg3_flag_set(tp, HW_TSO_3);
else if (tg3_flag(tp, 5755_PLUS) ||
tg3_asic_rev(tp) == ASIC_REV_5906)
tg3_flag_set(tp, HW_TSO_2);
else if (tg3_flag(tp, 5750_PLUS)) {
tg3_flag_set(tp, HW_TSO_1);
tg3_flag_set(tp, TSO_BUG);
if (tg3_asic_rev(tp) == ASIC_REV_5750 &&
tg3_chip_rev_id(tp) >= CHIPREV_ID_5750_C2)
tg3_flag_clear(tp, TSO_BUG);
} else if (tg3_asic_rev(tp) != ASIC_REV_5700 &&
tg3_asic_rev(tp) != ASIC_REV_5701 &&
tg3_chip_rev_id(tp) != CHIPREV_ID_5705_A0) {
tg3_flag_set(tp, FW_TSO);
tg3_flag_set(tp, TSO_BUG);
if (tg3_asic_rev(tp) == ASIC_REV_5705)
tp->fw_needed = FIRMWARE_TG3TSO5;
else
tp->fw_needed = FIRMWARE_TG3TSO;
}
/* Selectively allow TSO based on operating conditions */
if (tg3_flag(tp, HW_TSO_1) ||
tg3_flag(tp, HW_TSO_2) ||
tg3_flag(tp, HW_TSO_3) ||
tg3_flag(tp, FW_TSO)) {
/* For firmware TSO, assume ASF is disabled.
* We'll disable TSO later if we discover ASF
* is enabled in tg3_get_eeprom_hw_cfg().
*/
tg3_flag_set(tp, TSO_CAPABLE);
} else {
tg3_flag_clear(tp, TSO_CAPABLE);
tg3_flag_clear(tp, TSO_BUG);
tp->fw_needed = NULL;
}
if (tg3_chip_rev_id(tp) == CHIPREV_ID_5701_A0)
tp->fw_needed = FIRMWARE_TG3;
if (tg3_asic_rev(tp) == ASIC_REV_57766)
tp->fw_needed = FIRMWARE_TG357766;
tp->irq_max = 1;
if (tg3_flag(tp, 5750_PLUS)) {
tg3_flag_set(tp, SUPPORT_MSI);
if (tg3_chip_rev(tp) == CHIPREV_5750_AX ||
tg3_chip_rev(tp) == CHIPREV_5750_BX ||
(tg3_asic_rev(tp) == ASIC_REV_5714 &&
tg3_chip_rev_id(tp) <= CHIPREV_ID_5714_A2 &&
tp->pdev_peer == tp->pdev))
tg3_flag_clear(tp, SUPPORT_MSI);
if (tg3_flag(tp, 5755_PLUS) ||
tg3_asic_rev(tp) == ASIC_REV_5906) {
tg3_flag_set(tp, 1SHOT_MSI);
}
if (tg3_flag(tp, 57765_PLUS)) {
tg3_flag_set(tp, SUPPORT_MSIX);
tp->irq_max = TG3_IRQ_MAX_VECS;
}
}
tp->txq_max = 1;
tp->rxq_max = 1;
if (tp->irq_max > 1) {
tp->rxq_max = TG3_RSS_MAX_NUM_QS;
tg3_rss_init_dflt_indir_tbl(tp, TG3_RSS_MAX_NUM_QS);
if (tg3_asic_rev(tp) == ASIC_REV_5719 ||
tg3_asic_rev(tp) == ASIC_REV_5720)
tp->txq_max = tp->irq_max - 1;
}
if (tg3_flag(tp, 5755_PLUS) ||
tg3_asic_rev(tp) == ASIC_REV_5906)
tg3_flag_set(tp, SHORT_DMA_BUG);
if (tg3_asic_rev(tp) == ASIC_REV_5719)
tp->dma_limit = TG3_TX_BD_DMA_MAX_4K;
if (tg3_asic_rev(tp) == ASIC_REV_5717 ||
tg3_asic_rev(tp) == ASIC_REV_5719 ||
tg3_asic_rev(tp) == ASIC_REV_5720 ||
tg3_asic_rev(tp) == ASIC_REV_5762)
tg3_flag_set(tp, LRG_PROD_RING_CAP);
if (tg3_flag(tp, 57765_PLUS) &&
tg3_chip_rev_id(tp) != CHIPREV_ID_5719_A0)
tg3_flag_set(tp, USE_JUMBO_BDFLAG);
if (!tg3_flag(tp, 5705_PLUS) ||
tg3_flag(tp, 5780_CLASS) ||
tg3_flag(tp, USE_JUMBO_BDFLAG))
tg3_flag_set(tp, JUMBO_CAPABLE);
pci_read_config_dword(tp->pdev, TG3PCI_PCISTATE,
&pci_state_reg);
if (pci_is_pcie(tp->pdev)) {
u16 lnkctl;
tg3_flag_set(tp, PCI_EXPRESS);
pcie_capability_read_word(tp->pdev, PCI_EXP_LNKCTL, &lnkctl);
if (lnkctl & PCI_EXP_LNKCTL_CLKREQ_EN) {
if (tg3_asic_rev(tp) == ASIC_REV_5906) {
tg3_flag_clear(tp, HW_TSO_2);
tg3_flag_clear(tp, TSO_CAPABLE);
}
if (tg3_asic_rev(tp) == ASIC_REV_5784 ||
tg3_asic_rev(tp) == ASIC_REV_5761 ||
tg3_chip_rev_id(tp) == CHIPREV_ID_57780_A0 ||
tg3_chip_rev_id(tp) == CHIPREV_ID_57780_A1)
tg3_flag_set(tp, CLKREQ_BUG);
} else if (tg3_chip_rev_id(tp) == CHIPREV_ID_5717_A0) {
tg3_flag_set(tp, L1PLLPD_EN);
}
} else if (tg3_asic_rev(tp) == ASIC_REV_5785) {
/* BCM5785 devices are effectively PCIe devices, and should
* follow PCIe codepaths, but do not have a PCIe capabilities
* section.
*/
tg3_flag_set(tp, PCI_EXPRESS);
} else if (!tg3_flag(tp, 5705_PLUS) ||
tg3_flag(tp, 5780_CLASS)) {
tp->pcix_cap = pci_find_capability(tp->pdev, PCI_CAP_ID_PCIX);
if (!tp->pcix_cap) {
dev_err(&tp->pdev->dev,
"Cannot find PCI-X capability, aborting\n");
return -EIO;
}
if (!(pci_state_reg & PCISTATE_CONV_PCI_MODE))
tg3_flag_set(tp, PCIX_MODE);
}
/* If we have an AMD 762 or VIA K8T800 chipset, write
* reordering to the mailbox registers done by the host
* controller can cause major troubles. We read back from
* every mailbox register write to force the writes to be
* posted to the chip in order.
*/
if (pci_dev_present(tg3_write_reorder_chipsets) &&
!tg3_flag(tp, PCI_EXPRESS))
tg3_flag_set(tp, MBOX_WRITE_REORDER);
pci_read_config_byte(tp->pdev, PCI_CACHE_LINE_SIZE,
&tp->pci_cacheline_sz);
pci_read_config_byte(tp->pdev, PCI_LATENCY_TIMER,
&tp->pci_lat_timer);
if (tg3_asic_rev(tp) == ASIC_REV_5703 &&
tp->pci_lat_timer < 64) {
tp->pci_lat_timer = 64;
pci_write_config_byte(tp->pdev, PCI_LATENCY_TIMER,
tp->pci_lat_timer);
}
/* Important! -- It is critical that the PCI-X hw workaround
* situation is decided before the first MMIO register access.
*/
if (tg3_chip_rev(tp) == CHIPREV_5700_BX) {
/* 5700 BX chips need to have their TX producer index
* mailboxes written twice to workaround a bug.
*/
tg3_flag_set(tp, TXD_MBOX_HWBUG);
/* If we are in PCI-X mode, enable register write workaround.
*
* The workaround is to use indirect register accesses
* for all chip writes not to mailbox registers.
*/
if (tg3_flag(tp, PCIX_MODE)) {
u32 pm_reg;
tg3_flag_set(tp, PCIX_TARGET_HWBUG);
/* The chip can have it's power management PCI config
* space registers clobbered due to this bug.
* So explicitly force the chip into D0 here.
*/
pci_read_config_dword(tp->pdev,
tp->pm_cap + PCI_PM_CTRL,
&pm_reg);
pm_reg &= ~PCI_PM_CTRL_STATE_MASK;
pm_reg |= PCI_PM_CTRL_PME_ENABLE | 0 /* D0 */;
pci_write_config_dword(tp->pdev,
tp->pm_cap + PCI_PM_CTRL,
pm_reg);
/* Also, force SERR#/PERR# in PCI command. */
pci_read_config_word(tp->pdev, PCI_COMMAND, &pci_cmd);
pci_cmd |= PCI_COMMAND_PARITY | PCI_COMMAND_SERR;
pci_write_config_word(tp->pdev, PCI_COMMAND, pci_cmd);
}
}
if ((pci_state_reg & PCISTATE_BUS_SPEED_HIGH) != 0)
tg3_flag_set(tp, PCI_HIGH_SPEED);
if ((pci_state_reg & PCISTATE_BUS_32BIT) != 0)
tg3_flag_set(tp, PCI_32BIT);
/* Chip-specific fixup from Broadcom driver */
if ((tg3_chip_rev_id(tp) == CHIPREV_ID_5704_A0) &&
(!(pci_state_reg & PCISTATE_RETRY_SAME_DMA))) {
pci_state_reg |= PCISTATE_RETRY_SAME_DMA;
pci_write_config_dword(tp->pdev, TG3PCI_PCISTATE, pci_state_reg);
}
/* Default fast path register access methods */
tp->read32 = tg3_read32;
tp->write32 = tg3_write32;
tp->read32_mbox = tg3_read32;
tp->write32_mbox = tg3_write32;
tp->write32_tx_mbox = tg3_write32;
tp->write32_rx_mbox = tg3_write32;
/* Various workaround register access methods */
if (tg3_flag(tp, PCIX_TARGET_HWBUG))
tp->write32 = tg3_write_indirect_reg32;
else if (tg3_asic_rev(tp) == ASIC_REV_5701 ||
(tg3_flag(tp, PCI_EXPRESS) &&
tg3_chip_rev_id(tp) == CHIPREV_ID_5750_A0)) {
/*
* Back to back register writes can cause problems on these
* chips, the workaround is to read back all reg writes
* except those to mailbox regs.
*
* See tg3_write_indirect_reg32().
*/
tp->write32 = tg3_write_flush_reg32;
}
if (tg3_flag(tp, TXD_MBOX_HWBUG) || tg3_flag(tp, MBOX_WRITE_REORDER)) {
tp->write32_tx_mbox = tg3_write32_tx_mbox;
if (tg3_flag(tp, MBOX_WRITE_REORDER))
tp->write32_rx_mbox = tg3_write_flush_reg32;
}
if (tg3_flag(tp, ICH_WORKAROUND)) {
tp->read32 = tg3_read_indirect_reg32;
tp->write32 = tg3_write_indirect_reg32;
tp->read32_mbox = tg3_read_indirect_mbox;
tp->write32_mbox = tg3_write_indirect_mbox;
tp->write32_tx_mbox = tg3_write_indirect_mbox;
tp->write32_rx_mbox = tg3_write_indirect_mbox;
iounmap(tp->regs);
tp->regs = NULL;
pci_read_config_word(tp->pdev, PCI_COMMAND, &pci_cmd);
pci_cmd &= ~PCI_COMMAND_MEMORY;
pci_write_config_word(tp->pdev, PCI_COMMAND, pci_cmd);
}
if (tg3_asic_rev(tp) == ASIC_REV_5906) {
tp->read32_mbox = tg3_read32_mbox_5906;
tp->write32_mbox = tg3_write32_mbox_5906;
tp->write32_tx_mbox = tg3_write32_mbox_5906;
tp->write32_rx_mbox = tg3_write32_mbox_5906;
}
if (tp->write32 == tg3_write_indirect_reg32 ||
(tg3_flag(tp, PCIX_MODE) &&
(tg3_asic_rev(tp) == ASIC_REV_5700 ||
tg3_asic_rev(tp) == ASIC_REV_5701)))
tg3_flag_set(tp, SRAM_USE_CONFIG);
/* The memory arbiter has to be enabled in order for SRAM accesses
* to succeed. Normally on powerup the tg3 chip firmware will make
* sure it is enabled, but other entities such as system netboot
* code might disable it.
*/
val = tr32(MEMARB_MODE);
tw32(MEMARB_MODE, val | MEMARB_MODE_ENABLE);
tp->pci_fn = PCI_FUNC(tp->pdev->devfn) & 3;
if (tg3_asic_rev(tp) == ASIC_REV_5704 ||
tg3_flag(tp, 5780_CLASS)) {
if (tg3_flag(tp, PCIX_MODE)) {
pci_read_config_dword(tp->pdev,
tp->pcix_cap + PCI_X_STATUS,
&val);
tp->pci_fn = val & 0x7;
}
} else if (tg3_asic_rev(tp) == ASIC_REV_5717 ||
tg3_asic_rev(tp) == ASIC_REV_5719 ||
tg3_asic_rev(tp) == ASIC_REV_5720) {
tg3_read_mem(tp, NIC_SRAM_CPMU_STATUS, &val);
if ((val & NIC_SRAM_CPMUSTAT_SIG_MSK) != NIC_SRAM_CPMUSTAT_SIG)
val = tr32(TG3_CPMU_STATUS);
if (tg3_asic_rev(tp) == ASIC_REV_5717)
tp->pci_fn = (val & TG3_CPMU_STATUS_FMSK_5717) ? 1 : 0;
else
tp->pci_fn = (val & TG3_CPMU_STATUS_FMSK_5719) >>
TG3_CPMU_STATUS_FSHFT_5719;
}
if (tg3_flag(tp, FLUSH_POSTED_WRITES)) {
tp->write32_tx_mbox = tg3_write_flush_reg32;
tp->write32_rx_mbox = tg3_write_flush_reg32;
}
/* Get eeprom hw config before calling tg3_set_power_state().
* In particular, the TG3_FLAG_IS_NIC flag must be
* determined before calling tg3_set_power_state() so that
* we know whether or not to switch out of Vaux power.
* When the flag is set, it means that GPIO1 is used for eeprom
* write protect and also implies that it is a LOM where GPIOs
* are not used to switch power.
*/
tg3_get_eeprom_hw_cfg(tp);
if (tg3_flag(tp, FW_TSO) && tg3_flag(tp, ENABLE_ASF)) {
tg3_flag_clear(tp, TSO_CAPABLE);
tg3_flag_clear(tp, TSO_BUG);
tp->fw_needed = NULL;
}
if (tg3_flag(tp, ENABLE_APE)) {
/* Allow reads and writes to the
* APE register and memory space.
*/
pci_state_reg |= PCISTATE_ALLOW_APE_CTLSPC_WR |
PCISTATE_ALLOW_APE_SHMEM_WR |
PCISTATE_ALLOW_APE_PSPACE_WR;
pci_write_config_dword(tp->pdev, TG3PCI_PCISTATE,
pci_state_reg);
tg3_ape_lock_init(tp);
}
/* Set up tp->grc_local_ctrl before calling
* tg3_pwrsrc_switch_to_vmain(). GPIO1 driven high
* will bring 5700's external PHY out of reset.
* It is also used as eeprom write protect on LOMs.
*/
tp->grc_local_ctrl = GRC_LCLCTRL_INT_ON_ATTN | GRC_LCLCTRL_AUTO_SEEPROM;
if (tg3_asic_rev(tp) == ASIC_REV_5700 ||
tg3_flag(tp, EEPROM_WRITE_PROT))
tp->grc_local_ctrl |= (GRC_LCLCTRL_GPIO_OE1 |
GRC_LCLCTRL_GPIO_OUTPUT1);
/* Unused GPIO3 must be driven as output on 5752 because there
* are no pull-up resistors on unused GPIO pins.
*/
else if (tg3_asic_rev(tp) == ASIC_REV_5752)
tp->grc_local_ctrl |= GRC_LCLCTRL_GPIO_OE3;
if (tg3_asic_rev(tp) == ASIC_REV_5755 ||
tg3_asic_rev(tp) == ASIC_REV_57780 ||
tg3_flag(tp, 57765_CLASS))
tp->grc_local_ctrl |= GRC_LCLCTRL_GPIO_UART_SEL;
if (tp->pdev->device == PCI_DEVICE_ID_TIGON3_5761 ||
tp->pdev->device == TG3PCI_DEVICE_TIGON3_5761S) {
/* Turn off the debug UART. */
tp->grc_local_ctrl |= GRC_LCLCTRL_GPIO_UART_SEL;
if (tg3_flag(tp, IS_NIC))
/* Keep VMain power. */
tp->grc_local_ctrl |= GRC_LCLCTRL_GPIO_OE0 |
GRC_LCLCTRL_GPIO_OUTPUT0;
}
if (tg3_asic_rev(tp) == ASIC_REV_5762)
tp->grc_local_ctrl |=
tr32(GRC_LOCAL_CTRL) & GRC_LCLCTRL_GPIO_UART_SEL;
/* Switch out of Vaux if it is a NIC */
tg3_pwrsrc_switch_to_vmain(tp);
/* Derive initial jumbo mode from MTU assigned in
* ether_setup() via the alloc_etherdev() call
*/
if (tp->dev->mtu > ETH_DATA_LEN && !tg3_flag(tp, 5780_CLASS))
tg3_flag_set(tp, JUMBO_RING_ENABLE);
/* Determine WakeOnLan speed to use. */
if (tg3_asic_rev(tp) == ASIC_REV_5700 ||
tg3_chip_rev_id(tp) == CHIPREV_ID_5701_A0 ||
tg3_chip_rev_id(tp) == CHIPREV_ID_5701_B0 ||
tg3_chip_rev_id(tp) == CHIPREV_ID_5701_B2) {
tg3_flag_clear(tp, WOL_SPEED_100MB);
} else {
tg3_flag_set(tp, WOL_SPEED_100MB);
}
if (tg3_asic_rev(tp) == ASIC_REV_5906)
tp->phy_flags |= TG3_PHYFLG_IS_FET;
/* A few boards don't want Ethernet@WireSpeed phy feature */
if (tg3_asic_rev(tp) == ASIC_REV_5700 ||
(tg3_asic_rev(tp) == ASIC_REV_5705 &&
(tg3_chip_rev_id(tp) != CHIPREV_ID_5705_A0) &&
(tg3_chip_rev_id(tp) != CHIPREV_ID_5705_A1)) ||
(tp->phy_flags & TG3_PHYFLG_IS_FET) ||
(tp->phy_flags & TG3_PHYFLG_ANY_SERDES))
tp->phy_flags |= TG3_PHYFLG_NO_ETH_WIRE_SPEED;
if (tg3_chip_rev(tp) == CHIPREV_5703_AX ||
tg3_chip_rev(tp) == CHIPREV_5704_AX)
tp->phy_flags |= TG3_PHYFLG_ADC_BUG;
if (tg3_chip_rev_id(tp) == CHIPREV_ID_5704_A0)
tp->phy_flags |= TG3_PHYFLG_5704_A0_BUG;
if (tg3_flag(tp, 5705_PLUS) &&
!(tp->phy_flags & TG3_PHYFLG_IS_FET) &&
tg3_asic_rev(tp) != ASIC_REV_5785 &&
tg3_asic_rev(tp) != ASIC_REV_57780 &&
!tg3_flag(tp, 57765_PLUS)) {
if (tg3_asic_rev(tp) == ASIC_REV_5755 ||
tg3_asic_rev(tp) == ASIC_REV_5787 ||
tg3_asic_rev(tp) == ASIC_REV_5784 ||
tg3_asic_rev(tp) == ASIC_REV_5761) {
if (tp->pdev->device != PCI_DEVICE_ID_TIGON3_5756 &&
tp->pdev->device != PCI_DEVICE_ID_TIGON3_5722)
tp->phy_flags |= TG3_PHYFLG_JITTER_BUG;
if (tp->pdev->device == PCI_DEVICE_ID_TIGON3_5755M)
tp->phy_flags |= TG3_PHYFLG_ADJUST_TRIM;
} else
tp->phy_flags |= TG3_PHYFLG_BER_BUG;
}
if (tg3_asic_rev(tp) == ASIC_REV_5784 &&
tg3_chip_rev(tp) != CHIPREV_5784_AX) {
tp->phy_otp = tg3_read_otp_phycfg(tp);
if (tp->phy_otp == 0)
tp->phy_otp = TG3_OTP_DEFAULT;
}
if (tg3_flag(tp, CPMU_PRESENT))
tp->mi_mode = MAC_MI_MODE_500KHZ_CONST;
else
tp->mi_mode = MAC_MI_MODE_BASE;
tp->coalesce_mode = 0;
if (tg3_chip_rev(tp) != CHIPREV_5700_AX &&
tg3_chip_rev(tp) != CHIPREV_5700_BX)
tp->coalesce_mode |= HOSTCC_MODE_32BYTE;
/* Set these bits to enable statistics workaround. */
if (tg3_asic_rev(tp) == ASIC_REV_5717 ||
tg3_chip_rev_id(tp) == CHIPREV_ID_5719_A0 ||
tg3_chip_rev_id(tp) == CHIPREV_ID_5720_A0) {
tp->coalesce_mode |= HOSTCC_MODE_ATTN;
tp->grc_mode |= GRC_MODE_IRQ_ON_FLOW_ATTN;
}
if (tg3_asic_rev(tp) == ASIC_REV_5785 ||
tg3_asic_rev(tp) == ASIC_REV_57780)
tg3_flag_set(tp, USE_PHYLIB);
err = tg3_mdio_init(tp);
if (err)
return err;
/* Initialize data/descriptor byte/word swapping. */
val = tr32(GRC_MODE);
if (tg3_asic_rev(tp) == ASIC_REV_5720 ||
tg3_asic_rev(tp) == ASIC_REV_5762)
val &= (GRC_MODE_BYTE_SWAP_B2HRX_DATA |
GRC_MODE_WORD_SWAP_B2HRX_DATA |
GRC_MODE_B2HRX_ENABLE |
GRC_MODE_HTX2B_ENABLE |
GRC_MODE_HOST_STACKUP);
else
val &= GRC_MODE_HOST_STACKUP;
tw32(GRC_MODE, val | tp->grc_mode);
tg3_switch_clocks(tp);
/* Clear this out for sanity. */
tw32(TG3PCI_MEM_WIN_BASE_ADDR, 0);
pci_read_config_dword(tp->pdev, TG3PCI_PCISTATE,
&pci_state_reg);
if ((pci_state_reg & PCISTATE_CONV_PCI_MODE) == 0 &&
!tg3_flag(tp, PCIX_TARGET_HWBUG)) {
if (tg3_chip_rev_id(tp) == CHIPREV_ID_5701_A0 ||
tg3_chip_rev_id(tp) == CHIPREV_ID_5701_B0 ||
tg3_chip_rev_id(tp) == CHIPREV_ID_5701_B2 ||
tg3_chip_rev_id(tp) == CHIPREV_ID_5701_B5) {
void __iomem *sram_base;
/* Write some dummy words into the SRAM status block
* area, see if it reads back correctly. If the return
* value is bad, force enable the PCIX workaround.
*/
sram_base = tp->regs + NIC_SRAM_WIN_BASE + NIC_SRAM_STATS_BLK;
writel(0x00000000, sram_base);
writel(0x00000000, sram_base + 4);
writel(0xffffffff, sram_base + 4);
if (readl(sram_base) != 0x00000000)
tg3_flag_set(tp, PCIX_TARGET_HWBUG);
}
}
udelay(50);
tg3_nvram_init(tp);
/* If the device has an NVRAM, no need to load patch firmware */
if (tg3_asic_rev(tp) == ASIC_REV_57766 &&
!tg3_flag(tp, NO_NVRAM))
tp->fw_needed = NULL;
grc_misc_cfg = tr32(GRC_MISC_CFG);
grc_misc_cfg &= GRC_MISC_CFG_BOARD_ID_MASK;
if (tg3_asic_rev(tp) == ASIC_REV_5705 &&
(grc_misc_cfg == GRC_MISC_CFG_BOARD_ID_5788 ||
grc_misc_cfg == GRC_MISC_CFG_BOARD_ID_5788M))
tg3_flag_set(tp, IS_5788);
if (!tg3_flag(tp, IS_5788) &&
tg3_asic_rev(tp) != ASIC_REV_5700)
tg3_flag_set(tp, TAGGED_STATUS);
if (tg3_flag(tp, TAGGED_STATUS)) {
tp->coalesce_mode |= (HOSTCC_MODE_CLRTICK_RXBD |
HOSTCC_MODE_CLRTICK_TXBD);
tp->misc_host_ctrl |= MISC_HOST_CTRL_TAGGED_STATUS;
pci_write_config_dword(tp->pdev, TG3PCI_MISC_HOST_CTRL,
tp->misc_host_ctrl);
}
/* Preserve the APE MAC_MODE bits */
if (tg3_flag(tp, ENABLE_APE))
tp->mac_mode = MAC_MODE_APE_TX_EN | MAC_MODE_APE_RX_EN;
else
tp->mac_mode = 0;
if (tg3_10_100_only_device(tp, ent))
tp->phy_flags |= TG3_PHYFLG_10_100_ONLY;
err = tg3_phy_probe(tp);
if (err) {
dev_err(&tp->pdev->dev, "phy probe failed, err %d\n", err);
/* ... but do not return immediately ... */
tg3_mdio_fini(tp);
}
tg3_read_vpd(tp);
tg3_read_fw_ver(tp);
if (tp->phy_flags & TG3_PHYFLG_PHY_SERDES) {
tp->phy_flags &= ~TG3_PHYFLG_USE_MI_INTERRUPT;
} else {
if (tg3_asic_rev(tp) == ASIC_REV_5700)
tp->phy_flags |= TG3_PHYFLG_USE_MI_INTERRUPT;
else
tp->phy_flags &= ~TG3_PHYFLG_USE_MI_INTERRUPT;
}
/* 5700 {AX,BX} chips have a broken status block link
* change bit implementation, so we must use the
* status register in those cases.
*/
if (tg3_asic_rev(tp) == ASIC_REV_5700)
tg3_flag_set(tp, USE_LINKCHG_REG);
else
tg3_flag_clear(tp, USE_LINKCHG_REG);
/* The led_ctrl is set during tg3_phy_probe, here we might
* have to force the link status polling mechanism based
* upon subsystem IDs.
*/
if (tp->pdev->subsystem_vendor == PCI_VENDOR_ID_DELL &&
tg3_asic_rev(tp) == ASIC_REV_5701 &&
!(tp->phy_flags & TG3_PHYFLG_PHY_SERDES)) {
tp->phy_flags |= TG3_PHYFLG_USE_MI_INTERRUPT;
tg3_flag_set(tp, USE_LINKCHG_REG);
}
/* For all SERDES we poll the MAC status register. */
if (tp->phy_flags & TG3_PHYFLG_PHY_SERDES)
tg3_flag_set(tp, POLL_SERDES);
else
tg3_flag_clear(tp, POLL_SERDES);
tp->rx_offset = NET_SKB_PAD + NET_IP_ALIGN;
tp->rx_copy_thresh = TG3_RX_COPY_THRESHOLD;
if (tg3_asic_rev(tp) == ASIC_REV_5701 &&
tg3_flag(tp, PCIX_MODE)) {
tp->rx_offset = NET_SKB_PAD;
#ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
tp->rx_copy_thresh = ~(u16)0;
#endif
}
tp->rx_std_ring_mask = TG3_RX_STD_RING_SIZE(tp) - 1;
tp->rx_jmb_ring_mask = TG3_RX_JMB_RING_SIZE(tp) - 1;
tp->rx_ret_ring_mask = tg3_rx_ret_ring_size(tp) - 1;
tp->rx_std_max_post = tp->rx_std_ring_mask + 1;
/* Increment the rx prod index on the rx std ring by at most
* 8 for these chips to workaround hw errata.
*/
if (tg3_asic_rev(tp) == ASIC_REV_5750 ||
tg3_asic_rev(tp) == ASIC_REV_5752 ||
tg3_asic_rev(tp) == ASIC_REV_5755)
tp->rx_std_max_post = 8;
if (tg3_flag(tp, ASPM_WORKAROUND))
tp->pwrmgmt_thresh = tr32(PCIE_PWR_MGMT_THRESH) &
PCIE_PWR_MGMT_L1_THRESH_MSK;
return err;
}
#ifdef CONFIG_SPARC
static int tg3_get_macaddr_sparc(struct tg3 *tp)
{
struct net_device *dev = tp->dev;
struct pci_dev *pdev = tp->pdev;
struct device_node *dp = pci_device_to_OF_node(pdev);
const unsigned char *addr;
int len;
addr = of_get_property(dp, "local-mac-address", &len);
if (addr && len == 6) {
memcpy(dev->dev_addr, addr, 6);
return 0;
}
return -ENODEV;
}
static int tg3_get_default_macaddr_sparc(struct tg3 *tp)
{
struct net_device *dev = tp->dev;
memcpy(dev->dev_addr, idprom->id_ethaddr, 6);
return 0;
}
#endif
static int tg3_get_device_address(struct tg3 *tp)
{
struct net_device *dev = tp->dev;
u32 hi, lo, mac_offset;
int addr_ok = 0;
int err;
#ifdef CONFIG_SPARC
if (!tg3_get_macaddr_sparc(tp))
return 0;
#endif
if (tg3_flag(tp, IS_SSB_CORE)) {
err = ssb_gige_get_macaddr(tp->pdev, &dev->dev_addr[0]);
if (!err && is_valid_ether_addr(&dev->dev_addr[0]))
return 0;
}
mac_offset = 0x7c;
if (tg3_asic_rev(tp) == ASIC_REV_5704 ||
tg3_flag(tp, 5780_CLASS)) {
if (tr32(TG3PCI_DUAL_MAC_CTRL) & DUAL_MAC_CTRL_ID)
mac_offset = 0xcc;
if (tg3_nvram_lock(tp))
tw32_f(NVRAM_CMD, NVRAM_CMD_RESET);
else
tg3_nvram_unlock(tp);
} else if (tg3_flag(tp, 5717_PLUS)) {
if (tp->pci_fn & 1)
mac_offset = 0xcc;
if (tp->pci_fn > 1)
mac_offset += 0x18c;
} else if (tg3_asic_rev(tp) == ASIC_REV_5906)
mac_offset = 0x10;
/* First try to get it from MAC address mailbox. */
tg3_read_mem(tp, NIC_SRAM_MAC_ADDR_HIGH_MBOX, &hi);
if ((hi >> 16) == 0x484b) {
dev->dev_addr[0] = (hi >> 8) & 0xff;
dev->dev_addr[1] = (hi >> 0) & 0xff;
tg3_read_mem(tp, NIC_SRAM_MAC_ADDR_LOW_MBOX, &lo);
dev->dev_addr[2] = (lo >> 24) & 0xff;
dev->dev_addr[3] = (lo >> 16) & 0xff;
dev->dev_addr[4] = (lo >> 8) & 0xff;
dev->dev_addr[5] = (lo >> 0) & 0xff;
/* Some old bootcode may report a 0 MAC address in SRAM */
addr_ok = is_valid_ether_addr(&dev->dev_addr[0]);
}
if (!addr_ok) {
/* Next, try NVRAM. */
if (!tg3_flag(tp, NO_NVRAM) &&
!tg3_nvram_read_be32(tp, mac_offset + 0, &hi) &&
!tg3_nvram_read_be32(tp, mac_offset + 4, &lo)) {
memcpy(&dev->dev_addr[0], ((char *)&hi) + 2, 2);
memcpy(&dev->dev_addr[2], (char *)&lo, sizeof(lo));
}
/* Finally just fetch it out of the MAC control regs. */
else {
hi = tr32(MAC_ADDR_0_HIGH);
lo = tr32(MAC_ADDR_0_LOW);
dev->dev_addr[5] = lo & 0xff;
dev->dev_addr[4] = (lo >> 8) & 0xff;
dev->dev_addr[3] = (lo >> 16) & 0xff;
dev->dev_addr[2] = (lo >> 24) & 0xff;
dev->dev_addr[1] = hi & 0xff;
dev->dev_addr[0] = (hi >> 8) & 0xff;
}
}
if (!is_valid_ether_addr(&dev->dev_addr[0])) {
#ifdef CONFIG_SPARC
if (!tg3_get_default_macaddr_sparc(tp))
return 0;
#endif
return -EINVAL;
}
return 0;
}
#define BOUNDARY_SINGLE_CACHELINE 1
#define BOUNDARY_MULTI_CACHELINE 2
static u32 tg3_calc_dma_bndry(struct tg3 *tp, u32 val)
{
int cacheline_size;
u8 byte;
int goal;
pci_read_config_byte(tp->pdev, PCI_CACHE_LINE_SIZE, &byte);
if (byte == 0)
cacheline_size = 1024;
else
cacheline_size = (int) byte * 4;
/* On 5703 and later chips, the boundary bits have no
* effect.
*/
if (tg3_asic_rev(tp) != ASIC_REV_5700 &&
tg3_asic_rev(tp) != ASIC_REV_5701 &&
!tg3_flag(tp, PCI_EXPRESS))
goto out;
#if defined(CONFIG_PPC64) || defined(CONFIG_IA64) || defined(CONFIG_PARISC)
goal = BOUNDARY_MULTI_CACHELINE;
#else
#if defined(CONFIG_SPARC64) || defined(CONFIG_ALPHA)
goal = BOUNDARY_SINGLE_CACHELINE;
#else
goal = 0;
#endif
#endif
if (tg3_flag(tp, 57765_PLUS)) {
val = goal ? 0 : DMA_RWCTRL_DIS_CACHE_ALIGNMENT;
goto out;
}
if (!goal)
goto out;
/* PCI controllers on most RISC systems tend to disconnect
* when a device tries to burst across a cache-line boundary.
* Therefore, letting tg3 do so just wastes PCI bandwidth.
*
* Unfortunately, for PCI-E there are only limited
* write-side controls for this, and thus for reads
* we will still get the disconnects. We'll also waste
* these PCI cycles for both read and write for chips
* other than 5700 and 5701 which do not implement the
* boundary bits.
*/
if (tg3_flag(tp, PCIX_MODE) && !tg3_flag(tp, PCI_EXPRESS)) {
switch (cacheline_size) {
case 16:
case 32:
case 64:
case 128:
if (goal == BOUNDARY_SINGLE_CACHELINE) {
val |= (DMA_RWCTRL_READ_BNDRY_128_PCIX |
DMA_RWCTRL_WRITE_BNDRY_128_PCIX);
} else {
val |= (DMA_RWCTRL_READ_BNDRY_384_PCIX |
DMA_RWCTRL_WRITE_BNDRY_384_PCIX);
}
break;
case 256:
val |= (DMA_RWCTRL_READ_BNDRY_256_PCIX |
DMA_RWCTRL_WRITE_BNDRY_256_PCIX);
break;
default:
val |= (DMA_RWCTRL_READ_BNDRY_384_PCIX |
DMA_RWCTRL_WRITE_BNDRY_384_PCIX);
break;
}
} else if (tg3_flag(tp, PCI_EXPRESS)) {
switch (cacheline_size) {
case 16:
case 32:
case 64:
if (goal == BOUNDARY_SINGLE_CACHELINE) {
val &= ~DMA_RWCTRL_WRITE_BNDRY_DISAB_PCIE;
val |= DMA_RWCTRL_WRITE_BNDRY_64_PCIE;
break;
}
/* fallthrough */
case 128:
default:
val &= ~DMA_RWCTRL_WRITE_BNDRY_DISAB_PCIE;
val |= DMA_RWCTRL_WRITE_BNDRY_128_PCIE;
break;
}
} else {
switch (cacheline_size) {
case 16:
if (goal == BOUNDARY_SINGLE_CACHELINE) {
val |= (DMA_RWCTRL_READ_BNDRY_16 |
DMA_RWCTRL_WRITE_BNDRY_16);
break;
}
/* fallthrough */
case 32:
if (goal == BOUNDARY_SINGLE_CACHELINE) {
val |= (DMA_RWCTRL_READ_BNDRY_32 |
DMA_RWCTRL_WRITE_BNDRY_32);
break;
}
/* fallthrough */
case 64:
if (goal == BOUNDARY_SINGLE_CACHELINE) {
val |= (DMA_RWCTRL_READ_BNDRY_64 |
DMA_RWCTRL_WRITE_BNDRY_64);
break;
}
/* fallthrough */
case 128:
if (goal == BOUNDARY_SINGLE_CACHELINE) {
val |= (DMA_RWCTRL_READ_BNDRY_128 |
DMA_RWCTRL_WRITE_BNDRY_128);
break;
}
/* fallthrough */
case 256:
val |= (DMA_RWCTRL_READ_BNDRY_256 |
DMA_RWCTRL_WRITE_BNDRY_256);
break;
case 512:
val |= (DMA_RWCTRL_READ_BNDRY_512 |
DMA_RWCTRL_WRITE_BNDRY_512);
break;
case 1024:
default:
val |= (DMA_RWCTRL_READ_BNDRY_1024 |
DMA_RWCTRL_WRITE_BNDRY_1024);
break;
}
}
out:
return val;
}
static int tg3_do_test_dma(struct tg3 *tp, u32 *buf, dma_addr_t buf_dma,
int size, bool to_device)
{
struct tg3_internal_buffer_desc test_desc;
u32 sram_dma_descs;
int i, ret;
sram_dma_descs = NIC_SRAM_DMA_DESC_POOL_BASE;
tw32(FTQ_RCVBD_COMP_FIFO_ENQDEQ, 0);
tw32(FTQ_RCVDATA_COMP_FIFO_ENQDEQ, 0);
tw32(RDMAC_STATUS, 0);
tw32(WDMAC_STATUS, 0);
tw32(BUFMGR_MODE, 0);
tw32(FTQ_RESET, 0);
test_desc.addr_hi = ((u64) buf_dma) >> 32;
test_desc.addr_lo = buf_dma & 0xffffffff;
test_desc.nic_mbuf = 0x00002100;
test_desc.len = size;
/*
* HP ZX1 was seeing test failures for 5701 cards running at 33Mhz
* the *second* time the tg3 driver was getting loaded after an
* initial scan.
*
* Broadcom tells me:
* ...the DMA engine is connected to the GRC block and a DMA
* reset may affect the GRC block in some unpredictable way...
* The behavior of resets to individual blocks has not been tested.
*
* Broadcom noted the GRC reset will also reset all sub-components.
*/
if (to_device) {
test_desc.cqid_sqid = (13 << 8) | 2;
tw32_f(RDMAC_MODE, RDMAC_MODE_ENABLE);
udelay(40);
} else {
test_desc.cqid_sqid = (16 << 8) | 7;
tw32_f(WDMAC_MODE, WDMAC_MODE_ENABLE);
udelay(40);
}
test_desc.flags = 0x00000005;
for (i = 0; i < (sizeof(test_desc) / sizeof(u32)); i++) {
u32 val;
val = *(((u32 *)&test_desc) + i);
pci_write_config_dword(tp->pdev, TG3PCI_MEM_WIN_BASE_ADDR,
sram_dma_descs + (i * sizeof(u32)));
pci_write_config_dword(tp->pdev, TG3PCI_MEM_WIN_DATA, val);
}
pci_write_config_dword(tp->pdev, TG3PCI_MEM_WIN_BASE_ADDR, 0);
if (to_device)
tw32(FTQ_DMA_HIGH_READ_FIFO_ENQDEQ, sram_dma_descs);
else
tw32(FTQ_DMA_HIGH_WRITE_FIFO_ENQDEQ, sram_dma_descs);
ret = -ENODEV;
for (i = 0; i < 40; i++) {
u32 val;
if (to_device)
val = tr32(FTQ_RCVBD_COMP_FIFO_ENQDEQ);
else
val = tr32(FTQ_RCVDATA_COMP_FIFO_ENQDEQ);
if ((val & 0xffff) == sram_dma_descs) {
ret = 0;
break;
}
udelay(100);
}
return ret;
}
#define TEST_BUFFER_SIZE 0x2000
static DEFINE_PCI_DEVICE_TABLE(tg3_dma_wait_state_chipsets) = {
{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_PCI15) },
{ },
};
static int tg3_test_dma(struct tg3 *tp)
{
dma_addr_t buf_dma;
u32 *buf, saved_dma_rwctrl;
int ret = 0;
buf = dma_alloc_coherent(&tp->pdev->dev, TEST_BUFFER_SIZE,
&buf_dma, GFP_KERNEL);
if (!buf) {
ret = -ENOMEM;
goto out_nofree;
}
tp->dma_rwctrl = ((0x7 << DMA_RWCTRL_PCI_WRITE_CMD_SHIFT) |
(0x6 << DMA_RWCTRL_PCI_READ_CMD_SHIFT));
tp->dma_rwctrl = tg3_calc_dma_bndry(tp, tp->dma_rwctrl);
if (tg3_flag(tp, 57765_PLUS))
goto out;
if (tg3_flag(tp, PCI_EXPRESS)) {
/* DMA read watermark not used on PCIE */
tp->dma_rwctrl |= 0x00180000;
} else if (!tg3_flag(tp, PCIX_MODE)) {
if (tg3_asic_rev(tp) == ASIC_REV_5705 ||
tg3_asic_rev(tp) == ASIC_REV_5750)
tp->dma_rwctrl |= 0x003f0000;
else
tp->dma_rwctrl |= 0x003f000f;
} else {
if (tg3_asic_rev(tp) == ASIC_REV_5703 ||
tg3_asic_rev(tp) == ASIC_REV_5704) {
u32 ccval = (tr32(TG3PCI_CLOCK_CTRL) & 0x1f);
u32 read_water = 0x7;
/* If the 5704 is behind the EPB bridge, we can
* do the less restrictive ONE_DMA workaround for
* better performance.
*/
if (tg3_flag(tp, 40BIT_DMA_BUG) &&
tg3_asic_rev(tp) == ASIC_REV_5704)
tp->dma_rwctrl |= 0x8000;
else if (ccval == 0x6 || ccval == 0x7)
tp->dma_rwctrl |= DMA_RWCTRL_ONE_DMA;
if (tg3_asic_rev(tp) == ASIC_REV_5703)
read_water = 4;
/* Set bit 23 to enable PCIX hw bug fix */
tp->dma_rwctrl |=
(read_water << DMA_RWCTRL_READ_WATER_SHIFT) |
(0x3 << DMA_RWCTRL_WRITE_WATER_SHIFT) |
(1 << 23);
} else if (tg3_asic_rev(tp) == ASIC_REV_5780) {
/* 5780 always in PCIX mode */
tp->dma_rwctrl |= 0x00144000;
} else if (tg3_asic_rev(tp) == ASIC_REV_5714) {
/* 5714 always in PCIX mode */
tp->dma_rwctrl |= 0x00148000;
} else {
tp->dma_rwctrl |= 0x001b000f;
}
}
if (tg3_flag(tp, ONE_DMA_AT_ONCE))
tp->dma_rwctrl |= DMA_RWCTRL_ONE_DMA;
if (tg3_asic_rev(tp) == ASIC_REV_5703 ||
tg3_asic_rev(tp) == ASIC_REV_5704)
tp->dma_rwctrl &= 0xfffffff0;
if (tg3_asic_rev(tp) == ASIC_REV_5700 ||
tg3_asic_rev(tp) == ASIC_REV_5701) {
/* Remove this if it causes problems for some boards. */
tp->dma_rwctrl |= DMA_RWCTRL_USE_MEM_READ_MULT;
/* On 5700/5701 chips, we need to set this bit.
* Otherwise the chip will issue cacheline transactions
* to streamable DMA memory with not all the byte
* enables turned on. This is an error on several
* RISC PCI controllers, in particular sparc64.
*
* On 5703/5704 chips, this bit has been reassigned
* a different meaning. In particular, it is used
* on those chips to enable a PCI-X workaround.
*/
tp->dma_rwctrl |= DMA_RWCTRL_ASSERT_ALL_BE;
}
tw32(TG3PCI_DMA_RW_CTRL, tp->dma_rwctrl);
#if 0
/* Unneeded, already done by tg3_get_invariants. */
tg3_switch_clocks(tp);
#endif
if (tg3_asic_rev(tp) != ASIC_REV_5700 &&
tg3_asic_rev(tp) != ASIC_REV_5701)
goto out;
/* It is best to perform DMA test with maximum write burst size
* to expose the 5700/5701 write DMA bug.
*/
saved_dma_rwctrl = tp->dma_rwctrl;
tp->dma_rwctrl &= ~DMA_RWCTRL_WRITE_BNDRY_MASK;
tw32(TG3PCI_DMA_RW_CTRL, tp->dma_rwctrl);
while (1) {
u32 *p = buf, i;
for (i = 0; i < TEST_BUFFER_SIZE / sizeof(u32); i++)
p[i] = i;
/* Send the buffer to the chip. */
ret = tg3_do_test_dma(tp, buf, buf_dma, TEST_BUFFER_SIZE, true);
if (ret) {
dev_err(&tp->pdev->dev,
"%s: Buffer write failed. err = %d\n",
__func__, ret);
break;
}
#if 0
/* validate data reached card RAM correctly. */
for (i = 0; i < TEST_BUFFER_SIZE / sizeof(u32); i++) {
u32 val;
tg3_read_mem(tp, 0x2100 + (i*4), &val);
if (le32_to_cpu(val) != p[i]) {
dev_err(&tp->pdev->dev,
"%s: Buffer corrupted on device! "
"(%d != %d)\n", __func__, val, i);
/* ret = -ENODEV here? */
}
p[i] = 0;
}
#endif
/* Now read it back. */
ret = tg3_do_test_dma(tp, buf, buf_dma, TEST_BUFFER_SIZE, false);
if (ret) {
dev_err(&tp->pdev->dev, "%s: Buffer read failed. "
"err = %d\n", __func__, ret);
break;
}
/* Verify it. */
for (i = 0; i < TEST_BUFFER_SIZE / sizeof(u32); i++) {
if (p[i] == i)
continue;
if ((tp->dma_rwctrl & DMA_RWCTRL_WRITE_BNDRY_MASK) !=
DMA_RWCTRL_WRITE_BNDRY_16) {
tp->dma_rwctrl &= ~DMA_RWCTRL_WRITE_BNDRY_MASK;
tp->dma_rwctrl |= DMA_RWCTRL_WRITE_BNDRY_16;
tw32(TG3PCI_DMA_RW_CTRL, tp->dma_rwctrl);
break;
} else {
dev_err(&tp->pdev->dev,
"%s: Buffer corrupted on read back! "
"(%d != %d)\n", __func__, p[i], i);
ret = -ENODEV;
goto out;
}
}
if (i == (TEST_BUFFER_SIZE / sizeof(u32))) {
/* Success. */
ret = 0;
break;
}
}
if ((tp->dma_rwctrl & DMA_RWCTRL_WRITE_BNDRY_MASK) !=
DMA_RWCTRL_WRITE_BNDRY_16) {
/* DMA test passed without adjusting DMA boundary,
* now look for chipsets that are known to expose the
* DMA bug without failing the test.
*/
if (pci_dev_present(tg3_dma_wait_state_chipsets)) {
tp->dma_rwctrl &= ~DMA_RWCTRL_WRITE_BNDRY_MASK;
tp->dma_rwctrl |= DMA_RWCTRL_WRITE_BNDRY_16;
} else {
/* Safe to use the calculated DMA boundary. */
tp->dma_rwctrl = saved_dma_rwctrl;
}
tw32(TG3PCI_DMA_RW_CTRL, tp->dma_rwctrl);
}
out:
dma_free_coherent(&tp->pdev->dev, TEST_BUFFER_SIZE, buf, buf_dma);
out_nofree:
return ret;
}
static void tg3_init_bufmgr_config(struct tg3 *tp)
{
if (tg3_flag(tp, 57765_PLUS)) {
tp->bufmgr_config.mbuf_read_dma_low_water =
DEFAULT_MB_RDMA_LOW_WATER_5705;
tp->bufmgr_config.mbuf_mac_rx_low_water =
DEFAULT_MB_MACRX_LOW_WATER_57765;
tp->bufmgr_config.mbuf_high_water =
DEFAULT_MB_HIGH_WATER_57765;
tp->bufmgr_config.mbuf_read_dma_low_water_jumbo =
DEFAULT_MB_RDMA_LOW_WATER_5705;
tp->bufmgr_config.mbuf_mac_rx_low_water_jumbo =
DEFAULT_MB_MACRX_LOW_WATER_JUMBO_57765;
tp->bufmgr_config.mbuf_high_water_jumbo =
DEFAULT_MB_HIGH_WATER_JUMBO_57765;
} else if (tg3_flag(tp, 5705_PLUS)) {
tp->bufmgr_config.mbuf_read_dma_low_water =
DEFAULT_MB_RDMA_LOW_WATER_5705;
tp->bufmgr_config.mbuf_mac_rx_low_water =
DEFAULT_MB_MACRX_LOW_WATER_5705;
tp->bufmgr_config.mbuf_high_water =
DEFAULT_MB_HIGH_WATER_5705;
if (tg3_asic_rev(tp) == ASIC_REV_5906) {
tp->bufmgr_config.mbuf_mac_rx_low_water =
DEFAULT_MB_MACRX_LOW_WATER_5906;
tp->bufmgr_config.mbuf_high_water =
DEFAULT_MB_HIGH_WATER_5906;
}
tp->bufmgr_config.mbuf_read_dma_low_water_jumbo =
DEFAULT_MB_RDMA_LOW_WATER_JUMBO_5780;
tp->bufmgr_config.mbuf_mac_rx_low_water_jumbo =
DEFAULT_MB_MACRX_LOW_WATER_JUMBO_5780;
tp->bufmgr_config.mbuf_high_water_jumbo =
DEFAULT_MB_HIGH_WATER_JUMBO_5780;
} else {
tp->bufmgr_config.mbuf_read_dma_low_water =
DEFAULT_MB_RDMA_LOW_WATER;
tp->bufmgr_config.mbuf_mac_rx_low_water =
DEFAULT_MB_MACRX_LOW_WATER;
tp->bufmgr_config.mbuf_high_water =
DEFAULT_MB_HIGH_WATER;
tp->bufmgr_config.mbuf_read_dma_low_water_jumbo =
DEFAULT_MB_RDMA_LOW_WATER_JUMBO;
tp->bufmgr_config.mbuf_mac_rx_low_water_jumbo =
DEFAULT_MB_MACRX_LOW_WATER_JUMBO;
tp->bufmgr_config.mbuf_high_water_jumbo =
DEFAULT_MB_HIGH_WATER_JUMBO;
}
tp->bufmgr_config.dma_low_water = DEFAULT_DMA_LOW_WATER;
tp->bufmgr_config.dma_high_water = DEFAULT_DMA_HIGH_WATER;
}
static char *tg3_phy_string(struct tg3 *tp)
{
switch (tp->phy_id & TG3_PHY_ID_MASK) {
case TG3_PHY_ID_BCM5400: return "5400";
case TG3_PHY_ID_BCM5401: return "5401";
case TG3_PHY_ID_BCM5411: return "5411";
case TG3_PHY_ID_BCM5701: return "5701";
case TG3_PHY_ID_BCM5703: return "5703";
case TG3_PHY_ID_BCM5704: return "5704";
case TG3_PHY_ID_BCM5705: return "5705";
case TG3_PHY_ID_BCM5750: return "5750";
case TG3_PHY_ID_BCM5752: return "5752";
case TG3_PHY_ID_BCM5714: return "5714";
case TG3_PHY_ID_BCM5780: return "5780";
case TG3_PHY_ID_BCM5755: return "5755";
case TG3_PHY_ID_BCM5787: return "5787";
case TG3_PHY_ID_BCM5784: return "5784";
case TG3_PHY_ID_BCM5756: return "5722/5756";
case TG3_PHY_ID_BCM5906: return "5906";
case TG3_PHY_ID_BCM5761: return "5761";
case TG3_PHY_ID_BCM5718C: return "5718C";
case TG3_PHY_ID_BCM5718S: return "5718S";
case TG3_PHY_ID_BCM57765: return "57765";
case TG3_PHY_ID_BCM5719C: return "5719C";
case TG3_PHY_ID_BCM5720C: return "5720C";
case TG3_PHY_ID_BCM5762: return "5762C";
case TG3_PHY_ID_BCM8002: return "8002/serdes";
case 0: return "serdes";
default: return "unknown";
}
}
static char *tg3_bus_string(struct tg3 *tp, char *str)
{
if (tg3_flag(tp, PCI_EXPRESS)) {
strcpy(str, "PCI Express");
return str;
} else if (tg3_flag(tp, PCIX_MODE)) {
u32 clock_ctrl = tr32(TG3PCI_CLOCK_CTRL) & 0x1f;
strcpy(str, "PCIX:");
if ((clock_ctrl == 7) ||
((tr32(GRC_MISC_CFG) & GRC_MISC_CFG_BOARD_ID_MASK) ==
GRC_MISC_CFG_BOARD_ID_5704CIOBE))
strcat(str, "133MHz");
else if (clock_ctrl == 0)
strcat(str, "33MHz");
else if (clock_ctrl == 2)
strcat(str, "50MHz");
else if (clock_ctrl == 4)
strcat(str, "66MHz");
else if (clock_ctrl == 6)
strcat(str, "100MHz");
} else {
strcpy(str, "PCI:");
if (tg3_flag(tp, PCI_HIGH_SPEED))
strcat(str, "66MHz");
else
strcat(str, "33MHz");
}
if (tg3_flag(tp, PCI_32BIT))
strcat(str, ":32-bit");
else
strcat(str, ":64-bit");
return str;
}
static void tg3_init_coal(struct tg3 *tp)
{
struct ethtool_coalesce *ec = &tp->coal;
memset(ec, 0, sizeof(*ec));
ec->cmd = ETHTOOL_GCOALESCE;
ec->rx_coalesce_usecs = LOW_RXCOL_TICKS;
ec->tx_coalesce_usecs = LOW_TXCOL_TICKS;
ec->rx_max_coalesced_frames = LOW_RXMAX_FRAMES;
ec->tx_max_coalesced_frames = LOW_TXMAX_FRAMES;
ec->rx_coalesce_usecs_irq = DEFAULT_RXCOAL_TICK_INT;
ec->tx_coalesce_usecs_irq = DEFAULT_TXCOAL_TICK_INT;
ec->rx_max_coalesced_frames_irq = DEFAULT_RXCOAL_MAXF_INT;
ec->tx_max_coalesced_frames_irq = DEFAULT_TXCOAL_MAXF_INT;
ec->stats_block_coalesce_usecs = DEFAULT_STAT_COAL_TICKS;
if (tp->coalesce_mode & (HOSTCC_MODE_CLRTICK_RXBD |
HOSTCC_MODE_CLRTICK_TXBD)) {
ec->rx_coalesce_usecs = LOW_RXCOL_TICKS_CLRTCKS;
ec->rx_coalesce_usecs_irq = DEFAULT_RXCOAL_TICK_INT_CLRTCKS;
ec->tx_coalesce_usecs = LOW_TXCOL_TICKS_CLRTCKS;
ec->tx_coalesce_usecs_irq = DEFAULT_TXCOAL_TICK_INT_CLRTCKS;
}
if (tg3_flag(tp, 5705_PLUS)) {
ec->rx_coalesce_usecs_irq = 0;
ec->tx_coalesce_usecs_irq = 0;
ec->stats_block_coalesce_usecs = 0;
}
}
static int tg3_init_one(struct pci_dev *pdev,
const struct pci_device_id *ent)
{
struct net_device *dev;
struct tg3 *tp;
int i, err, pm_cap;
u32 sndmbx, rcvmbx, intmbx;
char str[40];
u64 dma_mask, persist_dma_mask;
netdev_features_t features = 0;
printk_once(KERN_INFO "%s\n", version);
err = pci_enable_device(pdev);
if (err) {
dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
return err;
}
err = pci_request_regions(pdev, DRV_MODULE_NAME);
if (err) {
dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
goto err_out_disable_pdev;
}
pci_set_master(pdev);
/* Find power-management capability. */
pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
if (pm_cap == 0) {
dev_err(&pdev->dev,
"Cannot find Power Management capability, aborting\n");
err = -EIO;
goto err_out_free_res;
}
err = pci_set_power_state(pdev, PCI_D0);
if (err) {
dev_err(&pdev->dev, "Transition to D0 failed, aborting\n");
goto err_out_free_res;
}
dev = alloc_etherdev_mq(sizeof(*tp), TG3_IRQ_MAX_VECS);
if (!dev) {
err = -ENOMEM;
goto err_out_power_down;
}
SET_NETDEV_DEV(dev, &pdev->dev);
tp = netdev_priv(dev);
tp->pdev = pdev;
tp->dev = dev;
tp->pm_cap = pm_cap;
tp->rx_mode = TG3_DEF_RX_MODE;
tp->tx_mode = TG3_DEF_TX_MODE;
tp->irq_sync = 1;
if (tg3_debug > 0)
tp->msg_enable = tg3_debug;
else
tp->msg_enable = TG3_DEF_MSG_ENABLE;
if (pdev_is_ssb_gige_core(pdev)) {
tg3_flag_set(tp, IS_SSB_CORE);
if (ssb_gige_must_flush_posted_writes(pdev))
tg3_flag_set(tp, FLUSH_POSTED_WRITES);
if (ssb_gige_one_dma_at_once(pdev))
tg3_flag_set(tp, ONE_DMA_AT_ONCE);
if (ssb_gige_have_roboswitch(pdev))
tg3_flag_set(tp, ROBOSWITCH);
if (ssb_gige_is_rgmii(pdev))
tg3_flag_set(tp, RGMII_MODE);
}
/* The word/byte swap controls here control register access byte
* swapping. DMA data byte swapping is controlled in the GRC_MODE
* setting below.
*/
tp->misc_host_ctrl =
MISC_HOST_CTRL_MASK_PCI_INT |
MISC_HOST_CTRL_WORD_SWAP |
MISC_HOST_CTRL_INDIR_ACCESS |
MISC_HOST_CTRL_PCISTATE_RW;
/* The NONFRM (non-frame) byte/word swap controls take effect
* on descriptor entries, anything which isn't packet data.
*
* The StrongARM chips on the board (one for tx, one for rx)
* are running in big-endian mode.
*/
tp->grc_mode = (GRC_MODE_WSWAP_DATA | GRC_MODE_BSWAP_DATA |
GRC_MODE_WSWAP_NONFRM_DATA);
#ifdef __BIG_ENDIAN
tp->grc_mode |= GRC_MODE_BSWAP_NONFRM_DATA;
#endif
spin_lock_init(&tp->lock);
spin_lock_init(&tp->indirect_lock);
INIT_WORK(&tp->reset_task, tg3_reset_task);
tp->regs = pci_ioremap_bar(pdev, BAR_0);
if (!tp->regs) {
dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
err = -ENOMEM;
goto err_out_free_dev;
}
if (tp->pdev->device == PCI_DEVICE_ID_TIGON3_5761 ||
tp->pdev->device == PCI_DEVICE_ID_TIGON3_5761E ||
tp->pdev->device == TG3PCI_DEVICE_TIGON3_5761S ||
tp->pdev->device == TG3PCI_DEVICE_TIGON3_5761SE ||
tp->pdev->device == TG3PCI_DEVICE_TIGON3_5717 ||
tp->pdev->device == TG3PCI_DEVICE_TIGON3_5717_C ||
tp->pdev->device == TG3PCI_DEVICE_TIGON3_5718 ||
tp->pdev->device == TG3PCI_DEVICE_TIGON3_5719 ||
tp->pdev->device == TG3PCI_DEVICE_TIGON3_5720 ||
tp->pdev->device == TG3PCI_DEVICE_TIGON3_5762 ||
tp->pdev->device == TG3PCI_DEVICE_TIGON3_5725 ||
tp->pdev->device == TG3PCI_DEVICE_TIGON3_5727) {
tg3_flag_set(tp, ENABLE_APE);
tp->aperegs = pci_ioremap_bar(pdev, BAR_2);
if (!tp->aperegs) {
dev_err(&pdev->dev,
"Cannot map APE registers, aborting\n");
err = -ENOMEM;
goto err_out_iounmap;
}
}
tp->rx_pending = TG3_DEF_RX_RING_PENDING;
tp->rx_jumbo_pending = TG3_DEF_RX_JUMBO_RING_PENDING;
dev->ethtool_ops = &tg3_ethtool_ops;
dev->watchdog_timeo = TG3_TX_TIMEOUT;
dev->netdev_ops = &tg3_netdev_ops;
dev->irq = pdev->irq;
err = tg3_get_invariants(tp, ent);
if (err) {
dev_err(&pdev->dev,
"Problem fetching invariants of chip, aborting\n");
goto err_out_apeunmap;
}
/* The EPB bridge inside 5714, 5715, and 5780 and any
* device behind the EPB cannot support DMA addresses > 40-bit.
* On 64-bit systems with IOMMU, use 40-bit dma_mask.
* On 64-bit systems without IOMMU, use 64-bit dma_mask and
* do DMA address check in tg3_start_xmit().
*/
if (tg3_flag(tp, IS_5788))
persist_dma_mask = dma_mask = DMA_BIT_MASK(32);
else if (tg3_flag(tp, 40BIT_DMA_BUG)) {
persist_dma_mask = dma_mask = DMA_BIT_MASK(40);
#ifdef CONFIG_HIGHMEM
dma_mask = DMA_BIT_MASK(64);
#endif
} else
persist_dma_mask = dma_mask = DMA_BIT_MASK(64);
/* Configure DMA attributes. */
if (dma_mask > DMA_BIT_MASK(32)) {
err = pci_set_dma_mask(pdev, dma_mask);
if (!err) {
features |= NETIF_F_HIGHDMA;
err = pci_set_consistent_dma_mask(pdev,
persist_dma_mask);
if (err < 0) {
dev_err(&pdev->dev, "Unable to obtain 64 bit "
"DMA for consistent allocations\n");
goto err_out_apeunmap;
}
}
}
if (err || dma_mask == DMA_BIT_MASK(32)) {
err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
if (err) {
dev_err(&pdev->dev,
"No usable DMA configuration, aborting\n");
goto err_out_apeunmap;
}
}
tg3_init_bufmgr_config(tp);
features |= NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
/* 5700 B0 chips do not support checksumming correctly due
* to hardware bugs.
*/
if (tg3_chip_rev_id(tp) != CHIPREV_ID_5700_B0) {
features |= NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_RXCSUM;
if (tg3_flag(tp, 5755_PLUS))
features |= NETIF_F_IPV6_CSUM;
}
/* TSO is on by default on chips that support hardware TSO.
* Firmware TSO on older chips gives lower performance, so it
* is off by default, but can be enabled using ethtool.
*/
if ((tg3_flag(tp, HW_TSO_1) ||
tg3_flag(tp, HW_TSO_2) ||
tg3_flag(tp, HW_TSO_3)) &&
(features & NETIF_F_IP_CSUM))
features |= NETIF_F_TSO;
if (tg3_flag(tp, HW_TSO_2) || tg3_flag(tp, HW_TSO_3)) {
if (features & NETIF_F_IPV6_CSUM)
features |= NETIF_F_TSO6;
if (tg3_flag(tp, HW_TSO_3) ||
tg3_asic_rev(tp) == ASIC_REV_5761 ||
(tg3_asic_rev(tp) == ASIC_REV_5784 &&
tg3_chip_rev(tp) != CHIPREV_5784_AX) ||
tg3_asic_rev(tp) == ASIC_REV_5785 ||
tg3_asic_rev(tp) == ASIC_REV_57780)
features |= NETIF_F_TSO_ECN;
}
dev->features |= features;
dev->vlan_features |= features;
/*
* Add loopback capability only for a subset of devices that support
* MAC-LOOPBACK. Eventually this need to be enhanced to allow INT-PHY
* loopback for the remaining devices.
*/
if (tg3_asic_rev(tp) != ASIC_REV_5780 &&
!tg3_flag(tp, CPMU_PRESENT))
/* Add the loopback capability */
features |= NETIF_F_LOOPBACK;
dev->hw_features |= features;
if (tg3_chip_rev_id(tp) == CHIPREV_ID_5705_A1 &&
!tg3_flag(tp, TSO_CAPABLE) &&
!(tr32(TG3PCI_PCISTATE) & PCISTATE_BUS_SPEED_HIGH)) {
tg3_flag_set(tp, MAX_RXPEND_64);
tp->rx_pending = 63;
}
err = tg3_get_device_address(tp);
if (err) {
dev_err(&pdev->dev,
"Could not obtain valid ethernet address, aborting\n");
goto err_out_apeunmap;
}
/*
* Reset chip in case UNDI or EFI driver did not shutdown
* DMA self test will enable WDMAC and we'll see (spurious)
* pending DMA on the PCI bus at that point.
*/
if ((tr32(HOSTCC_MODE) & HOSTCC_MODE_ENABLE) ||
(tr32(WDMAC_MODE) & WDMAC_MODE_ENABLE)) {
tw32(MEMARB_MODE, MEMARB_MODE_ENABLE);
tg3_halt(tp, RESET_KIND_SHUTDOWN, 1);
}
err = tg3_test_dma(tp);
if (err) {
dev_err(&pdev->dev, "DMA engine test failed, aborting\n");
goto err_out_apeunmap;
}
intmbx = MAILBOX_INTERRUPT_0 + TG3_64BIT_REG_LOW;
rcvmbx = MAILBOX_RCVRET_CON_IDX_0 + TG3_64BIT_REG_LOW;
sndmbx = MAILBOX_SNDHOST_PROD_IDX_0 + TG3_64BIT_REG_LOW;
for (i = 0; i < tp->irq_max; i++) {
struct tg3_napi *tnapi = &tp->napi[i];
tnapi->tp = tp;
tnapi->tx_pending = TG3_DEF_TX_RING_PENDING;
tnapi->int_mbox = intmbx;
if (i <= 4)
intmbx += 0x8;
else
intmbx += 0x4;
tnapi->consmbox = rcvmbx;
tnapi->prodmbox = sndmbx;
if (i)
tnapi->coal_now = HOSTCC_MODE_COAL_VEC1_NOW << (i - 1);
else
tnapi->coal_now = HOSTCC_MODE_NOW;
if (!tg3_flag(tp, SUPPORT_MSIX))
break;
/*
* If we support MSIX, we'll be using RSS. If we're using
* RSS, the first vector only handles link interrupts and the
* remaining vectors handle rx and tx interrupts. Reuse the
* mailbox values for the next iteration. The values we setup
* above are still useful for the single vectored mode.
*/
if (!i)
continue;
rcvmbx += 0x8;
if (sndmbx & 0x4)
sndmbx -= 0x4;
else
sndmbx += 0xc;
}
tg3_init_coal(tp);
pci_set_drvdata(pdev, dev);
if (tg3_asic_rev(tp) == ASIC_REV_5719 ||
tg3_asic_rev(tp) == ASIC_REV_5720 ||
tg3_asic_rev(tp) == ASIC_REV_5762)
tg3_flag_set(tp, PTP_CAPABLE);
if (tg3_flag(tp, 5717_PLUS)) {
/* Resume a low-power mode */
tg3_frob_aux_power(tp, false);
}
tg3_timer_init(tp);
tg3_carrier_off(tp);
err = register_netdev(dev);
if (err) {
dev_err(&pdev->dev, "Cannot register net device, aborting\n");
goto err_out_apeunmap;
}
netdev_info(dev, "Tigon3 [partno(%s) rev %04x] (%s) MAC address %pM\n",
tp->board_part_number,
tg3_chip_rev_id(tp),
tg3_bus_string(tp, str),
dev->dev_addr);
if (tp->phy_flags & TG3_PHYFLG_IS_CONNECTED) {
struct phy_device *phydev;
phydev = tp->mdio_bus->phy_map[TG3_PHY_MII_ADDR];
netdev_info(dev,
"attached PHY driver [%s] (mii_bus:phy_addr=%s)\n",
phydev->drv->name, dev_name(&phydev->dev));
} else {
char *ethtype;
if (tp->phy_flags & TG3_PHYFLG_10_100_ONLY)
ethtype = "10/100Base-TX";
else if (tp->phy_flags & TG3_PHYFLG_ANY_SERDES)
ethtype = "1000Base-SX";
else
ethtype = "10/100/1000Base-T";
netdev_info(dev, "attached PHY is %s (%s Ethernet) "
"(WireSpeed[%d], EEE[%d])\n",
tg3_phy_string(tp), ethtype,
(tp->phy_flags & TG3_PHYFLG_NO_ETH_WIRE_SPEED) == 0,
(tp->phy_flags & TG3_PHYFLG_EEE_CAP) != 0);
}
netdev_info(dev, "RXcsums[%d] LinkChgREG[%d] MIirq[%d] ASF[%d] TSOcap[%d]\n",
(dev->features & NETIF_F_RXCSUM) != 0,
tg3_flag(tp, USE_LINKCHG_REG) != 0,
(tp->phy_flags & TG3_PHYFLG_USE_MI_INTERRUPT) != 0,
tg3_flag(tp, ENABLE_ASF) != 0,
tg3_flag(tp, TSO_CAPABLE) != 0);
netdev_info(dev, "dma_rwctrl[%08x] dma_mask[%d-bit]\n",
tp->dma_rwctrl,
pdev->dma_mask == DMA_BIT_MASK(32) ? 32 :
((u64)pdev->dma_mask) == DMA_BIT_MASK(40) ? 40 : 64);
pci_save_state(pdev);
return 0;
err_out_apeunmap:
if (tp->aperegs) {
iounmap(tp->aperegs);
tp->aperegs = NULL;
}
err_out_iounmap:
if (tp->regs) {
iounmap(tp->regs);
tp->regs = NULL;
}
err_out_free_dev:
free_netdev(dev);
err_out_power_down:
pci_set_power_state(pdev, PCI_D3hot);
err_out_free_res:
pci_release_regions(pdev);
err_out_disable_pdev:
pci_disable_device(pdev);
pci_set_drvdata(pdev, NULL);
return err;
}
static void tg3_remove_one(struct pci_dev *pdev)
{
struct net_device *dev = pci_get_drvdata(pdev);
if (dev) {
struct tg3 *tp = netdev_priv(dev);
release_firmware(tp->fw);
tg3_reset_task_cancel(tp);
if (tg3_flag(tp, USE_PHYLIB)) {
tg3_phy_fini(tp);
tg3_mdio_fini(tp);
}
unregister_netdev(dev);
if (tp->aperegs) {
iounmap(tp->aperegs);
tp->aperegs = NULL;
}
if (tp->regs) {
iounmap(tp->regs);
tp->regs = NULL;
}
free_netdev(dev);
pci_release_regions(pdev);
pci_disable_device(pdev);
pci_set_drvdata(pdev, NULL);
}
}
#ifdef CONFIG_PM_SLEEP
static int tg3_suspend(struct device *device)
{
struct pci_dev *pdev = to_pci_dev(device);
struct net_device *dev = pci_get_drvdata(pdev);
struct tg3 *tp = netdev_priv(dev);
int err;
if (!netif_running(dev))
return 0;
tg3_reset_task_cancel(tp);
tg3_phy_stop(tp);
tg3_netif_stop(tp);
tg3_timer_stop(tp);
tg3_full_lock(tp, 1);
tg3_disable_ints(tp);
tg3_full_unlock(tp);
netif_device_detach(dev);
tg3_full_lock(tp, 0);
tg3_halt(tp, RESET_KIND_SHUTDOWN, 1);
tg3_flag_clear(tp, INIT_COMPLETE);
tg3_full_unlock(tp);
err = tg3_power_down_prepare(tp);
if (err) {
int err2;
tg3_full_lock(tp, 0);
tg3_flag_set(tp, INIT_COMPLETE);
err2 = tg3_restart_hw(tp, true);
if (err2)
goto out;
tg3_timer_start(tp);
netif_device_attach(dev);
tg3_netif_start(tp);
out:
tg3_full_unlock(tp);
if (!err2)
tg3_phy_start(tp);
}
return err;
}
static int tg3_resume(struct device *device)
{
struct pci_dev *pdev = to_pci_dev(device);
struct net_device *dev = pci_get_drvdata(pdev);
struct tg3 *tp = netdev_priv(dev);
int err;
if (!netif_running(dev))
return 0;
netif_device_attach(dev);
tg3_full_lock(tp, 0);
tg3_flag_set(tp, INIT_COMPLETE);
err = tg3_restart_hw(tp,
!(tp->phy_flags & TG3_PHYFLG_KEEP_LINK_ON_PWRDN));
if (err)
goto out;
tg3_timer_start(tp);
tg3_netif_start(tp);
out:
tg3_full_unlock(tp);
if (!err)
tg3_phy_start(tp);
return err;
}
#endif /* CONFIG_PM_SLEEP */
static SIMPLE_DEV_PM_OPS(tg3_pm_ops, tg3_suspend, tg3_resume);
/**
* tg3_io_error_detected - called when PCI error is detected
* @pdev: Pointer to PCI device
* @state: The current pci connection state
*
* This function is called after a PCI bus error affecting
* this device has been detected.
*/
static pci_ers_result_t tg3_io_error_detected(struct pci_dev *pdev,
pci_channel_state_t state)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct tg3 *tp = netdev_priv(netdev);
pci_ers_result_t err = PCI_ERS_RESULT_NEED_RESET;
netdev_info(netdev, "PCI I/O error detected\n");
rtnl_lock();
if (!netif_running(netdev))
goto done;
tg3_phy_stop(tp);
tg3_netif_stop(tp);
tg3_timer_stop(tp);
/* Want to make sure that the reset task doesn't run */
tg3_reset_task_cancel(tp);
netif_device_detach(netdev);
/* Clean up software state, even if MMIO is blocked */
tg3_full_lock(tp, 0);
tg3_halt(tp, RESET_KIND_SHUTDOWN, 0);
tg3_full_unlock(tp);
done:
if (state == pci_channel_io_perm_failure)
err = PCI_ERS_RESULT_DISCONNECT;
else
pci_disable_device(pdev);
rtnl_unlock();
return err;
}
/**
* tg3_io_slot_reset - called after the pci bus has been reset.
* @pdev: Pointer to PCI device
*
* Restart the card from scratch, as if from a cold-boot.
* At this point, the card has exprienced a hard reset,
* followed by fixups by BIOS, and has its config space
* set up identically to what it was at cold boot.
*/
static pci_ers_result_t tg3_io_slot_reset(struct pci_dev *pdev)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct tg3 *tp = netdev_priv(netdev);
pci_ers_result_t rc = PCI_ERS_RESULT_DISCONNECT;
int err;
rtnl_lock();
if (pci_enable_device(pdev)) {
netdev_err(netdev, "Cannot re-enable PCI device after reset.\n");
goto done;
}
pci_set_master(pdev);
pci_restore_state(pdev);
pci_save_state(pdev);
if (!netif_running(netdev)) {
rc = PCI_ERS_RESULT_RECOVERED;
goto done;
}
err = tg3_power_up(tp);
if (err)
goto done;
rc = PCI_ERS_RESULT_RECOVERED;
done:
rtnl_unlock();
return rc;
}
/**
* tg3_io_resume - called when traffic can start flowing again.
* @pdev: Pointer to PCI device
*
* This callback is called when the error recovery driver tells
* us that its OK to resume normal operation.
*/
static void tg3_io_resume(struct pci_dev *pdev)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct tg3 *tp = netdev_priv(netdev);
int err;
rtnl_lock();
if (!netif_running(netdev))
goto done;
tg3_full_lock(tp, 0);
tg3_flag_set(tp, INIT_COMPLETE);
err = tg3_restart_hw(tp, true);
if (err) {
tg3_full_unlock(tp);
netdev_err(netdev, "Cannot restart hardware after reset.\n");
goto done;
}
netif_device_attach(netdev);
tg3_timer_start(tp);
tg3_netif_start(tp);
tg3_full_unlock(tp);
tg3_phy_start(tp);
done:
rtnl_unlock();
}
static const struct pci_error_handlers tg3_err_handler = {
.error_detected = tg3_io_error_detected,
.slot_reset = tg3_io_slot_reset,
.resume = tg3_io_resume
};
static struct pci_driver tg3_driver = {
.name = DRV_MODULE_NAME,
.id_table = tg3_pci_tbl,
.probe = tg3_init_one,
.remove = tg3_remove_one,
.err_handler = &tg3_err_handler,
.driver.pm = &tg3_pm_ops,
};
static int __init tg3_init(void)
{
return pci_register_driver(&tg3_driver);
}
static void __exit tg3_cleanup(void)
{
pci_unregister_driver(&tg3_driver);
}
module_init(tg3_init);
module_exit(tg3_cleanup);