mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-18 15:06:23 +07:00
c165f25d23
As a zpool_driver, zsmalloc can allocate movable memory because it support migate pages. But zbud and z3fold cannot allocate movable memory. Add malloc_support_movable to zpool_driver. If a zpool_driver support allocate movable memory, set it to true. And add zpool_malloc_support_movable check malloc_support_movable to make sure if a zpool support allocate movable memory. Link: http://lkml.kernel.org/r/20190605100630.13293-1-teawaterz@linux.alibaba.com Signed-off-by: Hui Zhu <teawaterz@linux.alibaba.com> Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: Dan Streetman <ddstreet@ieee.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Nitin Gupta <ngupta@vflare.org> Cc: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com> Cc: Seth Jennings <sjenning@redhat.com> Cc: Vitaly Wool <vitalywool@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
399 lines
11 KiB
C
399 lines
11 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* zpool memory storage api
|
|
*
|
|
* Copyright (C) 2014 Dan Streetman
|
|
*
|
|
* This is a common frontend for memory storage pool implementations.
|
|
* Typically, this is used to store compressed memory.
|
|
*/
|
|
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
|
|
#include <linux/list.h>
|
|
#include <linux/types.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/module.h>
|
|
#include <linux/zpool.h>
|
|
|
|
struct zpool {
|
|
struct zpool_driver *driver;
|
|
void *pool;
|
|
const struct zpool_ops *ops;
|
|
bool evictable;
|
|
|
|
struct list_head list;
|
|
};
|
|
|
|
static LIST_HEAD(drivers_head);
|
|
static DEFINE_SPINLOCK(drivers_lock);
|
|
|
|
static LIST_HEAD(pools_head);
|
|
static DEFINE_SPINLOCK(pools_lock);
|
|
|
|
/**
|
|
* zpool_register_driver() - register a zpool implementation.
|
|
* @driver: driver to register
|
|
*/
|
|
void zpool_register_driver(struct zpool_driver *driver)
|
|
{
|
|
spin_lock(&drivers_lock);
|
|
atomic_set(&driver->refcount, 0);
|
|
list_add(&driver->list, &drivers_head);
|
|
spin_unlock(&drivers_lock);
|
|
}
|
|
EXPORT_SYMBOL(zpool_register_driver);
|
|
|
|
/**
|
|
* zpool_unregister_driver() - unregister a zpool implementation.
|
|
* @driver: driver to unregister.
|
|
*
|
|
* Module usage counting is used to prevent using a driver
|
|
* while/after unloading, so if this is called from module
|
|
* exit function, this should never fail; if called from
|
|
* other than the module exit function, and this returns
|
|
* failure, the driver is in use and must remain available.
|
|
*/
|
|
int zpool_unregister_driver(struct zpool_driver *driver)
|
|
{
|
|
int ret = 0, refcount;
|
|
|
|
spin_lock(&drivers_lock);
|
|
refcount = atomic_read(&driver->refcount);
|
|
WARN_ON(refcount < 0);
|
|
if (refcount > 0)
|
|
ret = -EBUSY;
|
|
else
|
|
list_del(&driver->list);
|
|
spin_unlock(&drivers_lock);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(zpool_unregister_driver);
|
|
|
|
/* this assumes @type is null-terminated. */
|
|
static struct zpool_driver *zpool_get_driver(const char *type)
|
|
{
|
|
struct zpool_driver *driver;
|
|
|
|
spin_lock(&drivers_lock);
|
|
list_for_each_entry(driver, &drivers_head, list) {
|
|
if (!strcmp(driver->type, type)) {
|
|
bool got = try_module_get(driver->owner);
|
|
|
|
if (got)
|
|
atomic_inc(&driver->refcount);
|
|
spin_unlock(&drivers_lock);
|
|
return got ? driver : NULL;
|
|
}
|
|
}
|
|
|
|
spin_unlock(&drivers_lock);
|
|
return NULL;
|
|
}
|
|
|
|
static void zpool_put_driver(struct zpool_driver *driver)
|
|
{
|
|
atomic_dec(&driver->refcount);
|
|
module_put(driver->owner);
|
|
}
|
|
|
|
/**
|
|
* zpool_has_pool() - Check if the pool driver is available
|
|
* @type: The type of the zpool to check (e.g. zbud, zsmalloc)
|
|
*
|
|
* This checks if the @type pool driver is available. This will try to load
|
|
* the requested module, if needed, but there is no guarantee the module will
|
|
* still be loaded and available immediately after calling. If this returns
|
|
* true, the caller should assume the pool is available, but must be prepared
|
|
* to handle the @zpool_create_pool() returning failure. However if this
|
|
* returns false, the caller should assume the requested pool type is not
|
|
* available; either the requested pool type module does not exist, or could
|
|
* not be loaded, and calling @zpool_create_pool() with the pool type will
|
|
* fail.
|
|
*
|
|
* The @type string must be null-terminated.
|
|
*
|
|
* Returns: true if @type pool is available, false if not
|
|
*/
|
|
bool zpool_has_pool(char *type)
|
|
{
|
|
struct zpool_driver *driver = zpool_get_driver(type);
|
|
|
|
if (!driver) {
|
|
request_module("zpool-%s", type);
|
|
driver = zpool_get_driver(type);
|
|
}
|
|
|
|
if (!driver)
|
|
return false;
|
|
|
|
zpool_put_driver(driver);
|
|
return true;
|
|
}
|
|
EXPORT_SYMBOL(zpool_has_pool);
|
|
|
|
/**
|
|
* zpool_create_pool() - Create a new zpool
|
|
* @type: The type of the zpool to create (e.g. zbud, zsmalloc)
|
|
* @name: The name of the zpool (e.g. zram0, zswap)
|
|
* @gfp: The GFP flags to use when allocating the pool.
|
|
* @ops: The optional ops callback.
|
|
*
|
|
* This creates a new zpool of the specified type. The gfp flags will be
|
|
* used when allocating memory, if the implementation supports it. If the
|
|
* ops param is NULL, then the created zpool will not be evictable.
|
|
*
|
|
* Implementations must guarantee this to be thread-safe.
|
|
*
|
|
* The @type and @name strings must be null-terminated.
|
|
*
|
|
* Returns: New zpool on success, NULL on failure.
|
|
*/
|
|
struct zpool *zpool_create_pool(const char *type, const char *name, gfp_t gfp,
|
|
const struct zpool_ops *ops)
|
|
{
|
|
struct zpool_driver *driver;
|
|
struct zpool *zpool;
|
|
|
|
pr_debug("creating pool type %s\n", type);
|
|
|
|
driver = zpool_get_driver(type);
|
|
|
|
if (!driver) {
|
|
request_module("zpool-%s", type);
|
|
driver = zpool_get_driver(type);
|
|
}
|
|
|
|
if (!driver) {
|
|
pr_err("no driver for type %s\n", type);
|
|
return NULL;
|
|
}
|
|
|
|
zpool = kmalloc(sizeof(*zpool), gfp);
|
|
if (!zpool) {
|
|
pr_err("couldn't create zpool - out of memory\n");
|
|
zpool_put_driver(driver);
|
|
return NULL;
|
|
}
|
|
|
|
zpool->driver = driver;
|
|
zpool->pool = driver->create(name, gfp, ops, zpool);
|
|
zpool->ops = ops;
|
|
zpool->evictable = driver->shrink && ops && ops->evict;
|
|
|
|
if (!zpool->pool) {
|
|
pr_err("couldn't create %s pool\n", type);
|
|
zpool_put_driver(driver);
|
|
kfree(zpool);
|
|
return NULL;
|
|
}
|
|
|
|
pr_debug("created pool type %s\n", type);
|
|
|
|
spin_lock(&pools_lock);
|
|
list_add(&zpool->list, &pools_head);
|
|
spin_unlock(&pools_lock);
|
|
|
|
return zpool;
|
|
}
|
|
|
|
/**
|
|
* zpool_destroy_pool() - Destroy a zpool
|
|
* @zpool: The zpool to destroy.
|
|
*
|
|
* Implementations must guarantee this to be thread-safe,
|
|
* however only when destroying different pools. The same
|
|
* pool should only be destroyed once, and should not be used
|
|
* after it is destroyed.
|
|
*
|
|
* This destroys an existing zpool. The zpool should not be in use.
|
|
*/
|
|
void zpool_destroy_pool(struct zpool *zpool)
|
|
{
|
|
pr_debug("destroying pool type %s\n", zpool->driver->type);
|
|
|
|
spin_lock(&pools_lock);
|
|
list_del(&zpool->list);
|
|
spin_unlock(&pools_lock);
|
|
zpool->driver->destroy(zpool->pool);
|
|
zpool_put_driver(zpool->driver);
|
|
kfree(zpool);
|
|
}
|
|
|
|
/**
|
|
* zpool_get_type() - Get the type of the zpool
|
|
* @zpool: The zpool to check
|
|
*
|
|
* This returns the type of the pool.
|
|
*
|
|
* Implementations must guarantee this to be thread-safe.
|
|
*
|
|
* Returns: The type of zpool.
|
|
*/
|
|
const char *zpool_get_type(struct zpool *zpool)
|
|
{
|
|
return zpool->driver->type;
|
|
}
|
|
|
|
/**
|
|
* zpool_malloc_support_movable() - Check if the zpool support
|
|
* allocate movable memory
|
|
* @zpool: The zpool to check
|
|
*
|
|
* This returns if the zpool support allocate movable memory.
|
|
*
|
|
* Implementations must guarantee this to be thread-safe.
|
|
*
|
|
* Returns: true if if the zpool support allocate movable memory, false if not
|
|
*/
|
|
bool zpool_malloc_support_movable(struct zpool *zpool)
|
|
{
|
|
return zpool->driver->malloc_support_movable;
|
|
}
|
|
|
|
/**
|
|
* zpool_malloc() - Allocate memory
|
|
* @zpool: The zpool to allocate from.
|
|
* @size: The amount of memory to allocate.
|
|
* @gfp: The GFP flags to use when allocating memory.
|
|
* @handle: Pointer to the handle to set
|
|
*
|
|
* This allocates the requested amount of memory from the pool.
|
|
* The gfp flags will be used when allocating memory, if the
|
|
* implementation supports it. The provided @handle will be
|
|
* set to the allocated object handle.
|
|
*
|
|
* Implementations must guarantee this to be thread-safe.
|
|
*
|
|
* Returns: 0 on success, negative value on error.
|
|
*/
|
|
int zpool_malloc(struct zpool *zpool, size_t size, gfp_t gfp,
|
|
unsigned long *handle)
|
|
{
|
|
return zpool->driver->malloc(zpool->pool, size, gfp, handle);
|
|
}
|
|
|
|
/**
|
|
* zpool_free() - Free previously allocated memory
|
|
* @zpool: The zpool that allocated the memory.
|
|
* @handle: The handle to the memory to free.
|
|
*
|
|
* This frees previously allocated memory. This does not guarantee
|
|
* that the pool will actually free memory, only that the memory
|
|
* in the pool will become available for use by the pool.
|
|
*
|
|
* Implementations must guarantee this to be thread-safe,
|
|
* however only when freeing different handles. The same
|
|
* handle should only be freed once, and should not be used
|
|
* after freeing.
|
|
*/
|
|
void zpool_free(struct zpool *zpool, unsigned long handle)
|
|
{
|
|
zpool->driver->free(zpool->pool, handle);
|
|
}
|
|
|
|
/**
|
|
* zpool_shrink() - Shrink the pool size
|
|
* @zpool: The zpool to shrink.
|
|
* @pages: The number of pages to shrink the pool.
|
|
* @reclaimed: The number of pages successfully evicted.
|
|
*
|
|
* This attempts to shrink the actual memory size of the pool
|
|
* by evicting currently used handle(s). If the pool was
|
|
* created with no zpool_ops, or the evict call fails for any
|
|
* of the handles, this will fail. If non-NULL, the @reclaimed
|
|
* parameter will be set to the number of pages reclaimed,
|
|
* which may be more than the number of pages requested.
|
|
*
|
|
* Implementations must guarantee this to be thread-safe.
|
|
*
|
|
* Returns: 0 on success, negative value on error/failure.
|
|
*/
|
|
int zpool_shrink(struct zpool *zpool, unsigned int pages,
|
|
unsigned int *reclaimed)
|
|
{
|
|
return zpool->driver->shrink ?
|
|
zpool->driver->shrink(zpool->pool, pages, reclaimed) : -EINVAL;
|
|
}
|
|
|
|
/**
|
|
* zpool_map_handle() - Map a previously allocated handle into memory
|
|
* @zpool: The zpool that the handle was allocated from
|
|
* @handle: The handle to map
|
|
* @mapmode: How the memory should be mapped
|
|
*
|
|
* This maps a previously allocated handle into memory. The @mapmode
|
|
* param indicates to the implementation how the memory will be
|
|
* used, i.e. read-only, write-only, read-write. If the
|
|
* implementation does not support it, the memory will be treated
|
|
* as read-write.
|
|
*
|
|
* This may hold locks, disable interrupts, and/or preemption,
|
|
* and the zpool_unmap_handle() must be called to undo those
|
|
* actions. The code that uses the mapped handle should complete
|
|
* its operatons on the mapped handle memory quickly and unmap
|
|
* as soon as possible. As the implementation may use per-cpu
|
|
* data, multiple handles should not be mapped concurrently on
|
|
* any cpu.
|
|
*
|
|
* Returns: A pointer to the handle's mapped memory area.
|
|
*/
|
|
void *zpool_map_handle(struct zpool *zpool, unsigned long handle,
|
|
enum zpool_mapmode mapmode)
|
|
{
|
|
return zpool->driver->map(zpool->pool, handle, mapmode);
|
|
}
|
|
|
|
/**
|
|
* zpool_unmap_handle() - Unmap a previously mapped handle
|
|
* @zpool: The zpool that the handle was allocated from
|
|
* @handle: The handle to unmap
|
|
*
|
|
* This unmaps a previously mapped handle. Any locks or other
|
|
* actions that the implementation took in zpool_map_handle()
|
|
* will be undone here. The memory area returned from
|
|
* zpool_map_handle() should no longer be used after this.
|
|
*/
|
|
void zpool_unmap_handle(struct zpool *zpool, unsigned long handle)
|
|
{
|
|
zpool->driver->unmap(zpool->pool, handle);
|
|
}
|
|
|
|
/**
|
|
* zpool_get_total_size() - The total size of the pool
|
|
* @zpool: The zpool to check
|
|
*
|
|
* This returns the total size in bytes of the pool.
|
|
*
|
|
* Returns: Total size of the zpool in bytes.
|
|
*/
|
|
u64 zpool_get_total_size(struct zpool *zpool)
|
|
{
|
|
return zpool->driver->total_size(zpool->pool);
|
|
}
|
|
|
|
/**
|
|
* zpool_evictable() - Test if zpool is potentially evictable
|
|
* @zpool: The zpool to test
|
|
*
|
|
* Zpool is only potentially evictable when it's created with struct
|
|
* zpool_ops.evict and its driver implements struct zpool_driver.shrink.
|
|
*
|
|
* However, it doesn't necessarily mean driver will use zpool_ops.evict
|
|
* in its implementation of zpool_driver.shrink. It could do internal
|
|
* defragmentation instead.
|
|
*
|
|
* Returns: true if potentially evictable; false otherwise.
|
|
*/
|
|
bool zpool_evictable(struct zpool *zpool)
|
|
{
|
|
return zpool->evictable;
|
|
}
|
|
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_AUTHOR("Dan Streetman <ddstreet@ieee.org>");
|
|
MODULE_DESCRIPTION("Common API for compressed memory storage");
|