linux_dsm_epyc7002/include/linux/sunrpc/svc.h
Chuck Lever 38a7031559 NFSD: Clean up legacy NFS SYMLINK argument XDR decoders
Move common code in NFSD's legacy SYMLINK decoders into a helper.
The immediate benefits include:

 - one fewer data copies on transports that support DDP
 - consistent error checking across all versions
 - reduction of code duplication
 - support for both legal forms of SYMLINK requests on RDMA
   transports for all versions of NFS (in particular, NFSv2, for
   completeness)

In the long term, this helper is an appropriate spot to perform a
per-transport call-out to fill the pathname argument using, say,
RDMA Reads.

Filling the pathname in the proc function also means that eventually
the incoming filehandle can be interpreted so that filesystem-
specific memory can be allocated as a sink for the pathname
argument, rather than using anonymous pages.

Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2018-04-03 15:08:16 -04:00

518 lines
17 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
/*
* linux/include/linux/sunrpc/svc.h
*
* RPC server declarations.
*
* Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
*/
#ifndef SUNRPC_SVC_H
#define SUNRPC_SVC_H
#include <linux/in.h>
#include <linux/in6.h>
#include <linux/sunrpc/types.h>
#include <linux/sunrpc/xdr.h>
#include <linux/sunrpc/auth.h>
#include <linux/sunrpc/svcauth.h>
#include <linux/wait.h>
#include <linux/mm.h>
/* statistics for svc_pool structures */
struct svc_pool_stats {
atomic_long_t packets;
unsigned long sockets_queued;
atomic_long_t threads_woken;
atomic_long_t threads_timedout;
};
/*
*
* RPC service thread pool.
*
* Pool of threads and temporary sockets. Generally there is only
* a single one of these per RPC service, but on NUMA machines those
* services that can benefit from it (i.e. nfs but not lockd) will
* have one pool per NUMA node. This optimisation reduces cross-
* node traffic on multi-node NUMA NFS servers.
*/
struct svc_pool {
unsigned int sp_id; /* pool id; also node id on NUMA */
spinlock_t sp_lock; /* protects all fields */
struct list_head sp_sockets; /* pending sockets */
unsigned int sp_nrthreads; /* # of threads in pool */
struct list_head sp_all_threads; /* all server threads */
struct svc_pool_stats sp_stats; /* statistics on pool operation */
#define SP_TASK_PENDING (0) /* still work to do even if no
* xprt is queued. */
#define SP_CONGESTED (1)
unsigned long sp_flags;
} ____cacheline_aligned_in_smp;
struct svc_serv;
struct svc_serv_ops {
/* Callback to use when last thread exits. */
void (*svo_shutdown)(struct svc_serv *, struct net *);
/* function for service threads to run */
int (*svo_function)(void *);
/* queue up a transport for servicing */
void (*svo_enqueue_xprt)(struct svc_xprt *);
/* set up thread (or whatever) execution context */
int (*svo_setup)(struct svc_serv *, struct svc_pool *, int);
/* optional module to count when adding threads (pooled svcs only) */
struct module *svo_module;
};
/*
* RPC service.
*
* An RPC service is a ``daemon,'' possibly multithreaded, which
* receives and processes incoming RPC messages.
* It has one or more transport sockets associated with it, and maintains
* a list of idle threads waiting for input.
*
* We currently do not support more than one RPC program per daemon.
*/
struct svc_serv {
struct svc_program * sv_program; /* RPC program */
struct svc_stat * sv_stats; /* RPC statistics */
spinlock_t sv_lock;
unsigned int sv_nrthreads; /* # of server threads */
unsigned int sv_maxconn; /* max connections allowed or
* '0' causing max to be based
* on number of threads. */
unsigned int sv_max_payload; /* datagram payload size */
unsigned int sv_max_mesg; /* max_payload + 1 page for overheads */
unsigned int sv_xdrsize; /* XDR buffer size */
struct list_head sv_permsocks; /* all permanent sockets */
struct list_head sv_tempsocks; /* all temporary sockets */
int sv_tmpcnt; /* count of temporary sockets */
struct timer_list sv_temptimer; /* timer for aging temporary sockets */
char * sv_name; /* service name */
unsigned int sv_nrpools; /* number of thread pools */
struct svc_pool * sv_pools; /* array of thread pools */
const struct svc_serv_ops *sv_ops; /* server operations */
#if defined(CONFIG_SUNRPC_BACKCHANNEL)
struct list_head sv_cb_list; /* queue for callback requests
* that arrive over the same
* connection */
spinlock_t sv_cb_lock; /* protects the svc_cb_list */
wait_queue_head_t sv_cb_waitq; /* sleep here if there are no
* entries in the svc_cb_list */
struct svc_xprt *sv_bc_xprt; /* callback on fore channel */
#endif /* CONFIG_SUNRPC_BACKCHANNEL */
};
/*
* We use sv_nrthreads as a reference count. svc_destroy() drops
* this refcount, so we need to bump it up around operations that
* change the number of threads. Horrible, but there it is.
* Should be called with the "service mutex" held.
*/
static inline void svc_get(struct svc_serv *serv)
{
serv->sv_nrthreads++;
}
/*
* Maximum payload size supported by a kernel RPC server.
* This is use to determine the max number of pages nfsd is
* willing to return in a single READ operation.
*
* These happen to all be powers of 2, which is not strictly
* necessary but helps enforce the real limitation, which is
* that they should be multiples of PAGE_SIZE.
*
* For UDP transports, a block plus NFS,RPC, and UDP headers
* has to fit into the IP datagram limit of 64K. The largest
* feasible number for all known page sizes is probably 48K,
* but we choose 32K here. This is the same as the historical
* Linux limit; someone who cares more about NFS/UDP performance
* can test a larger number.
*
* For TCP transports we have more freedom. A size of 1MB is
* chosen to match the client limit. Other OSes are known to
* have larger limits, but those numbers are probably beyond
* the point of diminishing returns.
*/
#define RPCSVC_MAXPAYLOAD (1*1024*1024u)
#define RPCSVC_MAXPAYLOAD_TCP RPCSVC_MAXPAYLOAD
#define RPCSVC_MAXPAYLOAD_UDP (32*1024u)
extern u32 svc_max_payload(const struct svc_rqst *rqstp);
/*
* RPC Requsts and replies are stored in one or more pages.
* We maintain an array of pages for each server thread.
* Requests are copied into these pages as they arrive. Remaining
* pages are available to write the reply into.
*
* Pages are sent using ->sendpage so each server thread needs to
* allocate more to replace those used in sending. To help keep track
* of these pages we have a receive list where all pages initialy live,
* and a send list where pages are moved to when there are to be part
* of a reply.
*
* We use xdr_buf for holding responses as it fits well with NFS
* read responses (that have a header, and some data pages, and possibly
* a tail) and means we can share some client side routines.
*
* The xdr_buf.head kvec always points to the first page in the rq_*pages
* list. The xdr_buf.pages pointer points to the second page on that
* list. xdr_buf.tail points to the end of the first page.
* This assumes that the non-page part of an rpc reply will fit
* in a page - NFSd ensures this. lockd also has no trouble.
*
* Each request/reply pair can have at most one "payload", plus two pages,
* one for the request, and one for the reply.
* We using ->sendfile to return read data, we might need one extra page
* if the request is not page-aligned. So add another '1'.
*/
#define RPCSVC_MAXPAGES ((RPCSVC_MAXPAYLOAD+PAGE_SIZE-1)/PAGE_SIZE \
+ 2 + 1)
static inline u32 svc_getnl(struct kvec *iov)
{
__be32 val, *vp;
vp = iov->iov_base;
val = *vp++;
iov->iov_base = (void*)vp;
iov->iov_len -= sizeof(__be32);
return ntohl(val);
}
static inline void svc_putnl(struct kvec *iov, u32 val)
{
__be32 *vp = iov->iov_base + iov->iov_len;
*vp = htonl(val);
iov->iov_len += sizeof(__be32);
}
static inline __be32 svc_getu32(struct kvec *iov)
{
__be32 val, *vp;
vp = iov->iov_base;
val = *vp++;
iov->iov_base = (void*)vp;
iov->iov_len -= sizeof(__be32);
return val;
}
static inline void svc_ungetu32(struct kvec *iov)
{
__be32 *vp = (__be32 *)iov->iov_base;
iov->iov_base = (void *)(vp - 1);
iov->iov_len += sizeof(*vp);
}
static inline void svc_putu32(struct kvec *iov, __be32 val)
{
__be32 *vp = iov->iov_base + iov->iov_len;
*vp = val;
iov->iov_len += sizeof(__be32);
}
/*
* The context of a single thread, including the request currently being
* processed.
*/
struct svc_rqst {
struct list_head rq_all; /* all threads list */
struct rcu_head rq_rcu_head; /* for RCU deferred kfree */
struct svc_xprt * rq_xprt; /* transport ptr */
struct sockaddr_storage rq_addr; /* peer address */
size_t rq_addrlen;
struct sockaddr_storage rq_daddr; /* dest addr of request
* - reply from here */
size_t rq_daddrlen;
struct svc_serv * rq_server; /* RPC service definition */
struct svc_pool * rq_pool; /* thread pool */
const struct svc_procedure *rq_procinfo;/* procedure info */
struct auth_ops * rq_authop; /* authentication flavour */
struct svc_cred rq_cred; /* auth info */
void * rq_xprt_ctxt; /* transport specific context ptr */
struct svc_deferred_req*rq_deferred; /* deferred request we are replaying */
size_t rq_xprt_hlen; /* xprt header len */
struct xdr_buf rq_arg;
struct xdr_buf rq_res;
struct page *rq_pages[RPCSVC_MAXPAGES + 1];
struct page * *rq_respages; /* points into rq_pages */
struct page * *rq_next_page; /* next reply page to use */
struct page * *rq_page_end; /* one past the last page */
struct kvec rq_vec[RPCSVC_MAXPAGES]; /* generally useful.. */
__be32 rq_xid; /* transmission id */
u32 rq_prog; /* program number */
u32 rq_vers; /* program version */
u32 rq_proc; /* procedure number */
u32 rq_prot; /* IP protocol */
int rq_cachetype; /* catering to nfsd */
#define RQ_SECURE (0) /* secure port */
#define RQ_LOCAL (1) /* local request */
#define RQ_USEDEFERRAL (2) /* use deferral */
#define RQ_DROPME (3) /* drop current reply */
#define RQ_SPLICE_OK (4) /* turned off in gss privacy
* to prevent encrypting page
* cache pages */
#define RQ_VICTIM (5) /* about to be shut down */
#define RQ_BUSY (6) /* request is busy */
#define RQ_DATA (7) /* request has data */
unsigned long rq_flags; /* flags field */
ktime_t rq_qtime; /* enqueue time */
void * rq_argp; /* decoded arguments */
void * rq_resp; /* xdr'd results */
void * rq_auth_data; /* flavor-specific data */
int rq_auth_slack; /* extra space xdr code
* should leave in head
* for krb5i, krb5p.
*/
int rq_reserved; /* space on socket outq
* reserved for this request
*/
ktime_t rq_stime; /* start time */
struct cache_req rq_chandle; /* handle passed to caches for
* request delaying
*/
/* Catering to nfsd */
struct auth_domain * rq_client; /* RPC peer info */
struct auth_domain * rq_gssclient; /* "gss/"-style peer info */
struct svc_cacherep * rq_cacherep; /* cache info */
struct task_struct *rq_task; /* service thread */
spinlock_t rq_lock; /* per-request lock */
};
#define SVC_NET(svc_rqst) (svc_rqst->rq_xprt->xpt_net)
/*
* Rigorous type checking on sockaddr type conversions
*/
static inline struct sockaddr_in *svc_addr_in(const struct svc_rqst *rqst)
{
return (struct sockaddr_in *) &rqst->rq_addr;
}
static inline struct sockaddr_in6 *svc_addr_in6(const struct svc_rqst *rqst)
{
return (struct sockaddr_in6 *) &rqst->rq_addr;
}
static inline struct sockaddr *svc_addr(const struct svc_rqst *rqst)
{
return (struct sockaddr *) &rqst->rq_addr;
}
static inline struct sockaddr_in *svc_daddr_in(const struct svc_rqst *rqst)
{
return (struct sockaddr_in *) &rqst->rq_daddr;
}
static inline struct sockaddr_in6 *svc_daddr_in6(const struct svc_rqst *rqst)
{
return (struct sockaddr_in6 *) &rqst->rq_daddr;
}
static inline struct sockaddr *svc_daddr(const struct svc_rqst *rqst)
{
return (struct sockaddr *) &rqst->rq_daddr;
}
/*
* Check buffer bounds after decoding arguments
*/
static inline int
xdr_argsize_check(struct svc_rqst *rqstp, __be32 *p)
{
char *cp = (char *)p;
struct kvec *vec = &rqstp->rq_arg.head[0];
return cp >= (char*)vec->iov_base
&& cp <= (char*)vec->iov_base + vec->iov_len;
}
static inline int
xdr_ressize_check(struct svc_rqst *rqstp, __be32 *p)
{
struct kvec *vec = &rqstp->rq_res.head[0];
char *cp = (char*)p;
vec->iov_len = cp - (char*)vec->iov_base;
return vec->iov_len <= PAGE_SIZE;
}
static inline void svc_free_res_pages(struct svc_rqst *rqstp)
{
while (rqstp->rq_next_page != rqstp->rq_respages) {
struct page **pp = --rqstp->rq_next_page;
if (*pp) {
put_page(*pp);
*pp = NULL;
}
}
}
struct svc_deferred_req {
u32 prot; /* protocol (UDP or TCP) */
struct svc_xprt *xprt;
struct sockaddr_storage addr; /* where reply must go */
size_t addrlen;
struct sockaddr_storage daddr; /* where reply must come from */
size_t daddrlen;
struct cache_deferred_req handle;
size_t xprt_hlen;
int argslen;
__be32 args[0];
};
/*
* List of RPC programs on the same transport endpoint
*/
struct svc_program {
struct svc_program * pg_next; /* other programs (same xprt) */
u32 pg_prog; /* program number */
unsigned int pg_lovers; /* lowest version */
unsigned int pg_hivers; /* highest version */
unsigned int pg_nvers; /* number of versions */
const struct svc_version **pg_vers; /* version array */
char * pg_name; /* service name */
char * pg_class; /* class name: services sharing authentication */
struct svc_stat * pg_stats; /* rpc statistics */
int (*pg_authenticate)(struct svc_rqst *);
};
/*
* RPC program version
*/
struct svc_version {
u32 vs_vers; /* version number */
u32 vs_nproc; /* number of procedures */
const struct svc_procedure *vs_proc; /* per-procedure info */
unsigned int *vs_count; /* call counts */
u32 vs_xdrsize; /* xdrsize needed for this version */
/* Don't register with rpcbind */
bool vs_hidden;
/* Don't care if the rpcbind registration fails */
bool vs_rpcb_optnl;
/* Need xprt with congestion control */
bool vs_need_cong_ctrl;
/* Override dispatch function (e.g. when caching replies).
* A return value of 0 means drop the request.
* vs_dispatch == NULL means use default dispatcher.
*/
int (*vs_dispatch)(struct svc_rqst *, __be32 *);
};
/*
* RPC procedure info
*/
struct svc_procedure {
/* process the request: */
__be32 (*pc_func)(struct svc_rqst *);
/* XDR decode args: */
int (*pc_decode)(struct svc_rqst *, __be32 *data);
/* XDR encode result: */
int (*pc_encode)(struct svc_rqst *, __be32 *data);
/* XDR free result: */
void (*pc_release)(struct svc_rqst *);
unsigned int pc_argsize; /* argument struct size */
unsigned int pc_ressize; /* result struct size */
unsigned int pc_cachetype; /* cache info (NFS) */
unsigned int pc_xdrressize; /* maximum size of XDR reply */
};
/*
* Mode for mapping cpus to pools.
*/
enum {
SVC_POOL_AUTO = -1, /* choose one of the others */
SVC_POOL_GLOBAL, /* no mapping, just a single global pool
* (legacy & UP mode) */
SVC_POOL_PERCPU, /* one pool per cpu */
SVC_POOL_PERNODE /* one pool per numa node */
};
struct svc_pool_map {
int count; /* How many svc_servs use us */
int mode; /* Note: int not enum to avoid
* warnings about "enumeration value
* not handled in switch" */
unsigned int npools;
unsigned int *pool_to; /* maps pool id to cpu or node */
unsigned int *to_pool; /* maps cpu or node to pool id */
};
extern struct svc_pool_map svc_pool_map;
/*
* Function prototypes.
*/
int svc_rpcb_setup(struct svc_serv *serv, struct net *net);
void svc_rpcb_cleanup(struct svc_serv *serv, struct net *net);
int svc_bind(struct svc_serv *serv, struct net *net);
struct svc_serv *svc_create(struct svc_program *, unsigned int,
const struct svc_serv_ops *);
struct svc_rqst *svc_rqst_alloc(struct svc_serv *serv,
struct svc_pool *pool, int node);
struct svc_rqst *svc_prepare_thread(struct svc_serv *serv,
struct svc_pool *pool, int node);
void svc_rqst_free(struct svc_rqst *);
void svc_exit_thread(struct svc_rqst *);
unsigned int svc_pool_map_get(void);
void svc_pool_map_put(void);
struct svc_serv * svc_create_pooled(struct svc_program *, unsigned int,
const struct svc_serv_ops *);
int svc_set_num_threads(struct svc_serv *, struct svc_pool *, int);
int svc_set_num_threads_sync(struct svc_serv *, struct svc_pool *, int);
int svc_pool_stats_open(struct svc_serv *serv, struct file *file);
void svc_destroy(struct svc_serv *);
void svc_shutdown_net(struct svc_serv *, struct net *);
int svc_process(struct svc_rqst *);
int bc_svc_process(struct svc_serv *, struct rpc_rqst *,
struct svc_rqst *);
int svc_register(const struct svc_serv *, struct net *, const int,
const unsigned short, const unsigned short);
void svc_wake_up(struct svc_serv *);
void svc_reserve(struct svc_rqst *rqstp, int space);
struct svc_pool * svc_pool_for_cpu(struct svc_serv *serv, int cpu);
char * svc_print_addr(struct svc_rqst *, char *, size_t);
unsigned int svc_fill_write_vector(struct svc_rqst *rqstp,
struct kvec *first, size_t total);
char *svc_fill_symlink_pathname(struct svc_rqst *rqstp,
struct kvec *first, size_t total);
#define RPC_MAX_ADDRBUFLEN (63U)
/*
* When we want to reduce the size of the reserved space in the response
* buffer, we need to take into account the size of any checksum data that
* may be at the end of the packet. This is difficult to determine exactly
* for all cases without actually generating the checksum, so we just use a
* static value.
*/
static inline void svc_reserve_auth(struct svc_rqst *rqstp, int space)
{
svc_reserve(rqstp, space + rqstp->rq_auth_slack);
}
#endif /* SUNRPC_SVC_H */