linux_dsm_epyc7002/drivers/spi/spi-imx.c
Kees Cook a86854d0c5 treewide: devm_kzalloc() -> devm_kcalloc()
The devm_kzalloc() function has a 2-factor argument form, devm_kcalloc().
This patch replaces cases of:

        devm_kzalloc(handle, a * b, gfp)

with:
        devm_kcalloc(handle, a * b, gfp)

as well as handling cases of:

        devm_kzalloc(handle, a * b * c, gfp)

with:

        devm_kzalloc(handle, array3_size(a, b, c), gfp)

as it's slightly less ugly than:

        devm_kcalloc(handle, array_size(a, b), c, gfp)

This does, however, attempt to ignore constant size factors like:

        devm_kzalloc(handle, 4 * 1024, gfp)

though any constants defined via macros get caught up in the conversion.

Any factors with a sizeof() of "unsigned char", "char", and "u8" were
dropped, since they're redundant.

Some manual whitespace fixes were needed in this patch, as Coccinelle
really liked to write "=devm_kcalloc..." instead of "= devm_kcalloc...".

The Coccinelle script used for this was:

// Fix redundant parens around sizeof().
@@
expression HANDLE;
type TYPE;
expression THING, E;
@@

(
  devm_kzalloc(HANDLE,
-	(sizeof(TYPE)) * E
+	sizeof(TYPE) * E
  , ...)
|
  devm_kzalloc(HANDLE,
-	(sizeof(THING)) * E
+	sizeof(THING) * E
  , ...)
)

// Drop single-byte sizes and redundant parens.
@@
expression HANDLE;
expression COUNT;
typedef u8;
typedef __u8;
@@

(
  devm_kzalloc(HANDLE,
-	sizeof(u8) * (COUNT)
+	COUNT
  , ...)
|
  devm_kzalloc(HANDLE,
-	sizeof(__u8) * (COUNT)
+	COUNT
  , ...)
|
  devm_kzalloc(HANDLE,
-	sizeof(char) * (COUNT)
+	COUNT
  , ...)
|
  devm_kzalloc(HANDLE,
-	sizeof(unsigned char) * (COUNT)
+	COUNT
  , ...)
|
  devm_kzalloc(HANDLE,
-	sizeof(u8) * COUNT
+	COUNT
  , ...)
|
  devm_kzalloc(HANDLE,
-	sizeof(__u8) * COUNT
+	COUNT
  , ...)
|
  devm_kzalloc(HANDLE,
-	sizeof(char) * COUNT
+	COUNT
  , ...)
|
  devm_kzalloc(HANDLE,
-	sizeof(unsigned char) * COUNT
+	COUNT
  , ...)
)

// 2-factor product with sizeof(type/expression) and identifier or constant.
@@
expression HANDLE;
type TYPE;
expression THING;
identifier COUNT_ID;
constant COUNT_CONST;
@@

(
- devm_kzalloc
+ devm_kcalloc
  (HANDLE,
-	sizeof(TYPE) * (COUNT_ID)
+	COUNT_ID, sizeof(TYPE)
  , ...)
|
- devm_kzalloc
+ devm_kcalloc
  (HANDLE,
-	sizeof(TYPE) * COUNT_ID
+	COUNT_ID, sizeof(TYPE)
  , ...)
|
- devm_kzalloc
+ devm_kcalloc
  (HANDLE,
-	sizeof(TYPE) * (COUNT_CONST)
+	COUNT_CONST, sizeof(TYPE)
  , ...)
|
- devm_kzalloc
+ devm_kcalloc
  (HANDLE,
-	sizeof(TYPE) * COUNT_CONST
+	COUNT_CONST, sizeof(TYPE)
  , ...)
|
- devm_kzalloc
+ devm_kcalloc
  (HANDLE,
-	sizeof(THING) * (COUNT_ID)
+	COUNT_ID, sizeof(THING)
  , ...)
|
- devm_kzalloc
+ devm_kcalloc
  (HANDLE,
-	sizeof(THING) * COUNT_ID
+	COUNT_ID, sizeof(THING)
  , ...)
|
- devm_kzalloc
+ devm_kcalloc
  (HANDLE,
-	sizeof(THING) * (COUNT_CONST)
+	COUNT_CONST, sizeof(THING)
  , ...)
|
- devm_kzalloc
+ devm_kcalloc
  (HANDLE,
-	sizeof(THING) * COUNT_CONST
+	COUNT_CONST, sizeof(THING)
  , ...)
)

// 2-factor product, only identifiers.
@@
expression HANDLE;
identifier SIZE, COUNT;
@@

- devm_kzalloc
+ devm_kcalloc
  (HANDLE,
-	SIZE * COUNT
+	COUNT, SIZE
  , ...)

// 3-factor product with 1 sizeof(type) or sizeof(expression), with
// redundant parens removed.
@@
expression HANDLE;
expression THING;
identifier STRIDE, COUNT;
type TYPE;
@@

(
  devm_kzalloc(HANDLE,
-	sizeof(TYPE) * (COUNT) * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  devm_kzalloc(HANDLE,
-	sizeof(TYPE) * (COUNT) * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  devm_kzalloc(HANDLE,
-	sizeof(TYPE) * COUNT * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  devm_kzalloc(HANDLE,
-	sizeof(TYPE) * COUNT * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  devm_kzalloc(HANDLE,
-	sizeof(THING) * (COUNT) * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
|
  devm_kzalloc(HANDLE,
-	sizeof(THING) * (COUNT) * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
|
  devm_kzalloc(HANDLE,
-	sizeof(THING) * COUNT * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
|
  devm_kzalloc(HANDLE,
-	sizeof(THING) * COUNT * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
)

// 3-factor product with 2 sizeof(variable), with redundant parens removed.
@@
expression HANDLE;
expression THING1, THING2;
identifier COUNT;
type TYPE1, TYPE2;
@@

(
  devm_kzalloc(HANDLE,
-	sizeof(TYPE1) * sizeof(TYPE2) * COUNT
+	array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
  , ...)
|
  devm_kzalloc(HANDLE,
-	sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+	array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
  , ...)
|
  devm_kzalloc(HANDLE,
-	sizeof(THING1) * sizeof(THING2) * COUNT
+	array3_size(COUNT, sizeof(THING1), sizeof(THING2))
  , ...)
|
  devm_kzalloc(HANDLE,
-	sizeof(THING1) * sizeof(THING2) * (COUNT)
+	array3_size(COUNT, sizeof(THING1), sizeof(THING2))
  , ...)
|
  devm_kzalloc(HANDLE,
-	sizeof(TYPE1) * sizeof(THING2) * COUNT
+	array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
  , ...)
|
  devm_kzalloc(HANDLE,
-	sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+	array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
  , ...)
)

// 3-factor product, only identifiers, with redundant parens removed.
@@
expression HANDLE;
identifier STRIDE, SIZE, COUNT;
@@

(
  devm_kzalloc(HANDLE,
-	(COUNT) * STRIDE * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  devm_kzalloc(HANDLE,
-	COUNT * (STRIDE) * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  devm_kzalloc(HANDLE,
-	COUNT * STRIDE * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  devm_kzalloc(HANDLE,
-	(COUNT) * (STRIDE) * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  devm_kzalloc(HANDLE,
-	COUNT * (STRIDE) * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  devm_kzalloc(HANDLE,
-	(COUNT) * STRIDE * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  devm_kzalloc(HANDLE,
-	(COUNT) * (STRIDE) * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  devm_kzalloc(HANDLE,
-	COUNT * STRIDE * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
)

// Any remaining multi-factor products, first at least 3-factor products,
// when they're not all constants...
@@
expression HANDLE;
expression E1, E2, E3;
constant C1, C2, C3;
@@

(
  devm_kzalloc(HANDLE, C1 * C2 * C3, ...)
|
  devm_kzalloc(HANDLE,
-	(E1) * E2 * E3
+	array3_size(E1, E2, E3)
  , ...)
|
  devm_kzalloc(HANDLE,
-	(E1) * (E2) * E3
+	array3_size(E1, E2, E3)
  , ...)
|
  devm_kzalloc(HANDLE,
-	(E1) * (E2) * (E3)
+	array3_size(E1, E2, E3)
  , ...)
|
  devm_kzalloc(HANDLE,
-	E1 * E2 * E3
+	array3_size(E1, E2, E3)
  , ...)
)

// And then all remaining 2 factors products when they're not all constants,
// keeping sizeof() as the second factor argument.
@@
expression HANDLE;
expression THING, E1, E2;
type TYPE;
constant C1, C2, C3;
@@

(
  devm_kzalloc(HANDLE, sizeof(THING) * C2, ...)
|
  devm_kzalloc(HANDLE, sizeof(TYPE) * C2, ...)
|
  devm_kzalloc(HANDLE, C1 * C2 * C3, ...)
|
  devm_kzalloc(HANDLE, C1 * C2, ...)
|
- devm_kzalloc
+ devm_kcalloc
  (HANDLE,
-	sizeof(TYPE) * (E2)
+	E2, sizeof(TYPE)
  , ...)
|
- devm_kzalloc
+ devm_kcalloc
  (HANDLE,
-	sizeof(TYPE) * E2
+	E2, sizeof(TYPE)
  , ...)
|
- devm_kzalloc
+ devm_kcalloc
  (HANDLE,
-	sizeof(THING) * (E2)
+	E2, sizeof(THING)
  , ...)
|
- devm_kzalloc
+ devm_kcalloc
  (HANDLE,
-	sizeof(THING) * E2
+	E2, sizeof(THING)
  , ...)
|
- devm_kzalloc
+ devm_kcalloc
  (HANDLE,
-	(E1) * E2
+	E1, E2
  , ...)
|
- devm_kzalloc
+ devm_kcalloc
  (HANDLE,
-	(E1) * (E2)
+	E1, E2
  , ...)
|
- devm_kzalloc
+ devm_kcalloc
  (HANDLE,
-	E1 * E2
+	E1, E2
  , ...)
)

Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-12 16:19:22 -07:00

1693 lines
43 KiB
C

// SPDX-License-Identifier: GPL-2.0+
// Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved.
// Copyright (C) 2008 Juergen Beisert
#include <linux/clk.h>
#include <linux/completion.h>
#include <linux/delay.h>
#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/gpio.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/irq.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/spi/spi.h>
#include <linux/spi/spi_bitbang.h>
#include <linux/types.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/of_gpio.h>
#include <linux/platform_data/dma-imx.h>
#include <linux/platform_data/spi-imx.h>
#define DRIVER_NAME "spi_imx"
#define MXC_CSPIRXDATA 0x00
#define MXC_CSPITXDATA 0x04
#define MXC_CSPICTRL 0x08
#define MXC_CSPIINT 0x0c
#define MXC_RESET 0x1c
/* generic defines to abstract from the different register layouts */
#define MXC_INT_RR (1 << 0) /* Receive data ready interrupt */
#define MXC_INT_TE (1 << 1) /* Transmit FIFO empty interrupt */
#define MXC_INT_RDR BIT(4) /* Receive date threshold interrupt */
/* The maximum bytes that a sdma BD can transfer.*/
#define MAX_SDMA_BD_BYTES (1 << 15)
#define MX51_ECSPI_CTRL_MAX_BURST 512
/* The maximum bytes that IMX53_ECSPI can transfer in slave mode.*/
#define MX53_MAX_TRANSFER_BYTES 512
enum spi_imx_devtype {
IMX1_CSPI,
IMX21_CSPI,
IMX27_CSPI,
IMX31_CSPI,
IMX35_CSPI, /* CSPI on all i.mx except above */
IMX51_ECSPI, /* ECSPI on i.mx51 */
IMX53_ECSPI, /* ECSPI on i.mx53 and later */
};
struct spi_imx_data;
struct spi_imx_devtype_data {
void (*intctrl)(struct spi_imx_data *, int);
int (*config)(struct spi_device *);
void (*trigger)(struct spi_imx_data *);
int (*rx_available)(struct spi_imx_data *);
void (*reset)(struct spi_imx_data *);
void (*disable)(struct spi_imx_data *);
bool has_dmamode;
bool has_slavemode;
unsigned int fifo_size;
bool dynamic_burst;
enum spi_imx_devtype devtype;
};
struct spi_imx_data {
struct spi_bitbang bitbang;
struct device *dev;
struct completion xfer_done;
void __iomem *base;
unsigned long base_phys;
struct clk *clk_per;
struct clk *clk_ipg;
unsigned long spi_clk;
unsigned int spi_bus_clk;
unsigned int speed_hz;
unsigned int bits_per_word;
unsigned int spi_drctl;
unsigned int count, remainder;
void (*tx)(struct spi_imx_data *);
void (*rx)(struct spi_imx_data *);
void *rx_buf;
const void *tx_buf;
unsigned int txfifo; /* number of words pushed in tx FIFO */
unsigned int dynamic_burst, read_u32;
unsigned int word_mask;
/* Slave mode */
bool slave_mode;
bool slave_aborted;
unsigned int slave_burst;
/* DMA */
bool usedma;
u32 wml;
struct completion dma_rx_completion;
struct completion dma_tx_completion;
const struct spi_imx_devtype_data *devtype_data;
};
static inline int is_imx27_cspi(struct spi_imx_data *d)
{
return d->devtype_data->devtype == IMX27_CSPI;
}
static inline int is_imx35_cspi(struct spi_imx_data *d)
{
return d->devtype_data->devtype == IMX35_CSPI;
}
static inline int is_imx51_ecspi(struct spi_imx_data *d)
{
return d->devtype_data->devtype == IMX51_ECSPI;
}
static inline int is_imx53_ecspi(struct spi_imx_data *d)
{
return d->devtype_data->devtype == IMX53_ECSPI;
}
#define MXC_SPI_BUF_RX(type) \
static void spi_imx_buf_rx_##type(struct spi_imx_data *spi_imx) \
{ \
unsigned int val = readl(spi_imx->base + MXC_CSPIRXDATA); \
\
if (spi_imx->rx_buf) { \
*(type *)spi_imx->rx_buf = val; \
spi_imx->rx_buf += sizeof(type); \
} \
}
#define MXC_SPI_BUF_TX(type) \
static void spi_imx_buf_tx_##type(struct spi_imx_data *spi_imx) \
{ \
type val = 0; \
\
if (spi_imx->tx_buf) { \
val = *(type *)spi_imx->tx_buf; \
spi_imx->tx_buf += sizeof(type); \
} \
\
spi_imx->count -= sizeof(type); \
\
writel(val, spi_imx->base + MXC_CSPITXDATA); \
}
MXC_SPI_BUF_RX(u8)
MXC_SPI_BUF_TX(u8)
MXC_SPI_BUF_RX(u16)
MXC_SPI_BUF_TX(u16)
MXC_SPI_BUF_RX(u32)
MXC_SPI_BUF_TX(u32)
/* First entry is reserved, second entry is valid only if SDHC_SPIEN is set
* (which is currently not the case in this driver)
*/
static int mxc_clkdivs[] = {0, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192,
256, 384, 512, 768, 1024};
/* MX21, MX27 */
static unsigned int spi_imx_clkdiv_1(unsigned int fin,
unsigned int fspi, unsigned int max, unsigned int *fres)
{
int i;
for (i = 2; i < max; i++)
if (fspi * mxc_clkdivs[i] >= fin)
break;
*fres = fin / mxc_clkdivs[i];
return i;
}
/* MX1, MX31, MX35, MX51 CSPI */
static unsigned int spi_imx_clkdiv_2(unsigned int fin,
unsigned int fspi, unsigned int *fres)
{
int i, div = 4;
for (i = 0; i < 7; i++) {
if (fspi * div >= fin)
goto out;
div <<= 1;
}
out:
*fres = fin / div;
return i;
}
static int spi_imx_bytes_per_word(const int bits_per_word)
{
return DIV_ROUND_UP(bits_per_word, BITS_PER_BYTE);
}
static bool spi_imx_can_dma(struct spi_master *master, struct spi_device *spi,
struct spi_transfer *transfer)
{
struct spi_imx_data *spi_imx = spi_master_get_devdata(master);
unsigned int bytes_per_word, i;
if (!master->dma_rx)
return false;
if (spi_imx->slave_mode)
return false;
bytes_per_word = spi_imx_bytes_per_word(transfer->bits_per_word);
if (bytes_per_word != 1 && bytes_per_word != 2 && bytes_per_word != 4)
return false;
for (i = spi_imx->devtype_data->fifo_size / 2; i > 0; i--) {
if (!(transfer->len % (i * bytes_per_word)))
break;
}
if (i == 0)
return false;
spi_imx->wml = i;
spi_imx->dynamic_burst = 0;
return true;
}
#define MX51_ECSPI_CTRL 0x08
#define MX51_ECSPI_CTRL_ENABLE (1 << 0)
#define MX51_ECSPI_CTRL_XCH (1 << 2)
#define MX51_ECSPI_CTRL_SMC (1 << 3)
#define MX51_ECSPI_CTRL_MODE_MASK (0xf << 4)
#define MX51_ECSPI_CTRL_DRCTL(drctl) ((drctl) << 16)
#define MX51_ECSPI_CTRL_POSTDIV_OFFSET 8
#define MX51_ECSPI_CTRL_PREDIV_OFFSET 12
#define MX51_ECSPI_CTRL_CS(cs) ((cs) << 18)
#define MX51_ECSPI_CTRL_BL_OFFSET 20
#define MX51_ECSPI_CTRL_BL_MASK (0xfff << 20)
#define MX51_ECSPI_CONFIG 0x0c
#define MX51_ECSPI_CONFIG_SCLKPHA(cs) (1 << ((cs) + 0))
#define MX51_ECSPI_CONFIG_SCLKPOL(cs) (1 << ((cs) + 4))
#define MX51_ECSPI_CONFIG_SBBCTRL(cs) (1 << ((cs) + 8))
#define MX51_ECSPI_CONFIG_SSBPOL(cs) (1 << ((cs) + 12))
#define MX51_ECSPI_CONFIG_SCLKCTL(cs) (1 << ((cs) + 20))
#define MX51_ECSPI_INT 0x10
#define MX51_ECSPI_INT_TEEN (1 << 0)
#define MX51_ECSPI_INT_RREN (1 << 3)
#define MX51_ECSPI_INT_RDREN (1 << 4)
#define MX51_ECSPI_DMA 0x14
#define MX51_ECSPI_DMA_TX_WML(wml) ((wml) & 0x3f)
#define MX51_ECSPI_DMA_RX_WML(wml) (((wml) & 0x3f) << 16)
#define MX51_ECSPI_DMA_RXT_WML(wml) (((wml) & 0x3f) << 24)
#define MX51_ECSPI_DMA_TEDEN (1 << 7)
#define MX51_ECSPI_DMA_RXDEN (1 << 23)
#define MX51_ECSPI_DMA_RXTDEN (1 << 31)
#define MX51_ECSPI_STAT 0x18
#define MX51_ECSPI_STAT_RR (1 << 3)
#define MX51_ECSPI_TESTREG 0x20
#define MX51_ECSPI_TESTREG_LBC BIT(31)
static void spi_imx_buf_rx_swap_u32(struct spi_imx_data *spi_imx)
{
unsigned int val = readl(spi_imx->base + MXC_CSPIRXDATA);
#ifdef __LITTLE_ENDIAN
unsigned int bytes_per_word;
#endif
if (spi_imx->rx_buf) {
#ifdef __LITTLE_ENDIAN
bytes_per_word = spi_imx_bytes_per_word(spi_imx->bits_per_word);
if (bytes_per_word == 1)
val = cpu_to_be32(val);
else if (bytes_per_word == 2)
val = (val << 16) | (val >> 16);
#endif
val &= spi_imx->word_mask;
*(u32 *)spi_imx->rx_buf = val;
spi_imx->rx_buf += sizeof(u32);
}
}
static void spi_imx_buf_rx_swap(struct spi_imx_data *spi_imx)
{
unsigned int bytes_per_word;
bytes_per_word = spi_imx_bytes_per_word(spi_imx->bits_per_word);
if (spi_imx->read_u32) {
spi_imx_buf_rx_swap_u32(spi_imx);
return;
}
if (bytes_per_word == 1)
spi_imx_buf_rx_u8(spi_imx);
else if (bytes_per_word == 2)
spi_imx_buf_rx_u16(spi_imx);
}
static void spi_imx_buf_tx_swap_u32(struct spi_imx_data *spi_imx)
{
u32 val = 0;
#ifdef __LITTLE_ENDIAN
unsigned int bytes_per_word;
#endif
if (spi_imx->tx_buf) {
val = *(u32 *)spi_imx->tx_buf;
val &= spi_imx->word_mask;
spi_imx->tx_buf += sizeof(u32);
}
spi_imx->count -= sizeof(u32);
#ifdef __LITTLE_ENDIAN
bytes_per_word = spi_imx_bytes_per_word(spi_imx->bits_per_word);
if (bytes_per_word == 1)
val = cpu_to_be32(val);
else if (bytes_per_word == 2)
val = (val << 16) | (val >> 16);
#endif
writel(val, spi_imx->base + MXC_CSPITXDATA);
}
static void spi_imx_buf_tx_swap(struct spi_imx_data *spi_imx)
{
u32 ctrl, val;
unsigned int bytes_per_word;
if (spi_imx->count == spi_imx->remainder) {
ctrl = readl(spi_imx->base + MX51_ECSPI_CTRL);
ctrl &= ~MX51_ECSPI_CTRL_BL_MASK;
if (spi_imx->count > MX51_ECSPI_CTRL_MAX_BURST) {
spi_imx->remainder = spi_imx->count %
MX51_ECSPI_CTRL_MAX_BURST;
val = MX51_ECSPI_CTRL_MAX_BURST * 8 - 1;
} else if (spi_imx->count >= sizeof(u32)) {
spi_imx->remainder = spi_imx->count % sizeof(u32);
val = (spi_imx->count - spi_imx->remainder) * 8 - 1;
} else {
spi_imx->remainder = 0;
val = spi_imx->bits_per_word - 1;
spi_imx->read_u32 = 0;
}
ctrl |= (val << MX51_ECSPI_CTRL_BL_OFFSET);
writel(ctrl, spi_imx->base + MX51_ECSPI_CTRL);
}
if (spi_imx->count >= sizeof(u32)) {
spi_imx_buf_tx_swap_u32(spi_imx);
return;
}
bytes_per_word = spi_imx_bytes_per_word(spi_imx->bits_per_word);
if (bytes_per_word == 1)
spi_imx_buf_tx_u8(spi_imx);
else if (bytes_per_word == 2)
spi_imx_buf_tx_u16(spi_imx);
}
static void mx53_ecspi_rx_slave(struct spi_imx_data *spi_imx)
{
u32 val = be32_to_cpu(readl(spi_imx->base + MXC_CSPIRXDATA));
if (spi_imx->rx_buf) {
int n_bytes = spi_imx->slave_burst % sizeof(val);
if (!n_bytes)
n_bytes = sizeof(val);
memcpy(spi_imx->rx_buf,
((u8 *)&val) + sizeof(val) - n_bytes, n_bytes);
spi_imx->rx_buf += n_bytes;
spi_imx->slave_burst -= n_bytes;
}
}
static void mx53_ecspi_tx_slave(struct spi_imx_data *spi_imx)
{
u32 val = 0;
int n_bytes = spi_imx->count % sizeof(val);
if (!n_bytes)
n_bytes = sizeof(val);
if (spi_imx->tx_buf) {
memcpy(((u8 *)&val) + sizeof(val) - n_bytes,
spi_imx->tx_buf, n_bytes);
val = cpu_to_be32(val);
spi_imx->tx_buf += n_bytes;
}
spi_imx->count -= n_bytes;
writel(val, spi_imx->base + MXC_CSPITXDATA);
}
/* MX51 eCSPI */
static unsigned int mx51_ecspi_clkdiv(struct spi_imx_data *spi_imx,
unsigned int fspi, unsigned int *fres)
{
/*
* there are two 4-bit dividers, the pre-divider divides by
* $pre, the post-divider by 2^$post
*/
unsigned int pre, post;
unsigned int fin = spi_imx->spi_clk;
if (unlikely(fspi > fin))
return 0;
post = fls(fin) - fls(fspi);
if (fin > fspi << post)
post++;
/* now we have: (fin <= fspi << post) with post being minimal */
post = max(4U, post) - 4;
if (unlikely(post > 0xf)) {
dev_err(spi_imx->dev, "cannot set clock freq: %u (base freq: %u)\n",
fspi, fin);
return 0xff;
}
pre = DIV_ROUND_UP(fin, fspi << post) - 1;
dev_dbg(spi_imx->dev, "%s: fin: %u, fspi: %u, post: %u, pre: %u\n",
__func__, fin, fspi, post, pre);
/* Resulting frequency for the SCLK line. */
*fres = (fin / (pre + 1)) >> post;
return (pre << MX51_ECSPI_CTRL_PREDIV_OFFSET) |
(post << MX51_ECSPI_CTRL_POSTDIV_OFFSET);
}
static void mx51_ecspi_intctrl(struct spi_imx_data *spi_imx, int enable)
{
unsigned val = 0;
if (enable & MXC_INT_TE)
val |= MX51_ECSPI_INT_TEEN;
if (enable & MXC_INT_RR)
val |= MX51_ECSPI_INT_RREN;
if (enable & MXC_INT_RDR)
val |= MX51_ECSPI_INT_RDREN;
writel(val, spi_imx->base + MX51_ECSPI_INT);
}
static void mx51_ecspi_trigger(struct spi_imx_data *spi_imx)
{
u32 reg;
reg = readl(spi_imx->base + MX51_ECSPI_CTRL);
reg |= MX51_ECSPI_CTRL_XCH;
writel(reg, spi_imx->base + MX51_ECSPI_CTRL);
}
static void mx51_ecspi_disable(struct spi_imx_data *spi_imx)
{
u32 ctrl;
ctrl = readl(spi_imx->base + MX51_ECSPI_CTRL);
ctrl &= ~MX51_ECSPI_CTRL_ENABLE;
writel(ctrl, spi_imx->base + MX51_ECSPI_CTRL);
}
static int mx51_ecspi_config(struct spi_device *spi)
{
struct spi_imx_data *spi_imx = spi_master_get_devdata(spi->master);
u32 ctrl = MX51_ECSPI_CTRL_ENABLE;
u32 clk = spi_imx->speed_hz, delay, reg;
u32 cfg = readl(spi_imx->base + MX51_ECSPI_CONFIG);
/* set Master or Slave mode */
if (spi_imx->slave_mode)
ctrl &= ~MX51_ECSPI_CTRL_MODE_MASK;
else
ctrl |= MX51_ECSPI_CTRL_MODE_MASK;
/*
* Enable SPI_RDY handling (falling edge/level triggered).
*/
if (spi->mode & SPI_READY)
ctrl |= MX51_ECSPI_CTRL_DRCTL(spi_imx->spi_drctl);
/* set clock speed */
ctrl |= mx51_ecspi_clkdiv(spi_imx, spi_imx->speed_hz, &clk);
spi_imx->spi_bus_clk = clk;
/* set chip select to use */
ctrl |= MX51_ECSPI_CTRL_CS(spi->chip_select);
if (spi_imx->slave_mode && is_imx53_ecspi(spi_imx))
ctrl |= (spi_imx->slave_burst * 8 - 1)
<< MX51_ECSPI_CTRL_BL_OFFSET;
else
ctrl |= (spi_imx->bits_per_word - 1)
<< MX51_ECSPI_CTRL_BL_OFFSET;
/*
* eCSPI burst completion by Chip Select signal in Slave mode
* is not functional for imx53 Soc, config SPI burst completed when
* BURST_LENGTH + 1 bits are received
*/
if (spi_imx->slave_mode && is_imx53_ecspi(spi_imx))
cfg &= ~MX51_ECSPI_CONFIG_SBBCTRL(spi->chip_select);
else
cfg |= MX51_ECSPI_CONFIG_SBBCTRL(spi->chip_select);
if (spi->mode & SPI_CPHA)
cfg |= MX51_ECSPI_CONFIG_SCLKPHA(spi->chip_select);
else
cfg &= ~MX51_ECSPI_CONFIG_SCLKPHA(spi->chip_select);
if (spi->mode & SPI_CPOL) {
cfg |= MX51_ECSPI_CONFIG_SCLKPOL(spi->chip_select);
cfg |= MX51_ECSPI_CONFIG_SCLKCTL(spi->chip_select);
} else {
cfg &= ~MX51_ECSPI_CONFIG_SCLKPOL(spi->chip_select);
cfg &= ~MX51_ECSPI_CONFIG_SCLKCTL(spi->chip_select);
}
if (spi->mode & SPI_CS_HIGH)
cfg |= MX51_ECSPI_CONFIG_SSBPOL(spi->chip_select);
else
cfg &= ~MX51_ECSPI_CONFIG_SSBPOL(spi->chip_select);
if (spi_imx->usedma)
ctrl |= MX51_ECSPI_CTRL_SMC;
/* CTRL register always go first to bring out controller from reset */
writel(ctrl, spi_imx->base + MX51_ECSPI_CTRL);
reg = readl(spi_imx->base + MX51_ECSPI_TESTREG);
if (spi->mode & SPI_LOOP)
reg |= MX51_ECSPI_TESTREG_LBC;
else
reg &= ~MX51_ECSPI_TESTREG_LBC;
writel(reg, spi_imx->base + MX51_ECSPI_TESTREG);
writel(cfg, spi_imx->base + MX51_ECSPI_CONFIG);
/*
* Wait until the changes in the configuration register CONFIGREG
* propagate into the hardware. It takes exactly one tick of the
* SCLK clock, but we will wait two SCLK clock just to be sure. The
* effect of the delay it takes for the hardware to apply changes
* is noticable if the SCLK clock run very slow. In such a case, if
* the polarity of SCLK should be inverted, the GPIO ChipSelect might
* be asserted before the SCLK polarity changes, which would disrupt
* the SPI communication as the device on the other end would consider
* the change of SCLK polarity as a clock tick already.
*/
delay = (2 * 1000000) / clk;
if (likely(delay < 10)) /* SCLK is faster than 100 kHz */
udelay(delay);
else /* SCLK is _very_ slow */
usleep_range(delay, delay + 10);
/*
* Configure the DMA register: setup the watermark
* and enable DMA request.
*/
writel(MX51_ECSPI_DMA_RX_WML(spi_imx->wml) |
MX51_ECSPI_DMA_TX_WML(spi_imx->wml) |
MX51_ECSPI_DMA_RXT_WML(spi_imx->wml) |
MX51_ECSPI_DMA_TEDEN | MX51_ECSPI_DMA_RXDEN |
MX51_ECSPI_DMA_RXTDEN, spi_imx->base + MX51_ECSPI_DMA);
return 0;
}
static int mx51_ecspi_rx_available(struct spi_imx_data *spi_imx)
{
return readl(spi_imx->base + MX51_ECSPI_STAT) & MX51_ECSPI_STAT_RR;
}
static void mx51_ecspi_reset(struct spi_imx_data *spi_imx)
{
/* drain receive buffer */
while (mx51_ecspi_rx_available(spi_imx))
readl(spi_imx->base + MXC_CSPIRXDATA);
}
#define MX31_INTREG_TEEN (1 << 0)
#define MX31_INTREG_RREN (1 << 3)
#define MX31_CSPICTRL_ENABLE (1 << 0)
#define MX31_CSPICTRL_MASTER (1 << 1)
#define MX31_CSPICTRL_XCH (1 << 2)
#define MX31_CSPICTRL_SMC (1 << 3)
#define MX31_CSPICTRL_POL (1 << 4)
#define MX31_CSPICTRL_PHA (1 << 5)
#define MX31_CSPICTRL_SSCTL (1 << 6)
#define MX31_CSPICTRL_SSPOL (1 << 7)
#define MX31_CSPICTRL_BC_SHIFT 8
#define MX35_CSPICTRL_BL_SHIFT 20
#define MX31_CSPICTRL_CS_SHIFT 24
#define MX35_CSPICTRL_CS_SHIFT 12
#define MX31_CSPICTRL_DR_SHIFT 16
#define MX31_CSPI_DMAREG 0x10
#define MX31_DMAREG_RH_DEN (1<<4)
#define MX31_DMAREG_TH_DEN (1<<1)
#define MX31_CSPISTATUS 0x14
#define MX31_STATUS_RR (1 << 3)
#define MX31_CSPI_TESTREG 0x1C
#define MX31_TEST_LBC (1 << 14)
/* These functions also work for the i.MX35, but be aware that
* the i.MX35 has a slightly different register layout for bits
* we do not use here.
*/
static void mx31_intctrl(struct spi_imx_data *spi_imx, int enable)
{
unsigned int val = 0;
if (enable & MXC_INT_TE)
val |= MX31_INTREG_TEEN;
if (enable & MXC_INT_RR)
val |= MX31_INTREG_RREN;
writel(val, spi_imx->base + MXC_CSPIINT);
}
static void mx31_trigger(struct spi_imx_data *spi_imx)
{
unsigned int reg;
reg = readl(spi_imx->base + MXC_CSPICTRL);
reg |= MX31_CSPICTRL_XCH;
writel(reg, spi_imx->base + MXC_CSPICTRL);
}
static int mx31_config(struct spi_device *spi)
{
struct spi_imx_data *spi_imx = spi_master_get_devdata(spi->master);
unsigned int reg = MX31_CSPICTRL_ENABLE | MX31_CSPICTRL_MASTER;
unsigned int clk;
reg |= spi_imx_clkdiv_2(spi_imx->spi_clk, spi_imx->speed_hz, &clk) <<
MX31_CSPICTRL_DR_SHIFT;
spi_imx->spi_bus_clk = clk;
if (is_imx35_cspi(spi_imx)) {
reg |= (spi_imx->bits_per_word - 1) << MX35_CSPICTRL_BL_SHIFT;
reg |= MX31_CSPICTRL_SSCTL;
} else {
reg |= (spi_imx->bits_per_word - 1) << MX31_CSPICTRL_BC_SHIFT;
}
if (spi->mode & SPI_CPHA)
reg |= MX31_CSPICTRL_PHA;
if (spi->mode & SPI_CPOL)
reg |= MX31_CSPICTRL_POL;
if (spi->mode & SPI_CS_HIGH)
reg |= MX31_CSPICTRL_SSPOL;
if (!gpio_is_valid(spi->cs_gpio))
reg |= (spi->chip_select) <<
(is_imx35_cspi(spi_imx) ? MX35_CSPICTRL_CS_SHIFT :
MX31_CSPICTRL_CS_SHIFT);
if (spi_imx->usedma)
reg |= MX31_CSPICTRL_SMC;
writel(reg, spi_imx->base + MXC_CSPICTRL);
reg = readl(spi_imx->base + MX31_CSPI_TESTREG);
if (spi->mode & SPI_LOOP)
reg |= MX31_TEST_LBC;
else
reg &= ~MX31_TEST_LBC;
writel(reg, spi_imx->base + MX31_CSPI_TESTREG);
if (spi_imx->usedma) {
/* configure DMA requests when RXFIFO is half full and
when TXFIFO is half empty */
writel(MX31_DMAREG_RH_DEN | MX31_DMAREG_TH_DEN,
spi_imx->base + MX31_CSPI_DMAREG);
}
return 0;
}
static int mx31_rx_available(struct spi_imx_data *spi_imx)
{
return readl(spi_imx->base + MX31_CSPISTATUS) & MX31_STATUS_RR;
}
static void mx31_reset(struct spi_imx_data *spi_imx)
{
/* drain receive buffer */
while (readl(spi_imx->base + MX31_CSPISTATUS) & MX31_STATUS_RR)
readl(spi_imx->base + MXC_CSPIRXDATA);
}
#define MX21_INTREG_RR (1 << 4)
#define MX21_INTREG_TEEN (1 << 9)
#define MX21_INTREG_RREN (1 << 13)
#define MX21_CSPICTRL_POL (1 << 5)
#define MX21_CSPICTRL_PHA (1 << 6)
#define MX21_CSPICTRL_SSPOL (1 << 8)
#define MX21_CSPICTRL_XCH (1 << 9)
#define MX21_CSPICTRL_ENABLE (1 << 10)
#define MX21_CSPICTRL_MASTER (1 << 11)
#define MX21_CSPICTRL_DR_SHIFT 14
#define MX21_CSPICTRL_CS_SHIFT 19
static void mx21_intctrl(struct spi_imx_data *spi_imx, int enable)
{
unsigned int val = 0;
if (enable & MXC_INT_TE)
val |= MX21_INTREG_TEEN;
if (enable & MXC_INT_RR)
val |= MX21_INTREG_RREN;
writel(val, spi_imx->base + MXC_CSPIINT);
}
static void mx21_trigger(struct spi_imx_data *spi_imx)
{
unsigned int reg;
reg = readl(spi_imx->base + MXC_CSPICTRL);
reg |= MX21_CSPICTRL_XCH;
writel(reg, spi_imx->base + MXC_CSPICTRL);
}
static int mx21_config(struct spi_device *spi)
{
struct spi_imx_data *spi_imx = spi_master_get_devdata(spi->master);
unsigned int reg = MX21_CSPICTRL_ENABLE | MX21_CSPICTRL_MASTER;
unsigned int max = is_imx27_cspi(spi_imx) ? 16 : 18;
unsigned int clk;
reg |= spi_imx_clkdiv_1(spi_imx->spi_clk, spi_imx->speed_hz, max, &clk)
<< MX21_CSPICTRL_DR_SHIFT;
spi_imx->spi_bus_clk = clk;
reg |= spi_imx->bits_per_word - 1;
if (spi->mode & SPI_CPHA)
reg |= MX21_CSPICTRL_PHA;
if (spi->mode & SPI_CPOL)
reg |= MX21_CSPICTRL_POL;
if (spi->mode & SPI_CS_HIGH)
reg |= MX21_CSPICTRL_SSPOL;
if (!gpio_is_valid(spi->cs_gpio))
reg |= spi->chip_select << MX21_CSPICTRL_CS_SHIFT;
writel(reg, spi_imx->base + MXC_CSPICTRL);
return 0;
}
static int mx21_rx_available(struct spi_imx_data *spi_imx)
{
return readl(spi_imx->base + MXC_CSPIINT) & MX21_INTREG_RR;
}
static void mx21_reset(struct spi_imx_data *spi_imx)
{
writel(1, spi_imx->base + MXC_RESET);
}
#define MX1_INTREG_RR (1 << 3)
#define MX1_INTREG_TEEN (1 << 8)
#define MX1_INTREG_RREN (1 << 11)
#define MX1_CSPICTRL_POL (1 << 4)
#define MX1_CSPICTRL_PHA (1 << 5)
#define MX1_CSPICTRL_XCH (1 << 8)
#define MX1_CSPICTRL_ENABLE (1 << 9)
#define MX1_CSPICTRL_MASTER (1 << 10)
#define MX1_CSPICTRL_DR_SHIFT 13
static void mx1_intctrl(struct spi_imx_data *spi_imx, int enable)
{
unsigned int val = 0;
if (enable & MXC_INT_TE)
val |= MX1_INTREG_TEEN;
if (enable & MXC_INT_RR)
val |= MX1_INTREG_RREN;
writel(val, spi_imx->base + MXC_CSPIINT);
}
static void mx1_trigger(struct spi_imx_data *spi_imx)
{
unsigned int reg;
reg = readl(spi_imx->base + MXC_CSPICTRL);
reg |= MX1_CSPICTRL_XCH;
writel(reg, spi_imx->base + MXC_CSPICTRL);
}
static int mx1_config(struct spi_device *spi)
{
struct spi_imx_data *spi_imx = spi_master_get_devdata(spi->master);
unsigned int reg = MX1_CSPICTRL_ENABLE | MX1_CSPICTRL_MASTER;
unsigned int clk;
reg |= spi_imx_clkdiv_2(spi_imx->spi_clk, spi_imx->speed_hz, &clk) <<
MX1_CSPICTRL_DR_SHIFT;
spi_imx->spi_bus_clk = clk;
reg |= spi_imx->bits_per_word - 1;
if (spi->mode & SPI_CPHA)
reg |= MX1_CSPICTRL_PHA;
if (spi->mode & SPI_CPOL)
reg |= MX1_CSPICTRL_POL;
writel(reg, spi_imx->base + MXC_CSPICTRL);
return 0;
}
static int mx1_rx_available(struct spi_imx_data *spi_imx)
{
return readl(spi_imx->base + MXC_CSPIINT) & MX1_INTREG_RR;
}
static void mx1_reset(struct spi_imx_data *spi_imx)
{
writel(1, spi_imx->base + MXC_RESET);
}
static struct spi_imx_devtype_data imx1_cspi_devtype_data = {
.intctrl = mx1_intctrl,
.config = mx1_config,
.trigger = mx1_trigger,
.rx_available = mx1_rx_available,
.reset = mx1_reset,
.fifo_size = 8,
.has_dmamode = false,
.dynamic_burst = false,
.has_slavemode = false,
.devtype = IMX1_CSPI,
};
static struct spi_imx_devtype_data imx21_cspi_devtype_data = {
.intctrl = mx21_intctrl,
.config = mx21_config,
.trigger = mx21_trigger,
.rx_available = mx21_rx_available,
.reset = mx21_reset,
.fifo_size = 8,
.has_dmamode = false,
.dynamic_burst = false,
.has_slavemode = false,
.devtype = IMX21_CSPI,
};
static struct spi_imx_devtype_data imx27_cspi_devtype_data = {
/* i.mx27 cspi shares the functions with i.mx21 one */
.intctrl = mx21_intctrl,
.config = mx21_config,
.trigger = mx21_trigger,
.rx_available = mx21_rx_available,
.reset = mx21_reset,
.fifo_size = 8,
.has_dmamode = false,
.dynamic_burst = false,
.has_slavemode = false,
.devtype = IMX27_CSPI,
};
static struct spi_imx_devtype_data imx31_cspi_devtype_data = {
.intctrl = mx31_intctrl,
.config = mx31_config,
.trigger = mx31_trigger,
.rx_available = mx31_rx_available,
.reset = mx31_reset,
.fifo_size = 8,
.has_dmamode = false,
.dynamic_burst = false,
.has_slavemode = false,
.devtype = IMX31_CSPI,
};
static struct spi_imx_devtype_data imx35_cspi_devtype_data = {
/* i.mx35 and later cspi shares the functions with i.mx31 one */
.intctrl = mx31_intctrl,
.config = mx31_config,
.trigger = mx31_trigger,
.rx_available = mx31_rx_available,
.reset = mx31_reset,
.fifo_size = 8,
.has_dmamode = true,
.dynamic_burst = false,
.has_slavemode = false,
.devtype = IMX35_CSPI,
};
static struct spi_imx_devtype_data imx51_ecspi_devtype_data = {
.intctrl = mx51_ecspi_intctrl,
.config = mx51_ecspi_config,
.trigger = mx51_ecspi_trigger,
.rx_available = mx51_ecspi_rx_available,
.reset = mx51_ecspi_reset,
.fifo_size = 64,
.has_dmamode = true,
.dynamic_burst = true,
.has_slavemode = true,
.disable = mx51_ecspi_disable,
.devtype = IMX51_ECSPI,
};
static struct spi_imx_devtype_data imx53_ecspi_devtype_data = {
.intctrl = mx51_ecspi_intctrl,
.config = mx51_ecspi_config,
.trigger = mx51_ecspi_trigger,
.rx_available = mx51_ecspi_rx_available,
.reset = mx51_ecspi_reset,
.fifo_size = 64,
.has_dmamode = true,
.has_slavemode = true,
.disable = mx51_ecspi_disable,
.devtype = IMX53_ECSPI,
};
static const struct platform_device_id spi_imx_devtype[] = {
{
.name = "imx1-cspi",
.driver_data = (kernel_ulong_t) &imx1_cspi_devtype_data,
}, {
.name = "imx21-cspi",
.driver_data = (kernel_ulong_t) &imx21_cspi_devtype_data,
}, {
.name = "imx27-cspi",
.driver_data = (kernel_ulong_t) &imx27_cspi_devtype_data,
}, {
.name = "imx31-cspi",
.driver_data = (kernel_ulong_t) &imx31_cspi_devtype_data,
}, {
.name = "imx35-cspi",
.driver_data = (kernel_ulong_t) &imx35_cspi_devtype_data,
}, {
.name = "imx51-ecspi",
.driver_data = (kernel_ulong_t) &imx51_ecspi_devtype_data,
}, {
.name = "imx53-ecspi",
.driver_data = (kernel_ulong_t) &imx53_ecspi_devtype_data,
}, {
/* sentinel */
}
};
static const struct of_device_id spi_imx_dt_ids[] = {
{ .compatible = "fsl,imx1-cspi", .data = &imx1_cspi_devtype_data, },
{ .compatible = "fsl,imx21-cspi", .data = &imx21_cspi_devtype_data, },
{ .compatible = "fsl,imx27-cspi", .data = &imx27_cspi_devtype_data, },
{ .compatible = "fsl,imx31-cspi", .data = &imx31_cspi_devtype_data, },
{ .compatible = "fsl,imx35-cspi", .data = &imx35_cspi_devtype_data, },
{ .compatible = "fsl,imx51-ecspi", .data = &imx51_ecspi_devtype_data, },
{ .compatible = "fsl,imx53-ecspi", .data = &imx53_ecspi_devtype_data, },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, spi_imx_dt_ids);
static void spi_imx_chipselect(struct spi_device *spi, int is_active)
{
int active = is_active != BITBANG_CS_INACTIVE;
int dev_is_lowactive = !(spi->mode & SPI_CS_HIGH);
if (spi->mode & SPI_NO_CS)
return;
if (!gpio_is_valid(spi->cs_gpio))
return;
gpio_set_value(spi->cs_gpio, dev_is_lowactive ^ active);
}
static void spi_imx_push(struct spi_imx_data *spi_imx)
{
while (spi_imx->txfifo < spi_imx->devtype_data->fifo_size) {
if (!spi_imx->count)
break;
if (spi_imx->txfifo && (spi_imx->count == spi_imx->remainder))
break;
spi_imx->tx(spi_imx);
spi_imx->txfifo++;
}
if (!spi_imx->slave_mode)
spi_imx->devtype_data->trigger(spi_imx);
}
static irqreturn_t spi_imx_isr(int irq, void *dev_id)
{
struct spi_imx_data *spi_imx = dev_id;
while (spi_imx->txfifo &&
spi_imx->devtype_data->rx_available(spi_imx)) {
spi_imx->rx(spi_imx);
spi_imx->txfifo--;
}
if (spi_imx->count) {
spi_imx_push(spi_imx);
return IRQ_HANDLED;
}
if (spi_imx->txfifo) {
/* No data left to push, but still waiting for rx data,
* enable receive data available interrupt.
*/
spi_imx->devtype_data->intctrl(
spi_imx, MXC_INT_RR);
return IRQ_HANDLED;
}
spi_imx->devtype_data->intctrl(spi_imx, 0);
complete(&spi_imx->xfer_done);
return IRQ_HANDLED;
}
static int spi_imx_dma_configure(struct spi_master *master)
{
int ret;
enum dma_slave_buswidth buswidth;
struct dma_slave_config rx = {}, tx = {};
struct spi_imx_data *spi_imx = spi_master_get_devdata(master);
switch (spi_imx_bytes_per_word(spi_imx->bits_per_word)) {
case 4:
buswidth = DMA_SLAVE_BUSWIDTH_4_BYTES;
break;
case 2:
buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
break;
case 1:
buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
break;
default:
return -EINVAL;
}
tx.direction = DMA_MEM_TO_DEV;
tx.dst_addr = spi_imx->base_phys + MXC_CSPITXDATA;
tx.dst_addr_width = buswidth;
tx.dst_maxburst = spi_imx->wml;
ret = dmaengine_slave_config(master->dma_tx, &tx);
if (ret) {
dev_err(spi_imx->dev, "TX dma configuration failed with %d\n", ret);
return ret;
}
rx.direction = DMA_DEV_TO_MEM;
rx.src_addr = spi_imx->base_phys + MXC_CSPIRXDATA;
rx.src_addr_width = buswidth;
rx.src_maxburst = spi_imx->wml;
ret = dmaengine_slave_config(master->dma_rx, &rx);
if (ret) {
dev_err(spi_imx->dev, "RX dma configuration failed with %d\n", ret);
return ret;
}
return 0;
}
static int spi_imx_setupxfer(struct spi_device *spi,
struct spi_transfer *t)
{
struct spi_imx_data *spi_imx = spi_master_get_devdata(spi->master);
int ret;
if (!t)
return 0;
spi_imx->bits_per_word = t->bits_per_word;
spi_imx->speed_hz = t->speed_hz;
/* Initialize the functions for transfer */
if (spi_imx->devtype_data->dynamic_burst && !spi_imx->slave_mode) {
u32 mask;
spi_imx->dynamic_burst = 0;
spi_imx->remainder = 0;
spi_imx->read_u32 = 1;
mask = (1 << spi_imx->bits_per_word) - 1;
spi_imx->rx = spi_imx_buf_rx_swap;
spi_imx->tx = spi_imx_buf_tx_swap;
spi_imx->dynamic_burst = 1;
spi_imx->remainder = t->len;
if (spi_imx->bits_per_word <= 8)
spi_imx->word_mask = mask << 24 | mask << 16
| mask << 8 | mask;
else if (spi_imx->bits_per_word <= 16)
spi_imx->word_mask = mask << 16 | mask;
else
spi_imx->word_mask = mask;
} else {
if (spi_imx->bits_per_word <= 8) {
spi_imx->rx = spi_imx_buf_rx_u8;
spi_imx->tx = spi_imx_buf_tx_u8;
} else if (spi_imx->bits_per_word <= 16) {
spi_imx->rx = spi_imx_buf_rx_u16;
spi_imx->tx = spi_imx_buf_tx_u16;
} else {
spi_imx->rx = spi_imx_buf_rx_u32;
spi_imx->tx = spi_imx_buf_tx_u32;
}
}
if (spi_imx_can_dma(spi_imx->bitbang.master, spi, t))
spi_imx->usedma = 1;
else
spi_imx->usedma = 0;
if (spi_imx->usedma) {
ret = spi_imx_dma_configure(spi->master);
if (ret)
return ret;
}
if (is_imx53_ecspi(spi_imx) && spi_imx->slave_mode) {
spi_imx->rx = mx53_ecspi_rx_slave;
spi_imx->tx = mx53_ecspi_tx_slave;
spi_imx->slave_burst = t->len;
}
spi_imx->devtype_data->config(spi);
return 0;
}
static void spi_imx_sdma_exit(struct spi_imx_data *spi_imx)
{
struct spi_master *master = spi_imx->bitbang.master;
if (master->dma_rx) {
dma_release_channel(master->dma_rx);
master->dma_rx = NULL;
}
if (master->dma_tx) {
dma_release_channel(master->dma_tx);
master->dma_tx = NULL;
}
}
static int spi_imx_sdma_init(struct device *dev, struct spi_imx_data *spi_imx,
struct spi_master *master)
{
int ret;
/* use pio mode for i.mx6dl chip TKT238285 */
if (of_machine_is_compatible("fsl,imx6dl"))
return 0;
spi_imx->wml = spi_imx->devtype_data->fifo_size / 2;
/* Prepare for TX DMA: */
master->dma_tx = dma_request_slave_channel_reason(dev, "tx");
if (IS_ERR(master->dma_tx)) {
ret = PTR_ERR(master->dma_tx);
dev_dbg(dev, "can't get the TX DMA channel, error %d!\n", ret);
master->dma_tx = NULL;
goto err;
}
/* Prepare for RX : */
master->dma_rx = dma_request_slave_channel_reason(dev, "rx");
if (IS_ERR(master->dma_rx)) {
ret = PTR_ERR(master->dma_rx);
dev_dbg(dev, "can't get the RX DMA channel, error %d\n", ret);
master->dma_rx = NULL;
goto err;
}
init_completion(&spi_imx->dma_rx_completion);
init_completion(&spi_imx->dma_tx_completion);
master->can_dma = spi_imx_can_dma;
master->max_dma_len = MAX_SDMA_BD_BYTES;
spi_imx->bitbang.master->flags = SPI_MASTER_MUST_RX |
SPI_MASTER_MUST_TX;
return 0;
err:
spi_imx_sdma_exit(spi_imx);
return ret;
}
static void spi_imx_dma_rx_callback(void *cookie)
{
struct spi_imx_data *spi_imx = (struct spi_imx_data *)cookie;
complete(&spi_imx->dma_rx_completion);
}
static void spi_imx_dma_tx_callback(void *cookie)
{
struct spi_imx_data *spi_imx = (struct spi_imx_data *)cookie;
complete(&spi_imx->dma_tx_completion);
}
static int spi_imx_calculate_timeout(struct spi_imx_data *spi_imx, int size)
{
unsigned long timeout = 0;
/* Time with actual data transfer and CS change delay related to HW */
timeout = (8 + 4) * size / spi_imx->spi_bus_clk;
/* Add extra second for scheduler related activities */
timeout += 1;
/* Double calculated timeout */
return msecs_to_jiffies(2 * timeout * MSEC_PER_SEC);
}
static int spi_imx_dma_transfer(struct spi_imx_data *spi_imx,
struct spi_transfer *transfer)
{
struct dma_async_tx_descriptor *desc_tx, *desc_rx;
unsigned long transfer_timeout;
unsigned long timeout;
struct spi_master *master = spi_imx->bitbang.master;
struct sg_table *tx = &transfer->tx_sg, *rx = &transfer->rx_sg;
/*
* The TX DMA setup starts the transfer, so make sure RX is configured
* before TX.
*/
desc_rx = dmaengine_prep_slave_sg(master->dma_rx,
rx->sgl, rx->nents, DMA_DEV_TO_MEM,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
if (!desc_rx)
return -EINVAL;
desc_rx->callback = spi_imx_dma_rx_callback;
desc_rx->callback_param = (void *)spi_imx;
dmaengine_submit(desc_rx);
reinit_completion(&spi_imx->dma_rx_completion);
dma_async_issue_pending(master->dma_rx);
desc_tx = dmaengine_prep_slave_sg(master->dma_tx,
tx->sgl, tx->nents, DMA_MEM_TO_DEV,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
if (!desc_tx) {
dmaengine_terminate_all(master->dma_tx);
return -EINVAL;
}
desc_tx->callback = spi_imx_dma_tx_callback;
desc_tx->callback_param = (void *)spi_imx;
dmaengine_submit(desc_tx);
reinit_completion(&spi_imx->dma_tx_completion);
dma_async_issue_pending(master->dma_tx);
transfer_timeout = spi_imx_calculate_timeout(spi_imx, transfer->len);
/* Wait SDMA to finish the data transfer.*/
timeout = wait_for_completion_timeout(&spi_imx->dma_tx_completion,
transfer_timeout);
if (!timeout) {
dev_err(spi_imx->dev, "I/O Error in DMA TX\n");
dmaengine_terminate_all(master->dma_tx);
dmaengine_terminate_all(master->dma_rx);
return -ETIMEDOUT;
}
timeout = wait_for_completion_timeout(&spi_imx->dma_rx_completion,
transfer_timeout);
if (!timeout) {
dev_err(&master->dev, "I/O Error in DMA RX\n");
spi_imx->devtype_data->reset(spi_imx);
dmaengine_terminate_all(master->dma_rx);
return -ETIMEDOUT;
}
return transfer->len;
}
static int spi_imx_pio_transfer(struct spi_device *spi,
struct spi_transfer *transfer)
{
struct spi_imx_data *spi_imx = spi_master_get_devdata(spi->master);
unsigned long transfer_timeout;
unsigned long timeout;
spi_imx->tx_buf = transfer->tx_buf;
spi_imx->rx_buf = transfer->rx_buf;
spi_imx->count = transfer->len;
spi_imx->txfifo = 0;
reinit_completion(&spi_imx->xfer_done);
spi_imx_push(spi_imx);
spi_imx->devtype_data->intctrl(spi_imx, MXC_INT_TE);
transfer_timeout = spi_imx_calculate_timeout(spi_imx, transfer->len);
timeout = wait_for_completion_timeout(&spi_imx->xfer_done,
transfer_timeout);
if (!timeout) {
dev_err(&spi->dev, "I/O Error in PIO\n");
spi_imx->devtype_data->reset(spi_imx);
return -ETIMEDOUT;
}
return transfer->len;
}
static int spi_imx_pio_transfer_slave(struct spi_device *spi,
struct spi_transfer *transfer)
{
struct spi_imx_data *spi_imx = spi_master_get_devdata(spi->master);
int ret = transfer->len;
if (is_imx53_ecspi(spi_imx) &&
transfer->len > MX53_MAX_TRANSFER_BYTES) {
dev_err(&spi->dev, "Transaction too big, max size is %d bytes\n",
MX53_MAX_TRANSFER_BYTES);
return -EMSGSIZE;
}
spi_imx->tx_buf = transfer->tx_buf;
spi_imx->rx_buf = transfer->rx_buf;
spi_imx->count = transfer->len;
spi_imx->txfifo = 0;
reinit_completion(&spi_imx->xfer_done);
spi_imx->slave_aborted = false;
spi_imx_push(spi_imx);
spi_imx->devtype_data->intctrl(spi_imx, MXC_INT_TE | MXC_INT_RDR);
if (wait_for_completion_interruptible(&spi_imx->xfer_done) ||
spi_imx->slave_aborted) {
dev_dbg(&spi->dev, "interrupted\n");
ret = -EINTR;
}
/* ecspi has a HW issue when works in Slave mode,
* after 64 words writtern to TXFIFO, even TXFIFO becomes empty,
* ECSPI_TXDATA keeps shift out the last word data,
* so we have to disable ECSPI when in slave mode after the
* transfer completes
*/
if (spi_imx->devtype_data->disable)
spi_imx->devtype_data->disable(spi_imx);
return ret;
}
static int spi_imx_transfer(struct spi_device *spi,
struct spi_transfer *transfer)
{
struct spi_imx_data *spi_imx = spi_master_get_devdata(spi->master);
/* flush rxfifo before transfer */
while (spi_imx->devtype_data->rx_available(spi_imx))
spi_imx->rx(spi_imx);
if (spi_imx->slave_mode)
return spi_imx_pio_transfer_slave(spi, transfer);
if (spi_imx->usedma)
return spi_imx_dma_transfer(spi_imx, transfer);
else
return spi_imx_pio_transfer(spi, transfer);
}
static int spi_imx_setup(struct spi_device *spi)
{
dev_dbg(&spi->dev, "%s: mode %d, %u bpw, %d hz\n", __func__,
spi->mode, spi->bits_per_word, spi->max_speed_hz);
if (spi->mode & SPI_NO_CS)
return 0;
if (gpio_is_valid(spi->cs_gpio))
gpio_direction_output(spi->cs_gpio,
spi->mode & SPI_CS_HIGH ? 0 : 1);
spi_imx_chipselect(spi, BITBANG_CS_INACTIVE);
return 0;
}
static void spi_imx_cleanup(struct spi_device *spi)
{
}
static int
spi_imx_prepare_message(struct spi_master *master, struct spi_message *msg)
{
struct spi_imx_data *spi_imx = spi_master_get_devdata(master);
int ret;
ret = clk_enable(spi_imx->clk_per);
if (ret)
return ret;
ret = clk_enable(spi_imx->clk_ipg);
if (ret) {
clk_disable(spi_imx->clk_per);
return ret;
}
return 0;
}
static int
spi_imx_unprepare_message(struct spi_master *master, struct spi_message *msg)
{
struct spi_imx_data *spi_imx = spi_master_get_devdata(master);
clk_disable(spi_imx->clk_ipg);
clk_disable(spi_imx->clk_per);
return 0;
}
static int spi_imx_slave_abort(struct spi_master *master)
{
struct spi_imx_data *spi_imx = spi_master_get_devdata(master);
spi_imx->slave_aborted = true;
complete(&spi_imx->xfer_done);
return 0;
}
static int spi_imx_probe(struct platform_device *pdev)
{
struct device_node *np = pdev->dev.of_node;
const struct of_device_id *of_id =
of_match_device(spi_imx_dt_ids, &pdev->dev);
struct spi_imx_master *mxc_platform_info =
dev_get_platdata(&pdev->dev);
struct spi_master *master;
struct spi_imx_data *spi_imx;
struct resource *res;
int i, ret, irq, spi_drctl;
const struct spi_imx_devtype_data *devtype_data = of_id ? of_id->data :
(struct spi_imx_devtype_data *)pdev->id_entry->driver_data;
bool slave_mode;
if (!np && !mxc_platform_info) {
dev_err(&pdev->dev, "can't get the platform data\n");
return -EINVAL;
}
slave_mode = devtype_data->has_slavemode &&
of_property_read_bool(np, "spi-slave");
if (slave_mode)
master = spi_alloc_slave(&pdev->dev,
sizeof(struct spi_imx_data));
else
master = spi_alloc_master(&pdev->dev,
sizeof(struct spi_imx_data));
if (!master)
return -ENOMEM;
ret = of_property_read_u32(np, "fsl,spi-rdy-drctl", &spi_drctl);
if ((ret < 0) || (spi_drctl >= 0x3)) {
/* '11' is reserved */
spi_drctl = 0;
}
platform_set_drvdata(pdev, master);
master->bits_per_word_mask = SPI_BPW_RANGE_MASK(1, 32);
master->bus_num = np ? -1 : pdev->id;
spi_imx = spi_master_get_devdata(master);
spi_imx->bitbang.master = master;
spi_imx->dev = &pdev->dev;
spi_imx->slave_mode = slave_mode;
spi_imx->devtype_data = devtype_data;
/* Get number of chip selects, either platform data or OF */
if (mxc_platform_info) {
master->num_chipselect = mxc_platform_info->num_chipselect;
if (mxc_platform_info->chipselect) {
master->cs_gpios = devm_kcalloc(&master->dev,
master->num_chipselect, sizeof(int),
GFP_KERNEL);
if (!master->cs_gpios)
return -ENOMEM;
for (i = 0; i < master->num_chipselect; i++)
master->cs_gpios[i] = mxc_platform_info->chipselect[i];
}
} else {
u32 num_cs;
if (!of_property_read_u32(np, "num-cs", &num_cs))
master->num_chipselect = num_cs;
/* If not preset, default value of 1 is used */
}
spi_imx->bitbang.chipselect = spi_imx_chipselect;
spi_imx->bitbang.setup_transfer = spi_imx_setupxfer;
spi_imx->bitbang.txrx_bufs = spi_imx_transfer;
spi_imx->bitbang.master->setup = spi_imx_setup;
spi_imx->bitbang.master->cleanup = spi_imx_cleanup;
spi_imx->bitbang.master->prepare_message = spi_imx_prepare_message;
spi_imx->bitbang.master->unprepare_message = spi_imx_unprepare_message;
spi_imx->bitbang.master->slave_abort = spi_imx_slave_abort;
spi_imx->bitbang.master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH \
| SPI_NO_CS;
if (is_imx35_cspi(spi_imx) || is_imx51_ecspi(spi_imx) ||
is_imx53_ecspi(spi_imx))
spi_imx->bitbang.master->mode_bits |= SPI_LOOP | SPI_READY;
spi_imx->spi_drctl = spi_drctl;
init_completion(&spi_imx->xfer_done);
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
spi_imx->base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(spi_imx->base)) {
ret = PTR_ERR(spi_imx->base);
goto out_master_put;
}
spi_imx->base_phys = res->start;
irq = platform_get_irq(pdev, 0);
if (irq < 0) {
ret = irq;
goto out_master_put;
}
ret = devm_request_irq(&pdev->dev, irq, spi_imx_isr, 0,
dev_name(&pdev->dev), spi_imx);
if (ret) {
dev_err(&pdev->dev, "can't get irq%d: %d\n", irq, ret);
goto out_master_put;
}
spi_imx->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
if (IS_ERR(spi_imx->clk_ipg)) {
ret = PTR_ERR(spi_imx->clk_ipg);
goto out_master_put;
}
spi_imx->clk_per = devm_clk_get(&pdev->dev, "per");
if (IS_ERR(spi_imx->clk_per)) {
ret = PTR_ERR(spi_imx->clk_per);
goto out_master_put;
}
ret = clk_prepare_enable(spi_imx->clk_per);
if (ret)
goto out_master_put;
ret = clk_prepare_enable(spi_imx->clk_ipg);
if (ret)
goto out_put_per;
spi_imx->spi_clk = clk_get_rate(spi_imx->clk_per);
/*
* Only validated on i.mx35 and i.mx6 now, can remove the constraint
* if validated on other chips.
*/
if (spi_imx->devtype_data->has_dmamode) {
ret = spi_imx_sdma_init(&pdev->dev, spi_imx, master);
if (ret == -EPROBE_DEFER)
goto out_clk_put;
if (ret < 0)
dev_err(&pdev->dev, "dma setup error %d, use pio\n",
ret);
}
spi_imx->devtype_data->reset(spi_imx);
spi_imx->devtype_data->intctrl(spi_imx, 0);
master->dev.of_node = pdev->dev.of_node;
ret = spi_bitbang_start(&spi_imx->bitbang);
if (ret) {
dev_err(&pdev->dev, "bitbang start failed with %d\n", ret);
goto out_clk_put;
}
/* Request GPIO CS lines, if any */
if (!spi_imx->slave_mode && master->cs_gpios) {
for (i = 0; i < master->num_chipselect; i++) {
if (!gpio_is_valid(master->cs_gpios[i]))
continue;
ret = devm_gpio_request(&pdev->dev,
master->cs_gpios[i],
DRIVER_NAME);
if (ret) {
dev_err(&pdev->dev, "Can't get CS GPIO %i\n",
master->cs_gpios[i]);
goto out_spi_bitbang;
}
}
}
dev_info(&pdev->dev, "probed\n");
clk_disable(spi_imx->clk_ipg);
clk_disable(spi_imx->clk_per);
return ret;
out_spi_bitbang:
spi_bitbang_stop(&spi_imx->bitbang);
out_clk_put:
clk_disable_unprepare(spi_imx->clk_ipg);
out_put_per:
clk_disable_unprepare(spi_imx->clk_per);
out_master_put:
spi_master_put(master);
return ret;
}
static int spi_imx_remove(struct platform_device *pdev)
{
struct spi_master *master = platform_get_drvdata(pdev);
struct spi_imx_data *spi_imx = spi_master_get_devdata(master);
int ret;
spi_bitbang_stop(&spi_imx->bitbang);
ret = clk_enable(spi_imx->clk_per);
if (ret)
return ret;
ret = clk_enable(spi_imx->clk_ipg);
if (ret) {
clk_disable(spi_imx->clk_per);
return ret;
}
writel(0, spi_imx->base + MXC_CSPICTRL);
clk_disable_unprepare(spi_imx->clk_ipg);
clk_disable_unprepare(spi_imx->clk_per);
spi_imx_sdma_exit(spi_imx);
spi_master_put(master);
return 0;
}
static struct platform_driver spi_imx_driver = {
.driver = {
.name = DRIVER_NAME,
.of_match_table = spi_imx_dt_ids,
},
.id_table = spi_imx_devtype,
.probe = spi_imx_probe,
.remove = spi_imx_remove,
};
module_platform_driver(spi_imx_driver);
MODULE_DESCRIPTION("SPI Controller driver");
MODULE_AUTHOR("Sascha Hauer, Pengutronix");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:" DRIVER_NAME);