linux_dsm_epyc7002/arch/s390/crypto/crc32le-vx.S
Hendrik Brueckner 19c93787f5 s390/crc32-vx: use vector instructions to optimize CRC-32 computation
Use vector instructions to optimize the computation of CRC-32 checksums.
An optimized version is provided for CRC-32 (IEEE 802.3 Ethernet) in
normal and bitreflected domain, as well as, for bitreflected CRC-32C
(Castagnoli).

Signed-off-by: Hendrik Brueckner <brueckner@linux.vnet.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2016-06-14 16:54:16 +02:00

269 lines
7.6 KiB
ArmAsm

/*
* Hardware-accelerated CRC-32 variants for Linux on z Systems
*
* Use the z/Architecture Vector Extension Facility to accelerate the
* computing of bitreflected CRC-32 checksums for IEEE 802.3 Ethernet
* and Castagnoli.
*
* This CRC-32 implementation algorithm is bitreflected and processes
* the least-significant bit first (Little-Endian).
*
* Copyright IBM Corp. 2015
* Author(s): Hendrik Brueckner <brueckner@linux.vnet.ibm.com>
*/
#include <linux/linkage.h>
#include <asm/vx-insn.h>
/* Vector register range containing CRC-32 constants */
#define CONST_PERM_LE2BE %v9
#define CONST_R2R1 %v10
#define CONST_R4R3 %v11
#define CONST_R5 %v12
#define CONST_RU_POLY %v13
#define CONST_CRC_POLY %v14
.data
.align 8
/*
* The CRC-32 constant block contains reduction constants to fold and
* process particular chunks of the input data stream in parallel.
*
* For the CRC-32 variants, the constants are precomputed according to
* these definitions:
*
* R1 = [(x4*128+32 mod P'(x) << 32)]' << 1
* R2 = [(x4*128-32 mod P'(x) << 32)]' << 1
* R3 = [(x128+32 mod P'(x) << 32)]' << 1
* R4 = [(x128-32 mod P'(x) << 32)]' << 1
* R5 = [(x64 mod P'(x) << 32)]' << 1
* R6 = [(x32 mod P'(x) << 32)]' << 1
*
* The bitreflected Barret reduction constant, u', is defined as
* the bit reversal of floor(x**64 / P(x)).
*
* where P(x) is the polynomial in the normal domain and the P'(x) is the
* polynomial in the reversed (bitreflected) domain.
*
* CRC-32 (IEEE 802.3 Ethernet, ...) polynomials:
*
* P(x) = 0x04C11DB7
* P'(x) = 0xEDB88320
*
* CRC-32C (Castagnoli) polynomials:
*
* P(x) = 0x1EDC6F41
* P'(x) = 0x82F63B78
*/
.Lconstants_CRC_32_LE:
.octa 0x0F0E0D0C0B0A09080706050403020100 # BE->LE mask
.quad 0x1c6e41596, 0x154442bd4 # R2, R1
.quad 0x0ccaa009e, 0x1751997d0 # R4, R3
.octa 0x163cd6124 # R5
.octa 0x1F7011641 # u'
.octa 0x1DB710641 # P'(x) << 1
.Lconstants_CRC_32C_LE:
.octa 0x0F0E0D0C0B0A09080706050403020100 # BE->LE mask
.quad 0x09e4addf8, 0x740eef02 # R2, R1
.quad 0x14cd00bd6, 0xf20c0dfe # R4, R3
.octa 0x0dd45aab8 # R5
.octa 0x0dea713f1 # u'
.octa 0x105ec76f0 # P'(x) << 1
.previous
.text
/*
* The CRC-32 functions use these calling conventions:
*
* Parameters:
*
* %r2: Initial CRC value, typically ~0; and final CRC (return) value.
* %r3: Input buffer pointer, performance might be improved if the
* buffer is on a doubleword boundary.
* %r4: Length of the buffer, must be 64 bytes or greater.
*
* Register usage:
*
* %r5: CRC-32 constant pool base pointer.
* V0: Initial CRC value and intermediate constants and results.
* V1..V4: Data for CRC computation.
* V5..V8: Next data chunks that are fetched from the input buffer.
* V9: Constant for BE->LE conversion and shift operations
*
* V10..V14: CRC-32 constants.
*/
ENTRY(crc32_le_vgfm_16)
larl %r5,.Lconstants_CRC_32_LE
j crc32_le_vgfm_generic
ENTRY(crc32c_le_vgfm_16)
larl %r5,.Lconstants_CRC_32C_LE
j crc32_le_vgfm_generic
crc32_le_vgfm_generic:
/* Load CRC-32 constants */
VLM CONST_PERM_LE2BE,CONST_CRC_POLY,0,%r5
/*
* Load the initial CRC value.
*
* The CRC value is loaded into the rightmost word of the
* vector register and is later XORed with the LSB portion
* of the loaded input data.
*/
VZERO %v0 /* Clear V0 */
VLVGF %v0,%r2,3 /* Load CRC into rightmost word */
/* Load a 64-byte data chunk and XOR with CRC */
VLM %v1,%v4,0,%r3 /* 64-bytes into V1..V4 */
VPERM %v1,%v1,%v1,CONST_PERM_LE2BE
VPERM %v2,%v2,%v2,CONST_PERM_LE2BE
VPERM %v3,%v3,%v3,CONST_PERM_LE2BE
VPERM %v4,%v4,%v4,CONST_PERM_LE2BE
VX %v1,%v0,%v1 /* V1 ^= CRC */
aghi %r3,64 /* BUF = BUF + 64 */
aghi %r4,-64 /* LEN = LEN - 64 */
cghi %r4,64
jl .Lless_than_64bytes
.Lfold_64bytes_loop:
/* Load the next 64-byte data chunk into V5 to V8 */
VLM %v5,%v8,0,%r3
VPERM %v5,%v5,%v5,CONST_PERM_LE2BE
VPERM %v6,%v6,%v6,CONST_PERM_LE2BE
VPERM %v7,%v7,%v7,CONST_PERM_LE2BE
VPERM %v8,%v8,%v8,CONST_PERM_LE2BE
/*
* Perform a GF(2) multiplication of the doublewords in V1 with
* the R1 and R2 reduction constants in V0. The intermediate result
* is then folded (accumulated) with the next data chunk in V5 and
* stored in V1. Repeat this step for the register contents
* in V2, V3, and V4 respectively.
*/
VGFMAG %v1,CONST_R2R1,%v1,%v5
VGFMAG %v2,CONST_R2R1,%v2,%v6
VGFMAG %v3,CONST_R2R1,%v3,%v7
VGFMAG %v4,CONST_R2R1,%v4,%v8
aghi %r3,64 /* BUF = BUF + 64 */
aghi %r4,-64 /* LEN = LEN - 64 */
cghi %r4,64
jnl .Lfold_64bytes_loop
.Lless_than_64bytes:
/*
* Fold V1 to V4 into a single 128-bit value in V1. Multiply V1 with R3
* and R4 and accumulating the next 128-bit chunk until a single 128-bit
* value remains.
*/
VGFMAG %v1,CONST_R4R3,%v1,%v2
VGFMAG %v1,CONST_R4R3,%v1,%v3
VGFMAG %v1,CONST_R4R3,%v1,%v4
cghi %r4,16
jl .Lfinal_fold
.Lfold_16bytes_loop:
VL %v2,0,,%r3 /* Load next data chunk */
VPERM %v2,%v2,%v2,CONST_PERM_LE2BE
VGFMAG %v1,CONST_R4R3,%v1,%v2 /* Fold next data chunk */
aghi %r3,16
aghi %r4,-16
cghi %r4,16
jnl .Lfold_16bytes_loop
.Lfinal_fold:
/*
* Set up a vector register for byte shifts. The shift value must
* be loaded in bits 1-4 in byte element 7 of a vector register.
* Shift by 8 bytes: 0x40
* Shift by 4 bytes: 0x20
*/
VLEIB %v9,0x40,7
/*
* Prepare V0 for the next GF(2) multiplication: shift V0 by 8 bytes
* to move R4 into the rightmost doubleword and set the leftmost
* doubleword to 0x1.
*/
VSRLB %v0,CONST_R4R3,%v9
VLEIG %v0,1,0
/*
* Compute GF(2) product of V1 and V0. The rightmost doubleword
* of V1 is multiplied with R4. The leftmost doubleword of V1 is
* multiplied by 0x1 and is then XORed with rightmost product.
* Implicitly, the intermediate leftmost product becomes padded
*/
VGFMG %v1,%v0,%v1
/*
* Now do the final 32-bit fold by multiplying the rightmost word
* in V1 with R5 and XOR the result with the remaining bits in V1.
*
* To achieve this by a single VGFMAG, right shift V1 by a word
* and store the result in V2 which is then accumulated. Use the
* vector unpack instruction to load the rightmost half of the
* doubleword into the rightmost doubleword element of V1; the other
* half is loaded in the leftmost doubleword.
* The vector register with CONST_R5 contains the R5 constant in the
* rightmost doubleword and the leftmost doubleword is zero to ignore
* the leftmost product of V1.
*/
VLEIB %v9,0x20,7 /* Shift by words */
VSRLB %v2,%v1,%v9 /* Store remaining bits in V2 */
VUPLLF %v1,%v1 /* Split rightmost doubleword */
VGFMAG %v1,CONST_R5,%v1,%v2 /* V1 = (V1 * R5) XOR V2 */
/*
* Apply a Barret reduction to compute the final 32-bit CRC value.
*
* The input values to the Barret reduction are the degree-63 polynomial
* in V1 (R(x)), degree-32 generator polynomial, and the reduction
* constant u. The Barret reduction result is the CRC value of R(x) mod
* P(x).
*
* The Barret reduction algorithm is defined as:
*
* 1. T1(x) = floor( R(x) / x^32 ) GF2MUL u
* 2. T2(x) = floor( T1(x) / x^32 ) GF2MUL P(x)
* 3. C(x) = R(x) XOR T2(x) mod x^32
*
* Note: The leftmost doubleword of vector register containing
* CONST_RU_POLY is zero and, thus, the intermediate GF(2) product
* is zero and does not contribute to the final result.
*/
/* T1(x) = floor( R(x) / x^32 ) GF2MUL u */
VUPLLF %v2,%v1
VGFMG %v2,CONST_RU_POLY,%v2
/*
* Compute the GF(2) product of the CRC polynomial with T1(x) in
* V2 and XOR the intermediate result, T2(x), with the value in V1.
* The final result is stored in word element 2 of V2.
*/
VUPLLF %v2,%v2
VGFMAG %v2,CONST_CRC_POLY,%v2,%v1
.Ldone:
VLGVF %r2,%v2,2
br %r14
.previous