linux_dsm_epyc7002/drivers/gpu/drm/i915/i915_irq.c
Mika Kuoppala 96a764d983 drm/i915: remove i915_hangcheck_hung
Rework of per ring hangcheck made this obsolete.

Signed-off-by: Mika Kuoppala <mika.kuoppala@intel.com>
Reviewed-by: Ben Widawsky <ben@bwidawsk.net>
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2013-06-03 10:58:38 +02:00

3610 lines
102 KiB
C

/* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
*/
/*
* Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
* IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
* ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/sysrq.h>
#include <linux/slab.h>
#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
#include "i915_trace.h"
#include "intel_drv.h"
static const u32 hpd_ibx[] = {
[HPD_CRT] = SDE_CRT_HOTPLUG,
[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
[HPD_PORT_B] = SDE_PORTB_HOTPLUG,
[HPD_PORT_C] = SDE_PORTC_HOTPLUG,
[HPD_PORT_D] = SDE_PORTD_HOTPLUG
};
static const u32 hpd_cpt[] = {
[HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
};
static const u32 hpd_mask_i915[] = {
[HPD_CRT] = CRT_HOTPLUG_INT_EN,
[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
[HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
[HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
[HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
};
static const u32 hpd_status_gen4[] = {
[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
};
static const u32 hpd_status_i965[] = {
[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I965,
[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I965,
[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
};
static const u32 hpd_status_i915[] = { /* i915 and valleyview are the same */
[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
};
static void ibx_hpd_irq_setup(struct drm_device *dev);
static void i915_hpd_irq_setup(struct drm_device *dev);
/* For display hotplug interrupt */
static void
ironlake_enable_display_irq(drm_i915_private_t *dev_priv, u32 mask)
{
if ((dev_priv->irq_mask & mask) != 0) {
dev_priv->irq_mask &= ~mask;
I915_WRITE(DEIMR, dev_priv->irq_mask);
POSTING_READ(DEIMR);
}
}
static void
ironlake_disable_display_irq(drm_i915_private_t *dev_priv, u32 mask)
{
if ((dev_priv->irq_mask & mask) != mask) {
dev_priv->irq_mask |= mask;
I915_WRITE(DEIMR, dev_priv->irq_mask);
POSTING_READ(DEIMR);
}
}
static bool ivb_can_enable_err_int(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *crtc;
enum pipe pipe;
for_each_pipe(pipe) {
crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
if (crtc->cpu_fifo_underrun_disabled)
return false;
}
return true;
}
static bool cpt_can_enable_serr_int(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
enum pipe pipe;
struct intel_crtc *crtc;
for_each_pipe(pipe) {
crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
if (crtc->pch_fifo_underrun_disabled)
return false;
}
return true;
}
static void ironlake_set_fifo_underrun_reporting(struct drm_device *dev,
enum pipe pipe, bool enable)
{
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t bit = (pipe == PIPE_A) ? DE_PIPEA_FIFO_UNDERRUN :
DE_PIPEB_FIFO_UNDERRUN;
if (enable)
ironlake_enable_display_irq(dev_priv, bit);
else
ironlake_disable_display_irq(dev_priv, bit);
}
static void ivybridge_set_fifo_underrun_reporting(struct drm_device *dev,
bool enable)
{
struct drm_i915_private *dev_priv = dev->dev_private;
if (enable) {
if (!ivb_can_enable_err_int(dev))
return;
I915_WRITE(GEN7_ERR_INT, ERR_INT_FIFO_UNDERRUN_A |
ERR_INT_FIFO_UNDERRUN_B |
ERR_INT_FIFO_UNDERRUN_C);
ironlake_enable_display_irq(dev_priv, DE_ERR_INT_IVB);
} else {
ironlake_disable_display_irq(dev_priv, DE_ERR_INT_IVB);
}
}
static void ibx_set_fifo_underrun_reporting(struct intel_crtc *crtc,
bool enable)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t bit = (crtc->pipe == PIPE_A) ? SDE_TRANSA_FIFO_UNDER :
SDE_TRANSB_FIFO_UNDER;
if (enable)
I915_WRITE(SDEIMR, I915_READ(SDEIMR) & ~bit);
else
I915_WRITE(SDEIMR, I915_READ(SDEIMR) | bit);
POSTING_READ(SDEIMR);
}
static void cpt_set_fifo_underrun_reporting(struct drm_device *dev,
enum transcoder pch_transcoder,
bool enable)
{
struct drm_i915_private *dev_priv = dev->dev_private;
if (enable) {
if (!cpt_can_enable_serr_int(dev))
return;
I915_WRITE(SERR_INT, SERR_INT_TRANS_A_FIFO_UNDERRUN |
SERR_INT_TRANS_B_FIFO_UNDERRUN |
SERR_INT_TRANS_C_FIFO_UNDERRUN);
I915_WRITE(SDEIMR, I915_READ(SDEIMR) & ~SDE_ERROR_CPT);
} else {
I915_WRITE(SDEIMR, I915_READ(SDEIMR) | SDE_ERROR_CPT);
}
POSTING_READ(SDEIMR);
}
/**
* intel_set_cpu_fifo_underrun_reporting - enable/disable FIFO underrun messages
* @dev: drm device
* @pipe: pipe
* @enable: true if we want to report FIFO underrun errors, false otherwise
*
* This function makes us disable or enable CPU fifo underruns for a specific
* pipe. Notice that on some Gens (e.g. IVB, HSW), disabling FIFO underrun
* reporting for one pipe may also disable all the other CPU error interruts for
* the other pipes, due to the fact that there's just one interrupt mask/enable
* bit for all the pipes.
*
* Returns the previous state of underrun reporting.
*/
bool intel_set_cpu_fifo_underrun_reporting(struct drm_device *dev,
enum pipe pipe, bool enable)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
unsigned long flags;
bool ret;
spin_lock_irqsave(&dev_priv->irq_lock, flags);
ret = !intel_crtc->cpu_fifo_underrun_disabled;
if (enable == ret)
goto done;
intel_crtc->cpu_fifo_underrun_disabled = !enable;
if (IS_GEN5(dev) || IS_GEN6(dev))
ironlake_set_fifo_underrun_reporting(dev, pipe, enable);
else if (IS_GEN7(dev))
ivybridge_set_fifo_underrun_reporting(dev, enable);
done:
spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
return ret;
}
/**
* intel_set_pch_fifo_underrun_reporting - enable/disable FIFO underrun messages
* @dev: drm device
* @pch_transcoder: the PCH transcoder (same as pipe on IVB and older)
* @enable: true if we want to report FIFO underrun errors, false otherwise
*
* This function makes us disable or enable PCH fifo underruns for a specific
* PCH transcoder. Notice that on some PCHs (e.g. CPT/PPT), disabling FIFO
* underrun reporting for one transcoder may also disable all the other PCH
* error interruts for the other transcoders, due to the fact that there's just
* one interrupt mask/enable bit for all the transcoders.
*
* Returns the previous state of underrun reporting.
*/
bool intel_set_pch_fifo_underrun_reporting(struct drm_device *dev,
enum transcoder pch_transcoder,
bool enable)
{
struct drm_i915_private *dev_priv = dev->dev_private;
enum pipe p;
struct drm_crtc *crtc;
struct intel_crtc *intel_crtc;
unsigned long flags;
bool ret;
if (HAS_PCH_LPT(dev)) {
crtc = NULL;
for_each_pipe(p) {
struct drm_crtc *c = dev_priv->pipe_to_crtc_mapping[p];
if (intel_pipe_has_type(c, INTEL_OUTPUT_ANALOG)) {
crtc = c;
break;
}
}
if (!crtc) {
DRM_ERROR("PCH FIFO underrun, but no CRTC using the PCH found\n");
return false;
}
} else {
crtc = dev_priv->pipe_to_crtc_mapping[pch_transcoder];
}
intel_crtc = to_intel_crtc(crtc);
spin_lock_irqsave(&dev_priv->irq_lock, flags);
ret = !intel_crtc->pch_fifo_underrun_disabled;
if (enable == ret)
goto done;
intel_crtc->pch_fifo_underrun_disabled = !enable;
if (HAS_PCH_IBX(dev))
ibx_set_fifo_underrun_reporting(intel_crtc, enable);
else
cpt_set_fifo_underrun_reporting(dev, pch_transcoder, enable);
done:
spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
return ret;
}
void
i915_enable_pipestat(drm_i915_private_t *dev_priv, int pipe, u32 mask)
{
u32 reg = PIPESTAT(pipe);
u32 pipestat = I915_READ(reg) & 0x7fff0000;
if ((pipestat & mask) == mask)
return;
/* Enable the interrupt, clear any pending status */
pipestat |= mask | (mask >> 16);
I915_WRITE(reg, pipestat);
POSTING_READ(reg);
}
void
i915_disable_pipestat(drm_i915_private_t *dev_priv, int pipe, u32 mask)
{
u32 reg = PIPESTAT(pipe);
u32 pipestat = I915_READ(reg) & 0x7fff0000;
if ((pipestat & mask) == 0)
return;
pipestat &= ~mask;
I915_WRITE(reg, pipestat);
POSTING_READ(reg);
}
/**
* i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
*/
static void i915_enable_asle_pipestat(struct drm_device *dev)
{
drm_i915_private_t *dev_priv = dev->dev_private;
unsigned long irqflags;
if (!dev_priv->opregion.asle || !IS_MOBILE(dev))
return;
spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
i915_enable_pipestat(dev_priv, 1, PIPE_LEGACY_BLC_EVENT_ENABLE);
if (INTEL_INFO(dev)->gen >= 4)
i915_enable_pipestat(dev_priv, 0, PIPE_LEGACY_BLC_EVENT_ENABLE);
spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
}
/**
* i915_pipe_enabled - check if a pipe is enabled
* @dev: DRM device
* @pipe: pipe to check
*
* Reading certain registers when the pipe is disabled can hang the chip.
* Use this routine to make sure the PLL is running and the pipe is active
* before reading such registers if unsure.
*/
static int
i915_pipe_enabled(struct drm_device *dev, int pipe)
{
drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
if (drm_core_check_feature(dev, DRIVER_MODESET)) {
/* Locking is horribly broken here, but whatever. */
struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
return intel_crtc->active;
} else {
return I915_READ(PIPECONF(pipe)) & PIPECONF_ENABLE;
}
}
/* Called from drm generic code, passed a 'crtc', which
* we use as a pipe index
*/
static u32 i915_get_vblank_counter(struct drm_device *dev, int pipe)
{
drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
unsigned long high_frame;
unsigned long low_frame;
u32 high1, high2, low;
if (!i915_pipe_enabled(dev, pipe)) {
DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
"pipe %c\n", pipe_name(pipe));
return 0;
}
high_frame = PIPEFRAME(pipe);
low_frame = PIPEFRAMEPIXEL(pipe);
/*
* High & low register fields aren't synchronized, so make sure
* we get a low value that's stable across two reads of the high
* register.
*/
do {
high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
low = I915_READ(low_frame) & PIPE_FRAME_LOW_MASK;
high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
} while (high1 != high2);
high1 >>= PIPE_FRAME_HIGH_SHIFT;
low >>= PIPE_FRAME_LOW_SHIFT;
return (high1 << 8) | low;
}
static u32 gm45_get_vblank_counter(struct drm_device *dev, int pipe)
{
drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
int reg = PIPE_FRMCOUNT_GM45(pipe);
if (!i915_pipe_enabled(dev, pipe)) {
DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
"pipe %c\n", pipe_name(pipe));
return 0;
}
return I915_READ(reg);
}
static int i915_get_crtc_scanoutpos(struct drm_device *dev, int pipe,
int *vpos, int *hpos)
{
drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
u32 vbl = 0, position = 0;
int vbl_start, vbl_end, htotal, vtotal;
bool in_vbl = true;
int ret = 0;
enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
pipe);
if (!i915_pipe_enabled(dev, pipe)) {
DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
"pipe %c\n", pipe_name(pipe));
return 0;
}
/* Get vtotal. */
vtotal = 1 + ((I915_READ(VTOTAL(cpu_transcoder)) >> 16) & 0x1fff);
if (INTEL_INFO(dev)->gen >= 4) {
/* No obvious pixelcount register. Only query vertical
* scanout position from Display scan line register.
*/
position = I915_READ(PIPEDSL(pipe));
/* Decode into vertical scanout position. Don't have
* horizontal scanout position.
*/
*vpos = position & 0x1fff;
*hpos = 0;
} else {
/* Have access to pixelcount since start of frame.
* We can split this into vertical and horizontal
* scanout position.
*/
position = (I915_READ(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
htotal = 1 + ((I915_READ(HTOTAL(cpu_transcoder)) >> 16) & 0x1fff);
*vpos = position / htotal;
*hpos = position - (*vpos * htotal);
}
/* Query vblank area. */
vbl = I915_READ(VBLANK(cpu_transcoder));
/* Test position against vblank region. */
vbl_start = vbl & 0x1fff;
vbl_end = (vbl >> 16) & 0x1fff;
if ((*vpos < vbl_start) || (*vpos > vbl_end))
in_vbl = false;
/* Inside "upper part" of vblank area? Apply corrective offset: */
if (in_vbl && (*vpos >= vbl_start))
*vpos = *vpos - vtotal;
/* Readouts valid? */
if (vbl > 0)
ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
/* In vblank? */
if (in_vbl)
ret |= DRM_SCANOUTPOS_INVBL;
return ret;
}
static int i915_get_vblank_timestamp(struct drm_device *dev, int pipe,
int *max_error,
struct timeval *vblank_time,
unsigned flags)
{
struct drm_crtc *crtc;
if (pipe < 0 || pipe >= INTEL_INFO(dev)->num_pipes) {
DRM_ERROR("Invalid crtc %d\n", pipe);
return -EINVAL;
}
/* Get drm_crtc to timestamp: */
crtc = intel_get_crtc_for_pipe(dev, pipe);
if (crtc == NULL) {
DRM_ERROR("Invalid crtc %d\n", pipe);
return -EINVAL;
}
if (!crtc->enabled) {
DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
return -EBUSY;
}
/* Helper routine in DRM core does all the work: */
return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
vblank_time, flags,
crtc);
}
static int intel_hpd_irq_event(struct drm_device *dev, struct drm_connector *connector)
{
enum drm_connector_status old_status;
WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
old_status = connector->status;
connector->status = connector->funcs->detect(connector, false);
DRM_DEBUG_KMS("[CONNECTOR:%d:%s] status updated from %d to %d\n",
connector->base.id,
drm_get_connector_name(connector),
old_status, connector->status);
return (old_status != connector->status);
}
/*
* Handle hotplug events outside the interrupt handler proper.
*/
#define I915_REENABLE_HOTPLUG_DELAY (2*60*1000)
static void i915_hotplug_work_func(struct work_struct *work)
{
drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
hotplug_work);
struct drm_device *dev = dev_priv->dev;
struct drm_mode_config *mode_config = &dev->mode_config;
struct intel_connector *intel_connector;
struct intel_encoder *intel_encoder;
struct drm_connector *connector;
unsigned long irqflags;
bool hpd_disabled = false;
bool changed = false;
u32 hpd_event_bits;
/* HPD irq before everything is fully set up. */
if (!dev_priv->enable_hotplug_processing)
return;
mutex_lock(&mode_config->mutex);
DRM_DEBUG_KMS("running encoder hotplug functions\n");
spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
hpd_event_bits = dev_priv->hpd_event_bits;
dev_priv->hpd_event_bits = 0;
list_for_each_entry(connector, &mode_config->connector_list, head) {
intel_connector = to_intel_connector(connector);
intel_encoder = intel_connector->encoder;
if (intel_encoder->hpd_pin > HPD_NONE &&
dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_MARK_DISABLED &&
connector->polled == DRM_CONNECTOR_POLL_HPD) {
DRM_INFO("HPD interrupt storm detected on connector %s: "
"switching from hotplug detection to polling\n",
drm_get_connector_name(connector));
dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark = HPD_DISABLED;
connector->polled = DRM_CONNECTOR_POLL_CONNECT
| DRM_CONNECTOR_POLL_DISCONNECT;
hpd_disabled = true;
}
if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
DRM_DEBUG_KMS("Connector %s (pin %i) received hotplug event.\n",
drm_get_connector_name(connector), intel_encoder->hpd_pin);
}
}
/* if there were no outputs to poll, poll was disabled,
* therefore make sure it's enabled when disabling HPD on
* some connectors */
if (hpd_disabled) {
drm_kms_helper_poll_enable(dev);
mod_timer(&dev_priv->hotplug_reenable_timer,
jiffies + msecs_to_jiffies(I915_REENABLE_HOTPLUG_DELAY));
}
spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
list_for_each_entry(connector, &mode_config->connector_list, head) {
intel_connector = to_intel_connector(connector);
intel_encoder = intel_connector->encoder;
if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
if (intel_encoder->hot_plug)
intel_encoder->hot_plug(intel_encoder);
if (intel_hpd_irq_event(dev, connector))
changed = true;
}
}
mutex_unlock(&mode_config->mutex);
if (changed)
drm_kms_helper_hotplug_event(dev);
}
static void ironlake_handle_rps_change(struct drm_device *dev)
{
drm_i915_private_t *dev_priv = dev->dev_private;
u32 busy_up, busy_down, max_avg, min_avg;
u8 new_delay;
unsigned long flags;
spin_lock_irqsave(&mchdev_lock, flags);
I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
new_delay = dev_priv->ips.cur_delay;
I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
busy_up = I915_READ(RCPREVBSYTUPAVG);
busy_down = I915_READ(RCPREVBSYTDNAVG);
max_avg = I915_READ(RCBMAXAVG);
min_avg = I915_READ(RCBMINAVG);
/* Handle RCS change request from hw */
if (busy_up > max_avg) {
if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
new_delay = dev_priv->ips.cur_delay - 1;
if (new_delay < dev_priv->ips.max_delay)
new_delay = dev_priv->ips.max_delay;
} else if (busy_down < min_avg) {
if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
new_delay = dev_priv->ips.cur_delay + 1;
if (new_delay > dev_priv->ips.min_delay)
new_delay = dev_priv->ips.min_delay;
}
if (ironlake_set_drps(dev, new_delay))
dev_priv->ips.cur_delay = new_delay;
spin_unlock_irqrestore(&mchdev_lock, flags);
return;
}
static void notify_ring(struct drm_device *dev,
struct intel_ring_buffer *ring)
{
struct drm_i915_private *dev_priv = dev->dev_private;
if (ring->obj == NULL)
return;
trace_i915_gem_request_complete(ring, ring->get_seqno(ring, false));
wake_up_all(&ring->irq_queue);
if (i915_enable_hangcheck) {
mod_timer(&dev_priv->gpu_error.hangcheck_timer,
round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
}
}
static void gen6_pm_rps_work(struct work_struct *work)
{
drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
rps.work);
u32 pm_iir, pm_imr;
u8 new_delay;
spin_lock_irq(&dev_priv->rps.lock);
pm_iir = dev_priv->rps.pm_iir;
dev_priv->rps.pm_iir = 0;
pm_imr = I915_READ(GEN6_PMIMR);
/* Make sure not to corrupt PMIMR state used by ringbuffer code */
I915_WRITE(GEN6_PMIMR, pm_imr & ~GEN6_PM_RPS_EVENTS);
spin_unlock_irq(&dev_priv->rps.lock);
if ((pm_iir & GEN6_PM_RPS_EVENTS) == 0)
return;
mutex_lock(&dev_priv->rps.hw_lock);
if (pm_iir & GEN6_PM_RP_UP_THRESHOLD)
new_delay = dev_priv->rps.cur_delay + 1;
else
new_delay = dev_priv->rps.cur_delay - 1;
/* sysfs frequency interfaces may have snuck in while servicing the
* interrupt
*/
if (!(new_delay > dev_priv->rps.max_delay ||
new_delay < dev_priv->rps.min_delay)) {
if (IS_VALLEYVIEW(dev_priv->dev))
valleyview_set_rps(dev_priv->dev, new_delay);
else
gen6_set_rps(dev_priv->dev, new_delay);
}
if (IS_VALLEYVIEW(dev_priv->dev)) {
/*
* On VLV, when we enter RC6 we may not be at the minimum
* voltage level, so arm a timer to check. It should only
* fire when there's activity or once after we've entered
* RC6, and then won't be re-armed until the next RPS interrupt.
*/
mod_delayed_work(dev_priv->wq, &dev_priv->rps.vlv_work,
msecs_to_jiffies(100));
}
mutex_unlock(&dev_priv->rps.hw_lock);
}
/**
* ivybridge_parity_work - Workqueue called when a parity error interrupt
* occurred.
* @work: workqueue struct
*
* Doesn't actually do anything except notify userspace. As a consequence of
* this event, userspace should try to remap the bad rows since statistically
* it is likely the same row is more likely to go bad again.
*/
static void ivybridge_parity_work(struct work_struct *work)
{
drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
l3_parity.error_work);
u32 error_status, row, bank, subbank;
char *parity_event[5];
uint32_t misccpctl;
unsigned long flags;
/* We must turn off DOP level clock gating to access the L3 registers.
* In order to prevent a get/put style interface, acquire struct mutex
* any time we access those registers.
*/
mutex_lock(&dev_priv->dev->struct_mutex);
misccpctl = I915_READ(GEN7_MISCCPCTL);
I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
POSTING_READ(GEN7_MISCCPCTL);
error_status = I915_READ(GEN7_L3CDERRST1);
row = GEN7_PARITY_ERROR_ROW(error_status);
bank = GEN7_PARITY_ERROR_BANK(error_status);
subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
I915_WRITE(GEN7_L3CDERRST1, GEN7_PARITY_ERROR_VALID |
GEN7_L3CDERRST1_ENABLE);
POSTING_READ(GEN7_L3CDERRST1);
I915_WRITE(GEN7_MISCCPCTL, misccpctl);
spin_lock_irqsave(&dev_priv->irq_lock, flags);
dev_priv->gt_irq_mask &= ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
mutex_unlock(&dev_priv->dev->struct_mutex);
parity_event[0] = "L3_PARITY_ERROR=1";
parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
parity_event[4] = NULL;
kobject_uevent_env(&dev_priv->dev->primary->kdev.kobj,
KOBJ_CHANGE, parity_event);
DRM_DEBUG("Parity error: Row = %d, Bank = %d, Sub bank = %d.\n",
row, bank, subbank);
kfree(parity_event[3]);
kfree(parity_event[2]);
kfree(parity_event[1]);
}
static void ivybridge_handle_parity_error(struct drm_device *dev)
{
drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
unsigned long flags;
if (!HAS_L3_GPU_CACHE(dev))
return;
spin_lock_irqsave(&dev_priv->irq_lock, flags);
dev_priv->gt_irq_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
}
static void snb_gt_irq_handler(struct drm_device *dev,
struct drm_i915_private *dev_priv,
u32 gt_iir)
{
if (gt_iir &
(GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
notify_ring(dev, &dev_priv->ring[RCS]);
if (gt_iir & GT_BSD_USER_INTERRUPT)
notify_ring(dev, &dev_priv->ring[VCS]);
if (gt_iir & GT_BLT_USER_INTERRUPT)
notify_ring(dev, &dev_priv->ring[BCS]);
if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
GT_BSD_CS_ERROR_INTERRUPT |
GT_RENDER_CS_MASTER_ERROR_INTERRUPT)) {
DRM_ERROR("GT error interrupt 0x%08x\n", gt_iir);
i915_handle_error(dev, false);
}
if (gt_iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
ivybridge_handle_parity_error(dev);
}
/* Legacy way of handling PM interrupts */
static void gen6_queue_rps_work(struct drm_i915_private *dev_priv,
u32 pm_iir)
{
unsigned long flags;
/*
* IIR bits should never already be set because IMR should
* prevent an interrupt from being shown in IIR. The warning
* displays a case where we've unsafely cleared
* dev_priv->rps.pm_iir. Although missing an interrupt of the same
* type is not a problem, it displays a problem in the logic.
*
* The mask bit in IMR is cleared by dev_priv->rps.work.
*/
spin_lock_irqsave(&dev_priv->rps.lock, flags);
dev_priv->rps.pm_iir |= pm_iir;
I915_WRITE(GEN6_PMIMR, dev_priv->rps.pm_iir);
POSTING_READ(GEN6_PMIMR);
spin_unlock_irqrestore(&dev_priv->rps.lock, flags);
queue_work(dev_priv->wq, &dev_priv->rps.work);
}
#define HPD_STORM_DETECT_PERIOD 1000
#define HPD_STORM_THRESHOLD 5
static inline bool hotplug_irq_storm_detect(struct drm_device *dev,
u32 hotplug_trigger,
const u32 *hpd)
{
drm_i915_private_t *dev_priv = dev->dev_private;
unsigned long irqflags;
int i;
bool ret = false;
spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
for (i = 1; i < HPD_NUM_PINS; i++) {
if (!(hpd[i] & hotplug_trigger) ||
dev_priv->hpd_stats[i].hpd_mark != HPD_ENABLED)
continue;
dev_priv->hpd_event_bits |= (1 << i);
if (!time_in_range(jiffies, dev_priv->hpd_stats[i].hpd_last_jiffies,
dev_priv->hpd_stats[i].hpd_last_jiffies
+ msecs_to_jiffies(HPD_STORM_DETECT_PERIOD))) {
dev_priv->hpd_stats[i].hpd_last_jiffies = jiffies;
dev_priv->hpd_stats[i].hpd_cnt = 0;
} else if (dev_priv->hpd_stats[i].hpd_cnt > HPD_STORM_THRESHOLD) {
dev_priv->hpd_stats[i].hpd_mark = HPD_MARK_DISABLED;
dev_priv->hpd_event_bits &= ~(1 << i);
DRM_DEBUG_KMS("HPD interrupt storm detected on PIN %d\n", i);
ret = true;
} else {
dev_priv->hpd_stats[i].hpd_cnt++;
}
}
spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
return ret;
}
static void gmbus_irq_handler(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = (drm_i915_private_t *) dev->dev_private;
wake_up_all(&dev_priv->gmbus_wait_queue);
}
static void dp_aux_irq_handler(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = (drm_i915_private_t *) dev->dev_private;
wake_up_all(&dev_priv->gmbus_wait_queue);
}
/* Unlike gen6_queue_rps_work() from which this function is originally derived,
* we must be able to deal with other PM interrupts. This is complicated because
* of the way in which we use the masks to defer the RPS work (which for
* posterity is necessary because of forcewake).
*/
static void hsw_pm_irq_handler(struct drm_i915_private *dev_priv,
u32 pm_iir)
{
unsigned long flags;
spin_lock_irqsave(&dev_priv->rps.lock, flags);
dev_priv->rps.pm_iir |= pm_iir & GEN6_PM_RPS_EVENTS;
if (dev_priv->rps.pm_iir) {
I915_WRITE(GEN6_PMIMR, dev_priv->rps.pm_iir);
/* never want to mask useful interrupts. (also posting read) */
WARN_ON(I915_READ_NOTRACE(GEN6_PMIMR) & ~GEN6_PM_RPS_EVENTS);
/* TODO: if queue_work is slow, move it out of the spinlock */
queue_work(dev_priv->wq, &dev_priv->rps.work);
}
spin_unlock_irqrestore(&dev_priv->rps.lock, flags);
if (pm_iir & ~GEN6_PM_RPS_EVENTS) {
if (pm_iir & PM_VEBOX_USER_INTERRUPT)
notify_ring(dev_priv->dev, &dev_priv->ring[VECS]);
if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT) {
DRM_ERROR("VEBOX CS error interrupt 0x%08x\n", pm_iir);
i915_handle_error(dev_priv->dev, false);
}
}
}
static irqreturn_t valleyview_irq_handler(int irq, void *arg)
{
struct drm_device *dev = (struct drm_device *) arg;
drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
u32 iir, gt_iir, pm_iir;
irqreturn_t ret = IRQ_NONE;
unsigned long irqflags;
int pipe;
u32 pipe_stats[I915_MAX_PIPES];
atomic_inc(&dev_priv->irq_received);
while (true) {
iir = I915_READ(VLV_IIR);
gt_iir = I915_READ(GTIIR);
pm_iir = I915_READ(GEN6_PMIIR);
if (gt_iir == 0 && pm_iir == 0 && iir == 0)
goto out;
ret = IRQ_HANDLED;
snb_gt_irq_handler(dev, dev_priv, gt_iir);
spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
for_each_pipe(pipe) {
int reg = PIPESTAT(pipe);
pipe_stats[pipe] = I915_READ(reg);
/*
* Clear the PIPE*STAT regs before the IIR
*/
if (pipe_stats[pipe] & 0x8000ffff) {
if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
DRM_DEBUG_DRIVER("pipe %c underrun\n",
pipe_name(pipe));
I915_WRITE(reg, pipe_stats[pipe]);
}
}
spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
for_each_pipe(pipe) {
if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
drm_handle_vblank(dev, pipe);
if (pipe_stats[pipe] & PLANE_FLIPDONE_INT_STATUS_VLV) {
intel_prepare_page_flip(dev, pipe);
intel_finish_page_flip(dev, pipe);
}
}
/* Consume port. Then clear IIR or we'll miss events */
if (iir & I915_DISPLAY_PORT_INTERRUPT) {
u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x\n",
hotplug_status);
if (hotplug_trigger) {
if (hotplug_irq_storm_detect(dev, hotplug_trigger, hpd_status_i915))
i915_hpd_irq_setup(dev);
queue_work(dev_priv->wq,
&dev_priv->hotplug_work);
}
I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
I915_READ(PORT_HOTPLUG_STAT);
}
if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
gmbus_irq_handler(dev);
if (pm_iir & GEN6_PM_RPS_EVENTS)
gen6_queue_rps_work(dev_priv, pm_iir);
I915_WRITE(GTIIR, gt_iir);
I915_WRITE(GEN6_PMIIR, pm_iir);
I915_WRITE(VLV_IIR, iir);
}
out:
return ret;
}
static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
{
drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
int pipe;
u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
if (hotplug_trigger) {
if (hotplug_irq_storm_detect(dev, hotplug_trigger, hpd_ibx))
ibx_hpd_irq_setup(dev);
queue_work(dev_priv->wq, &dev_priv->hotplug_work);
}
if (pch_iir & SDE_AUDIO_POWER_MASK) {
int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
SDE_AUDIO_POWER_SHIFT);
DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
port_name(port));
}
if (pch_iir & SDE_AUX_MASK)
dp_aux_irq_handler(dev);
if (pch_iir & SDE_GMBUS)
gmbus_irq_handler(dev);
if (pch_iir & SDE_AUDIO_HDCP_MASK)
DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
if (pch_iir & SDE_AUDIO_TRANS_MASK)
DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
if (pch_iir & SDE_POISON)
DRM_ERROR("PCH poison interrupt\n");
if (pch_iir & SDE_FDI_MASK)
for_each_pipe(pipe)
DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
pipe_name(pipe),
I915_READ(FDI_RX_IIR(pipe)));
if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
if (pch_iir & SDE_TRANSA_FIFO_UNDER)
if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A,
false))
DRM_DEBUG_DRIVER("PCH transcoder A FIFO underrun\n");
if (pch_iir & SDE_TRANSB_FIFO_UNDER)
if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B,
false))
DRM_DEBUG_DRIVER("PCH transcoder B FIFO underrun\n");
}
static void ivb_err_int_handler(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u32 err_int = I915_READ(GEN7_ERR_INT);
if (err_int & ERR_INT_POISON)
DRM_ERROR("Poison interrupt\n");
if (err_int & ERR_INT_FIFO_UNDERRUN_A)
if (intel_set_cpu_fifo_underrun_reporting(dev, PIPE_A, false))
DRM_DEBUG_DRIVER("Pipe A FIFO underrun\n");
if (err_int & ERR_INT_FIFO_UNDERRUN_B)
if (intel_set_cpu_fifo_underrun_reporting(dev, PIPE_B, false))
DRM_DEBUG_DRIVER("Pipe B FIFO underrun\n");
if (err_int & ERR_INT_FIFO_UNDERRUN_C)
if (intel_set_cpu_fifo_underrun_reporting(dev, PIPE_C, false))
DRM_DEBUG_DRIVER("Pipe C FIFO underrun\n");
I915_WRITE(GEN7_ERR_INT, err_int);
}
static void cpt_serr_int_handler(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u32 serr_int = I915_READ(SERR_INT);
if (serr_int & SERR_INT_POISON)
DRM_ERROR("PCH poison interrupt\n");
if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A,
false))
DRM_DEBUG_DRIVER("PCH transcoder A FIFO underrun\n");
if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B,
false))
DRM_DEBUG_DRIVER("PCH transcoder B FIFO underrun\n");
if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_C,
false))
DRM_DEBUG_DRIVER("PCH transcoder C FIFO underrun\n");
I915_WRITE(SERR_INT, serr_int);
}
static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
{
drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
int pipe;
u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
if (hotplug_trigger) {
if (hotplug_irq_storm_detect(dev, hotplug_trigger, hpd_cpt))
ibx_hpd_irq_setup(dev);
queue_work(dev_priv->wq, &dev_priv->hotplug_work);
}
if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
SDE_AUDIO_POWER_SHIFT_CPT);
DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
port_name(port));
}
if (pch_iir & SDE_AUX_MASK_CPT)
dp_aux_irq_handler(dev);
if (pch_iir & SDE_GMBUS_CPT)
gmbus_irq_handler(dev);
if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
if (pch_iir & SDE_FDI_MASK_CPT)
for_each_pipe(pipe)
DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
pipe_name(pipe),
I915_READ(FDI_RX_IIR(pipe)));
if (pch_iir & SDE_ERROR_CPT)
cpt_serr_int_handler(dev);
}
static irqreturn_t ivybridge_irq_handler(int irq, void *arg)
{
struct drm_device *dev = (struct drm_device *) arg;
drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
u32 de_iir, gt_iir, de_ier, pm_iir, sde_ier = 0;
irqreturn_t ret = IRQ_NONE;
int i;
atomic_inc(&dev_priv->irq_received);
/* We get interrupts on unclaimed registers, so check for this before we
* do any I915_{READ,WRITE}. */
if (IS_HASWELL(dev) &&
(I915_READ_NOTRACE(FPGA_DBG) & FPGA_DBG_RM_NOCLAIM)) {
DRM_ERROR("Unclaimed register before interrupt\n");
I915_WRITE_NOTRACE(FPGA_DBG, FPGA_DBG_RM_NOCLAIM);
}
/* disable master interrupt before clearing iir */
de_ier = I915_READ(DEIER);
I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
/* Disable south interrupts. We'll only write to SDEIIR once, so further
* interrupts will will be stored on its back queue, and then we'll be
* able to process them after we restore SDEIER (as soon as we restore
* it, we'll get an interrupt if SDEIIR still has something to process
* due to its back queue). */
if (!HAS_PCH_NOP(dev)) {
sde_ier = I915_READ(SDEIER);
I915_WRITE(SDEIER, 0);
POSTING_READ(SDEIER);
}
/* On Haswell, also mask ERR_INT because we don't want to risk
* generating "unclaimed register" interrupts from inside the interrupt
* handler. */
if (IS_HASWELL(dev))
ironlake_disable_display_irq(dev_priv, DE_ERR_INT_IVB);
gt_iir = I915_READ(GTIIR);
if (gt_iir) {
snb_gt_irq_handler(dev, dev_priv, gt_iir);
I915_WRITE(GTIIR, gt_iir);
ret = IRQ_HANDLED;
}
de_iir = I915_READ(DEIIR);
if (de_iir) {
if (de_iir & DE_ERR_INT_IVB)
ivb_err_int_handler(dev);
if (de_iir & DE_AUX_CHANNEL_A_IVB)
dp_aux_irq_handler(dev);
if (de_iir & DE_GSE_IVB)
intel_opregion_asle_intr(dev);
for (i = 0; i < 3; i++) {
if (de_iir & (DE_PIPEA_VBLANK_IVB << (5 * i)))
drm_handle_vblank(dev, i);
if (de_iir & (DE_PLANEA_FLIP_DONE_IVB << (5 * i))) {
intel_prepare_page_flip(dev, i);
intel_finish_page_flip_plane(dev, i);
}
}
/* check event from PCH */
if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
u32 pch_iir = I915_READ(SDEIIR);
cpt_irq_handler(dev, pch_iir);
/* clear PCH hotplug event before clear CPU irq */
I915_WRITE(SDEIIR, pch_iir);
}
I915_WRITE(DEIIR, de_iir);
ret = IRQ_HANDLED;
}
pm_iir = I915_READ(GEN6_PMIIR);
if (pm_iir) {
if (IS_HASWELL(dev))
hsw_pm_irq_handler(dev_priv, pm_iir);
else if (pm_iir & GEN6_PM_RPS_EVENTS)
gen6_queue_rps_work(dev_priv, pm_iir);
I915_WRITE(GEN6_PMIIR, pm_iir);
ret = IRQ_HANDLED;
}
if (IS_HASWELL(dev) && ivb_can_enable_err_int(dev))
ironlake_enable_display_irq(dev_priv, DE_ERR_INT_IVB);
I915_WRITE(DEIER, de_ier);
POSTING_READ(DEIER);
if (!HAS_PCH_NOP(dev)) {
I915_WRITE(SDEIER, sde_ier);
POSTING_READ(SDEIER);
}
return ret;
}
static void ilk_gt_irq_handler(struct drm_device *dev,
struct drm_i915_private *dev_priv,
u32 gt_iir)
{
if (gt_iir &
(GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
notify_ring(dev, &dev_priv->ring[RCS]);
if (gt_iir & ILK_BSD_USER_INTERRUPT)
notify_ring(dev, &dev_priv->ring[VCS]);
}
static irqreturn_t ironlake_irq_handler(int irq, void *arg)
{
struct drm_device *dev = (struct drm_device *) arg;
drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
int ret = IRQ_NONE;
u32 de_iir, gt_iir, de_ier, pm_iir, sde_ier;
atomic_inc(&dev_priv->irq_received);
/* disable master interrupt before clearing iir */
de_ier = I915_READ(DEIER);
I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
POSTING_READ(DEIER);
/* Disable south interrupts. We'll only write to SDEIIR once, so further
* interrupts will will be stored on its back queue, and then we'll be
* able to process them after we restore SDEIER (as soon as we restore
* it, we'll get an interrupt if SDEIIR still has something to process
* due to its back queue). */
sde_ier = I915_READ(SDEIER);
I915_WRITE(SDEIER, 0);
POSTING_READ(SDEIER);
de_iir = I915_READ(DEIIR);
gt_iir = I915_READ(GTIIR);
pm_iir = I915_READ(GEN6_PMIIR);
if (de_iir == 0 && gt_iir == 0 && (!IS_GEN6(dev) || pm_iir == 0))
goto done;
ret = IRQ_HANDLED;
if (IS_GEN5(dev))
ilk_gt_irq_handler(dev, dev_priv, gt_iir);
else
snb_gt_irq_handler(dev, dev_priv, gt_iir);
if (de_iir & DE_AUX_CHANNEL_A)
dp_aux_irq_handler(dev);
if (de_iir & DE_GSE)
intel_opregion_asle_intr(dev);
if (de_iir & DE_PIPEA_VBLANK)
drm_handle_vblank(dev, 0);
if (de_iir & DE_PIPEB_VBLANK)
drm_handle_vblank(dev, 1);
if (de_iir & DE_POISON)
DRM_ERROR("Poison interrupt\n");
if (de_iir & DE_PIPEA_FIFO_UNDERRUN)
if (intel_set_cpu_fifo_underrun_reporting(dev, PIPE_A, false))
DRM_DEBUG_DRIVER("Pipe A FIFO underrun\n");
if (de_iir & DE_PIPEB_FIFO_UNDERRUN)
if (intel_set_cpu_fifo_underrun_reporting(dev, PIPE_B, false))
DRM_DEBUG_DRIVER("Pipe B FIFO underrun\n");
if (de_iir & DE_PLANEA_FLIP_DONE) {
intel_prepare_page_flip(dev, 0);
intel_finish_page_flip_plane(dev, 0);
}
if (de_iir & DE_PLANEB_FLIP_DONE) {
intel_prepare_page_flip(dev, 1);
intel_finish_page_flip_plane(dev, 1);
}
/* check event from PCH */
if (de_iir & DE_PCH_EVENT) {
u32 pch_iir = I915_READ(SDEIIR);
if (HAS_PCH_CPT(dev))
cpt_irq_handler(dev, pch_iir);
else
ibx_irq_handler(dev, pch_iir);
/* should clear PCH hotplug event before clear CPU irq */
I915_WRITE(SDEIIR, pch_iir);
}
if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT)
ironlake_handle_rps_change(dev);
if (IS_GEN6(dev) && pm_iir & GEN6_PM_RPS_EVENTS)
gen6_queue_rps_work(dev_priv, pm_iir);
I915_WRITE(GTIIR, gt_iir);
I915_WRITE(DEIIR, de_iir);
I915_WRITE(GEN6_PMIIR, pm_iir);
done:
I915_WRITE(DEIER, de_ier);
POSTING_READ(DEIER);
I915_WRITE(SDEIER, sde_ier);
POSTING_READ(SDEIER);
return ret;
}
/**
* i915_error_work_func - do process context error handling work
* @work: work struct
*
* Fire an error uevent so userspace can see that a hang or error
* was detected.
*/
static void i915_error_work_func(struct work_struct *work)
{
struct i915_gpu_error *error = container_of(work, struct i915_gpu_error,
work);
drm_i915_private_t *dev_priv = container_of(error, drm_i915_private_t,
gpu_error);
struct drm_device *dev = dev_priv->dev;
struct intel_ring_buffer *ring;
char *error_event[] = { "ERROR=1", NULL };
char *reset_event[] = { "RESET=1", NULL };
char *reset_done_event[] = { "ERROR=0", NULL };
int i, ret;
kobject_uevent_env(&dev->primary->kdev.kobj, KOBJ_CHANGE, error_event);
/*
* Note that there's only one work item which does gpu resets, so we
* need not worry about concurrent gpu resets potentially incrementing
* error->reset_counter twice. We only need to take care of another
* racing irq/hangcheck declaring the gpu dead for a second time. A
* quick check for that is good enough: schedule_work ensures the
* correct ordering between hang detection and this work item, and since
* the reset in-progress bit is only ever set by code outside of this
* work we don't need to worry about any other races.
*/
if (i915_reset_in_progress(error) && !i915_terminally_wedged(error)) {
DRM_DEBUG_DRIVER("resetting chip\n");
kobject_uevent_env(&dev->primary->kdev.kobj, KOBJ_CHANGE,
reset_event);
ret = i915_reset(dev);
if (ret == 0) {
/*
* After all the gem state is reset, increment the reset
* counter and wake up everyone waiting for the reset to
* complete.
*
* Since unlock operations are a one-sided barrier only,
* we need to insert a barrier here to order any seqno
* updates before
* the counter increment.
*/
smp_mb__before_atomic_inc();
atomic_inc(&dev_priv->gpu_error.reset_counter);
kobject_uevent_env(&dev->primary->kdev.kobj,
KOBJ_CHANGE, reset_done_event);
} else {
atomic_set(&error->reset_counter, I915_WEDGED);
}
for_each_ring(ring, dev_priv, i)
wake_up_all(&ring->irq_queue);
intel_display_handle_reset(dev);
wake_up_all(&dev_priv->gpu_error.reset_queue);
}
}
/* NB: please notice the memset */
static void i915_get_extra_instdone(struct drm_device *dev,
uint32_t *instdone)
{
struct drm_i915_private *dev_priv = dev->dev_private;
memset(instdone, 0, sizeof(*instdone) * I915_NUM_INSTDONE_REG);
switch(INTEL_INFO(dev)->gen) {
case 2:
case 3:
instdone[0] = I915_READ(INSTDONE);
break;
case 4:
case 5:
case 6:
instdone[0] = I915_READ(INSTDONE_I965);
instdone[1] = I915_READ(INSTDONE1);
break;
default:
WARN_ONCE(1, "Unsupported platform\n");
case 7:
instdone[0] = I915_READ(GEN7_INSTDONE_1);
instdone[1] = I915_READ(GEN7_SC_INSTDONE);
instdone[2] = I915_READ(GEN7_SAMPLER_INSTDONE);
instdone[3] = I915_READ(GEN7_ROW_INSTDONE);
break;
}
}
#ifdef CONFIG_DEBUG_FS
static struct drm_i915_error_object *
i915_error_object_create_sized(struct drm_i915_private *dev_priv,
struct drm_i915_gem_object *src,
const int num_pages)
{
struct drm_i915_error_object *dst;
int i;
u32 reloc_offset;
if (src == NULL || src->pages == NULL)
return NULL;
dst = kmalloc(sizeof(*dst) + num_pages * sizeof(u32 *), GFP_ATOMIC);
if (dst == NULL)
return NULL;
reloc_offset = src->gtt_offset;
for (i = 0; i < num_pages; i++) {
unsigned long flags;
void *d;
d = kmalloc(PAGE_SIZE, GFP_ATOMIC);
if (d == NULL)
goto unwind;
local_irq_save(flags);
if (reloc_offset < dev_priv->gtt.mappable_end &&
src->has_global_gtt_mapping) {
void __iomem *s;
/* Simply ignore tiling or any overlapping fence.
* It's part of the error state, and this hopefully
* captures what the GPU read.
*/
s = io_mapping_map_atomic_wc(dev_priv->gtt.mappable,
reloc_offset);
memcpy_fromio(d, s, PAGE_SIZE);
io_mapping_unmap_atomic(s);
} else if (src->stolen) {
unsigned long offset;
offset = dev_priv->mm.stolen_base;
offset += src->stolen->start;
offset += i << PAGE_SHIFT;
memcpy_fromio(d, (void __iomem *) offset, PAGE_SIZE);
} else {
struct page *page;
void *s;
page = i915_gem_object_get_page(src, i);
drm_clflush_pages(&page, 1);
s = kmap_atomic(page);
memcpy(d, s, PAGE_SIZE);
kunmap_atomic(s);
drm_clflush_pages(&page, 1);
}
local_irq_restore(flags);
dst->pages[i] = d;
reloc_offset += PAGE_SIZE;
}
dst->page_count = num_pages;
dst->gtt_offset = src->gtt_offset;
return dst;
unwind:
while (i--)
kfree(dst->pages[i]);
kfree(dst);
return NULL;
}
#define i915_error_object_create(dev_priv, src) \
i915_error_object_create_sized((dev_priv), (src), \
(src)->base.size>>PAGE_SHIFT)
static void
i915_error_object_free(struct drm_i915_error_object *obj)
{
int page;
if (obj == NULL)
return;
for (page = 0; page < obj->page_count; page++)
kfree(obj->pages[page]);
kfree(obj);
}
void
i915_error_state_free(struct kref *error_ref)
{
struct drm_i915_error_state *error = container_of(error_ref,
typeof(*error), ref);
int i;
for (i = 0; i < ARRAY_SIZE(error->ring); i++) {
i915_error_object_free(error->ring[i].batchbuffer);
i915_error_object_free(error->ring[i].ringbuffer);
i915_error_object_free(error->ring[i].ctx);
kfree(error->ring[i].requests);
}
kfree(error->active_bo);
kfree(error->overlay);
kfree(error->display);
kfree(error);
}
static void capture_bo(struct drm_i915_error_buffer *err,
struct drm_i915_gem_object *obj)
{
err->size = obj->base.size;
err->name = obj->base.name;
err->rseqno = obj->last_read_seqno;
err->wseqno = obj->last_write_seqno;
err->gtt_offset = obj->gtt_offset;
err->read_domains = obj->base.read_domains;
err->write_domain = obj->base.write_domain;
err->fence_reg = obj->fence_reg;
err->pinned = 0;
if (obj->pin_count > 0)
err->pinned = 1;
if (obj->user_pin_count > 0)
err->pinned = -1;
err->tiling = obj->tiling_mode;
err->dirty = obj->dirty;
err->purgeable = obj->madv != I915_MADV_WILLNEED;
err->ring = obj->ring ? obj->ring->id : -1;
err->cache_level = obj->cache_level;
}
static u32 capture_active_bo(struct drm_i915_error_buffer *err,
int count, struct list_head *head)
{
struct drm_i915_gem_object *obj;
int i = 0;
list_for_each_entry(obj, head, mm_list) {
capture_bo(err++, obj);
if (++i == count)
break;
}
return i;
}
static u32 capture_pinned_bo(struct drm_i915_error_buffer *err,
int count, struct list_head *head)
{
struct drm_i915_gem_object *obj;
int i = 0;
list_for_each_entry(obj, head, global_list) {
if (obj->pin_count == 0)
continue;
capture_bo(err++, obj);
if (++i == count)
break;
}
return i;
}
static void i915_gem_record_fences(struct drm_device *dev,
struct drm_i915_error_state *error)
{
struct drm_i915_private *dev_priv = dev->dev_private;
int i;
/* Fences */
switch (INTEL_INFO(dev)->gen) {
case 7:
case 6:
for (i = 0; i < dev_priv->num_fence_regs; i++)
error->fence[i] = I915_READ64(FENCE_REG_SANDYBRIDGE_0 + (i * 8));
break;
case 5:
case 4:
for (i = 0; i < 16; i++)
error->fence[i] = I915_READ64(FENCE_REG_965_0 + (i * 8));
break;
case 3:
if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
for (i = 0; i < 8; i++)
error->fence[i+8] = I915_READ(FENCE_REG_945_8 + (i * 4));
case 2:
for (i = 0; i < 8; i++)
error->fence[i] = I915_READ(FENCE_REG_830_0 + (i * 4));
break;
default:
BUG();
}
}
static struct drm_i915_error_object *
i915_error_first_batchbuffer(struct drm_i915_private *dev_priv,
struct intel_ring_buffer *ring)
{
struct drm_i915_gem_object *obj;
u32 seqno;
if (!ring->get_seqno)
return NULL;
if (HAS_BROKEN_CS_TLB(dev_priv->dev)) {
u32 acthd = I915_READ(ACTHD);
if (WARN_ON(ring->id != RCS))
return NULL;
obj = ring->private;
if (acthd >= obj->gtt_offset &&
acthd < obj->gtt_offset + obj->base.size)
return i915_error_object_create(dev_priv, obj);
}
seqno = ring->get_seqno(ring, false);
list_for_each_entry(obj, &dev_priv->mm.active_list, mm_list) {
if (obj->ring != ring)
continue;
if (i915_seqno_passed(seqno, obj->last_read_seqno))
continue;
if ((obj->base.read_domains & I915_GEM_DOMAIN_COMMAND) == 0)
continue;
/* We need to copy these to an anonymous buffer as the simplest
* method to avoid being overwritten by userspace.
*/
return i915_error_object_create(dev_priv, obj);
}
return NULL;
}
static void i915_record_ring_state(struct drm_device *dev,
struct drm_i915_error_state *error,
struct intel_ring_buffer *ring)
{
struct drm_i915_private *dev_priv = dev->dev_private;
if (INTEL_INFO(dev)->gen >= 6) {
error->rc_psmi[ring->id] = I915_READ(ring->mmio_base + 0x50);
error->fault_reg[ring->id] = I915_READ(RING_FAULT_REG(ring));
error->semaphore_mboxes[ring->id][0]
= I915_READ(RING_SYNC_0(ring->mmio_base));
error->semaphore_mboxes[ring->id][1]
= I915_READ(RING_SYNC_1(ring->mmio_base));
error->semaphore_seqno[ring->id][0] = ring->sync_seqno[0];
error->semaphore_seqno[ring->id][1] = ring->sync_seqno[1];
}
if (INTEL_INFO(dev)->gen >= 4) {
error->faddr[ring->id] = I915_READ(RING_DMA_FADD(ring->mmio_base));
error->ipeir[ring->id] = I915_READ(RING_IPEIR(ring->mmio_base));
error->ipehr[ring->id] = I915_READ(RING_IPEHR(ring->mmio_base));
error->instdone[ring->id] = I915_READ(RING_INSTDONE(ring->mmio_base));
error->instps[ring->id] = I915_READ(RING_INSTPS(ring->mmio_base));
if (ring->id == RCS)
error->bbaddr = I915_READ64(BB_ADDR);
} else {
error->faddr[ring->id] = I915_READ(DMA_FADD_I8XX);
error->ipeir[ring->id] = I915_READ(IPEIR);
error->ipehr[ring->id] = I915_READ(IPEHR);
error->instdone[ring->id] = I915_READ(INSTDONE);
}
error->waiting[ring->id] = waitqueue_active(&ring->irq_queue);
error->instpm[ring->id] = I915_READ(RING_INSTPM(ring->mmio_base));
error->seqno[ring->id] = ring->get_seqno(ring, false);
error->acthd[ring->id] = intel_ring_get_active_head(ring);
error->head[ring->id] = I915_READ_HEAD(ring);
error->tail[ring->id] = I915_READ_TAIL(ring);
error->ctl[ring->id] = I915_READ_CTL(ring);
error->cpu_ring_head[ring->id] = ring->head;
error->cpu_ring_tail[ring->id] = ring->tail;
}
static void i915_gem_record_active_context(struct intel_ring_buffer *ring,
struct drm_i915_error_state *error,
struct drm_i915_error_ring *ering)
{
struct drm_i915_private *dev_priv = ring->dev->dev_private;
struct drm_i915_gem_object *obj;
/* Currently render ring is the only HW context user */
if (ring->id != RCS || !error->ccid)
return;
list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
if ((error->ccid & PAGE_MASK) == obj->gtt_offset) {
ering->ctx = i915_error_object_create_sized(dev_priv,
obj, 1);
}
}
}
static void i915_gem_record_rings(struct drm_device *dev,
struct drm_i915_error_state *error)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_ring_buffer *ring;
struct drm_i915_gem_request *request;
int i, count;
for_each_ring(ring, dev_priv, i) {
i915_record_ring_state(dev, error, ring);
error->ring[i].batchbuffer =
i915_error_first_batchbuffer(dev_priv, ring);
error->ring[i].ringbuffer =
i915_error_object_create(dev_priv, ring->obj);
i915_gem_record_active_context(ring, error, &error->ring[i]);
count = 0;
list_for_each_entry(request, &ring->request_list, list)
count++;
error->ring[i].num_requests = count;
error->ring[i].requests =
kmalloc(count*sizeof(struct drm_i915_error_request),
GFP_ATOMIC);
if (error->ring[i].requests == NULL) {
error->ring[i].num_requests = 0;
continue;
}
count = 0;
list_for_each_entry(request, &ring->request_list, list) {
struct drm_i915_error_request *erq;
erq = &error->ring[i].requests[count++];
erq->seqno = request->seqno;
erq->jiffies = request->emitted_jiffies;
erq->tail = request->tail;
}
}
}
/**
* i915_capture_error_state - capture an error record for later analysis
* @dev: drm device
*
* Should be called when an error is detected (either a hang or an error
* interrupt) to capture error state from the time of the error. Fills
* out a structure which becomes available in debugfs for user level tools
* to pick up.
*/
static void i915_capture_error_state(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_i915_gem_object *obj;
struct drm_i915_error_state *error;
unsigned long flags;
int i, pipe;
spin_lock_irqsave(&dev_priv->gpu_error.lock, flags);
error = dev_priv->gpu_error.first_error;
spin_unlock_irqrestore(&dev_priv->gpu_error.lock, flags);
if (error)
return;
/* Account for pipe specific data like PIPE*STAT */
error = kzalloc(sizeof(*error), GFP_ATOMIC);
if (!error) {
DRM_DEBUG_DRIVER("out of memory, not capturing error state\n");
return;
}
DRM_INFO("capturing error event; look for more information in "
"/sys/kernel/debug/dri/%d/i915_error_state\n",
dev->primary->index);
kref_init(&error->ref);
error->eir = I915_READ(EIR);
error->pgtbl_er = I915_READ(PGTBL_ER);
if (HAS_HW_CONTEXTS(dev))
error->ccid = I915_READ(CCID);
if (HAS_PCH_SPLIT(dev))
error->ier = I915_READ(DEIER) | I915_READ(GTIER);
else if (IS_VALLEYVIEW(dev))
error->ier = I915_READ(GTIER) | I915_READ(VLV_IER);
else if (IS_GEN2(dev))
error->ier = I915_READ16(IER);
else
error->ier = I915_READ(IER);
if (INTEL_INFO(dev)->gen >= 6)
error->derrmr = I915_READ(DERRMR);
if (IS_VALLEYVIEW(dev))
error->forcewake = I915_READ(FORCEWAKE_VLV);
else if (INTEL_INFO(dev)->gen >= 7)
error->forcewake = I915_READ(FORCEWAKE_MT);
else if (INTEL_INFO(dev)->gen == 6)
error->forcewake = I915_READ(FORCEWAKE);
if (!HAS_PCH_SPLIT(dev))
for_each_pipe(pipe)
error->pipestat[pipe] = I915_READ(PIPESTAT(pipe));
if (INTEL_INFO(dev)->gen >= 6) {
error->error = I915_READ(ERROR_GEN6);
error->done_reg = I915_READ(DONE_REG);
}
if (INTEL_INFO(dev)->gen == 7)
error->err_int = I915_READ(GEN7_ERR_INT);
i915_get_extra_instdone(dev, error->extra_instdone);
i915_gem_record_fences(dev, error);
i915_gem_record_rings(dev, error);
/* Record buffers on the active and pinned lists. */
error->active_bo = NULL;
error->pinned_bo = NULL;
i = 0;
list_for_each_entry(obj, &dev_priv->mm.active_list, mm_list)
i++;
error->active_bo_count = i;
list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
if (obj->pin_count)
i++;
error->pinned_bo_count = i - error->active_bo_count;
error->active_bo = NULL;
error->pinned_bo = NULL;
if (i) {
error->active_bo = kmalloc(sizeof(*error->active_bo)*i,
GFP_ATOMIC);
if (error->active_bo)
error->pinned_bo =
error->active_bo + error->active_bo_count;
}
if (error->active_bo)
error->active_bo_count =
capture_active_bo(error->active_bo,
error->active_bo_count,
&dev_priv->mm.active_list);
if (error->pinned_bo)
error->pinned_bo_count =
capture_pinned_bo(error->pinned_bo,
error->pinned_bo_count,
&dev_priv->mm.bound_list);
do_gettimeofday(&error->time);
error->overlay = intel_overlay_capture_error_state(dev);
error->display = intel_display_capture_error_state(dev);
spin_lock_irqsave(&dev_priv->gpu_error.lock, flags);
if (dev_priv->gpu_error.first_error == NULL) {
dev_priv->gpu_error.first_error = error;
error = NULL;
}
spin_unlock_irqrestore(&dev_priv->gpu_error.lock, flags);
if (error)
i915_error_state_free(&error->ref);
}
void i915_destroy_error_state(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_i915_error_state *error;
unsigned long flags;
spin_lock_irqsave(&dev_priv->gpu_error.lock, flags);
error = dev_priv->gpu_error.first_error;
dev_priv->gpu_error.first_error = NULL;
spin_unlock_irqrestore(&dev_priv->gpu_error.lock, flags);
if (error)
kref_put(&error->ref, i915_error_state_free);
}
#else
#define i915_capture_error_state(x)
#endif
static void i915_report_and_clear_eir(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t instdone[I915_NUM_INSTDONE_REG];
u32 eir = I915_READ(EIR);
int pipe, i;
if (!eir)
return;
pr_err("render error detected, EIR: 0x%08x\n", eir);
i915_get_extra_instdone(dev, instdone);
if (IS_G4X(dev)) {
if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
u32 ipeir = I915_READ(IPEIR_I965);
pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
for (i = 0; i < ARRAY_SIZE(instdone); i++)
pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
I915_WRITE(IPEIR_I965, ipeir);
POSTING_READ(IPEIR_I965);
}
if (eir & GM45_ERROR_PAGE_TABLE) {
u32 pgtbl_err = I915_READ(PGTBL_ER);
pr_err("page table error\n");
pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
I915_WRITE(PGTBL_ER, pgtbl_err);
POSTING_READ(PGTBL_ER);
}
}
if (!IS_GEN2(dev)) {
if (eir & I915_ERROR_PAGE_TABLE) {
u32 pgtbl_err = I915_READ(PGTBL_ER);
pr_err("page table error\n");
pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
I915_WRITE(PGTBL_ER, pgtbl_err);
POSTING_READ(PGTBL_ER);
}
}
if (eir & I915_ERROR_MEMORY_REFRESH) {
pr_err("memory refresh error:\n");
for_each_pipe(pipe)
pr_err("pipe %c stat: 0x%08x\n",
pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
/* pipestat has already been acked */
}
if (eir & I915_ERROR_INSTRUCTION) {
pr_err("instruction error\n");
pr_err(" INSTPM: 0x%08x\n", I915_READ(INSTPM));
for (i = 0; i < ARRAY_SIZE(instdone); i++)
pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
if (INTEL_INFO(dev)->gen < 4) {
u32 ipeir = I915_READ(IPEIR);
pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR));
pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR));
pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD));
I915_WRITE(IPEIR, ipeir);
POSTING_READ(IPEIR);
} else {
u32 ipeir = I915_READ(IPEIR_I965);
pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
I915_WRITE(IPEIR_I965, ipeir);
POSTING_READ(IPEIR_I965);
}
}
I915_WRITE(EIR, eir);
POSTING_READ(EIR);
eir = I915_READ(EIR);
if (eir) {
/*
* some errors might have become stuck,
* mask them.
*/
DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
I915_WRITE(EMR, I915_READ(EMR) | eir);
I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
}
}
/**
* i915_handle_error - handle an error interrupt
* @dev: drm device
*
* Do some basic checking of regsiter state at error interrupt time and
* dump it to the syslog. Also call i915_capture_error_state() to make
* sure we get a record and make it available in debugfs. Fire a uevent
* so userspace knows something bad happened (should trigger collection
* of a ring dump etc.).
*/
void i915_handle_error(struct drm_device *dev, bool wedged)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_ring_buffer *ring;
int i;
i915_capture_error_state(dev);
i915_report_and_clear_eir(dev);
if (wedged) {
atomic_set_mask(I915_RESET_IN_PROGRESS_FLAG,
&dev_priv->gpu_error.reset_counter);
/*
* Wakeup waiting processes so that the reset work item
* doesn't deadlock trying to grab various locks.
*/
for_each_ring(ring, dev_priv, i)
wake_up_all(&ring->irq_queue);
}
queue_work(dev_priv->wq, &dev_priv->gpu_error.work);
}
static void __always_unused i915_pageflip_stall_check(struct drm_device *dev, int pipe)
{
drm_i915_private_t *dev_priv = dev->dev_private;
struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct drm_i915_gem_object *obj;
struct intel_unpin_work *work;
unsigned long flags;
bool stall_detected;
/* Ignore early vblank irqs */
if (intel_crtc == NULL)
return;
spin_lock_irqsave(&dev->event_lock, flags);
work = intel_crtc->unpin_work;
if (work == NULL ||
atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE ||
!work->enable_stall_check) {
/* Either the pending flip IRQ arrived, or we're too early. Don't check */
spin_unlock_irqrestore(&dev->event_lock, flags);
return;
}
/* Potential stall - if we see that the flip has happened, assume a missed interrupt */
obj = work->pending_flip_obj;
if (INTEL_INFO(dev)->gen >= 4) {
int dspsurf = DSPSURF(intel_crtc->plane);
stall_detected = I915_HI_DISPBASE(I915_READ(dspsurf)) ==
obj->gtt_offset;
} else {
int dspaddr = DSPADDR(intel_crtc->plane);
stall_detected = I915_READ(dspaddr) == (obj->gtt_offset +
crtc->y * crtc->fb->pitches[0] +
crtc->x * crtc->fb->bits_per_pixel/8);
}
spin_unlock_irqrestore(&dev->event_lock, flags);
if (stall_detected) {
DRM_DEBUG_DRIVER("Pageflip stall detected\n");
intel_prepare_page_flip(dev, intel_crtc->plane);
}
}
/* Called from drm generic code, passed 'crtc' which
* we use as a pipe index
*/
static int i915_enable_vblank(struct drm_device *dev, int pipe)
{
drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
unsigned long irqflags;
if (!i915_pipe_enabled(dev, pipe))
return -EINVAL;
spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
if (INTEL_INFO(dev)->gen >= 4)
i915_enable_pipestat(dev_priv, pipe,
PIPE_START_VBLANK_INTERRUPT_ENABLE);
else
i915_enable_pipestat(dev_priv, pipe,
PIPE_VBLANK_INTERRUPT_ENABLE);
/* maintain vblank delivery even in deep C-states */
if (dev_priv->info->gen == 3)
I915_WRITE(INSTPM, _MASKED_BIT_DISABLE(INSTPM_AGPBUSY_DIS));
spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
return 0;
}
static int ironlake_enable_vblank(struct drm_device *dev, int pipe)
{
drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
unsigned long irqflags;
if (!i915_pipe_enabled(dev, pipe))
return -EINVAL;
spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
ironlake_enable_display_irq(dev_priv, (pipe == 0) ?
DE_PIPEA_VBLANK : DE_PIPEB_VBLANK);
spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
return 0;
}
static int ivybridge_enable_vblank(struct drm_device *dev, int pipe)
{
drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
unsigned long irqflags;
if (!i915_pipe_enabled(dev, pipe))
return -EINVAL;
spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
ironlake_enable_display_irq(dev_priv,
DE_PIPEA_VBLANK_IVB << (5 * pipe));
spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
return 0;
}
static int valleyview_enable_vblank(struct drm_device *dev, int pipe)
{
drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
unsigned long irqflags;
u32 imr;
if (!i915_pipe_enabled(dev, pipe))
return -EINVAL;
spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
imr = I915_READ(VLV_IMR);
if (pipe == 0)
imr &= ~I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT;
else
imr &= ~I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT;
I915_WRITE(VLV_IMR, imr);
i915_enable_pipestat(dev_priv, pipe,
PIPE_START_VBLANK_INTERRUPT_ENABLE);
spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
return 0;
}
/* Called from drm generic code, passed 'crtc' which
* we use as a pipe index
*/
static void i915_disable_vblank(struct drm_device *dev, int pipe)
{
drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
unsigned long irqflags;
spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
if (dev_priv->info->gen == 3)
I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_DIS));
i915_disable_pipestat(dev_priv, pipe,
PIPE_VBLANK_INTERRUPT_ENABLE |
PIPE_START_VBLANK_INTERRUPT_ENABLE);
spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
}
static void ironlake_disable_vblank(struct drm_device *dev, int pipe)
{
drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
unsigned long irqflags;
spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
ironlake_disable_display_irq(dev_priv, (pipe == 0) ?
DE_PIPEA_VBLANK : DE_PIPEB_VBLANK);
spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
}
static void ivybridge_disable_vblank(struct drm_device *dev, int pipe)
{
drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
unsigned long irqflags;
spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
ironlake_disable_display_irq(dev_priv,
DE_PIPEA_VBLANK_IVB << (pipe * 5));
spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
}
static void valleyview_disable_vblank(struct drm_device *dev, int pipe)
{
drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
unsigned long irqflags;
u32 imr;
spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
i915_disable_pipestat(dev_priv, pipe,
PIPE_START_VBLANK_INTERRUPT_ENABLE);
imr = I915_READ(VLV_IMR);
if (pipe == 0)
imr |= I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT;
else
imr |= I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT;
I915_WRITE(VLV_IMR, imr);
spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
}
static u32
ring_last_seqno(struct intel_ring_buffer *ring)
{
return list_entry(ring->request_list.prev,
struct drm_i915_gem_request, list)->seqno;
}
static bool i915_hangcheck_ring_idle(struct intel_ring_buffer *ring,
u32 ring_seqno, bool *err)
{
if (list_empty(&ring->request_list) ||
i915_seqno_passed(ring_seqno, ring_last_seqno(ring))) {
/* Issue a wake-up to catch stuck h/w. */
if (waitqueue_active(&ring->irq_queue)) {
DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
ring->name);
wake_up_all(&ring->irq_queue);
*err = true;
}
return true;
}
return false;
}
static bool semaphore_passed(struct intel_ring_buffer *ring)
{
struct drm_i915_private *dev_priv = ring->dev->dev_private;
u32 acthd = intel_ring_get_active_head(ring) & HEAD_ADDR;
struct intel_ring_buffer *signaller;
u32 cmd, ipehr, acthd_min;
ipehr = I915_READ(RING_IPEHR(ring->mmio_base));
if ((ipehr & ~(0x3 << 16)) !=
(MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE | MI_SEMAPHORE_REGISTER))
return false;
/* ACTHD is likely pointing to the dword after the actual command,
* so scan backwards until we find the MBOX.
*/
acthd_min = max((int)acthd - 3 * 4, 0);
do {
cmd = ioread32(ring->virtual_start + acthd);
if (cmd == ipehr)
break;
acthd -= 4;
if (acthd < acthd_min)
return false;
} while (1);
signaller = &dev_priv->ring[(ring->id + (((ipehr >> 17) & 1) + 1)) % 3];
return i915_seqno_passed(signaller->get_seqno(signaller, false),
ioread32(ring->virtual_start+acthd+4)+1);
}
static bool kick_ring(struct intel_ring_buffer *ring)
{
struct drm_device *dev = ring->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
u32 tmp = I915_READ_CTL(ring);
if (tmp & RING_WAIT) {
DRM_ERROR("Kicking stuck wait on %s\n",
ring->name);
I915_WRITE_CTL(ring, tmp);
return true;
}
if (INTEL_INFO(dev)->gen >= 6 &&
tmp & RING_WAIT_SEMAPHORE &&
semaphore_passed(ring)) {
DRM_ERROR("Kicking stuck semaphore on %s\n",
ring->name);
I915_WRITE_CTL(ring, tmp);
return true;
}
return false;
}
static bool i915_hangcheck_ring_hung(struct intel_ring_buffer *ring)
{
if (IS_GEN2(ring->dev))
return false;
/* Is the chip hanging on a WAIT_FOR_EVENT?
* If so we can simply poke the RB_WAIT bit
* and break the hang. This should work on
* all but the second generation chipsets.
*/
return !kick_ring(ring);
}
/**
* This is called when the chip hasn't reported back with completed
* batchbuffers in a long time. We keep track per ring seqno progress and
* if there are no progress, hangcheck score for that ring is increased.
* Further, acthd is inspected to see if the ring is stuck. On stuck case
* we kick the ring. If we see no progress on three subsequent calls
* we assume chip is wedged and try to fix it by resetting the chip.
*/
void i915_hangcheck_elapsed(unsigned long data)
{
struct drm_device *dev = (struct drm_device *)data;
drm_i915_private_t *dev_priv = dev->dev_private;
struct intel_ring_buffer *ring;
int i;
int busy_count = 0, rings_hung = 0;
bool stuck[I915_NUM_RINGS];
if (!i915_enable_hangcheck)
return;
for_each_ring(ring, dev_priv, i) {
u32 seqno, acthd;
bool idle, err = false;
seqno = ring->get_seqno(ring, false);
acthd = intel_ring_get_active_head(ring);
idle = i915_hangcheck_ring_idle(ring, seqno, &err);
stuck[i] = ring->hangcheck.acthd == acthd;
if (idle) {
if (err)
ring->hangcheck.score += 2;
else
ring->hangcheck.score = 0;
} else {
busy_count++;
if (ring->hangcheck.seqno == seqno) {
ring->hangcheck.score++;
/* Kick ring if stuck*/
if (stuck[i])
i915_hangcheck_ring_hung(ring);
} else {
ring->hangcheck.score = 0;
}
}
ring->hangcheck.seqno = seqno;
ring->hangcheck.acthd = acthd;
}
for_each_ring(ring, dev_priv, i) {
if (ring->hangcheck.score > 2) {
rings_hung++;
DRM_ERROR("%s: %s on %s 0x%x\n", ring->name,
stuck[i] ? "stuck" : "no progress",
stuck[i] ? "addr" : "seqno",
stuck[i] ? ring->hangcheck.acthd & HEAD_ADDR :
ring->hangcheck.seqno);
}
}
if (rings_hung)
return i915_handle_error(dev, true);
if (busy_count)
/* Reset timer case chip hangs without another request
* being added */
mod_timer(&dev_priv->gpu_error.hangcheck_timer,
round_jiffies_up(jiffies +
DRM_I915_HANGCHECK_JIFFIES));
}
/* drm_dma.h hooks
*/
static void ironlake_irq_preinstall(struct drm_device *dev)
{
drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
atomic_set(&dev_priv->irq_received, 0);
I915_WRITE(HWSTAM, 0xeffe);
/* XXX hotplug from PCH */
I915_WRITE(DEIMR, 0xffffffff);
I915_WRITE(DEIER, 0x0);
POSTING_READ(DEIER);
/* and GT */
I915_WRITE(GTIMR, 0xffffffff);
I915_WRITE(GTIER, 0x0);
POSTING_READ(GTIER);
/* south display irq */
I915_WRITE(SDEIMR, 0xffffffff);
/*
* SDEIER is also touched by the interrupt handler to work around missed
* PCH interrupts. Hence we can't update it after the interrupt handler
* is enabled - instead we unconditionally enable all PCH interrupt
* sources here, but then only unmask them as needed with SDEIMR.
*/
I915_WRITE(SDEIER, 0xffffffff);
POSTING_READ(SDEIER);
}
static void ivybridge_irq_preinstall(struct drm_device *dev)
{
drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
atomic_set(&dev_priv->irq_received, 0);
I915_WRITE(HWSTAM, 0xeffe);
/* XXX hotplug from PCH */
I915_WRITE(DEIMR, 0xffffffff);
I915_WRITE(DEIER, 0x0);
POSTING_READ(DEIER);
/* and GT */
I915_WRITE(GTIMR, 0xffffffff);
I915_WRITE(GTIER, 0x0);
POSTING_READ(GTIER);
/* Power management */
I915_WRITE(GEN6_PMIMR, 0xffffffff);
I915_WRITE(GEN6_PMIER, 0x0);
POSTING_READ(GEN6_PMIER);
if (HAS_PCH_NOP(dev))
return;
/* south display irq */
I915_WRITE(SDEIMR, 0xffffffff);
/*
* SDEIER is also touched by the interrupt handler to work around missed
* PCH interrupts. Hence we can't update it after the interrupt handler
* is enabled - instead we unconditionally enable all PCH interrupt
* sources here, but then only unmask them as needed with SDEIMR.
*/
I915_WRITE(SDEIER, 0xffffffff);
POSTING_READ(SDEIER);
}
static void valleyview_irq_preinstall(struct drm_device *dev)
{
drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
int pipe;
atomic_set(&dev_priv->irq_received, 0);
/* VLV magic */
I915_WRITE(VLV_IMR, 0);
I915_WRITE(RING_IMR(RENDER_RING_BASE), 0);
I915_WRITE(RING_IMR(GEN6_BSD_RING_BASE), 0);
I915_WRITE(RING_IMR(BLT_RING_BASE), 0);
/* and GT */
I915_WRITE(GTIIR, I915_READ(GTIIR));
I915_WRITE(GTIIR, I915_READ(GTIIR));
I915_WRITE(GTIMR, 0xffffffff);
I915_WRITE(GTIER, 0x0);
POSTING_READ(GTIER);
I915_WRITE(DPINVGTT, 0xff);
I915_WRITE(PORT_HOTPLUG_EN, 0);
I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
for_each_pipe(pipe)
I915_WRITE(PIPESTAT(pipe), 0xffff);
I915_WRITE(VLV_IIR, 0xffffffff);
I915_WRITE(VLV_IMR, 0xffffffff);
I915_WRITE(VLV_IER, 0x0);
POSTING_READ(VLV_IER);
}
static void ibx_hpd_irq_setup(struct drm_device *dev)
{
drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
struct drm_mode_config *mode_config = &dev->mode_config;
struct intel_encoder *intel_encoder;
u32 mask = ~I915_READ(SDEIMR);
u32 hotplug;
if (HAS_PCH_IBX(dev)) {
mask &= ~SDE_HOTPLUG_MASK;
list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
mask |= hpd_ibx[intel_encoder->hpd_pin];
} else {
mask &= ~SDE_HOTPLUG_MASK_CPT;
list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
mask |= hpd_cpt[intel_encoder->hpd_pin];
}
I915_WRITE(SDEIMR, ~mask);
/*
* Enable digital hotplug on the PCH, and configure the DP short pulse
* duration to 2ms (which is the minimum in the Display Port spec)
*
* This register is the same on all known PCH chips.
*/
hotplug = I915_READ(PCH_PORT_HOTPLUG);
hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
}
static void ibx_irq_postinstall(struct drm_device *dev)
{
drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
u32 mask;
if (HAS_PCH_NOP(dev))
return;
if (HAS_PCH_IBX(dev)) {
mask = SDE_GMBUS | SDE_AUX_MASK | SDE_TRANSB_FIFO_UNDER |
SDE_TRANSA_FIFO_UNDER | SDE_POISON;
} else {
mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT | SDE_ERROR_CPT;
I915_WRITE(SERR_INT, I915_READ(SERR_INT));
}
I915_WRITE(SDEIIR, I915_READ(SDEIIR));
I915_WRITE(SDEIMR, ~mask);
}
static int ironlake_irq_postinstall(struct drm_device *dev)
{
drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
/* enable kind of interrupts always enabled */
u32 display_mask = DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
DE_AUX_CHANNEL_A | DE_PIPEB_FIFO_UNDERRUN |
DE_PIPEA_FIFO_UNDERRUN | DE_POISON;
u32 gt_irqs;
dev_priv->irq_mask = ~display_mask;
/* should always can generate irq */
I915_WRITE(DEIIR, I915_READ(DEIIR));
I915_WRITE(DEIMR, dev_priv->irq_mask);
I915_WRITE(DEIER, display_mask | DE_PIPEA_VBLANK | DE_PIPEB_VBLANK);
POSTING_READ(DEIER);
dev_priv->gt_irq_mask = ~0;
I915_WRITE(GTIIR, I915_READ(GTIIR));
I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
gt_irqs = GT_RENDER_USER_INTERRUPT;
if (IS_GEN6(dev))
gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
else
gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
ILK_BSD_USER_INTERRUPT;
I915_WRITE(GTIER, gt_irqs);
POSTING_READ(GTIER);
ibx_irq_postinstall(dev);
if (IS_IRONLAKE_M(dev)) {
/* Clear & enable PCU event interrupts */
I915_WRITE(DEIIR, DE_PCU_EVENT);
I915_WRITE(DEIER, I915_READ(DEIER) | DE_PCU_EVENT);
ironlake_enable_display_irq(dev_priv, DE_PCU_EVENT);
}
return 0;
}
static int ivybridge_irq_postinstall(struct drm_device *dev)
{
drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
/* enable kind of interrupts always enabled */
u32 display_mask =
DE_MASTER_IRQ_CONTROL | DE_GSE_IVB | DE_PCH_EVENT_IVB |
DE_PLANEC_FLIP_DONE_IVB |
DE_PLANEB_FLIP_DONE_IVB |
DE_PLANEA_FLIP_DONE_IVB |
DE_AUX_CHANNEL_A_IVB |
DE_ERR_INT_IVB;
u32 pm_irqs = GEN6_PM_RPS_EVENTS;
u32 gt_irqs;
dev_priv->irq_mask = ~display_mask;
/* should always can generate irq */
I915_WRITE(GEN7_ERR_INT, I915_READ(GEN7_ERR_INT));
I915_WRITE(DEIIR, I915_READ(DEIIR));
I915_WRITE(DEIMR, dev_priv->irq_mask);
I915_WRITE(DEIER,
display_mask |
DE_PIPEC_VBLANK_IVB |
DE_PIPEB_VBLANK_IVB |
DE_PIPEA_VBLANK_IVB);
POSTING_READ(DEIER);
dev_priv->gt_irq_mask = ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
I915_WRITE(GTIIR, I915_READ(GTIIR));
I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
gt_irqs = GT_RENDER_USER_INTERRUPT | GT_BSD_USER_INTERRUPT |
GT_BLT_USER_INTERRUPT | GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
I915_WRITE(GTIER, gt_irqs);
POSTING_READ(GTIER);
I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
if (HAS_VEBOX(dev))
pm_irqs |= PM_VEBOX_USER_INTERRUPT |
PM_VEBOX_CS_ERROR_INTERRUPT;
/* Our enable/disable rps functions may touch these registers so
* make sure to set a known state for only the non-RPS bits.
* The RMW is extra paranoia since this should be called after being set
* to a known state in preinstall.
* */
I915_WRITE(GEN6_PMIMR,
(I915_READ(GEN6_PMIMR) | ~GEN6_PM_RPS_EVENTS) & ~pm_irqs);
I915_WRITE(GEN6_PMIER,
(I915_READ(GEN6_PMIER) & GEN6_PM_RPS_EVENTS) | pm_irqs);
POSTING_READ(GEN6_PMIER);
ibx_irq_postinstall(dev);
return 0;
}
static int valleyview_irq_postinstall(struct drm_device *dev)
{
drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
u32 gt_irqs;
u32 enable_mask;
u32 pipestat_enable = PLANE_FLIP_DONE_INT_EN_VLV;
enable_mask = I915_DISPLAY_PORT_INTERRUPT;
enable_mask |= I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT |
I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT;
/*
*Leave vblank interrupts masked initially. enable/disable will
* toggle them based on usage.
*/
dev_priv->irq_mask = (~enable_mask) |
I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT |
I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT;
I915_WRITE(PORT_HOTPLUG_EN, 0);
POSTING_READ(PORT_HOTPLUG_EN);
I915_WRITE(VLV_IMR, dev_priv->irq_mask);
I915_WRITE(VLV_IER, enable_mask);
I915_WRITE(VLV_IIR, 0xffffffff);
I915_WRITE(PIPESTAT(0), 0xffff);
I915_WRITE(PIPESTAT(1), 0xffff);
POSTING_READ(VLV_IER);
i915_enable_pipestat(dev_priv, 0, pipestat_enable);
i915_enable_pipestat(dev_priv, 0, PIPE_GMBUS_EVENT_ENABLE);
i915_enable_pipestat(dev_priv, 1, pipestat_enable);
I915_WRITE(VLV_IIR, 0xffffffff);
I915_WRITE(VLV_IIR, 0xffffffff);
I915_WRITE(GTIIR, I915_READ(GTIIR));
I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
gt_irqs = GT_RENDER_USER_INTERRUPT | GT_BSD_USER_INTERRUPT |
GT_BLT_USER_INTERRUPT;
I915_WRITE(GTIER, gt_irqs);
POSTING_READ(GTIER);
/* ack & enable invalid PTE error interrupts */
#if 0 /* FIXME: add support to irq handler for checking these bits */
I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
I915_WRITE(DPINVGTT, DPINVGTT_EN_MASK);
#endif
I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
return 0;
}
static void valleyview_irq_uninstall(struct drm_device *dev)
{
drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
int pipe;
if (!dev_priv)
return;
del_timer_sync(&dev_priv->hotplug_reenable_timer);
for_each_pipe(pipe)
I915_WRITE(PIPESTAT(pipe), 0xffff);
I915_WRITE(HWSTAM, 0xffffffff);
I915_WRITE(PORT_HOTPLUG_EN, 0);
I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
for_each_pipe(pipe)
I915_WRITE(PIPESTAT(pipe), 0xffff);
I915_WRITE(VLV_IIR, 0xffffffff);
I915_WRITE(VLV_IMR, 0xffffffff);
I915_WRITE(VLV_IER, 0x0);
POSTING_READ(VLV_IER);
}
static void ironlake_irq_uninstall(struct drm_device *dev)
{
drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
if (!dev_priv)
return;
del_timer_sync(&dev_priv->hotplug_reenable_timer);
I915_WRITE(HWSTAM, 0xffffffff);
I915_WRITE(DEIMR, 0xffffffff);
I915_WRITE(DEIER, 0x0);
I915_WRITE(DEIIR, I915_READ(DEIIR));
if (IS_GEN7(dev))
I915_WRITE(GEN7_ERR_INT, I915_READ(GEN7_ERR_INT));
I915_WRITE(GTIMR, 0xffffffff);
I915_WRITE(GTIER, 0x0);
I915_WRITE(GTIIR, I915_READ(GTIIR));
if (HAS_PCH_NOP(dev))
return;
I915_WRITE(SDEIMR, 0xffffffff);
I915_WRITE(SDEIER, 0x0);
I915_WRITE(SDEIIR, I915_READ(SDEIIR));
if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
I915_WRITE(SERR_INT, I915_READ(SERR_INT));
}
static void i8xx_irq_preinstall(struct drm_device * dev)
{
drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
int pipe;
atomic_set(&dev_priv->irq_received, 0);
for_each_pipe(pipe)
I915_WRITE(PIPESTAT(pipe), 0);
I915_WRITE16(IMR, 0xffff);
I915_WRITE16(IER, 0x0);
POSTING_READ16(IER);
}
static int i8xx_irq_postinstall(struct drm_device *dev)
{
drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
I915_WRITE16(EMR,
~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
/* Unmask the interrupts that we always want on. */
dev_priv->irq_mask =
~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
I915_WRITE16(IMR, dev_priv->irq_mask);
I915_WRITE16(IER,
I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
I915_USER_INTERRUPT);
POSTING_READ16(IER);
return 0;
}
/*
* Returns true when a page flip has completed.
*/
static bool i8xx_handle_vblank(struct drm_device *dev,
int pipe, u16 iir)
{
drm_i915_private_t *dev_priv = dev->dev_private;
u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(pipe);
if (!drm_handle_vblank(dev, pipe))
return false;
if ((iir & flip_pending) == 0)
return false;
intel_prepare_page_flip(dev, pipe);
/* We detect FlipDone by looking for the change in PendingFlip from '1'
* to '0' on the following vblank, i.e. IIR has the Pendingflip
* asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
* the flip is completed (no longer pending). Since this doesn't raise
* an interrupt per se, we watch for the change at vblank.
*/
if (I915_READ16(ISR) & flip_pending)
return false;
intel_finish_page_flip(dev, pipe);
return true;
}
static irqreturn_t i8xx_irq_handler(int irq, void *arg)
{
struct drm_device *dev = (struct drm_device *) arg;
drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
u16 iir, new_iir;
u32 pipe_stats[2];
unsigned long irqflags;
int irq_received;
int pipe;
u16 flip_mask =
I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
atomic_inc(&dev_priv->irq_received);
iir = I915_READ16(IIR);
if (iir == 0)
return IRQ_NONE;
while (iir & ~flip_mask) {
/* Can't rely on pipestat interrupt bit in iir as it might
* have been cleared after the pipestat interrupt was received.
* It doesn't set the bit in iir again, but it still produces
* interrupts (for non-MSI).
*/
spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
i915_handle_error(dev, false);
for_each_pipe(pipe) {
int reg = PIPESTAT(pipe);
pipe_stats[pipe] = I915_READ(reg);
/*
* Clear the PIPE*STAT regs before the IIR
*/
if (pipe_stats[pipe] & 0x8000ffff) {
if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
DRM_DEBUG_DRIVER("pipe %c underrun\n",
pipe_name(pipe));
I915_WRITE(reg, pipe_stats[pipe]);
irq_received = 1;
}
}
spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
I915_WRITE16(IIR, iir & ~flip_mask);
new_iir = I915_READ16(IIR); /* Flush posted writes */
i915_update_dri1_breadcrumb(dev);
if (iir & I915_USER_INTERRUPT)
notify_ring(dev, &dev_priv->ring[RCS]);
if (pipe_stats[0] & PIPE_VBLANK_INTERRUPT_STATUS &&
i8xx_handle_vblank(dev, 0, iir))
flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(0);
if (pipe_stats[1] & PIPE_VBLANK_INTERRUPT_STATUS &&
i8xx_handle_vblank(dev, 1, iir))
flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(1);
iir = new_iir;
}
return IRQ_HANDLED;
}
static void i8xx_irq_uninstall(struct drm_device * dev)
{
drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
int pipe;
for_each_pipe(pipe) {
/* Clear enable bits; then clear status bits */
I915_WRITE(PIPESTAT(pipe), 0);
I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
}
I915_WRITE16(IMR, 0xffff);
I915_WRITE16(IER, 0x0);
I915_WRITE16(IIR, I915_READ16(IIR));
}
static void i915_irq_preinstall(struct drm_device * dev)
{
drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
int pipe;
atomic_set(&dev_priv->irq_received, 0);
if (I915_HAS_HOTPLUG(dev)) {
I915_WRITE(PORT_HOTPLUG_EN, 0);
I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
}
I915_WRITE16(HWSTAM, 0xeffe);
for_each_pipe(pipe)
I915_WRITE(PIPESTAT(pipe), 0);
I915_WRITE(IMR, 0xffffffff);
I915_WRITE(IER, 0x0);
POSTING_READ(IER);
}
static int i915_irq_postinstall(struct drm_device *dev)
{
drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
u32 enable_mask;
I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
/* Unmask the interrupts that we always want on. */
dev_priv->irq_mask =
~(I915_ASLE_INTERRUPT |
I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
enable_mask =
I915_ASLE_INTERRUPT |
I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
I915_USER_INTERRUPT;
if (I915_HAS_HOTPLUG(dev)) {
I915_WRITE(PORT_HOTPLUG_EN, 0);
POSTING_READ(PORT_HOTPLUG_EN);
/* Enable in IER... */
enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
/* and unmask in IMR */
dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
}
I915_WRITE(IMR, dev_priv->irq_mask);
I915_WRITE(IER, enable_mask);
POSTING_READ(IER);
i915_enable_asle_pipestat(dev);
return 0;
}
/*
* Returns true when a page flip has completed.
*/
static bool i915_handle_vblank(struct drm_device *dev,
int plane, int pipe, u32 iir)
{
drm_i915_private_t *dev_priv = dev->dev_private;
u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
if (!drm_handle_vblank(dev, pipe))
return false;
if ((iir & flip_pending) == 0)
return false;
intel_prepare_page_flip(dev, plane);
/* We detect FlipDone by looking for the change in PendingFlip from '1'
* to '0' on the following vblank, i.e. IIR has the Pendingflip
* asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
* the flip is completed (no longer pending). Since this doesn't raise
* an interrupt per se, we watch for the change at vblank.
*/
if (I915_READ(ISR) & flip_pending)
return false;
intel_finish_page_flip(dev, pipe);
return true;
}
static irqreturn_t i915_irq_handler(int irq, void *arg)
{
struct drm_device *dev = (struct drm_device *) arg;
drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
unsigned long irqflags;
u32 flip_mask =
I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
int pipe, ret = IRQ_NONE;
atomic_inc(&dev_priv->irq_received);
iir = I915_READ(IIR);
do {
bool irq_received = (iir & ~flip_mask) != 0;
bool blc_event = false;
/* Can't rely on pipestat interrupt bit in iir as it might
* have been cleared after the pipestat interrupt was received.
* It doesn't set the bit in iir again, but it still produces
* interrupts (for non-MSI).
*/
spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
i915_handle_error(dev, false);
for_each_pipe(pipe) {
int reg = PIPESTAT(pipe);
pipe_stats[pipe] = I915_READ(reg);
/* Clear the PIPE*STAT regs before the IIR */
if (pipe_stats[pipe] & 0x8000ffff) {
if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
DRM_DEBUG_DRIVER("pipe %c underrun\n",
pipe_name(pipe));
I915_WRITE(reg, pipe_stats[pipe]);
irq_received = true;
}
}
spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
if (!irq_received)
break;
/* Consume port. Then clear IIR or we'll miss events */
if ((I915_HAS_HOTPLUG(dev)) &&
(iir & I915_DISPLAY_PORT_INTERRUPT)) {
u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x\n",
hotplug_status);
if (hotplug_trigger) {
if (hotplug_irq_storm_detect(dev, hotplug_trigger, hpd_status_i915))
i915_hpd_irq_setup(dev);
queue_work(dev_priv->wq,
&dev_priv->hotplug_work);
}
I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
POSTING_READ(PORT_HOTPLUG_STAT);
}
I915_WRITE(IIR, iir & ~flip_mask);
new_iir = I915_READ(IIR); /* Flush posted writes */
if (iir & I915_USER_INTERRUPT)
notify_ring(dev, &dev_priv->ring[RCS]);
for_each_pipe(pipe) {
int plane = pipe;
if (IS_MOBILE(dev))
plane = !plane;
if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
i915_handle_vblank(dev, plane, pipe, iir))
flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
blc_event = true;
}
if (blc_event || (iir & I915_ASLE_INTERRUPT))
intel_opregion_asle_intr(dev);
/* With MSI, interrupts are only generated when iir
* transitions from zero to nonzero. If another bit got
* set while we were handling the existing iir bits, then
* we would never get another interrupt.
*
* This is fine on non-MSI as well, as if we hit this path
* we avoid exiting the interrupt handler only to generate
* another one.
*
* Note that for MSI this could cause a stray interrupt report
* if an interrupt landed in the time between writing IIR and
* the posting read. This should be rare enough to never
* trigger the 99% of 100,000 interrupts test for disabling
* stray interrupts.
*/
ret = IRQ_HANDLED;
iir = new_iir;
} while (iir & ~flip_mask);
i915_update_dri1_breadcrumb(dev);
return ret;
}
static void i915_irq_uninstall(struct drm_device * dev)
{
drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
int pipe;
del_timer_sync(&dev_priv->hotplug_reenable_timer);
if (I915_HAS_HOTPLUG(dev)) {
I915_WRITE(PORT_HOTPLUG_EN, 0);
I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
}
I915_WRITE16(HWSTAM, 0xffff);
for_each_pipe(pipe) {
/* Clear enable bits; then clear status bits */
I915_WRITE(PIPESTAT(pipe), 0);
I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
}
I915_WRITE(IMR, 0xffffffff);
I915_WRITE(IER, 0x0);
I915_WRITE(IIR, I915_READ(IIR));
}
static void i965_irq_preinstall(struct drm_device * dev)
{
drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
int pipe;
atomic_set(&dev_priv->irq_received, 0);
I915_WRITE(PORT_HOTPLUG_EN, 0);
I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
I915_WRITE(HWSTAM, 0xeffe);
for_each_pipe(pipe)
I915_WRITE(PIPESTAT(pipe), 0);
I915_WRITE(IMR, 0xffffffff);
I915_WRITE(IER, 0x0);
POSTING_READ(IER);
}
static int i965_irq_postinstall(struct drm_device *dev)
{
drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
u32 enable_mask;
u32 error_mask;
/* Unmask the interrupts that we always want on. */
dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
I915_DISPLAY_PORT_INTERRUPT |
I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
enable_mask = ~dev_priv->irq_mask;
enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
enable_mask |= I915_USER_INTERRUPT;
if (IS_G4X(dev))
enable_mask |= I915_BSD_USER_INTERRUPT;
i915_enable_pipestat(dev_priv, 0, PIPE_GMBUS_EVENT_ENABLE);
/*
* Enable some error detection, note the instruction error mask
* bit is reserved, so we leave it masked.
*/
if (IS_G4X(dev)) {
error_mask = ~(GM45_ERROR_PAGE_TABLE |
GM45_ERROR_MEM_PRIV |
GM45_ERROR_CP_PRIV |
I915_ERROR_MEMORY_REFRESH);
} else {
error_mask = ~(I915_ERROR_PAGE_TABLE |
I915_ERROR_MEMORY_REFRESH);
}
I915_WRITE(EMR, error_mask);
I915_WRITE(IMR, dev_priv->irq_mask);
I915_WRITE(IER, enable_mask);
POSTING_READ(IER);
I915_WRITE(PORT_HOTPLUG_EN, 0);
POSTING_READ(PORT_HOTPLUG_EN);
i915_enable_asle_pipestat(dev);
return 0;
}
static void i915_hpd_irq_setup(struct drm_device *dev)
{
drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
struct drm_mode_config *mode_config = &dev->mode_config;
struct intel_encoder *intel_encoder;
u32 hotplug_en;
if (I915_HAS_HOTPLUG(dev)) {
hotplug_en = I915_READ(PORT_HOTPLUG_EN);
hotplug_en &= ~HOTPLUG_INT_EN_MASK;
/* Note HDMI and DP share hotplug bits */
/* enable bits are the same for all generations */
list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
hotplug_en |= hpd_mask_i915[intel_encoder->hpd_pin];
/* Programming the CRT detection parameters tends
to generate a spurious hotplug event about three
seconds later. So just do it once.
*/
if (IS_G4X(dev))
hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
hotplug_en &= ~CRT_HOTPLUG_VOLTAGE_COMPARE_MASK;
hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
/* Ignore TV since it's buggy */
I915_WRITE(PORT_HOTPLUG_EN, hotplug_en);
}
}
static irqreturn_t i965_irq_handler(int irq, void *arg)
{
struct drm_device *dev = (struct drm_device *) arg;
drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
u32 iir, new_iir;
u32 pipe_stats[I915_MAX_PIPES];
unsigned long irqflags;
int irq_received;
int ret = IRQ_NONE, pipe;
u32 flip_mask =
I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
atomic_inc(&dev_priv->irq_received);
iir = I915_READ(IIR);
for (;;) {
bool blc_event = false;
irq_received = (iir & ~flip_mask) != 0;
/* Can't rely on pipestat interrupt bit in iir as it might
* have been cleared after the pipestat interrupt was received.
* It doesn't set the bit in iir again, but it still produces
* interrupts (for non-MSI).
*/
spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
i915_handle_error(dev, false);
for_each_pipe(pipe) {
int reg = PIPESTAT(pipe);
pipe_stats[pipe] = I915_READ(reg);
/*
* Clear the PIPE*STAT regs before the IIR
*/
if (pipe_stats[pipe] & 0x8000ffff) {
if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
DRM_DEBUG_DRIVER("pipe %c underrun\n",
pipe_name(pipe));
I915_WRITE(reg, pipe_stats[pipe]);
irq_received = 1;
}
}
spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
if (!irq_received)
break;
ret = IRQ_HANDLED;
/* Consume port. Then clear IIR or we'll miss events */
if (iir & I915_DISPLAY_PORT_INTERRUPT) {
u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
u32 hotplug_trigger = hotplug_status & (IS_G4X(dev) ?
HOTPLUG_INT_STATUS_G4X :
HOTPLUG_INT_STATUS_I965);
DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x\n",
hotplug_status);
if (hotplug_trigger) {
if (hotplug_irq_storm_detect(dev, hotplug_trigger,
IS_G4X(dev) ? hpd_status_gen4 : hpd_status_i965))
i915_hpd_irq_setup(dev);
queue_work(dev_priv->wq,
&dev_priv->hotplug_work);
}
I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
I915_READ(PORT_HOTPLUG_STAT);
}
I915_WRITE(IIR, iir & ~flip_mask);
new_iir = I915_READ(IIR); /* Flush posted writes */
if (iir & I915_USER_INTERRUPT)
notify_ring(dev, &dev_priv->ring[RCS]);
if (iir & I915_BSD_USER_INTERRUPT)
notify_ring(dev, &dev_priv->ring[VCS]);
for_each_pipe(pipe) {
if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
i915_handle_vblank(dev, pipe, pipe, iir))
flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
blc_event = true;
}
if (blc_event || (iir & I915_ASLE_INTERRUPT))
intel_opregion_asle_intr(dev);
if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
gmbus_irq_handler(dev);
/* With MSI, interrupts are only generated when iir
* transitions from zero to nonzero. If another bit got
* set while we were handling the existing iir bits, then
* we would never get another interrupt.
*
* This is fine on non-MSI as well, as if we hit this path
* we avoid exiting the interrupt handler only to generate
* another one.
*
* Note that for MSI this could cause a stray interrupt report
* if an interrupt landed in the time between writing IIR and
* the posting read. This should be rare enough to never
* trigger the 99% of 100,000 interrupts test for disabling
* stray interrupts.
*/
iir = new_iir;
}
i915_update_dri1_breadcrumb(dev);
return ret;
}
static void i965_irq_uninstall(struct drm_device * dev)
{
drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
int pipe;
if (!dev_priv)
return;
del_timer_sync(&dev_priv->hotplug_reenable_timer);
I915_WRITE(PORT_HOTPLUG_EN, 0);
I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
I915_WRITE(HWSTAM, 0xffffffff);
for_each_pipe(pipe)
I915_WRITE(PIPESTAT(pipe), 0);
I915_WRITE(IMR, 0xffffffff);
I915_WRITE(IER, 0x0);
for_each_pipe(pipe)
I915_WRITE(PIPESTAT(pipe),
I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
I915_WRITE(IIR, I915_READ(IIR));
}
static void i915_reenable_hotplug_timer_func(unsigned long data)
{
drm_i915_private_t *dev_priv = (drm_i915_private_t *)data;
struct drm_device *dev = dev_priv->dev;
struct drm_mode_config *mode_config = &dev->mode_config;
unsigned long irqflags;
int i;
spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
for (i = (HPD_NONE + 1); i < HPD_NUM_PINS; i++) {
struct drm_connector *connector;
if (dev_priv->hpd_stats[i].hpd_mark != HPD_DISABLED)
continue;
dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
list_for_each_entry(connector, &mode_config->connector_list, head) {
struct intel_connector *intel_connector = to_intel_connector(connector);
if (intel_connector->encoder->hpd_pin == i) {
if (connector->polled != intel_connector->polled)
DRM_DEBUG_DRIVER("Reenabling HPD on connector %s\n",
drm_get_connector_name(connector));
connector->polled = intel_connector->polled;
if (!connector->polled)
connector->polled = DRM_CONNECTOR_POLL_HPD;
}
}
}
if (dev_priv->display.hpd_irq_setup)
dev_priv->display.hpd_irq_setup(dev);
spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
}
void intel_irq_init(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
INIT_WORK(&dev_priv->hotplug_work, i915_hotplug_work_func);
INIT_WORK(&dev_priv->gpu_error.work, i915_error_work_func);
INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
setup_timer(&dev_priv->gpu_error.hangcheck_timer,
i915_hangcheck_elapsed,
(unsigned long) dev);
setup_timer(&dev_priv->hotplug_reenable_timer, i915_reenable_hotplug_timer_func,
(unsigned long) dev_priv);
pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE);
dev->driver->get_vblank_counter = i915_get_vblank_counter;
dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
dev->driver->get_vblank_counter = gm45_get_vblank_counter;
}
if (drm_core_check_feature(dev, DRIVER_MODESET))
dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
else
dev->driver->get_vblank_timestamp = NULL;
dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
if (IS_VALLEYVIEW(dev)) {
dev->driver->irq_handler = valleyview_irq_handler;
dev->driver->irq_preinstall = valleyview_irq_preinstall;
dev->driver->irq_postinstall = valleyview_irq_postinstall;
dev->driver->irq_uninstall = valleyview_irq_uninstall;
dev->driver->enable_vblank = valleyview_enable_vblank;
dev->driver->disable_vblank = valleyview_disable_vblank;
dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
} else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
/* Share uninstall handlers with ILK/SNB */
dev->driver->irq_handler = ivybridge_irq_handler;
dev->driver->irq_preinstall = ivybridge_irq_preinstall;
dev->driver->irq_postinstall = ivybridge_irq_postinstall;
dev->driver->irq_uninstall = ironlake_irq_uninstall;
dev->driver->enable_vblank = ivybridge_enable_vblank;
dev->driver->disable_vblank = ivybridge_disable_vblank;
dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
} else if (HAS_PCH_SPLIT(dev)) {
dev->driver->irq_handler = ironlake_irq_handler;
dev->driver->irq_preinstall = ironlake_irq_preinstall;
dev->driver->irq_postinstall = ironlake_irq_postinstall;
dev->driver->irq_uninstall = ironlake_irq_uninstall;
dev->driver->enable_vblank = ironlake_enable_vblank;
dev->driver->disable_vblank = ironlake_disable_vblank;
dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
} else {
if (INTEL_INFO(dev)->gen == 2) {
dev->driver->irq_preinstall = i8xx_irq_preinstall;
dev->driver->irq_postinstall = i8xx_irq_postinstall;
dev->driver->irq_handler = i8xx_irq_handler;
dev->driver->irq_uninstall = i8xx_irq_uninstall;
} else if (INTEL_INFO(dev)->gen == 3) {
dev->driver->irq_preinstall = i915_irq_preinstall;
dev->driver->irq_postinstall = i915_irq_postinstall;
dev->driver->irq_uninstall = i915_irq_uninstall;
dev->driver->irq_handler = i915_irq_handler;
dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
} else {
dev->driver->irq_preinstall = i965_irq_preinstall;
dev->driver->irq_postinstall = i965_irq_postinstall;
dev->driver->irq_uninstall = i965_irq_uninstall;
dev->driver->irq_handler = i965_irq_handler;
dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
}
dev->driver->enable_vblank = i915_enable_vblank;
dev->driver->disable_vblank = i915_disable_vblank;
}
}
void intel_hpd_init(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_mode_config *mode_config = &dev->mode_config;
struct drm_connector *connector;
int i;
for (i = 1; i < HPD_NUM_PINS; i++) {
dev_priv->hpd_stats[i].hpd_cnt = 0;
dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
}
list_for_each_entry(connector, &mode_config->connector_list, head) {
struct intel_connector *intel_connector = to_intel_connector(connector);
connector->polled = intel_connector->polled;
if (!connector->polled && I915_HAS_HOTPLUG(dev) && intel_connector->encoder->hpd_pin > HPD_NONE)
connector->polled = DRM_CONNECTOR_POLL_HPD;
}
if (dev_priv->display.hpd_irq_setup)
dev_priv->display.hpd_irq_setup(dev);
}