linux_dsm_epyc7002/fs/f2fs/data.c
Jens Axboe 1aee6b9a7d f2fs: drop bio->bi_rw manual assignment
Merge 4fc29c1aa3 included this extra line, but it's not needed (or
useful) since we'll bio_set_op_attrs() right after to properly set
the op and flags for the bio.

Signed-off-by: Jens Axboe <axboe@fb.com>
2016-08-04 14:19:16 -06:00

1889 lines
44 KiB
C

/*
* fs/f2fs/data.c
*
* Copyright (c) 2012 Samsung Electronics Co., Ltd.
* http://www.samsung.com/
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/fs.h>
#include <linux/f2fs_fs.h>
#include <linux/buffer_head.h>
#include <linux/mpage.h>
#include <linux/writeback.h>
#include <linux/backing-dev.h>
#include <linux/pagevec.h>
#include <linux/blkdev.h>
#include <linux/bio.h>
#include <linux/prefetch.h>
#include <linux/uio.h>
#include <linux/mm.h>
#include <linux/memcontrol.h>
#include <linux/cleancache.h>
#include "f2fs.h"
#include "node.h"
#include "segment.h"
#include "trace.h"
#include <trace/events/f2fs.h>
static void f2fs_read_end_io(struct bio *bio)
{
struct bio_vec *bvec;
int i;
if (f2fs_bio_encrypted(bio)) {
if (bio->bi_error) {
fscrypt_release_ctx(bio->bi_private);
} else {
fscrypt_decrypt_bio_pages(bio->bi_private, bio);
return;
}
}
bio_for_each_segment_all(bvec, bio, i) {
struct page *page = bvec->bv_page;
if (!bio->bi_error) {
if (!PageUptodate(page))
SetPageUptodate(page);
} else {
ClearPageUptodate(page);
SetPageError(page);
}
unlock_page(page);
}
bio_put(bio);
}
static void f2fs_write_end_io(struct bio *bio)
{
struct f2fs_sb_info *sbi = bio->bi_private;
struct bio_vec *bvec;
int i;
bio_for_each_segment_all(bvec, bio, i) {
struct page *page = bvec->bv_page;
fscrypt_pullback_bio_page(&page, true);
if (unlikely(bio->bi_error)) {
set_bit(AS_EIO, &page->mapping->flags);
f2fs_stop_checkpoint(sbi, true);
}
end_page_writeback(page);
}
if (atomic_dec_and_test(&sbi->nr_wb_bios) &&
wq_has_sleeper(&sbi->cp_wait))
wake_up(&sbi->cp_wait);
bio_put(bio);
}
/*
* Low-level block read/write IO operations.
*/
static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr,
int npages, bool is_read)
{
struct bio *bio;
bio = f2fs_bio_alloc(npages);
bio->bi_bdev = sbi->sb->s_bdev;
bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
bio->bi_end_io = is_read ? f2fs_read_end_io : f2fs_write_end_io;
bio->bi_private = is_read ? NULL : sbi;
return bio;
}
static inline void __submit_bio(struct f2fs_sb_info *sbi,
struct bio *bio, enum page_type type)
{
if (!is_read_io(bio_op(bio))) {
atomic_inc(&sbi->nr_wb_bios);
if (f2fs_sb_mounted_hmsmr(sbi->sb) &&
current->plug && (type == DATA || type == NODE))
blk_finish_plug(current->plug);
}
submit_bio(bio);
}
static void __submit_merged_bio(struct f2fs_bio_info *io)
{
struct f2fs_io_info *fio = &io->fio;
if (!io->bio)
return;
if (is_read_io(fio->op))
trace_f2fs_submit_read_bio(io->sbi->sb, fio, io->bio);
else
trace_f2fs_submit_write_bio(io->sbi->sb, fio, io->bio);
bio_set_op_attrs(io->bio, fio->op, fio->op_flags);
__submit_bio(io->sbi, io->bio, fio->type);
io->bio = NULL;
}
static bool __has_merged_page(struct f2fs_bio_info *io, struct inode *inode,
struct page *page, nid_t ino)
{
struct bio_vec *bvec;
struct page *target;
int i;
if (!io->bio)
return false;
if (!inode && !page && !ino)
return true;
bio_for_each_segment_all(bvec, io->bio, i) {
if (bvec->bv_page->mapping)
target = bvec->bv_page;
else
target = fscrypt_control_page(bvec->bv_page);
if (inode && inode == target->mapping->host)
return true;
if (page && page == target)
return true;
if (ino && ino == ino_of_node(target))
return true;
}
return false;
}
static bool has_merged_page(struct f2fs_sb_info *sbi, struct inode *inode,
struct page *page, nid_t ino,
enum page_type type)
{
enum page_type btype = PAGE_TYPE_OF_BIO(type);
struct f2fs_bio_info *io = &sbi->write_io[btype];
bool ret;
down_read(&io->io_rwsem);
ret = __has_merged_page(io, inode, page, ino);
up_read(&io->io_rwsem);
return ret;
}
static void __f2fs_submit_merged_bio(struct f2fs_sb_info *sbi,
struct inode *inode, struct page *page,
nid_t ino, enum page_type type, int rw)
{
enum page_type btype = PAGE_TYPE_OF_BIO(type);
struct f2fs_bio_info *io;
io = is_read_io(rw) ? &sbi->read_io : &sbi->write_io[btype];
down_write(&io->io_rwsem);
if (!__has_merged_page(io, inode, page, ino))
goto out;
/* change META to META_FLUSH in the checkpoint procedure */
if (type >= META_FLUSH) {
io->fio.type = META_FLUSH;
io->fio.op = REQ_OP_WRITE;
if (test_opt(sbi, NOBARRIER))
io->fio.op_flags = WRITE_FLUSH | REQ_META | REQ_PRIO;
else
io->fio.op_flags = WRITE_FLUSH_FUA | REQ_META |
REQ_PRIO;
}
__submit_merged_bio(io);
out:
up_write(&io->io_rwsem);
}
void f2fs_submit_merged_bio(struct f2fs_sb_info *sbi, enum page_type type,
int rw)
{
__f2fs_submit_merged_bio(sbi, NULL, NULL, 0, type, rw);
}
void f2fs_submit_merged_bio_cond(struct f2fs_sb_info *sbi,
struct inode *inode, struct page *page,
nid_t ino, enum page_type type, int rw)
{
if (has_merged_page(sbi, inode, page, ino, type))
__f2fs_submit_merged_bio(sbi, inode, page, ino, type, rw);
}
void f2fs_flush_merged_bios(struct f2fs_sb_info *sbi)
{
f2fs_submit_merged_bio(sbi, DATA, WRITE);
f2fs_submit_merged_bio(sbi, NODE, WRITE);
f2fs_submit_merged_bio(sbi, META, WRITE);
}
/*
* Fill the locked page with data located in the block address.
* Return unlocked page.
*/
int f2fs_submit_page_bio(struct f2fs_io_info *fio)
{
struct bio *bio;
struct page *page = fio->encrypted_page ?
fio->encrypted_page : fio->page;
trace_f2fs_submit_page_bio(page, fio);
f2fs_trace_ios(fio, 0);
/* Allocate a new bio */
bio = __bio_alloc(fio->sbi, fio->new_blkaddr, 1, is_read_io(fio->op));
if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
bio_put(bio);
return -EFAULT;
}
bio_set_op_attrs(bio, fio->op, fio->op_flags);
__submit_bio(fio->sbi, bio, fio->type);
return 0;
}
void f2fs_submit_page_mbio(struct f2fs_io_info *fio)
{
struct f2fs_sb_info *sbi = fio->sbi;
enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
struct f2fs_bio_info *io;
bool is_read = is_read_io(fio->op);
struct page *bio_page;
io = is_read ? &sbi->read_io : &sbi->write_io[btype];
if (fio->old_blkaddr != NEW_ADDR)
verify_block_addr(sbi, fio->old_blkaddr);
verify_block_addr(sbi, fio->new_blkaddr);
down_write(&io->io_rwsem);
if (io->bio && (io->last_block_in_bio != fio->new_blkaddr - 1 ||
(io->fio.op != fio->op || io->fio.op_flags != fio->op_flags)))
__submit_merged_bio(io);
alloc_new:
if (io->bio == NULL) {
int bio_blocks = MAX_BIO_BLOCKS(sbi);
io->bio = __bio_alloc(sbi, fio->new_blkaddr,
bio_blocks, is_read);
io->fio = *fio;
}
bio_page = fio->encrypted_page ? fio->encrypted_page : fio->page;
if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) <
PAGE_SIZE) {
__submit_merged_bio(io);
goto alloc_new;
}
io->last_block_in_bio = fio->new_blkaddr;
f2fs_trace_ios(fio, 0);
up_write(&io->io_rwsem);
trace_f2fs_submit_page_mbio(fio->page, fio);
}
static void __set_data_blkaddr(struct dnode_of_data *dn)
{
struct f2fs_node *rn = F2FS_NODE(dn->node_page);
__le32 *addr_array;
/* Get physical address of data block */
addr_array = blkaddr_in_node(rn);
addr_array[dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
}
/*
* Lock ordering for the change of data block address:
* ->data_page
* ->node_page
* update block addresses in the node page
*/
void set_data_blkaddr(struct dnode_of_data *dn)
{
f2fs_wait_on_page_writeback(dn->node_page, NODE, true);
__set_data_blkaddr(dn);
if (set_page_dirty(dn->node_page))
dn->node_changed = true;
}
void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
{
dn->data_blkaddr = blkaddr;
set_data_blkaddr(dn);
f2fs_update_extent_cache(dn);
}
/* dn->ofs_in_node will be returned with up-to-date last block pointer */
int reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
if (!count)
return 0;
if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
return -EPERM;
if (unlikely(!inc_valid_block_count(sbi, dn->inode, &count)))
return -ENOSPC;
trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
dn->ofs_in_node, count);
f2fs_wait_on_page_writeback(dn->node_page, NODE, true);
for (; count > 0; dn->ofs_in_node++) {
block_t blkaddr =
datablock_addr(dn->node_page, dn->ofs_in_node);
if (blkaddr == NULL_ADDR) {
dn->data_blkaddr = NEW_ADDR;
__set_data_blkaddr(dn);
count--;
}
}
if (set_page_dirty(dn->node_page))
dn->node_changed = true;
return 0;
}
/* Should keep dn->ofs_in_node unchanged */
int reserve_new_block(struct dnode_of_data *dn)
{
unsigned int ofs_in_node = dn->ofs_in_node;
int ret;
ret = reserve_new_blocks(dn, 1);
dn->ofs_in_node = ofs_in_node;
return ret;
}
int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
{
bool need_put = dn->inode_page ? false : true;
int err;
err = get_dnode_of_data(dn, index, ALLOC_NODE);
if (err)
return err;
if (dn->data_blkaddr == NULL_ADDR)
err = reserve_new_block(dn);
if (err || need_put)
f2fs_put_dnode(dn);
return err;
}
int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
{
struct extent_info ei;
struct inode *inode = dn->inode;
if (f2fs_lookup_extent_cache(inode, index, &ei)) {
dn->data_blkaddr = ei.blk + index - ei.fofs;
return 0;
}
return f2fs_reserve_block(dn, index);
}
struct page *get_read_data_page(struct inode *inode, pgoff_t index,
int op_flags, bool for_write)
{
struct address_space *mapping = inode->i_mapping;
struct dnode_of_data dn;
struct page *page;
struct extent_info ei;
int err;
struct f2fs_io_info fio = {
.sbi = F2FS_I_SB(inode),
.type = DATA,
.op = REQ_OP_READ,
.op_flags = op_flags,
.encrypted_page = NULL,
};
if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
return read_mapping_page(mapping, index, NULL);
page = f2fs_grab_cache_page(mapping, index, for_write);
if (!page)
return ERR_PTR(-ENOMEM);
if (f2fs_lookup_extent_cache(inode, index, &ei)) {
dn.data_blkaddr = ei.blk + index - ei.fofs;
goto got_it;
}
set_new_dnode(&dn, inode, NULL, NULL, 0);
err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
if (err)
goto put_err;
f2fs_put_dnode(&dn);
if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
err = -ENOENT;
goto put_err;
}
got_it:
if (PageUptodate(page)) {
unlock_page(page);
return page;
}
/*
* A new dentry page is allocated but not able to be written, since its
* new inode page couldn't be allocated due to -ENOSPC.
* In such the case, its blkaddr can be remained as NEW_ADDR.
* see, f2fs_add_link -> get_new_data_page -> init_inode_metadata.
*/
if (dn.data_blkaddr == NEW_ADDR) {
zero_user_segment(page, 0, PAGE_SIZE);
if (!PageUptodate(page))
SetPageUptodate(page);
unlock_page(page);
return page;
}
fio.new_blkaddr = fio.old_blkaddr = dn.data_blkaddr;
fio.page = page;
err = f2fs_submit_page_bio(&fio);
if (err)
goto put_err;
return page;
put_err:
f2fs_put_page(page, 1);
return ERR_PTR(err);
}
struct page *find_data_page(struct inode *inode, pgoff_t index)
{
struct address_space *mapping = inode->i_mapping;
struct page *page;
page = find_get_page(mapping, index);
if (page && PageUptodate(page))
return page;
f2fs_put_page(page, 0);
page = get_read_data_page(inode, index, READ_SYNC, false);
if (IS_ERR(page))
return page;
if (PageUptodate(page))
return page;
wait_on_page_locked(page);
if (unlikely(!PageUptodate(page))) {
f2fs_put_page(page, 0);
return ERR_PTR(-EIO);
}
return page;
}
/*
* If it tries to access a hole, return an error.
* Because, the callers, functions in dir.c and GC, should be able to know
* whether this page exists or not.
*/
struct page *get_lock_data_page(struct inode *inode, pgoff_t index,
bool for_write)
{
struct address_space *mapping = inode->i_mapping;
struct page *page;
repeat:
page = get_read_data_page(inode, index, READ_SYNC, for_write);
if (IS_ERR(page))
return page;
/* wait for read completion */
lock_page(page);
if (unlikely(page->mapping != mapping)) {
f2fs_put_page(page, 1);
goto repeat;
}
if (unlikely(!PageUptodate(page))) {
f2fs_put_page(page, 1);
return ERR_PTR(-EIO);
}
return page;
}
/*
* Caller ensures that this data page is never allocated.
* A new zero-filled data page is allocated in the page cache.
*
* Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
* f2fs_unlock_op().
* Note that, ipage is set only by make_empty_dir, and if any error occur,
* ipage should be released by this function.
*/
struct page *get_new_data_page(struct inode *inode,
struct page *ipage, pgoff_t index, bool new_i_size)
{
struct address_space *mapping = inode->i_mapping;
struct page *page;
struct dnode_of_data dn;
int err;
page = f2fs_grab_cache_page(mapping, index, true);
if (!page) {
/*
* before exiting, we should make sure ipage will be released
* if any error occur.
*/
f2fs_put_page(ipage, 1);
return ERR_PTR(-ENOMEM);
}
set_new_dnode(&dn, inode, ipage, NULL, 0);
err = f2fs_reserve_block(&dn, index);
if (err) {
f2fs_put_page(page, 1);
return ERR_PTR(err);
}
if (!ipage)
f2fs_put_dnode(&dn);
if (PageUptodate(page))
goto got_it;
if (dn.data_blkaddr == NEW_ADDR) {
zero_user_segment(page, 0, PAGE_SIZE);
if (!PageUptodate(page))
SetPageUptodate(page);
} else {
f2fs_put_page(page, 1);
/* if ipage exists, blkaddr should be NEW_ADDR */
f2fs_bug_on(F2FS_I_SB(inode), ipage);
page = get_lock_data_page(inode, index, true);
if (IS_ERR(page))
return page;
}
got_it:
if (new_i_size && i_size_read(inode) <
((loff_t)(index + 1) << PAGE_SHIFT))
f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
return page;
}
static int __allocate_data_block(struct dnode_of_data *dn)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
struct f2fs_summary sum;
struct node_info ni;
int seg = CURSEG_WARM_DATA;
pgoff_t fofs;
blkcnt_t count = 1;
if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
return -EPERM;
dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
if (dn->data_blkaddr == NEW_ADDR)
goto alloc;
if (unlikely(!inc_valid_block_count(sbi, dn->inode, &count)))
return -ENOSPC;
alloc:
get_node_info(sbi, dn->nid, &ni);
set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
if (dn->ofs_in_node == 0 && dn->inode_page == dn->node_page)
seg = CURSEG_DIRECT_IO;
allocate_data_block(sbi, NULL, dn->data_blkaddr, &dn->data_blkaddr,
&sum, seg);
set_data_blkaddr(dn);
/* update i_size */
fofs = start_bidx_of_node(ofs_of_node(dn->node_page), dn->inode) +
dn->ofs_in_node;
if (i_size_read(dn->inode) < ((loff_t)(fofs + 1) << PAGE_SHIFT))
f2fs_i_size_write(dn->inode,
((loff_t)(fofs + 1) << PAGE_SHIFT));
return 0;
}
ssize_t f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from)
{
struct inode *inode = file_inode(iocb->ki_filp);
struct f2fs_map_blocks map;
ssize_t ret = 0;
map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos);
map.m_len = F2FS_BYTES_TO_BLK(iov_iter_count(from));
map.m_next_pgofs = NULL;
if (f2fs_encrypted_inode(inode))
return 0;
if (iocb->ki_flags & IOCB_DIRECT) {
ret = f2fs_convert_inline_inode(inode);
if (ret)
return ret;
return f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_DIO);
}
if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA) {
ret = f2fs_convert_inline_inode(inode);
if (ret)
return ret;
}
if (!f2fs_has_inline_data(inode))
return f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO);
return ret;
}
/*
* f2fs_map_blocks() now supported readahead/bmap/rw direct_IO with
* f2fs_map_blocks structure.
* If original data blocks are allocated, then give them to blockdev.
* Otherwise,
* a. preallocate requested block addresses
* b. do not use extent cache for better performance
* c. give the block addresses to blockdev
*/
int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
int create, int flag)
{
unsigned int maxblocks = map->m_len;
struct dnode_of_data dn;
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
int mode = create ? ALLOC_NODE : LOOKUP_NODE;
pgoff_t pgofs, end_offset, end;
int err = 0, ofs = 1;
unsigned int ofs_in_node, last_ofs_in_node;
blkcnt_t prealloc;
struct extent_info ei;
bool allocated = false;
block_t blkaddr;
map->m_len = 0;
map->m_flags = 0;
/* it only supports block size == page size */
pgofs = (pgoff_t)map->m_lblk;
end = pgofs + maxblocks;
if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
map->m_pblk = ei.blk + pgofs - ei.fofs;
map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
map->m_flags = F2FS_MAP_MAPPED;
goto out;
}
next_dnode:
if (create)
f2fs_lock_op(sbi);
/* When reading holes, we need its node page */
set_new_dnode(&dn, inode, NULL, NULL, 0);
err = get_dnode_of_data(&dn, pgofs, mode);
if (err) {
if (flag == F2FS_GET_BLOCK_BMAP)
map->m_pblk = 0;
if (err == -ENOENT) {
err = 0;
if (map->m_next_pgofs)
*map->m_next_pgofs =
get_next_page_offset(&dn, pgofs);
}
goto unlock_out;
}
prealloc = 0;
ofs_in_node = dn.ofs_in_node;
end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
next_block:
blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR) {
if (create) {
if (unlikely(f2fs_cp_error(sbi))) {
err = -EIO;
goto sync_out;
}
if (flag == F2FS_GET_BLOCK_PRE_AIO) {
if (blkaddr == NULL_ADDR) {
prealloc++;
last_ofs_in_node = dn.ofs_in_node;
}
} else {
err = __allocate_data_block(&dn);
if (!err) {
set_inode_flag(inode, FI_APPEND_WRITE);
allocated = true;
}
}
if (err)
goto sync_out;
map->m_flags = F2FS_MAP_NEW;
blkaddr = dn.data_blkaddr;
} else {
if (flag == F2FS_GET_BLOCK_BMAP) {
map->m_pblk = 0;
goto sync_out;
}
if (flag == F2FS_GET_BLOCK_FIEMAP &&
blkaddr == NULL_ADDR) {
if (map->m_next_pgofs)
*map->m_next_pgofs = pgofs + 1;
}
if (flag != F2FS_GET_BLOCK_FIEMAP ||
blkaddr != NEW_ADDR)
goto sync_out;
}
}
if (flag == F2FS_GET_BLOCK_PRE_AIO)
goto skip;
if (map->m_len == 0) {
/* preallocated unwritten block should be mapped for fiemap. */
if (blkaddr == NEW_ADDR)
map->m_flags |= F2FS_MAP_UNWRITTEN;
map->m_flags |= F2FS_MAP_MAPPED;
map->m_pblk = blkaddr;
map->m_len = 1;
} else if ((map->m_pblk != NEW_ADDR &&
blkaddr == (map->m_pblk + ofs)) ||
(map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
flag == F2FS_GET_BLOCK_PRE_DIO) {
ofs++;
map->m_len++;
} else {
goto sync_out;
}
skip:
dn.ofs_in_node++;
pgofs++;
/* preallocate blocks in batch for one dnode page */
if (flag == F2FS_GET_BLOCK_PRE_AIO &&
(pgofs == end || dn.ofs_in_node == end_offset)) {
dn.ofs_in_node = ofs_in_node;
err = reserve_new_blocks(&dn, prealloc);
if (err)
goto sync_out;
map->m_len += dn.ofs_in_node - ofs_in_node;
if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
err = -ENOSPC;
goto sync_out;
}
dn.ofs_in_node = end_offset;
}
if (pgofs >= end)
goto sync_out;
else if (dn.ofs_in_node < end_offset)
goto next_block;
f2fs_put_dnode(&dn);
if (create) {
f2fs_unlock_op(sbi);
f2fs_balance_fs(sbi, allocated);
}
allocated = false;
goto next_dnode;
sync_out:
f2fs_put_dnode(&dn);
unlock_out:
if (create) {
f2fs_unlock_op(sbi);
f2fs_balance_fs(sbi, allocated);
}
out:
trace_f2fs_map_blocks(inode, map, err);
return err;
}
static int __get_data_block(struct inode *inode, sector_t iblock,
struct buffer_head *bh, int create, int flag,
pgoff_t *next_pgofs)
{
struct f2fs_map_blocks map;
int ret;
map.m_lblk = iblock;
map.m_len = bh->b_size >> inode->i_blkbits;
map.m_next_pgofs = next_pgofs;
ret = f2fs_map_blocks(inode, &map, create, flag);
if (!ret) {
map_bh(bh, inode->i_sb, map.m_pblk);
bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags;
bh->b_size = map.m_len << inode->i_blkbits;
}
return ret;
}
static int get_data_block(struct inode *inode, sector_t iblock,
struct buffer_head *bh_result, int create, int flag,
pgoff_t *next_pgofs)
{
return __get_data_block(inode, iblock, bh_result, create,
flag, next_pgofs);
}
static int get_data_block_dio(struct inode *inode, sector_t iblock,
struct buffer_head *bh_result, int create)
{
return __get_data_block(inode, iblock, bh_result, create,
F2FS_GET_BLOCK_DIO, NULL);
}
static int get_data_block_bmap(struct inode *inode, sector_t iblock,
struct buffer_head *bh_result, int create)
{
/* Block number less than F2FS MAX BLOCKS */
if (unlikely(iblock >= F2FS_I_SB(inode)->max_file_blocks))
return -EFBIG;
return __get_data_block(inode, iblock, bh_result, create,
F2FS_GET_BLOCK_BMAP, NULL);
}
static inline sector_t logical_to_blk(struct inode *inode, loff_t offset)
{
return (offset >> inode->i_blkbits);
}
static inline loff_t blk_to_logical(struct inode *inode, sector_t blk)
{
return (blk << inode->i_blkbits);
}
int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
u64 start, u64 len)
{
struct buffer_head map_bh;
sector_t start_blk, last_blk;
pgoff_t next_pgofs;
loff_t isize;
u64 logical = 0, phys = 0, size = 0;
u32 flags = 0;
int ret = 0;
ret = fiemap_check_flags(fieinfo, FIEMAP_FLAG_SYNC);
if (ret)
return ret;
if (f2fs_has_inline_data(inode)) {
ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
if (ret != -EAGAIN)
return ret;
}
inode_lock(inode);
isize = i_size_read(inode);
if (start >= isize)
goto out;
if (start + len > isize)
len = isize - start;
if (logical_to_blk(inode, len) == 0)
len = blk_to_logical(inode, 1);
start_blk = logical_to_blk(inode, start);
last_blk = logical_to_blk(inode, start + len - 1);
next:
memset(&map_bh, 0, sizeof(struct buffer_head));
map_bh.b_size = len;
ret = get_data_block(inode, start_blk, &map_bh, 0,
F2FS_GET_BLOCK_FIEMAP, &next_pgofs);
if (ret)
goto out;
/* HOLE */
if (!buffer_mapped(&map_bh)) {
start_blk = next_pgofs;
/* Go through holes util pass the EOF */
if (blk_to_logical(inode, start_blk) < isize)
goto prep_next;
/* Found a hole beyond isize means no more extents.
* Note that the premise is that filesystems don't
* punch holes beyond isize and keep size unchanged.
*/
flags |= FIEMAP_EXTENT_LAST;
}
if (size) {
if (f2fs_encrypted_inode(inode))
flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
ret = fiemap_fill_next_extent(fieinfo, logical,
phys, size, flags);
}
if (start_blk > last_blk || ret)
goto out;
logical = blk_to_logical(inode, start_blk);
phys = blk_to_logical(inode, map_bh.b_blocknr);
size = map_bh.b_size;
flags = 0;
if (buffer_unwritten(&map_bh))
flags = FIEMAP_EXTENT_UNWRITTEN;
start_blk += logical_to_blk(inode, size);
prep_next:
cond_resched();
if (fatal_signal_pending(current))
ret = -EINTR;
else
goto next;
out:
if (ret == 1)
ret = 0;
inode_unlock(inode);
return ret;
}
struct bio *f2fs_grab_bio(struct inode *inode, block_t blkaddr,
unsigned nr_pages)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
struct fscrypt_ctx *ctx = NULL;
struct block_device *bdev = sbi->sb->s_bdev;
struct bio *bio;
if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) {
ctx = fscrypt_get_ctx(inode, GFP_NOFS);
if (IS_ERR(ctx))
return ERR_CAST(ctx);
/* wait the page to be moved by cleaning */
f2fs_wait_on_encrypted_page_writeback(sbi, blkaddr);
}
bio = bio_alloc(GFP_KERNEL, min_t(int, nr_pages, BIO_MAX_PAGES));
if (!bio) {
if (ctx)
fscrypt_release_ctx(ctx);
return ERR_PTR(-ENOMEM);
}
bio->bi_bdev = bdev;
bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blkaddr);
bio->bi_end_io = f2fs_read_end_io;
bio->bi_private = ctx;
return bio;
}
/*
* This function was originally taken from fs/mpage.c, and customized for f2fs.
* Major change was from block_size == page_size in f2fs by default.
*/
static int f2fs_mpage_readpages(struct address_space *mapping,
struct list_head *pages, struct page *page,
unsigned nr_pages)
{
struct bio *bio = NULL;
unsigned page_idx;
sector_t last_block_in_bio = 0;
struct inode *inode = mapping->host;
const unsigned blkbits = inode->i_blkbits;
const unsigned blocksize = 1 << blkbits;
sector_t block_in_file;
sector_t last_block;
sector_t last_block_in_file;
sector_t block_nr;
struct f2fs_map_blocks map;
map.m_pblk = 0;
map.m_lblk = 0;
map.m_len = 0;
map.m_flags = 0;
map.m_next_pgofs = NULL;
for (page_idx = 0; nr_pages; page_idx++, nr_pages--) {
prefetchw(&page->flags);
if (pages) {
page = list_entry(pages->prev, struct page, lru);
list_del(&page->lru);
if (add_to_page_cache_lru(page, mapping,
page->index,
readahead_gfp_mask(mapping)))
goto next_page;
}
block_in_file = (sector_t)page->index;
last_block = block_in_file + nr_pages;
last_block_in_file = (i_size_read(inode) + blocksize - 1) >>
blkbits;
if (last_block > last_block_in_file)
last_block = last_block_in_file;
/*
* Map blocks using the previous result first.
*/
if ((map.m_flags & F2FS_MAP_MAPPED) &&
block_in_file > map.m_lblk &&
block_in_file < (map.m_lblk + map.m_len))
goto got_it;
/*
* Then do more f2fs_map_blocks() calls until we are
* done with this page.
*/
map.m_flags = 0;
if (block_in_file < last_block) {
map.m_lblk = block_in_file;
map.m_len = last_block - block_in_file;
if (f2fs_map_blocks(inode, &map, 0,
F2FS_GET_BLOCK_READ))
goto set_error_page;
}
got_it:
if ((map.m_flags & F2FS_MAP_MAPPED)) {
block_nr = map.m_pblk + block_in_file - map.m_lblk;
SetPageMappedToDisk(page);
if (!PageUptodate(page) && !cleancache_get_page(page)) {
SetPageUptodate(page);
goto confused;
}
} else {
zero_user_segment(page, 0, PAGE_SIZE);
if (!PageUptodate(page))
SetPageUptodate(page);
unlock_page(page);
goto next_page;
}
/*
* This page will go to BIO. Do we need to send this
* BIO off first?
*/
if (bio && (last_block_in_bio != block_nr - 1)) {
submit_and_realloc:
__submit_bio(F2FS_I_SB(inode), bio, DATA);
bio = NULL;
}
if (bio == NULL) {
bio = f2fs_grab_bio(inode, block_nr, nr_pages);
if (IS_ERR(bio)) {
bio = NULL;
goto set_error_page;
}
bio_set_op_attrs(bio, REQ_OP_READ, 0);
}
if (bio_add_page(bio, page, blocksize, 0) < blocksize)
goto submit_and_realloc;
last_block_in_bio = block_nr;
goto next_page;
set_error_page:
SetPageError(page);
zero_user_segment(page, 0, PAGE_SIZE);
unlock_page(page);
goto next_page;
confused:
if (bio) {
__submit_bio(F2FS_I_SB(inode), bio, DATA);
bio = NULL;
}
unlock_page(page);
next_page:
if (pages)
put_page(page);
}
BUG_ON(pages && !list_empty(pages));
if (bio)
__submit_bio(F2FS_I_SB(inode), bio, DATA);
return 0;
}
static int f2fs_read_data_page(struct file *file, struct page *page)
{
struct inode *inode = page->mapping->host;
int ret = -EAGAIN;
trace_f2fs_readpage(page, DATA);
/* If the file has inline data, try to read it directly */
if (f2fs_has_inline_data(inode))
ret = f2fs_read_inline_data(inode, page);
if (ret == -EAGAIN)
ret = f2fs_mpage_readpages(page->mapping, NULL, page, 1);
return ret;
}
static int f2fs_read_data_pages(struct file *file,
struct address_space *mapping,
struct list_head *pages, unsigned nr_pages)
{
struct inode *inode = file->f_mapping->host;
struct page *page = list_entry(pages->prev, struct page, lru);
trace_f2fs_readpages(inode, page, nr_pages);
/* If the file has inline data, skip readpages */
if (f2fs_has_inline_data(inode))
return 0;
return f2fs_mpage_readpages(mapping, pages, NULL, nr_pages);
}
int do_write_data_page(struct f2fs_io_info *fio)
{
struct page *page = fio->page;
struct inode *inode = page->mapping->host;
struct dnode_of_data dn;
int err = 0;
set_new_dnode(&dn, inode, NULL, NULL, 0);
err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
if (err)
return err;
fio->old_blkaddr = dn.data_blkaddr;
/* This page is already truncated */
if (fio->old_blkaddr == NULL_ADDR) {
ClearPageUptodate(page);
goto out_writepage;
}
if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) {
gfp_t gfp_flags = GFP_NOFS;
/* wait for GCed encrypted page writeback */
f2fs_wait_on_encrypted_page_writeback(F2FS_I_SB(inode),
fio->old_blkaddr);
retry_encrypt:
fio->encrypted_page = fscrypt_encrypt_page(inode, fio->page,
gfp_flags);
if (IS_ERR(fio->encrypted_page)) {
err = PTR_ERR(fio->encrypted_page);
if (err == -ENOMEM) {
/* flush pending ios and wait for a while */
f2fs_flush_merged_bios(F2FS_I_SB(inode));
congestion_wait(BLK_RW_ASYNC, HZ/50);
gfp_flags |= __GFP_NOFAIL;
err = 0;
goto retry_encrypt;
}
goto out_writepage;
}
}
set_page_writeback(page);
/*
* If current allocation needs SSR,
* it had better in-place writes for updated data.
*/
if (unlikely(fio->old_blkaddr != NEW_ADDR &&
!is_cold_data(page) &&
!IS_ATOMIC_WRITTEN_PAGE(page) &&
need_inplace_update(inode))) {
rewrite_data_page(fio);
set_inode_flag(inode, FI_UPDATE_WRITE);
trace_f2fs_do_write_data_page(page, IPU);
} else {
write_data_page(&dn, fio);
trace_f2fs_do_write_data_page(page, OPU);
set_inode_flag(inode, FI_APPEND_WRITE);
if (page->index == 0)
set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
}
out_writepage:
f2fs_put_dnode(&dn);
return err;
}
static int f2fs_write_data_page(struct page *page,
struct writeback_control *wbc)
{
struct inode *inode = page->mapping->host;
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
loff_t i_size = i_size_read(inode);
const pgoff_t end_index = ((unsigned long long) i_size)
>> PAGE_SHIFT;
loff_t psize = (page->index + 1) << PAGE_SHIFT;
unsigned offset = 0;
bool need_balance_fs = false;
int err = 0;
struct f2fs_io_info fio = {
.sbi = sbi,
.type = DATA,
.op = REQ_OP_WRITE,
.op_flags = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : 0,
.page = page,
.encrypted_page = NULL,
};
trace_f2fs_writepage(page, DATA);
if (page->index < end_index)
goto write;
/*
* If the offset is out-of-range of file size,
* this page does not have to be written to disk.
*/
offset = i_size & (PAGE_SIZE - 1);
if ((page->index >= end_index + 1) || !offset)
goto out;
zero_user_segment(page, offset, PAGE_SIZE);
write:
if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
goto redirty_out;
if (f2fs_is_drop_cache(inode))
goto out;
/* we should not write 0'th page having journal header */
if (f2fs_is_volatile_file(inode) && (!page->index ||
(!wbc->for_reclaim &&
available_free_memory(sbi, BASE_CHECK))))
goto redirty_out;
/* we should bypass data pages to proceed the kworkder jobs */
if (unlikely(f2fs_cp_error(sbi))) {
mapping_set_error(page->mapping, -EIO);
goto out;
}
/* Dentry blocks are controlled by checkpoint */
if (S_ISDIR(inode->i_mode)) {
err = do_write_data_page(&fio);
goto done;
}
if (!wbc->for_reclaim)
need_balance_fs = true;
else if (has_not_enough_free_secs(sbi, 0))
goto redirty_out;
err = -EAGAIN;
f2fs_lock_op(sbi);
if (f2fs_has_inline_data(inode))
err = f2fs_write_inline_data(inode, page);
if (err == -EAGAIN)
err = do_write_data_page(&fio);
if (F2FS_I(inode)->last_disk_size < psize)
F2FS_I(inode)->last_disk_size = psize;
f2fs_unlock_op(sbi);
done:
if (err && err != -ENOENT)
goto redirty_out;
clear_cold_data(page);
out:
inode_dec_dirty_pages(inode);
if (err)
ClearPageUptodate(page);
if (wbc->for_reclaim) {
f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, DATA, WRITE);
remove_dirty_inode(inode);
}
unlock_page(page);
f2fs_balance_fs(sbi, need_balance_fs);
if (unlikely(f2fs_cp_error(sbi)))
f2fs_submit_merged_bio(sbi, DATA, WRITE);
return 0;
redirty_out:
redirty_page_for_writepage(wbc, page);
unlock_page(page);
return err;
}
/*
* This function was copied from write_cche_pages from mm/page-writeback.c.
* The major change is making write step of cold data page separately from
* warm/hot data page.
*/
static int f2fs_write_cache_pages(struct address_space *mapping,
struct writeback_control *wbc)
{
int ret = 0;
int done = 0;
struct pagevec pvec;
int nr_pages;
pgoff_t uninitialized_var(writeback_index);
pgoff_t index;
pgoff_t end; /* Inclusive */
pgoff_t done_index;
int cycled;
int range_whole = 0;
int tag;
pagevec_init(&pvec, 0);
if (wbc->range_cyclic) {
writeback_index = mapping->writeback_index; /* prev offset */
index = writeback_index;
if (index == 0)
cycled = 1;
else
cycled = 0;
end = -1;
} else {
index = wbc->range_start >> PAGE_SHIFT;
end = wbc->range_end >> PAGE_SHIFT;
if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
range_whole = 1;
cycled = 1; /* ignore range_cyclic tests */
}
if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
tag = PAGECACHE_TAG_TOWRITE;
else
tag = PAGECACHE_TAG_DIRTY;
retry:
if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
tag_pages_for_writeback(mapping, index, end);
done_index = index;
while (!done && (index <= end)) {
int i;
nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1);
if (nr_pages == 0)
break;
for (i = 0; i < nr_pages; i++) {
struct page *page = pvec.pages[i];
if (page->index > end) {
done = 1;
break;
}
done_index = page->index;
lock_page(page);
if (unlikely(page->mapping != mapping)) {
continue_unlock:
unlock_page(page);
continue;
}
if (!PageDirty(page)) {
/* someone wrote it for us */
goto continue_unlock;
}
if (PageWriteback(page)) {
if (wbc->sync_mode != WB_SYNC_NONE)
f2fs_wait_on_page_writeback(page,
DATA, true);
else
goto continue_unlock;
}
BUG_ON(PageWriteback(page));
if (!clear_page_dirty_for_io(page))
goto continue_unlock;
ret = mapping->a_ops->writepage(page, wbc);
if (unlikely(ret)) {
done_index = page->index + 1;
done = 1;
break;
}
if (--wbc->nr_to_write <= 0 &&
wbc->sync_mode == WB_SYNC_NONE) {
done = 1;
break;
}
}
pagevec_release(&pvec);
cond_resched();
}
if (!cycled && !done) {
cycled = 1;
index = 0;
end = writeback_index - 1;
goto retry;
}
if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
mapping->writeback_index = done_index;
return ret;
}
static int f2fs_write_data_pages(struct address_space *mapping,
struct writeback_control *wbc)
{
struct inode *inode = mapping->host;
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
struct blk_plug plug;
int ret;
/* deal with chardevs and other special file */
if (!mapping->a_ops->writepage)
return 0;
/* skip writing if there is no dirty page in this inode */
if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
return 0;
if (S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_NONE &&
get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
available_free_memory(sbi, DIRTY_DENTS))
goto skip_write;
/* skip writing during file defragment */
if (is_inode_flag_set(inode, FI_DO_DEFRAG))
goto skip_write;
/* during POR, we don't need to trigger writepage at all. */
if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
goto skip_write;
trace_f2fs_writepages(mapping->host, wbc, DATA);
blk_start_plug(&plug);
ret = f2fs_write_cache_pages(mapping, wbc);
blk_finish_plug(&plug);
/*
* if some pages were truncated, we cannot guarantee its mapping->host
* to detect pending bios.
*/
f2fs_submit_merged_bio(sbi, DATA, WRITE);
remove_dirty_inode(inode);
return ret;
skip_write:
wbc->pages_skipped += get_dirty_pages(inode);
trace_f2fs_writepages(mapping->host, wbc, DATA);
return 0;
}
static void f2fs_write_failed(struct address_space *mapping, loff_t to)
{
struct inode *inode = mapping->host;
loff_t i_size = i_size_read(inode);
if (to > i_size) {
truncate_pagecache(inode, i_size);
truncate_blocks(inode, i_size, true);
}
}
static int prepare_write_begin(struct f2fs_sb_info *sbi,
struct page *page, loff_t pos, unsigned len,
block_t *blk_addr, bool *node_changed)
{
struct inode *inode = page->mapping->host;
pgoff_t index = page->index;
struct dnode_of_data dn;
struct page *ipage;
bool locked = false;
struct extent_info ei;
int err = 0;
/*
* we already allocated all the blocks, so we don't need to get
* the block addresses when there is no need to fill the page.
*/
if (!f2fs_has_inline_data(inode) && !f2fs_encrypted_inode(inode) &&
len == PAGE_SIZE)
return 0;
if (f2fs_has_inline_data(inode) ||
(pos & PAGE_MASK) >= i_size_read(inode)) {
f2fs_lock_op(sbi);
locked = true;
}
restart:
/* check inline_data */
ipage = get_node_page(sbi, inode->i_ino);
if (IS_ERR(ipage)) {
err = PTR_ERR(ipage);
goto unlock_out;
}
set_new_dnode(&dn, inode, ipage, ipage, 0);
if (f2fs_has_inline_data(inode)) {
if (pos + len <= MAX_INLINE_DATA) {
read_inline_data(page, ipage);
set_inode_flag(inode, FI_DATA_EXIST);
if (inode->i_nlink)
set_inline_node(ipage);
} else {
err = f2fs_convert_inline_page(&dn, page);
if (err)
goto out;
if (dn.data_blkaddr == NULL_ADDR)
err = f2fs_get_block(&dn, index);
}
} else if (locked) {
err = f2fs_get_block(&dn, index);
} else {
if (f2fs_lookup_extent_cache(inode, index, &ei)) {
dn.data_blkaddr = ei.blk + index - ei.fofs;
} else {
/* hole case */
err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
if (err || dn.data_blkaddr == NULL_ADDR) {
f2fs_put_dnode(&dn);
f2fs_lock_op(sbi);
locked = true;
goto restart;
}
}
}
/* convert_inline_page can make node_changed */
*blk_addr = dn.data_blkaddr;
*node_changed = dn.node_changed;
out:
f2fs_put_dnode(&dn);
unlock_out:
if (locked)
f2fs_unlock_op(sbi);
return err;
}
static int f2fs_write_begin(struct file *file, struct address_space *mapping,
loff_t pos, unsigned len, unsigned flags,
struct page **pagep, void **fsdata)
{
struct inode *inode = mapping->host;
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
struct page *page = NULL;
pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
bool need_balance = false;
block_t blkaddr = NULL_ADDR;
int err = 0;
trace_f2fs_write_begin(inode, pos, len, flags);
/*
* We should check this at this moment to avoid deadlock on inode page
* and #0 page. The locking rule for inline_data conversion should be:
* lock_page(page #0) -> lock_page(inode_page)
*/
if (index != 0) {
err = f2fs_convert_inline_inode(inode);
if (err)
goto fail;
}
repeat:
page = grab_cache_page_write_begin(mapping, index, flags);
if (!page) {
err = -ENOMEM;
goto fail;
}
*pagep = page;
err = prepare_write_begin(sbi, page, pos, len,
&blkaddr, &need_balance);
if (err)
goto fail;
if (need_balance && has_not_enough_free_secs(sbi, 0)) {
unlock_page(page);
f2fs_balance_fs(sbi, true);
lock_page(page);
if (page->mapping != mapping) {
/* The page got truncated from under us */
f2fs_put_page(page, 1);
goto repeat;
}
}
f2fs_wait_on_page_writeback(page, DATA, false);
/* wait for GCed encrypted page writeback */
if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
f2fs_wait_on_encrypted_page_writeback(sbi, blkaddr);
if (len == PAGE_SIZE)
goto out_update;
if (PageUptodate(page))
goto out_clear;
if ((pos & PAGE_MASK) >= i_size_read(inode)) {
unsigned start = pos & (PAGE_SIZE - 1);
unsigned end = start + len;
/* Reading beyond i_size is simple: memset to zero */
zero_user_segments(page, 0, start, end, PAGE_SIZE);
goto out_update;
}
if (blkaddr == NEW_ADDR) {
zero_user_segment(page, 0, PAGE_SIZE);
} else {
struct bio *bio;
bio = f2fs_grab_bio(inode, blkaddr, 1);
if (IS_ERR(bio)) {
err = PTR_ERR(bio);
goto fail;
}
bio_set_op_attrs(bio, REQ_OP_READ, READ_SYNC);
if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
bio_put(bio);
err = -EFAULT;
goto fail;
}
__submit_bio(sbi, bio, DATA);
lock_page(page);
if (unlikely(page->mapping != mapping)) {
f2fs_put_page(page, 1);
goto repeat;
}
if (unlikely(!PageUptodate(page))) {
err = -EIO;
goto fail;
}
}
out_update:
if (!PageUptodate(page))
SetPageUptodate(page);
out_clear:
clear_cold_data(page);
return 0;
fail:
f2fs_put_page(page, 1);
f2fs_write_failed(mapping, pos + len);
return err;
}
static int f2fs_write_end(struct file *file,
struct address_space *mapping,
loff_t pos, unsigned len, unsigned copied,
struct page *page, void *fsdata)
{
struct inode *inode = page->mapping->host;
trace_f2fs_write_end(inode, pos, len, copied);
set_page_dirty(page);
f2fs_put_page(page, 1);
if (pos + copied > i_size_read(inode))
f2fs_i_size_write(inode, pos + copied);
f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
return copied;
}
static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
loff_t offset)
{
unsigned blocksize_mask = inode->i_sb->s_blocksize - 1;
if (offset & blocksize_mask)
return -EINVAL;
if (iov_iter_alignment(iter) & blocksize_mask)
return -EINVAL;
return 0;
}
static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
{
struct address_space *mapping = iocb->ki_filp->f_mapping;
struct inode *inode = mapping->host;
size_t count = iov_iter_count(iter);
loff_t offset = iocb->ki_pos;
int rw = iov_iter_rw(iter);
int err;
err = check_direct_IO(inode, iter, offset);
if (err)
return err;
if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
return 0;
if (test_opt(F2FS_I_SB(inode), LFS))
return 0;
trace_f2fs_direct_IO_enter(inode, offset, count, rw);
down_read(&F2FS_I(inode)->dio_rwsem[rw]);
err = blockdev_direct_IO(iocb, inode, iter, get_data_block_dio);
up_read(&F2FS_I(inode)->dio_rwsem[rw]);
if (rw == WRITE) {
if (err > 0)
set_inode_flag(inode, FI_UPDATE_WRITE);
else if (err < 0)
f2fs_write_failed(mapping, offset + count);
}
trace_f2fs_direct_IO_exit(inode, offset, count, rw, err);
return err;
}
void f2fs_invalidate_page(struct page *page, unsigned int offset,
unsigned int length)
{
struct inode *inode = page->mapping->host;
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
(offset % PAGE_SIZE || length != PAGE_SIZE))
return;
if (PageDirty(page)) {
if (inode->i_ino == F2FS_META_INO(sbi))
dec_page_count(sbi, F2FS_DIRTY_META);
else if (inode->i_ino == F2FS_NODE_INO(sbi))
dec_page_count(sbi, F2FS_DIRTY_NODES);
else
inode_dec_dirty_pages(inode);
}
/* This is atomic written page, keep Private */
if (IS_ATOMIC_WRITTEN_PAGE(page))
return;
set_page_private(page, 0);
ClearPagePrivate(page);
}
int f2fs_release_page(struct page *page, gfp_t wait)
{
/* If this is dirty page, keep PagePrivate */
if (PageDirty(page))
return 0;
/* This is atomic written page, keep Private */
if (IS_ATOMIC_WRITTEN_PAGE(page))
return 0;
set_page_private(page, 0);
ClearPagePrivate(page);
return 1;
}
/*
* This was copied from __set_page_dirty_buffers which gives higher performance
* in very high speed storages. (e.g., pmem)
*/
void f2fs_set_page_dirty_nobuffers(struct page *page)
{
struct address_space *mapping = page->mapping;
unsigned long flags;
if (unlikely(!mapping))
return;
spin_lock(&mapping->private_lock);
lock_page_memcg(page);
SetPageDirty(page);
spin_unlock(&mapping->private_lock);
spin_lock_irqsave(&mapping->tree_lock, flags);
WARN_ON_ONCE(!PageUptodate(page));
account_page_dirtied(page, mapping);
radix_tree_tag_set(&mapping->page_tree,
page_index(page), PAGECACHE_TAG_DIRTY);
spin_unlock_irqrestore(&mapping->tree_lock, flags);
unlock_page_memcg(page);
__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
return;
}
static int f2fs_set_data_page_dirty(struct page *page)
{
struct address_space *mapping = page->mapping;
struct inode *inode = mapping->host;
trace_f2fs_set_page_dirty(page, DATA);
if (!PageUptodate(page))
SetPageUptodate(page);
if (f2fs_is_atomic_file(inode)) {
if (!IS_ATOMIC_WRITTEN_PAGE(page)) {
register_inmem_page(inode, page);
return 1;
}
/*
* Previously, this page has been registered, we just
* return here.
*/
return 0;
}
if (!PageDirty(page)) {
f2fs_set_page_dirty_nobuffers(page);
update_dirty_page(inode, page);
return 1;
}
return 0;
}
static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
{
struct inode *inode = mapping->host;
if (f2fs_has_inline_data(inode))
return 0;
/* make sure allocating whole blocks */
if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
filemap_write_and_wait(mapping);
return generic_block_bmap(mapping, block, get_data_block_bmap);
}
const struct address_space_operations f2fs_dblock_aops = {
.readpage = f2fs_read_data_page,
.readpages = f2fs_read_data_pages,
.writepage = f2fs_write_data_page,
.writepages = f2fs_write_data_pages,
.write_begin = f2fs_write_begin,
.write_end = f2fs_write_end,
.set_page_dirty = f2fs_set_data_page_dirty,
.invalidatepage = f2fs_invalidate_page,
.releasepage = f2fs_release_page,
.direct_IO = f2fs_direct_IO,
.bmap = f2fs_bmap,
};