mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-23 20:40:17 +07:00
b24413180f
Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
233 lines
7.4 KiB
C
233 lines
7.4 KiB
C
/* SPDX-License-Identifier: GPL-2.0 */
|
|
/*
|
|
* linux/include/linux/sunrpc/auth.h
|
|
*
|
|
* Declarations for the RPC client authentication machinery.
|
|
*
|
|
* Copyright (C) 1996, Olaf Kirch <okir@monad.swb.de>
|
|
*/
|
|
|
|
#ifndef _LINUX_SUNRPC_AUTH_H
|
|
#define _LINUX_SUNRPC_AUTH_H
|
|
|
|
#ifdef __KERNEL__
|
|
|
|
#include <linux/sunrpc/sched.h>
|
|
#include <linux/sunrpc/msg_prot.h>
|
|
#include <linux/sunrpc/xdr.h>
|
|
|
|
#include <linux/atomic.h>
|
|
#include <linux/rcupdate.h>
|
|
#include <linux/uidgid.h>
|
|
#include <linux/utsname.h>
|
|
|
|
/*
|
|
* Maximum size of AUTH_NONE authentication information, in XDR words.
|
|
*/
|
|
#define NUL_CALLSLACK (4)
|
|
#define NUL_REPLYSLACK (2)
|
|
|
|
/*
|
|
* Size of the nodename buffer. RFC1831 specifies a hard limit of 255 bytes,
|
|
* but Linux hostnames are actually limited to __NEW_UTS_LEN bytes.
|
|
*/
|
|
#define UNX_MAXNODENAME __NEW_UTS_LEN
|
|
#define UNX_CALLSLACK (21 + XDR_QUADLEN(UNX_MAXNODENAME))
|
|
#define UNX_NGROUPS 16
|
|
|
|
struct rpcsec_gss_info;
|
|
|
|
/* auth_cred ac_flags bits */
|
|
enum {
|
|
RPC_CRED_KEY_EXPIRE_SOON = 1, /* underlying cred key will expire soon */
|
|
RPC_CRED_NOTIFY_TIMEOUT = 2, /* nofity generic cred when underlying
|
|
key will expire soon */
|
|
};
|
|
|
|
/* Work around the lack of a VFS credential */
|
|
struct auth_cred {
|
|
kuid_t uid;
|
|
kgid_t gid;
|
|
struct group_info *group_info;
|
|
const char *principal;
|
|
unsigned long ac_flags;
|
|
unsigned char machine_cred : 1;
|
|
};
|
|
|
|
/*
|
|
* Client user credentials
|
|
*/
|
|
struct rpc_auth;
|
|
struct rpc_credops;
|
|
struct rpc_cred {
|
|
struct hlist_node cr_hash; /* hash chain */
|
|
struct list_head cr_lru; /* lru garbage collection */
|
|
struct rcu_head cr_rcu;
|
|
struct rpc_auth * cr_auth;
|
|
const struct rpc_credops *cr_ops;
|
|
unsigned long cr_expire; /* when to gc */
|
|
unsigned long cr_flags; /* various flags */
|
|
atomic_t cr_count; /* ref count */
|
|
|
|
kuid_t cr_uid;
|
|
|
|
/* per-flavor data */
|
|
};
|
|
#define RPCAUTH_CRED_NEW 0
|
|
#define RPCAUTH_CRED_UPTODATE 1
|
|
#define RPCAUTH_CRED_HASHED 2
|
|
#define RPCAUTH_CRED_NEGATIVE 3
|
|
|
|
/* rpc_auth au_flags */
|
|
#define RPCAUTH_AUTH_NO_CRKEY_TIMEOUT 0x0001 /* underlying cred has no key timeout */
|
|
|
|
/*
|
|
* Client authentication handle
|
|
*/
|
|
struct rpc_cred_cache;
|
|
struct rpc_authops;
|
|
struct rpc_auth {
|
|
unsigned int au_cslack; /* call cred size estimate */
|
|
/* guess at number of u32's auth adds before
|
|
* reply data; normally the verifier size: */
|
|
unsigned int au_rslack;
|
|
/* for gss, used to calculate au_rslack: */
|
|
unsigned int au_verfsize;
|
|
|
|
unsigned int au_flags; /* various flags */
|
|
const struct rpc_authops *au_ops; /* operations */
|
|
rpc_authflavor_t au_flavor; /* pseudoflavor (note may
|
|
* differ from the flavor in
|
|
* au_ops->au_flavor in gss
|
|
* case) */
|
|
atomic_t au_count; /* Reference counter */
|
|
|
|
struct rpc_cred_cache * au_credcache;
|
|
/* per-flavor data */
|
|
};
|
|
|
|
/* rpc_auth au_flags */
|
|
#define RPCAUTH_AUTH_DATATOUCH 0x00000002
|
|
|
|
struct rpc_auth_create_args {
|
|
rpc_authflavor_t pseudoflavor;
|
|
const char *target_name;
|
|
};
|
|
|
|
/* Flags for rpcauth_lookupcred() */
|
|
#define RPCAUTH_LOOKUP_NEW 0x01 /* Accept an uninitialised cred */
|
|
#define RPCAUTH_LOOKUP_RCU 0x02 /* lock-less lookup */
|
|
|
|
/*
|
|
* Client authentication ops
|
|
*/
|
|
struct rpc_authops {
|
|
struct module *owner;
|
|
rpc_authflavor_t au_flavor; /* flavor (RPC_AUTH_*) */
|
|
char * au_name;
|
|
struct rpc_auth * (*create)(struct rpc_auth_create_args *, struct rpc_clnt *);
|
|
void (*destroy)(struct rpc_auth *);
|
|
|
|
int (*hash_cred)(struct auth_cred *, unsigned int);
|
|
struct rpc_cred * (*lookup_cred)(struct rpc_auth *, struct auth_cred *, int);
|
|
struct rpc_cred * (*crcreate)(struct rpc_auth*, struct auth_cred *, int, gfp_t);
|
|
int (*list_pseudoflavors)(rpc_authflavor_t *, int);
|
|
rpc_authflavor_t (*info2flavor)(struct rpcsec_gss_info *);
|
|
int (*flavor2info)(rpc_authflavor_t,
|
|
struct rpcsec_gss_info *);
|
|
int (*key_timeout)(struct rpc_auth *,
|
|
struct rpc_cred *);
|
|
};
|
|
|
|
struct rpc_credops {
|
|
const char * cr_name; /* Name of the auth flavour */
|
|
int (*cr_init)(struct rpc_auth *, struct rpc_cred *);
|
|
void (*crdestroy)(struct rpc_cred *);
|
|
|
|
int (*crmatch)(struct auth_cred *, struct rpc_cred *, int);
|
|
struct rpc_cred * (*crbind)(struct rpc_task *, struct rpc_cred *, int);
|
|
__be32 * (*crmarshal)(struct rpc_task *, __be32 *);
|
|
int (*crrefresh)(struct rpc_task *);
|
|
__be32 * (*crvalidate)(struct rpc_task *, __be32 *);
|
|
int (*crwrap_req)(struct rpc_task *, kxdreproc_t,
|
|
void *, __be32 *, void *);
|
|
int (*crunwrap_resp)(struct rpc_task *, kxdrdproc_t,
|
|
void *, __be32 *, void *);
|
|
int (*crkey_timeout)(struct rpc_cred *);
|
|
bool (*crkey_to_expire)(struct rpc_cred *);
|
|
char * (*crstringify_acceptor)(struct rpc_cred *);
|
|
};
|
|
|
|
extern const struct rpc_authops authunix_ops;
|
|
extern const struct rpc_authops authnull_ops;
|
|
|
|
int __init rpc_init_authunix(void);
|
|
int __init rpc_init_generic_auth(void);
|
|
int __init rpcauth_init_module(void);
|
|
void rpcauth_remove_module(void);
|
|
void rpc_destroy_generic_auth(void);
|
|
void rpc_destroy_authunix(void);
|
|
|
|
struct rpc_cred * rpc_lookup_cred(void);
|
|
struct rpc_cred * rpc_lookup_cred_nonblock(void);
|
|
struct rpc_cred * rpc_lookup_generic_cred(struct auth_cred *, int, gfp_t);
|
|
struct rpc_cred * rpc_lookup_machine_cred(const char *service_name);
|
|
int rpcauth_register(const struct rpc_authops *);
|
|
int rpcauth_unregister(const struct rpc_authops *);
|
|
struct rpc_auth * rpcauth_create(struct rpc_auth_create_args *,
|
|
struct rpc_clnt *);
|
|
void rpcauth_release(struct rpc_auth *);
|
|
rpc_authflavor_t rpcauth_get_pseudoflavor(rpc_authflavor_t,
|
|
struct rpcsec_gss_info *);
|
|
int rpcauth_get_gssinfo(rpc_authflavor_t,
|
|
struct rpcsec_gss_info *);
|
|
int rpcauth_list_flavors(rpc_authflavor_t *, int);
|
|
struct rpc_cred * rpcauth_lookup_credcache(struct rpc_auth *, struct auth_cred *, int, gfp_t);
|
|
void rpcauth_init_cred(struct rpc_cred *, const struct auth_cred *, struct rpc_auth *, const struct rpc_credops *);
|
|
struct rpc_cred * rpcauth_lookupcred(struct rpc_auth *, int);
|
|
struct rpc_cred * rpcauth_generic_bind_cred(struct rpc_task *, struct rpc_cred *, int);
|
|
void put_rpccred(struct rpc_cred *);
|
|
__be32 * rpcauth_marshcred(struct rpc_task *, __be32 *);
|
|
__be32 * rpcauth_checkverf(struct rpc_task *, __be32 *);
|
|
int rpcauth_wrap_req(struct rpc_task *task, kxdreproc_t encode, void *rqstp, __be32 *data, void *obj);
|
|
int rpcauth_unwrap_resp(struct rpc_task *task, kxdrdproc_t decode, void *rqstp, __be32 *data, void *obj);
|
|
int rpcauth_refreshcred(struct rpc_task *);
|
|
void rpcauth_invalcred(struct rpc_task *);
|
|
int rpcauth_uptodatecred(struct rpc_task *);
|
|
int rpcauth_init_credcache(struct rpc_auth *);
|
|
void rpcauth_destroy_credcache(struct rpc_auth *);
|
|
void rpcauth_clear_credcache(struct rpc_cred_cache *);
|
|
int rpcauth_key_timeout_notify(struct rpc_auth *,
|
|
struct rpc_cred *);
|
|
bool rpcauth_cred_key_to_expire(struct rpc_auth *, struct rpc_cred *);
|
|
char * rpcauth_stringify_acceptor(struct rpc_cred *);
|
|
|
|
static inline
|
|
struct rpc_cred * get_rpccred(struct rpc_cred *cred)
|
|
{
|
|
if (cred != NULL)
|
|
atomic_inc(&cred->cr_count);
|
|
return cred;
|
|
}
|
|
|
|
/**
|
|
* get_rpccred_rcu - get a reference to a cred using rcu-protected pointer
|
|
* @cred: cred of which to take a reference
|
|
*
|
|
* In some cases, we may have a pointer to a credential to which we
|
|
* want to take a reference, but don't already have one. Because these
|
|
* objects are freed using RCU, we can access the cr_count while its
|
|
* on its way to destruction and only take a reference if it's not already
|
|
* zero.
|
|
*/
|
|
static inline struct rpc_cred *
|
|
get_rpccred_rcu(struct rpc_cred *cred)
|
|
{
|
|
if (atomic_inc_not_zero(&cred->cr_count))
|
|
return cred;
|
|
return NULL;
|
|
}
|
|
|
|
#endif /* __KERNEL__ */
|
|
#endif /* _LINUX_SUNRPC_AUTH_H */
|