linux_dsm_epyc7002/drivers/gpu/drm/amd/powerplay/vega20_ppt.c
Kent Russell 32e40ffbce drm/powerplay: Fix Vega20 Average Power value v4
The SMU changed reading from CurrSocketPower to AverageSocketPower, so
reflect this accordingly. This fixes the issue where Average Power
Consumption was being reported as 0 from SMU 40.46-onward

v2: Fixed headline prefix
v3: Add check for SMU version for proper compatibility
v4: Style fix

Signed-off-by: Kent Russell <kent.russell@amd.com>
Reviewed-by: Alex Deucher <alexander.deucher@amd.com>
Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
2019-08-22 17:17:35 -05:00

3193 lines
100 KiB
C

/*
* Copyright 2019 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
*/
#include "pp_debug.h"
#include <linux/firmware.h>
#include "amdgpu.h"
#include "amdgpu_smu.h"
#include "atomfirmware.h"
#include "amdgpu_atomfirmware.h"
#include "smu_v11_0.h"
#include "smu11_driver_if.h"
#include "soc15_common.h"
#include "atom.h"
#include "power_state.h"
#include "vega20_ppt.h"
#include "vega20_pptable.h"
#include "vega20_ppsmc.h"
#include "nbio/nbio_7_4_sh_mask.h"
#include "asic_reg/thm/thm_11_0_2_offset.h"
#include "asic_reg/thm/thm_11_0_2_sh_mask.h"
#define smnPCIE_LC_SPEED_CNTL 0x11140290
#define smnPCIE_LC_LINK_WIDTH_CNTL 0x11140288
#define CTF_OFFSET_EDGE 5
#define CTF_OFFSET_HOTSPOT 5
#define CTF_OFFSET_HBM 5
#define MSG_MAP(msg) \
[SMU_MSG_##msg] = {1, PPSMC_MSG_##msg}
#define SMC_DPM_FEATURE (FEATURE_DPM_PREFETCHER_MASK | \
FEATURE_DPM_GFXCLK_MASK | \
FEATURE_DPM_UCLK_MASK | \
FEATURE_DPM_SOCCLK_MASK | \
FEATURE_DPM_UVD_MASK | \
FEATURE_DPM_VCE_MASK | \
FEATURE_DPM_MP0CLK_MASK | \
FEATURE_DPM_LINK_MASK | \
FEATURE_DPM_DCEFCLK_MASK)
static struct smu_11_0_cmn2aisc_mapping vega20_message_map[SMU_MSG_MAX_COUNT] = {
MSG_MAP(TestMessage),
MSG_MAP(GetSmuVersion),
MSG_MAP(GetDriverIfVersion),
MSG_MAP(SetAllowedFeaturesMaskLow),
MSG_MAP(SetAllowedFeaturesMaskHigh),
MSG_MAP(EnableAllSmuFeatures),
MSG_MAP(DisableAllSmuFeatures),
MSG_MAP(EnableSmuFeaturesLow),
MSG_MAP(EnableSmuFeaturesHigh),
MSG_MAP(DisableSmuFeaturesLow),
MSG_MAP(DisableSmuFeaturesHigh),
MSG_MAP(GetEnabledSmuFeaturesLow),
MSG_MAP(GetEnabledSmuFeaturesHigh),
MSG_MAP(SetWorkloadMask),
MSG_MAP(SetPptLimit),
MSG_MAP(SetDriverDramAddrHigh),
MSG_MAP(SetDriverDramAddrLow),
MSG_MAP(SetToolsDramAddrHigh),
MSG_MAP(SetToolsDramAddrLow),
MSG_MAP(TransferTableSmu2Dram),
MSG_MAP(TransferTableDram2Smu),
MSG_MAP(UseDefaultPPTable),
MSG_MAP(UseBackupPPTable),
MSG_MAP(RunBtc),
MSG_MAP(RequestI2CBus),
MSG_MAP(ReleaseI2CBus),
MSG_MAP(SetFloorSocVoltage),
MSG_MAP(SoftReset),
MSG_MAP(StartBacoMonitor),
MSG_MAP(CancelBacoMonitor),
MSG_MAP(EnterBaco),
MSG_MAP(SetSoftMinByFreq),
MSG_MAP(SetSoftMaxByFreq),
MSG_MAP(SetHardMinByFreq),
MSG_MAP(SetHardMaxByFreq),
MSG_MAP(GetMinDpmFreq),
MSG_MAP(GetMaxDpmFreq),
MSG_MAP(GetDpmFreqByIndex),
MSG_MAP(GetDpmClockFreq),
MSG_MAP(GetSsVoltageByDpm),
MSG_MAP(SetMemoryChannelConfig),
MSG_MAP(SetGeminiMode),
MSG_MAP(SetGeminiApertureHigh),
MSG_MAP(SetGeminiApertureLow),
MSG_MAP(SetMinLinkDpmByIndex),
MSG_MAP(OverridePcieParameters),
MSG_MAP(OverDriveSetPercentage),
MSG_MAP(SetMinDeepSleepDcefclk),
MSG_MAP(ReenableAcDcInterrupt),
MSG_MAP(NotifyPowerSource),
MSG_MAP(SetUclkFastSwitch),
MSG_MAP(SetUclkDownHyst),
MSG_MAP(GetCurrentRpm),
MSG_MAP(SetVideoFps),
MSG_MAP(SetTjMax),
MSG_MAP(SetFanTemperatureTarget),
MSG_MAP(PrepareMp1ForUnload),
MSG_MAP(DramLogSetDramAddrHigh),
MSG_MAP(DramLogSetDramAddrLow),
MSG_MAP(DramLogSetDramSize),
MSG_MAP(SetFanMaxRpm),
MSG_MAP(SetFanMinPwm),
MSG_MAP(ConfigureGfxDidt),
MSG_MAP(NumOfDisplays),
MSG_MAP(RemoveMargins),
MSG_MAP(ReadSerialNumTop32),
MSG_MAP(ReadSerialNumBottom32),
MSG_MAP(SetSystemVirtualDramAddrHigh),
MSG_MAP(SetSystemVirtualDramAddrLow),
MSG_MAP(WaflTest),
MSG_MAP(SetFclkGfxClkRatio),
MSG_MAP(AllowGfxOff),
MSG_MAP(DisallowGfxOff),
MSG_MAP(GetPptLimit),
MSG_MAP(GetDcModeMaxDpmFreq),
MSG_MAP(GetDebugData),
MSG_MAP(SetXgmiMode),
MSG_MAP(RunAfllBtc),
MSG_MAP(ExitBaco),
MSG_MAP(PrepareMp1ForReset),
MSG_MAP(PrepareMp1ForShutdown),
MSG_MAP(SetMGpuFanBoostLimitRpm),
MSG_MAP(GetAVFSVoltageByDpm),
};
static struct smu_11_0_cmn2aisc_mapping vega20_clk_map[SMU_CLK_COUNT] = {
CLK_MAP(GFXCLK, PPCLK_GFXCLK),
CLK_MAP(VCLK, PPCLK_VCLK),
CLK_MAP(DCLK, PPCLK_DCLK),
CLK_MAP(ECLK, PPCLK_ECLK),
CLK_MAP(SOCCLK, PPCLK_SOCCLK),
CLK_MAP(UCLK, PPCLK_UCLK),
CLK_MAP(DCEFCLK, PPCLK_DCEFCLK),
CLK_MAP(DISPCLK, PPCLK_DISPCLK),
CLK_MAP(PIXCLK, PPCLK_PIXCLK),
CLK_MAP(PHYCLK, PPCLK_PHYCLK),
CLK_MAP(FCLK, PPCLK_FCLK),
};
static struct smu_11_0_cmn2aisc_mapping vega20_feature_mask_map[SMU_FEATURE_COUNT] = {
FEA_MAP(DPM_PREFETCHER),
FEA_MAP(DPM_GFXCLK),
FEA_MAP(DPM_UCLK),
FEA_MAP(DPM_SOCCLK),
FEA_MAP(DPM_UVD),
FEA_MAP(DPM_VCE),
FEA_MAP(ULV),
FEA_MAP(DPM_MP0CLK),
FEA_MAP(DPM_LINK),
FEA_MAP(DPM_DCEFCLK),
FEA_MAP(DS_GFXCLK),
FEA_MAP(DS_SOCCLK),
FEA_MAP(DS_LCLK),
FEA_MAP(PPT),
FEA_MAP(TDC),
FEA_MAP(THERMAL),
FEA_MAP(GFX_PER_CU_CG),
FEA_MAP(RM),
FEA_MAP(DS_DCEFCLK),
FEA_MAP(ACDC),
FEA_MAP(VR0HOT),
FEA_MAP(VR1HOT),
FEA_MAP(FW_CTF),
FEA_MAP(LED_DISPLAY),
FEA_MAP(FAN_CONTROL),
FEA_MAP(GFX_EDC),
FEA_MAP(GFXOFF),
FEA_MAP(CG),
FEA_MAP(DPM_FCLK),
FEA_MAP(DS_FCLK),
FEA_MAP(DS_MP1CLK),
FEA_MAP(DS_MP0CLK),
FEA_MAP(XGMI),
};
static struct smu_11_0_cmn2aisc_mapping vega20_table_map[SMU_TABLE_COUNT] = {
TAB_MAP(PPTABLE),
TAB_MAP(WATERMARKS),
TAB_MAP(AVFS),
TAB_MAP(AVFS_PSM_DEBUG),
TAB_MAP(AVFS_FUSE_OVERRIDE),
TAB_MAP(PMSTATUSLOG),
TAB_MAP(SMU_METRICS),
TAB_MAP(DRIVER_SMU_CONFIG),
TAB_MAP(ACTIVITY_MONITOR_COEFF),
TAB_MAP(OVERDRIVE),
};
static struct smu_11_0_cmn2aisc_mapping vega20_pwr_src_map[SMU_POWER_SOURCE_COUNT] = {
PWR_MAP(AC),
PWR_MAP(DC),
};
static struct smu_11_0_cmn2aisc_mapping vega20_workload_map[PP_SMC_POWER_PROFILE_COUNT] = {
WORKLOAD_MAP(PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT, WORKLOAD_DEFAULT_BIT),
WORKLOAD_MAP(PP_SMC_POWER_PROFILE_FULLSCREEN3D, WORKLOAD_PPLIB_FULL_SCREEN_3D_BIT),
WORKLOAD_MAP(PP_SMC_POWER_PROFILE_POWERSAVING, WORKLOAD_PPLIB_POWER_SAVING_BIT),
WORKLOAD_MAP(PP_SMC_POWER_PROFILE_VIDEO, WORKLOAD_PPLIB_VIDEO_BIT),
WORKLOAD_MAP(PP_SMC_POWER_PROFILE_VR, WORKLOAD_PPLIB_VR_BIT),
WORKLOAD_MAP(PP_SMC_POWER_PROFILE_COMPUTE, WORKLOAD_PPLIB_CUSTOM_BIT),
WORKLOAD_MAP(PP_SMC_POWER_PROFILE_CUSTOM, WORKLOAD_PPLIB_CUSTOM_BIT),
};
static int vega20_get_smu_table_index(struct smu_context *smc, uint32_t index)
{
struct smu_11_0_cmn2aisc_mapping mapping;
if (index >= SMU_TABLE_COUNT)
return -EINVAL;
mapping = vega20_table_map[index];
if (!(mapping.valid_mapping)) {
return -EINVAL;
}
return mapping.map_to;
}
static int vega20_get_pwr_src_index(struct smu_context *smc, uint32_t index)
{
struct smu_11_0_cmn2aisc_mapping mapping;
if (index >= SMU_POWER_SOURCE_COUNT)
return -EINVAL;
mapping = vega20_pwr_src_map[index];
if (!(mapping.valid_mapping)) {
return -EINVAL;
}
return mapping.map_to;
}
static int vega20_get_smu_feature_index(struct smu_context *smc, uint32_t index)
{
struct smu_11_0_cmn2aisc_mapping mapping;
if (index >= SMU_FEATURE_COUNT)
return -EINVAL;
mapping = vega20_feature_mask_map[index];
if (!(mapping.valid_mapping)) {
return -EINVAL;
}
return mapping.map_to;
}
static int vega20_get_smu_clk_index(struct smu_context *smc, uint32_t index)
{
struct smu_11_0_cmn2aisc_mapping mapping;
if (index >= SMU_CLK_COUNT)
return -EINVAL;
mapping = vega20_clk_map[index];
if (!(mapping.valid_mapping)) {
return -EINVAL;
}
return mapping.map_to;
}
static int vega20_get_smu_msg_index(struct smu_context *smc, uint32_t index)
{
struct smu_11_0_cmn2aisc_mapping mapping;
if (index >= SMU_MSG_MAX_COUNT)
return -EINVAL;
mapping = vega20_message_map[index];
if (!(mapping.valid_mapping)) {
return -EINVAL;
}
return mapping.map_to;
}
static int vega20_get_workload_type(struct smu_context *smu, enum PP_SMC_POWER_PROFILE profile)
{
struct smu_11_0_cmn2aisc_mapping mapping;
if (profile > PP_SMC_POWER_PROFILE_CUSTOM)
return -EINVAL;
mapping = vega20_workload_map[profile];
if (!(mapping.valid_mapping)) {
return -EINVAL;
}
return mapping.map_to;
}
static int vega20_tables_init(struct smu_context *smu, struct smu_table *tables)
{
struct smu_table_context *smu_table = &smu->smu_table;
SMU_TABLE_INIT(tables, SMU_TABLE_PPTABLE, sizeof(PPTable_t),
PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM);
SMU_TABLE_INIT(tables, SMU_TABLE_WATERMARKS, sizeof(Watermarks_t),
PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM);
SMU_TABLE_INIT(tables, SMU_TABLE_SMU_METRICS, sizeof(SmuMetrics_t),
PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM);
SMU_TABLE_INIT(tables, SMU_TABLE_OVERDRIVE, sizeof(OverDriveTable_t),
PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM);
SMU_TABLE_INIT(tables, SMU_TABLE_PMSTATUSLOG, SMU11_TOOL_SIZE,
PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM);
SMU_TABLE_INIT(tables, SMU_TABLE_ACTIVITY_MONITOR_COEFF,
sizeof(DpmActivityMonitorCoeffInt_t), PAGE_SIZE,
AMDGPU_GEM_DOMAIN_VRAM);
smu_table->metrics_table = kzalloc(sizeof(SmuMetrics_t), GFP_KERNEL);
if (!smu_table->metrics_table)
return -ENOMEM;
smu_table->metrics_time = 0;
return 0;
}
static int vega20_allocate_dpm_context(struct smu_context *smu)
{
struct smu_dpm_context *smu_dpm = &smu->smu_dpm;
if (smu_dpm->dpm_context)
return -EINVAL;
smu_dpm->dpm_context = kzalloc(sizeof(struct vega20_dpm_table),
GFP_KERNEL);
if (!smu_dpm->dpm_context)
return -ENOMEM;
if (smu_dpm->golden_dpm_context)
return -EINVAL;
smu_dpm->golden_dpm_context = kzalloc(sizeof(struct vega20_dpm_table),
GFP_KERNEL);
if (!smu_dpm->golden_dpm_context)
return -ENOMEM;
smu_dpm->dpm_context_size = sizeof(struct vega20_dpm_table);
smu_dpm->dpm_current_power_state = kzalloc(sizeof(struct smu_power_state),
GFP_KERNEL);
if (!smu_dpm->dpm_current_power_state)
return -ENOMEM;
smu_dpm->dpm_request_power_state = kzalloc(sizeof(struct smu_power_state),
GFP_KERNEL);
if (!smu_dpm->dpm_request_power_state)
return -ENOMEM;
return 0;
}
static int vega20_setup_od8_information(struct smu_context *smu)
{
ATOM_Vega20_POWERPLAYTABLE *powerplay_table = NULL;
struct smu_table_context *table_context = &smu->smu_table;
struct vega20_od8_settings *od8_settings = (struct vega20_od8_settings *)smu->od_settings;
uint32_t od_feature_count, od_feature_array_size,
od_setting_count, od_setting_array_size;
if (!table_context->power_play_table)
return -EINVAL;
powerplay_table = table_context->power_play_table;
if (powerplay_table->OverDrive8Table.ucODTableRevision == 1) {
/* Setup correct ODFeatureCount, and store ODFeatureArray from
* powerplay table to od_feature_capabilities */
od_feature_count =
(le32_to_cpu(powerplay_table->OverDrive8Table.ODFeatureCount) >
ATOM_VEGA20_ODFEATURE_COUNT) ?
ATOM_VEGA20_ODFEATURE_COUNT :
le32_to_cpu(powerplay_table->OverDrive8Table.ODFeatureCount);
od_feature_array_size = sizeof(uint8_t) * od_feature_count;
if (od8_settings->od_feature_capabilities)
return -EINVAL;
od8_settings->od_feature_capabilities = kmemdup(&powerplay_table->OverDrive8Table.ODFeatureCapabilities,
od_feature_array_size,
GFP_KERNEL);
if (!od8_settings->od_feature_capabilities)
return -ENOMEM;
/* Setup correct ODSettingCount, and store ODSettingArray from
* powerplay table to od_settings_max and od_setting_min */
od_setting_count =
(le32_to_cpu(powerplay_table->OverDrive8Table.ODSettingCount) >
ATOM_VEGA20_ODSETTING_COUNT) ?
ATOM_VEGA20_ODSETTING_COUNT :
le32_to_cpu(powerplay_table->OverDrive8Table.ODSettingCount);
od_setting_array_size = sizeof(uint32_t) * od_setting_count;
if (od8_settings->od_settings_max)
return -EINVAL;
od8_settings->od_settings_max = kmemdup(&powerplay_table->OverDrive8Table.ODSettingsMax,
od_setting_array_size,
GFP_KERNEL);
if (!od8_settings->od_settings_max) {
kfree(od8_settings->od_feature_capabilities);
od8_settings->od_feature_capabilities = NULL;
return -ENOMEM;
}
if (od8_settings->od_settings_min)
return -EINVAL;
od8_settings->od_settings_min = kmemdup(&powerplay_table->OverDrive8Table.ODSettingsMin,
od_setting_array_size,
GFP_KERNEL);
if (!od8_settings->od_settings_min) {
kfree(od8_settings->od_feature_capabilities);
od8_settings->od_feature_capabilities = NULL;
kfree(od8_settings->od_settings_max);
od8_settings->od_settings_max = NULL;
return -ENOMEM;
}
}
return 0;
}
static int vega20_store_powerplay_table(struct smu_context *smu)
{
ATOM_Vega20_POWERPLAYTABLE *powerplay_table = NULL;
struct smu_table_context *table_context = &smu->smu_table;
if (!table_context->power_play_table)
return -EINVAL;
powerplay_table = table_context->power_play_table;
memcpy(table_context->driver_pptable, &powerplay_table->smcPPTable,
sizeof(PPTable_t));
table_context->thermal_controller_type = powerplay_table->ucThermalControllerType;
table_context->TDPODLimit = le32_to_cpu(powerplay_table->OverDrive8Table.ODSettingsMax[ATOM_VEGA20_ODSETTING_POWERPERCENTAGE]);
return 0;
}
static int vega20_append_powerplay_table(struct smu_context *smu)
{
struct smu_table_context *table_context = &smu->smu_table;
PPTable_t *smc_pptable = table_context->driver_pptable;
struct atom_smc_dpm_info_v4_4 *smc_dpm_table;
int index, i, ret;
index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1,
smc_dpm_info);
ret = smu_get_atom_data_table(smu, index, NULL, NULL, NULL,
(uint8_t **)&smc_dpm_table);
if (ret)
return ret;
smc_pptable->MaxVoltageStepGfx = smc_dpm_table->maxvoltagestepgfx;
smc_pptable->MaxVoltageStepSoc = smc_dpm_table->maxvoltagestepsoc;
smc_pptable->VddGfxVrMapping = smc_dpm_table->vddgfxvrmapping;
smc_pptable->VddSocVrMapping = smc_dpm_table->vddsocvrmapping;
smc_pptable->VddMem0VrMapping = smc_dpm_table->vddmem0vrmapping;
smc_pptable->VddMem1VrMapping = smc_dpm_table->vddmem1vrmapping;
smc_pptable->GfxUlvPhaseSheddingMask = smc_dpm_table->gfxulvphasesheddingmask;
smc_pptable->SocUlvPhaseSheddingMask = smc_dpm_table->soculvphasesheddingmask;
smc_pptable->ExternalSensorPresent = smc_dpm_table->externalsensorpresent;
smc_pptable->GfxMaxCurrent = smc_dpm_table->gfxmaxcurrent;
smc_pptable->GfxOffset = smc_dpm_table->gfxoffset;
smc_pptable->Padding_TelemetryGfx = smc_dpm_table->padding_telemetrygfx;
smc_pptable->SocMaxCurrent = smc_dpm_table->socmaxcurrent;
smc_pptable->SocOffset = smc_dpm_table->socoffset;
smc_pptable->Padding_TelemetrySoc = smc_dpm_table->padding_telemetrysoc;
smc_pptable->Mem0MaxCurrent = smc_dpm_table->mem0maxcurrent;
smc_pptable->Mem0Offset = smc_dpm_table->mem0offset;
smc_pptable->Padding_TelemetryMem0 = smc_dpm_table->padding_telemetrymem0;
smc_pptable->Mem1MaxCurrent = smc_dpm_table->mem1maxcurrent;
smc_pptable->Mem1Offset = smc_dpm_table->mem1offset;
smc_pptable->Padding_TelemetryMem1 = smc_dpm_table->padding_telemetrymem1;
smc_pptable->AcDcGpio = smc_dpm_table->acdcgpio;
smc_pptable->AcDcPolarity = smc_dpm_table->acdcpolarity;
smc_pptable->VR0HotGpio = smc_dpm_table->vr0hotgpio;
smc_pptable->VR0HotPolarity = smc_dpm_table->vr0hotpolarity;
smc_pptable->VR1HotGpio = smc_dpm_table->vr1hotgpio;
smc_pptable->VR1HotPolarity = smc_dpm_table->vr1hotpolarity;
smc_pptable->Padding1 = smc_dpm_table->padding1;
smc_pptable->Padding2 = smc_dpm_table->padding2;
smc_pptable->LedPin0 = smc_dpm_table->ledpin0;
smc_pptable->LedPin1 = smc_dpm_table->ledpin1;
smc_pptable->LedPin2 = smc_dpm_table->ledpin2;
smc_pptable->PllGfxclkSpreadEnabled = smc_dpm_table->pllgfxclkspreadenabled;
smc_pptable->PllGfxclkSpreadPercent = smc_dpm_table->pllgfxclkspreadpercent;
smc_pptable->PllGfxclkSpreadFreq = smc_dpm_table->pllgfxclkspreadfreq;
smc_pptable->UclkSpreadEnabled = 0;
smc_pptable->UclkSpreadPercent = smc_dpm_table->uclkspreadpercent;
smc_pptable->UclkSpreadFreq = smc_dpm_table->uclkspreadfreq;
smc_pptable->FclkSpreadEnabled = smc_dpm_table->fclkspreadenabled;
smc_pptable->FclkSpreadPercent = smc_dpm_table->fclkspreadpercent;
smc_pptable->FclkSpreadFreq = smc_dpm_table->fclkspreadfreq;
smc_pptable->FllGfxclkSpreadEnabled = smc_dpm_table->fllgfxclkspreadenabled;
smc_pptable->FllGfxclkSpreadPercent = smc_dpm_table->fllgfxclkspreadpercent;
smc_pptable->FllGfxclkSpreadFreq = smc_dpm_table->fllgfxclkspreadfreq;
for (i = 0; i < I2C_CONTROLLER_NAME_COUNT; i++) {
smc_pptable->I2cControllers[i].Enabled =
smc_dpm_table->i2ccontrollers[i].enabled;
smc_pptable->I2cControllers[i].SlaveAddress =
smc_dpm_table->i2ccontrollers[i].slaveaddress;
smc_pptable->I2cControllers[i].ControllerPort =
smc_dpm_table->i2ccontrollers[i].controllerport;
smc_pptable->I2cControllers[i].ThermalThrottler =
smc_dpm_table->i2ccontrollers[i].thermalthrottler;
smc_pptable->I2cControllers[i].I2cProtocol =
smc_dpm_table->i2ccontrollers[i].i2cprotocol;
smc_pptable->I2cControllers[i].I2cSpeed =
smc_dpm_table->i2ccontrollers[i].i2cspeed;
}
return 0;
}
static int vega20_check_powerplay_table(struct smu_context *smu)
{
ATOM_Vega20_POWERPLAYTABLE *powerplay_table = NULL;
struct smu_table_context *table_context = &smu->smu_table;
powerplay_table = table_context->power_play_table;
if (powerplay_table->sHeader.format_revision < ATOM_VEGA20_TABLE_REVISION_VEGA20) {
pr_err("Unsupported PPTable format!");
return -EINVAL;
}
if (!powerplay_table->sHeader.structuresize) {
pr_err("Invalid PowerPlay Table!");
return -EINVAL;
}
return 0;
}
static int vega20_run_btc_afll(struct smu_context *smu)
{
return smu_send_smc_msg(smu, SMU_MSG_RunAfllBtc);
}
#define FEATURE_MASK(feature) (1ULL << feature)
static int
vega20_get_allowed_feature_mask(struct smu_context *smu,
uint32_t *feature_mask, uint32_t num)
{
if (num > 2)
return -EINVAL;
memset(feature_mask, 0, sizeof(uint32_t) * num);
*(uint64_t *)feature_mask |= FEATURE_MASK(FEATURE_DPM_PREFETCHER_BIT)
| FEATURE_MASK(FEATURE_DPM_GFXCLK_BIT)
| FEATURE_MASK(FEATURE_DPM_UCLK_BIT)
| FEATURE_MASK(FEATURE_DPM_SOCCLK_BIT)
| FEATURE_MASK(FEATURE_DPM_UVD_BIT)
| FEATURE_MASK(FEATURE_DPM_VCE_BIT)
| FEATURE_MASK(FEATURE_ULV_BIT)
| FEATURE_MASK(FEATURE_DPM_MP0CLK_BIT)
| FEATURE_MASK(FEATURE_DPM_LINK_BIT)
| FEATURE_MASK(FEATURE_DPM_DCEFCLK_BIT)
| FEATURE_MASK(FEATURE_PPT_BIT)
| FEATURE_MASK(FEATURE_TDC_BIT)
| FEATURE_MASK(FEATURE_THERMAL_BIT)
| FEATURE_MASK(FEATURE_GFX_PER_CU_CG_BIT)
| FEATURE_MASK(FEATURE_RM_BIT)
| FEATURE_MASK(FEATURE_ACDC_BIT)
| FEATURE_MASK(FEATURE_VR0HOT_BIT)
| FEATURE_MASK(FEATURE_VR1HOT_BIT)
| FEATURE_MASK(FEATURE_FW_CTF_BIT)
| FEATURE_MASK(FEATURE_LED_DISPLAY_BIT)
| FEATURE_MASK(FEATURE_FAN_CONTROL_BIT)
| FEATURE_MASK(FEATURE_GFX_EDC_BIT)
| FEATURE_MASK(FEATURE_GFXOFF_BIT)
| FEATURE_MASK(FEATURE_CG_BIT)
| FEATURE_MASK(FEATURE_DPM_FCLK_BIT)
| FEATURE_MASK(FEATURE_XGMI_BIT);
return 0;
}
static enum
amd_pm_state_type vega20_get_current_power_state(struct smu_context *smu)
{
enum amd_pm_state_type pm_type;
struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm);
if (!smu_dpm_ctx->dpm_context ||
!smu_dpm_ctx->dpm_current_power_state)
return -EINVAL;
mutex_lock(&(smu->mutex));
switch (smu_dpm_ctx->dpm_current_power_state->classification.ui_label) {
case SMU_STATE_UI_LABEL_BATTERY:
pm_type = POWER_STATE_TYPE_BATTERY;
break;
case SMU_STATE_UI_LABEL_BALLANCED:
pm_type = POWER_STATE_TYPE_BALANCED;
break;
case SMU_STATE_UI_LABEL_PERFORMANCE:
pm_type = POWER_STATE_TYPE_PERFORMANCE;
break;
default:
if (smu_dpm_ctx->dpm_current_power_state->classification.flags & SMU_STATE_CLASSIFICATION_FLAG_BOOT)
pm_type = POWER_STATE_TYPE_INTERNAL_BOOT;
else
pm_type = POWER_STATE_TYPE_DEFAULT;
break;
}
mutex_unlock(&(smu->mutex));
return pm_type;
}
static int
vega20_set_single_dpm_table(struct smu_context *smu,
struct vega20_single_dpm_table *single_dpm_table,
PPCLK_e clk_id)
{
int ret = 0;
uint32_t i, num_of_levels = 0, clk;
ret = smu_send_smc_msg_with_param(smu,
SMU_MSG_GetDpmFreqByIndex,
(clk_id << 16 | 0xFF));
if (ret) {
pr_err("[GetNumOfDpmLevel] failed to get dpm levels!");
return ret;
}
smu_read_smc_arg(smu, &num_of_levels);
if (!num_of_levels) {
pr_err("[GetNumOfDpmLevel] number of clk levels is invalid!");
return -EINVAL;
}
single_dpm_table->count = num_of_levels;
for (i = 0; i < num_of_levels; i++) {
ret = smu_send_smc_msg_with_param(smu,
SMU_MSG_GetDpmFreqByIndex,
(clk_id << 16 | i));
if (ret) {
pr_err("[GetDpmFreqByIndex] failed to get dpm freq by index!");
return ret;
}
smu_read_smc_arg(smu, &clk);
if (!clk) {
pr_err("[GetDpmFreqByIndex] clk value is invalid!");
return -EINVAL;
}
single_dpm_table->dpm_levels[i].value = clk;
single_dpm_table->dpm_levels[i].enabled = true;
}
return 0;
}
static void vega20_init_single_dpm_state(struct vega20_dpm_state *dpm_state)
{
dpm_state->soft_min_level = 0x0;
dpm_state->soft_max_level = 0xffff;
dpm_state->hard_min_level = 0x0;
dpm_state->hard_max_level = 0xffff;
}
static int vega20_set_default_dpm_table(struct smu_context *smu)
{
int ret;
struct smu_dpm_context *smu_dpm = &smu->smu_dpm;
struct vega20_dpm_table *dpm_table = NULL;
struct vega20_single_dpm_table *single_dpm_table;
dpm_table = smu_dpm->dpm_context;
/* socclk */
single_dpm_table = &(dpm_table->soc_table);
if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_SOCCLK_BIT)) {
ret = vega20_set_single_dpm_table(smu, single_dpm_table,
PPCLK_SOCCLK);
if (ret) {
pr_err("[SetupDefaultDpmTable] failed to get socclk dpm levels!");
return ret;
}
} else {
single_dpm_table->count = 1;
single_dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.socclk / 100;
}
vega20_init_single_dpm_state(&(single_dpm_table->dpm_state));
/* gfxclk */
single_dpm_table = &(dpm_table->gfx_table);
if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_GFXCLK_BIT)) {
ret = vega20_set_single_dpm_table(smu, single_dpm_table,
PPCLK_GFXCLK);
if (ret) {
pr_err("[SetupDefaultDpmTable] failed to get gfxclk dpm levels!");
return ret;
}
} else {
single_dpm_table->count = 1;
single_dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.gfxclk / 100;
}
vega20_init_single_dpm_state(&(single_dpm_table->dpm_state));
/* memclk */
single_dpm_table = &(dpm_table->mem_table);
if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT)) {
ret = vega20_set_single_dpm_table(smu, single_dpm_table,
PPCLK_UCLK);
if (ret) {
pr_err("[SetupDefaultDpmTable] failed to get memclk dpm levels!");
return ret;
}
} else {
single_dpm_table->count = 1;
single_dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.uclk / 100;
}
vega20_init_single_dpm_state(&(single_dpm_table->dpm_state));
/* eclk */
single_dpm_table = &(dpm_table->eclk_table);
if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_VCE_BIT)) {
ret = vega20_set_single_dpm_table(smu, single_dpm_table, PPCLK_ECLK);
if (ret) {
pr_err("[SetupDefaultDpmTable] failed to get eclk dpm levels!");
return ret;
}
} else {
single_dpm_table->count = 1;
single_dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.eclk / 100;
}
vega20_init_single_dpm_state(&(single_dpm_table->dpm_state));
/* vclk */
single_dpm_table = &(dpm_table->vclk_table);
if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UVD_BIT)) {
ret = vega20_set_single_dpm_table(smu, single_dpm_table, PPCLK_VCLK);
if (ret) {
pr_err("[SetupDefaultDpmTable] failed to get vclk dpm levels!");
return ret;
}
} else {
single_dpm_table->count = 1;
single_dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.vclk / 100;
}
vega20_init_single_dpm_state(&(single_dpm_table->dpm_state));
/* dclk */
single_dpm_table = &(dpm_table->dclk_table);
if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UVD_BIT)) {
ret = vega20_set_single_dpm_table(smu, single_dpm_table, PPCLK_DCLK);
if (ret) {
pr_err("[SetupDefaultDpmTable] failed to get dclk dpm levels!");
return ret;
}
} else {
single_dpm_table->count = 1;
single_dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.dclk / 100;
}
vega20_init_single_dpm_state(&(single_dpm_table->dpm_state));
/* dcefclk */
single_dpm_table = &(dpm_table->dcef_table);
if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT)) {
ret = vega20_set_single_dpm_table(smu, single_dpm_table,
PPCLK_DCEFCLK);
if (ret) {
pr_err("[SetupDefaultDpmTable] failed to get dcefclk dpm levels!");
return ret;
}
} else {
single_dpm_table->count = 1;
single_dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.dcefclk / 100;
}
vega20_init_single_dpm_state(&(single_dpm_table->dpm_state));
/* pixclk */
single_dpm_table = &(dpm_table->pixel_table);
if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT)) {
ret = vega20_set_single_dpm_table(smu, single_dpm_table,
PPCLK_PIXCLK);
if (ret) {
pr_err("[SetupDefaultDpmTable] failed to get pixclk dpm levels!");
return ret;
}
} else {
single_dpm_table->count = 0;
}
vega20_init_single_dpm_state(&(single_dpm_table->dpm_state));
/* dispclk */
single_dpm_table = &(dpm_table->display_table);
if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT)) {
ret = vega20_set_single_dpm_table(smu, single_dpm_table,
PPCLK_DISPCLK);
if (ret) {
pr_err("[SetupDefaultDpmTable] failed to get dispclk dpm levels!");
return ret;
}
} else {
single_dpm_table->count = 0;
}
vega20_init_single_dpm_state(&(single_dpm_table->dpm_state));
/* phyclk */
single_dpm_table = &(dpm_table->phy_table);
if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT)) {
ret = vega20_set_single_dpm_table(smu, single_dpm_table,
PPCLK_PHYCLK);
if (ret) {
pr_err("[SetupDefaultDpmTable] failed to get phyclk dpm levels!");
return ret;
}
} else {
single_dpm_table->count = 0;
}
vega20_init_single_dpm_state(&(single_dpm_table->dpm_state));
/* fclk */
single_dpm_table = &(dpm_table->fclk_table);
if (smu_feature_is_enabled(smu,FEATURE_DPM_FCLK_BIT)) {
ret = vega20_set_single_dpm_table(smu, single_dpm_table,
PPCLK_FCLK);
if (ret) {
pr_err("[SetupDefaultDpmTable] failed to get fclk dpm levels!");
return ret;
}
} else {
single_dpm_table->count = 0;
}
vega20_init_single_dpm_state(&(single_dpm_table->dpm_state));
memcpy(smu_dpm->golden_dpm_context, dpm_table,
sizeof(struct vega20_dpm_table));
return 0;
}
static int vega20_populate_umd_state_clk(struct smu_context *smu)
{
struct smu_dpm_context *smu_dpm = &smu->smu_dpm;
struct vega20_dpm_table *dpm_table = NULL;
struct vega20_single_dpm_table *gfx_table = NULL;
struct vega20_single_dpm_table *mem_table = NULL;
dpm_table = smu_dpm->dpm_context;
gfx_table = &(dpm_table->gfx_table);
mem_table = &(dpm_table->mem_table);
smu->pstate_sclk = gfx_table->dpm_levels[0].value;
smu->pstate_mclk = mem_table->dpm_levels[0].value;
if (gfx_table->count > VEGA20_UMD_PSTATE_GFXCLK_LEVEL &&
mem_table->count > VEGA20_UMD_PSTATE_MCLK_LEVEL) {
smu->pstate_sclk = gfx_table->dpm_levels[VEGA20_UMD_PSTATE_GFXCLK_LEVEL].value;
smu->pstate_mclk = mem_table->dpm_levels[VEGA20_UMD_PSTATE_MCLK_LEVEL].value;
}
smu->pstate_sclk = smu->pstate_sclk * 100;
smu->pstate_mclk = smu->pstate_mclk * 100;
return 0;
}
static int vega20_get_clk_table(struct smu_context *smu,
struct pp_clock_levels_with_latency *clocks,
struct vega20_single_dpm_table *dpm_table)
{
int i, count;
count = (dpm_table->count > MAX_NUM_CLOCKS) ? MAX_NUM_CLOCKS : dpm_table->count;
clocks->num_levels = count;
for (i = 0; i < count; i++) {
clocks->data[i].clocks_in_khz =
dpm_table->dpm_levels[i].value * 1000;
clocks->data[i].latency_in_us = 0;
}
return 0;
}
static int vega20_print_clk_levels(struct smu_context *smu,
enum smu_clk_type type, char *buf)
{
int i, now, size = 0;
int ret = 0;
uint32_t gen_speed, lane_width;
struct amdgpu_device *adev = smu->adev;
struct pp_clock_levels_with_latency clocks;
struct vega20_single_dpm_table *single_dpm_table;
struct smu_table_context *table_context = &smu->smu_table;
struct smu_dpm_context *smu_dpm = &smu->smu_dpm;
struct vega20_dpm_table *dpm_table = NULL;
struct vega20_od8_settings *od8_settings =
(struct vega20_od8_settings *)smu->od_settings;
OverDriveTable_t *od_table =
(OverDriveTable_t *)(table_context->overdrive_table);
PPTable_t *pptable = (PPTable_t *)table_context->driver_pptable;
dpm_table = smu_dpm->dpm_context;
switch (type) {
case SMU_SCLK:
ret = smu_get_current_clk_freq(smu, SMU_GFXCLK, &now);
if (ret) {
pr_err("Attempt to get current gfx clk Failed!");
return ret;
}
single_dpm_table = &(dpm_table->gfx_table);
ret = vega20_get_clk_table(smu, &clocks, single_dpm_table);
if (ret) {
pr_err("Attempt to get gfx clk levels Failed!");
return ret;
}
for (i = 0; i < clocks.num_levels; i++)
size += sprintf(buf + size, "%d: %uMhz %s\n", i,
clocks.data[i].clocks_in_khz / 1000,
(clocks.data[i].clocks_in_khz == now * 10)
? "*" : "");
break;
case SMU_MCLK:
ret = smu_get_current_clk_freq(smu, SMU_UCLK, &now);
if (ret) {
pr_err("Attempt to get current mclk Failed!");
return ret;
}
single_dpm_table = &(dpm_table->mem_table);
ret = vega20_get_clk_table(smu, &clocks, single_dpm_table);
if (ret) {
pr_err("Attempt to get memory clk levels Failed!");
return ret;
}
for (i = 0; i < clocks.num_levels; i++)
size += sprintf(buf + size, "%d: %uMhz %s\n",
i, clocks.data[i].clocks_in_khz / 1000,
(clocks.data[i].clocks_in_khz == now * 10)
? "*" : "");
break;
case SMU_SOCCLK:
ret = smu_get_current_clk_freq(smu, SMU_SOCCLK, &now);
if (ret) {
pr_err("Attempt to get current socclk Failed!");
return ret;
}
single_dpm_table = &(dpm_table->soc_table);
ret = vega20_get_clk_table(smu, &clocks, single_dpm_table);
if (ret) {
pr_err("Attempt to get socclk levels Failed!");
return ret;
}
for (i = 0; i < clocks.num_levels; i++)
size += sprintf(buf + size, "%d: %uMhz %s\n",
i, clocks.data[i].clocks_in_khz / 1000,
(clocks.data[i].clocks_in_khz == now * 10)
? "*" : "");
break;
case SMU_FCLK:
ret = smu_get_current_clk_freq(smu, SMU_FCLK, &now);
if (ret) {
pr_err("Attempt to get current fclk Failed!");
return ret;
}
single_dpm_table = &(dpm_table->fclk_table);
for (i = 0; i < single_dpm_table->count; i++)
size += sprintf(buf + size, "%d: %uMhz %s\n",
i, single_dpm_table->dpm_levels[i].value,
(single_dpm_table->dpm_levels[i].value == now / 100)
? "*" : "");
break;
case SMU_DCEFCLK:
ret = smu_get_current_clk_freq(smu, SMU_DCEFCLK, &now);
if (ret) {
pr_err("Attempt to get current dcefclk Failed!");
return ret;
}
single_dpm_table = &(dpm_table->dcef_table);
ret = vega20_get_clk_table(smu, &clocks, single_dpm_table);
if (ret) {
pr_err("Attempt to get dcefclk levels Failed!");
return ret;
}
for (i = 0; i < clocks.num_levels; i++)
size += sprintf(buf + size, "%d: %uMhz %s\n",
i, clocks.data[i].clocks_in_khz / 1000,
(clocks.data[i].clocks_in_khz == now * 10) ? "*" : "");
break;
case SMU_PCIE:
gen_speed = (RREG32_PCIE(smnPCIE_LC_SPEED_CNTL) &
PSWUSP0_PCIE_LC_SPEED_CNTL__LC_CURRENT_DATA_RATE_MASK)
>> PSWUSP0_PCIE_LC_SPEED_CNTL__LC_CURRENT_DATA_RATE__SHIFT;
lane_width = (RREG32_PCIE(smnPCIE_LC_LINK_WIDTH_CNTL) &
PCIE_LC_LINK_WIDTH_CNTL__LC_LINK_WIDTH_RD_MASK)
>> PCIE_LC_LINK_WIDTH_CNTL__LC_LINK_WIDTH_RD__SHIFT;
for (i = 0; i < NUM_LINK_LEVELS; i++)
size += sprintf(buf + size, "%d: %s %s %dMhz %s\n", i,
(pptable->PcieGenSpeed[i] == 0) ? "2.5GT/s," :
(pptable->PcieGenSpeed[i] == 1) ? "5.0GT/s," :
(pptable->PcieGenSpeed[i] == 2) ? "8.0GT/s," :
(pptable->PcieGenSpeed[i] == 3) ? "16.0GT/s," : "",
(pptable->PcieLaneCount[i] == 1) ? "x1" :
(pptable->PcieLaneCount[i] == 2) ? "x2" :
(pptable->PcieLaneCount[i] == 3) ? "x4" :
(pptable->PcieLaneCount[i] == 4) ? "x8" :
(pptable->PcieLaneCount[i] == 5) ? "x12" :
(pptable->PcieLaneCount[i] == 6) ? "x16" : "",
pptable->LclkFreq[i],
(gen_speed == pptable->PcieGenSpeed[i]) &&
(lane_width == pptable->PcieLaneCount[i]) ?
"*" : "");
break;
case SMU_OD_SCLK:
if (od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMIN].feature_id &&
od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMAX].feature_id) {
size = sprintf(buf, "%s:\n", "OD_SCLK");
size += sprintf(buf + size, "0: %10uMhz\n",
od_table->GfxclkFmin);
size += sprintf(buf + size, "1: %10uMhz\n",
od_table->GfxclkFmax);
}
break;
case SMU_OD_MCLK:
if (od8_settings->od8_settings_array[OD8_SETTING_UCLK_FMAX].feature_id) {
size = sprintf(buf, "%s:\n", "OD_MCLK");
size += sprintf(buf + size, "1: %10uMhz\n",
od_table->UclkFmax);
}
break;
case SMU_OD_VDDC_CURVE:
if (od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ1].feature_id &&
od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ2].feature_id &&
od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ3].feature_id &&
od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE1].feature_id &&
od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE2].feature_id &&
od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE3].feature_id) {
size = sprintf(buf, "%s:\n", "OD_VDDC_CURVE");
size += sprintf(buf + size, "0: %10uMhz %10dmV\n",
od_table->GfxclkFreq1,
od_table->GfxclkVolt1 / VOLTAGE_SCALE);
size += sprintf(buf + size, "1: %10uMhz %10dmV\n",
od_table->GfxclkFreq2,
od_table->GfxclkVolt2 / VOLTAGE_SCALE);
size += sprintf(buf + size, "2: %10uMhz %10dmV\n",
od_table->GfxclkFreq3,
od_table->GfxclkVolt3 / VOLTAGE_SCALE);
}
break;
case SMU_OD_RANGE:
size = sprintf(buf, "%s:\n", "OD_RANGE");
if (od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMIN].feature_id &&
od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMAX].feature_id) {
size += sprintf(buf + size, "SCLK: %7uMhz %10uMhz\n",
od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMIN].min_value,
od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMAX].max_value);
}
if (od8_settings->od8_settings_array[OD8_SETTING_UCLK_FMAX].feature_id) {
single_dpm_table = &(dpm_table->mem_table);
ret = vega20_get_clk_table(smu, &clocks, single_dpm_table);
if (ret) {
pr_err("Attempt to get memory clk levels Failed!");
return ret;
}
size += sprintf(buf + size, "MCLK: %7uMhz %10uMhz\n",
clocks.data[0].clocks_in_khz / 1000,
od8_settings->od8_settings_array[OD8_SETTING_UCLK_FMAX].max_value);
}
if (od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ1].feature_id &&
od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ2].feature_id &&
od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ3].feature_id &&
od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE1].feature_id &&
od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE2].feature_id &&
od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE3].feature_id) {
size += sprintf(buf + size, "VDDC_CURVE_SCLK[0]: %7uMhz %10uMhz\n",
od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ1].min_value,
od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ1].max_value);
size += sprintf(buf + size, "VDDC_CURVE_VOLT[0]: %7dmV %11dmV\n",
od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE1].min_value,
od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE1].max_value);
size += sprintf(buf + size, "VDDC_CURVE_SCLK[1]: %7uMhz %10uMhz\n",
od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ2].min_value,
od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ2].max_value);
size += sprintf(buf + size, "VDDC_CURVE_VOLT[1]: %7dmV %11dmV\n",
od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE2].min_value,
od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE2].max_value);
size += sprintf(buf + size, "VDDC_CURVE_SCLK[2]: %7uMhz %10uMhz\n",
od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ3].min_value,
od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ3].max_value);
size += sprintf(buf + size, "VDDC_CURVE_VOLT[2]: %7dmV %11dmV\n",
od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE3].min_value,
od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE3].max_value);
}
break;
default:
break;
}
return size;
}
static int vega20_upload_dpm_level(struct smu_context *smu, bool max,
uint32_t feature_mask)
{
struct vega20_dpm_table *dpm_table;
struct vega20_single_dpm_table *single_dpm_table;
uint32_t freq;
int ret = 0;
dpm_table = smu->smu_dpm.dpm_context;
if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_GFXCLK_BIT) &&
(feature_mask & FEATURE_DPM_GFXCLK_MASK)) {
single_dpm_table = &(dpm_table->gfx_table);
freq = max ? single_dpm_table->dpm_state.soft_max_level :
single_dpm_table->dpm_state.soft_min_level;
ret = smu_send_smc_msg_with_param(smu,
(max ? SMU_MSG_SetSoftMaxByFreq : SMU_MSG_SetSoftMinByFreq),
(PPCLK_GFXCLK << 16) | (freq & 0xffff));
if (ret) {
pr_err("Failed to set soft %s gfxclk !\n",
max ? "max" : "min");
return ret;
}
}
if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT) &&
(feature_mask & FEATURE_DPM_UCLK_MASK)) {
single_dpm_table = &(dpm_table->mem_table);
freq = max ? single_dpm_table->dpm_state.soft_max_level :
single_dpm_table->dpm_state.soft_min_level;
ret = smu_send_smc_msg_with_param(smu,
(max ? SMU_MSG_SetSoftMaxByFreq : SMU_MSG_SetSoftMinByFreq),
(PPCLK_UCLK << 16) | (freq & 0xffff));
if (ret) {
pr_err("Failed to set soft %s memclk !\n",
max ? "max" : "min");
return ret;
}
}
if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_SOCCLK_BIT) &&
(feature_mask & FEATURE_DPM_SOCCLK_MASK)) {
single_dpm_table = &(dpm_table->soc_table);
freq = max ? single_dpm_table->dpm_state.soft_max_level :
single_dpm_table->dpm_state.soft_min_level;
ret = smu_send_smc_msg_with_param(smu,
(max ? SMU_MSG_SetSoftMaxByFreq : SMU_MSG_SetSoftMinByFreq),
(PPCLK_SOCCLK << 16) | (freq & 0xffff));
if (ret) {
pr_err("Failed to set soft %s socclk !\n",
max ? "max" : "min");
return ret;
}
}
if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_FCLK_BIT) &&
(feature_mask & FEATURE_DPM_FCLK_MASK)) {
single_dpm_table = &(dpm_table->fclk_table);
freq = max ? single_dpm_table->dpm_state.soft_max_level :
single_dpm_table->dpm_state.soft_min_level;
ret = smu_send_smc_msg_with_param(smu,
(max ? SMU_MSG_SetSoftMaxByFreq : SMU_MSG_SetSoftMinByFreq),
(PPCLK_FCLK << 16) | (freq & 0xffff));
if (ret) {
pr_err("Failed to set soft %s fclk !\n",
max ? "max" : "min");
return ret;
}
}
if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT) &&
(feature_mask & FEATURE_DPM_DCEFCLK_MASK)) {
single_dpm_table = &(dpm_table->dcef_table);
freq = single_dpm_table->dpm_state.hard_min_level;
if (!max) {
ret = smu_send_smc_msg_with_param(smu,
SMU_MSG_SetHardMinByFreq,
(PPCLK_DCEFCLK << 16) | (freq & 0xffff));
if (ret) {
pr_err("Failed to set hard min dcefclk !\n");
return ret;
}
}
}
return ret;
}
static int vega20_force_clk_levels(struct smu_context *smu,
enum smu_clk_type clk_type, uint32_t mask)
{
struct vega20_dpm_table *dpm_table;
struct vega20_single_dpm_table *single_dpm_table;
uint32_t soft_min_level, soft_max_level, hard_min_level;
struct smu_dpm_context *smu_dpm = &smu->smu_dpm;
int ret = 0;
if (smu_dpm->dpm_level != AMD_DPM_FORCED_LEVEL_MANUAL) {
pr_info("force clock level is for dpm manual mode only.\n");
return -EINVAL;
}
mutex_lock(&(smu->mutex));
soft_min_level = mask ? (ffs(mask) - 1) : 0;
soft_max_level = mask ? (fls(mask) - 1) : 0;
dpm_table = smu->smu_dpm.dpm_context;
switch (clk_type) {
case SMU_SCLK:
single_dpm_table = &(dpm_table->gfx_table);
if (soft_max_level >= single_dpm_table->count) {
pr_err("Clock level specified %d is over max allowed %d\n",
soft_max_level, single_dpm_table->count - 1);
ret = -EINVAL;
break;
}
single_dpm_table->dpm_state.soft_min_level =
single_dpm_table->dpm_levels[soft_min_level].value;
single_dpm_table->dpm_state.soft_max_level =
single_dpm_table->dpm_levels[soft_max_level].value;
ret = vega20_upload_dpm_level(smu, false, FEATURE_DPM_GFXCLK_MASK);
if (ret) {
pr_err("Failed to upload boot level to lowest!\n");
break;
}
ret = vega20_upload_dpm_level(smu, true, FEATURE_DPM_GFXCLK_MASK);
if (ret)
pr_err("Failed to upload dpm max level to highest!\n");
break;
case SMU_MCLK:
single_dpm_table = &(dpm_table->mem_table);
if (soft_max_level >= single_dpm_table->count) {
pr_err("Clock level specified %d is over max allowed %d\n",
soft_max_level, single_dpm_table->count - 1);
ret = -EINVAL;
break;
}
single_dpm_table->dpm_state.soft_min_level =
single_dpm_table->dpm_levels[soft_min_level].value;
single_dpm_table->dpm_state.soft_max_level =
single_dpm_table->dpm_levels[soft_max_level].value;
ret = vega20_upload_dpm_level(smu, false, FEATURE_DPM_UCLK_MASK);
if (ret) {
pr_err("Failed to upload boot level to lowest!\n");
break;
}
ret = vega20_upload_dpm_level(smu, true, FEATURE_DPM_UCLK_MASK);
if (ret)
pr_err("Failed to upload dpm max level to highest!\n");
break;
case SMU_SOCCLK:
single_dpm_table = &(dpm_table->soc_table);
if (soft_max_level >= single_dpm_table->count) {
pr_err("Clock level specified %d is over max allowed %d\n",
soft_max_level, single_dpm_table->count - 1);
ret = -EINVAL;
break;
}
single_dpm_table->dpm_state.soft_min_level =
single_dpm_table->dpm_levels[soft_min_level].value;
single_dpm_table->dpm_state.soft_max_level =
single_dpm_table->dpm_levels[soft_max_level].value;
ret = vega20_upload_dpm_level(smu, false, FEATURE_DPM_SOCCLK_MASK);
if (ret) {
pr_err("Failed to upload boot level to lowest!\n");
break;
}
ret = vega20_upload_dpm_level(smu, true, FEATURE_DPM_SOCCLK_MASK);
if (ret)
pr_err("Failed to upload dpm max level to highest!\n");
break;
case SMU_FCLK:
single_dpm_table = &(dpm_table->fclk_table);
if (soft_max_level >= single_dpm_table->count) {
pr_err("Clock level specified %d is over max allowed %d\n",
soft_max_level, single_dpm_table->count - 1);
ret = -EINVAL;
break;
}
single_dpm_table->dpm_state.soft_min_level =
single_dpm_table->dpm_levels[soft_min_level].value;
single_dpm_table->dpm_state.soft_max_level =
single_dpm_table->dpm_levels[soft_max_level].value;
ret = vega20_upload_dpm_level(smu, false, FEATURE_DPM_FCLK_MASK);
if (ret) {
pr_err("Failed to upload boot level to lowest!\n");
break;
}
ret = vega20_upload_dpm_level(smu, true, FEATURE_DPM_FCLK_MASK);
if (ret)
pr_err("Failed to upload dpm max level to highest!\n");
break;
case SMU_DCEFCLK:
hard_min_level = soft_min_level;
single_dpm_table = &(dpm_table->dcef_table);
if (hard_min_level >= single_dpm_table->count) {
pr_err("Clock level specified %d is over max allowed %d\n",
hard_min_level, single_dpm_table->count - 1);
ret = -EINVAL;
break;
}
single_dpm_table->dpm_state.hard_min_level =
single_dpm_table->dpm_levels[hard_min_level].value;
ret = vega20_upload_dpm_level(smu, false, FEATURE_DPM_DCEFCLK_MASK);
if (ret)
pr_err("Failed to upload boot level to lowest!\n");
break;
case SMU_PCIE:
if (soft_min_level >= NUM_LINK_LEVELS ||
soft_max_level >= NUM_LINK_LEVELS) {
ret = -EINVAL;
break;
}
ret = smu_send_smc_msg_with_param(smu,
SMU_MSG_SetMinLinkDpmByIndex, soft_min_level);
if (ret)
pr_err("Failed to set min link dpm level!\n");
break;
default:
break;
}
mutex_unlock(&(smu->mutex));
return ret;
}
static int vega20_get_clock_by_type_with_latency(struct smu_context *smu,
enum smu_clk_type clk_type,
struct pp_clock_levels_with_latency *clocks)
{
int ret;
struct vega20_single_dpm_table *single_dpm_table;
struct smu_dpm_context *smu_dpm = &smu->smu_dpm;
struct vega20_dpm_table *dpm_table = NULL;
dpm_table = smu_dpm->dpm_context;
mutex_lock(&smu->mutex);
switch (clk_type) {
case SMU_GFXCLK:
single_dpm_table = &(dpm_table->gfx_table);
ret = vega20_get_clk_table(smu, clocks, single_dpm_table);
break;
case SMU_MCLK:
single_dpm_table = &(dpm_table->mem_table);
ret = vega20_get_clk_table(smu, clocks, single_dpm_table);
break;
case SMU_DCEFCLK:
single_dpm_table = &(dpm_table->dcef_table);
ret = vega20_get_clk_table(smu, clocks, single_dpm_table);
break;
case SMU_SOCCLK:
single_dpm_table = &(dpm_table->soc_table);
ret = vega20_get_clk_table(smu, clocks, single_dpm_table);
break;
default:
ret = -EINVAL;
}
mutex_unlock(&smu->mutex);
return ret;
}
static int vega20_overdrive_get_gfx_clk_base_voltage(struct smu_context *smu,
uint32_t *voltage,
uint32_t freq)
{
int ret;
ret = smu_send_smc_msg_with_param(smu,
SMU_MSG_GetAVFSVoltageByDpm,
((AVFS_CURVE << 24) | (OD8_HOTCURVE_TEMPERATURE << 16) | freq));
if (ret) {
pr_err("[GetBaseVoltage] failed to get GFXCLK AVFS voltage from SMU!");
return ret;
}
smu_read_smc_arg(smu, voltage);
*voltage = *voltage / VOLTAGE_SCALE;
return 0;
}
static int vega20_set_default_od8_setttings(struct smu_context *smu)
{
struct smu_table_context *table_context = &smu->smu_table;
OverDriveTable_t *od_table = (OverDriveTable_t *)(table_context->overdrive_table);
struct vega20_od8_settings *od8_settings = NULL;
PPTable_t *smc_pptable = table_context->driver_pptable;
int i, ret;
if (smu->od_settings)
return -EINVAL;
od8_settings = kzalloc(sizeof(struct vega20_od8_settings), GFP_KERNEL);
if (!od8_settings)
return -ENOMEM;
smu->od_settings = (void *)od8_settings;
ret = vega20_setup_od8_information(smu);
if (ret) {
pr_err("Retrieve board OD limits failed!\n");
return ret;
}
if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_SOCCLK_BIT)) {
if (od8_settings->od_feature_capabilities[ATOM_VEGA20_ODFEATURE_GFXCLK_LIMITS] &&
od8_settings->od_settings_max[OD8_SETTING_GFXCLK_FMAX] > 0 &&
od8_settings->od_settings_min[OD8_SETTING_GFXCLK_FMIN] > 0 &&
(od8_settings->od_settings_max[OD8_SETTING_GFXCLK_FMAX] >=
od8_settings->od_settings_min[OD8_SETTING_GFXCLK_FMIN])) {
od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMIN].feature_id =
OD8_GFXCLK_LIMITS;
od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMAX].feature_id =
OD8_GFXCLK_LIMITS;
od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMIN].default_value =
od_table->GfxclkFmin;
od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMAX].default_value =
od_table->GfxclkFmax;
}
if (od8_settings->od_feature_capabilities[ATOM_VEGA20_ODFEATURE_GFXCLK_CURVE] &&
(od8_settings->od_settings_min[OD8_SETTING_GFXCLK_VOLTAGE1] >=
smc_pptable->MinVoltageGfx / VOLTAGE_SCALE) &&
(od8_settings->od_settings_max[OD8_SETTING_GFXCLK_VOLTAGE3] <=
smc_pptable->MaxVoltageGfx / VOLTAGE_SCALE) &&
(od8_settings->od_settings_min[OD8_SETTING_GFXCLK_VOLTAGE1] <=
od8_settings->od_settings_max[OD8_SETTING_GFXCLK_VOLTAGE3])) {
od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ1].feature_id =
OD8_GFXCLK_CURVE;
od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE1].feature_id =
OD8_GFXCLK_CURVE;
od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ2].feature_id =
OD8_GFXCLK_CURVE;
od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE2].feature_id =
OD8_GFXCLK_CURVE;
od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ3].feature_id =
OD8_GFXCLK_CURVE;
od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE3].feature_id =
OD8_GFXCLK_CURVE;
od_table->GfxclkFreq1 = od_table->GfxclkFmin;
od_table->GfxclkFreq2 = (od_table->GfxclkFmin + od_table->GfxclkFmax) / 2;
od_table->GfxclkFreq3 = od_table->GfxclkFmax;
od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ1].default_value =
od_table->GfxclkFreq1;
od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ2].default_value =
od_table->GfxclkFreq2;
od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ3].default_value =
od_table->GfxclkFreq3;
ret = vega20_overdrive_get_gfx_clk_base_voltage(smu,
&od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE1].default_value,
od_table->GfxclkFreq1);
if (ret)
od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE1].default_value = 0;
od_table->GfxclkVolt1 =
od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE1].default_value
* VOLTAGE_SCALE;
ret = vega20_overdrive_get_gfx_clk_base_voltage(smu,
&od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE2].default_value,
od_table->GfxclkFreq2);
if (ret)
od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE2].default_value = 0;
od_table->GfxclkVolt2 =
od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE2].default_value
* VOLTAGE_SCALE;
ret = vega20_overdrive_get_gfx_clk_base_voltage(smu,
&od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE3].default_value,
od_table->GfxclkFreq3);
if (ret)
od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE3].default_value = 0;
od_table->GfxclkVolt3 =
od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE3].default_value
* VOLTAGE_SCALE;
}
}
if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT)) {
if (od8_settings->od_feature_capabilities[ATOM_VEGA20_ODFEATURE_UCLK_MAX] &&
od8_settings->od_settings_min[OD8_SETTING_UCLK_FMAX] > 0 &&
od8_settings->od_settings_max[OD8_SETTING_UCLK_FMAX] > 0 &&
(od8_settings->od_settings_max[OD8_SETTING_UCLK_FMAX] >=
od8_settings->od_settings_min[OD8_SETTING_UCLK_FMAX])) {
od8_settings->od8_settings_array[OD8_SETTING_UCLK_FMAX].feature_id =
OD8_UCLK_MAX;
od8_settings->od8_settings_array[OD8_SETTING_UCLK_FMAX].default_value =
od_table->UclkFmax;
}
}
if (od8_settings->od_feature_capabilities[ATOM_VEGA20_ODFEATURE_POWER_LIMIT] &&
od8_settings->od_settings_min[OD8_SETTING_POWER_PERCENTAGE] > 0 &&
od8_settings->od_settings_min[OD8_SETTING_POWER_PERCENTAGE] <= 100 &&
od8_settings->od_settings_max[OD8_SETTING_POWER_PERCENTAGE] > 0 &&
od8_settings->od_settings_max[OD8_SETTING_POWER_PERCENTAGE] <= 100) {
od8_settings->od8_settings_array[OD8_SETTING_POWER_PERCENTAGE].feature_id =
OD8_POWER_LIMIT;
od8_settings->od8_settings_array[OD8_SETTING_POWER_PERCENTAGE].default_value =
od_table->OverDrivePct;
}
if (smu_feature_is_enabled(smu, SMU_FEATURE_FAN_CONTROL_BIT)) {
if (od8_settings->od_feature_capabilities[ATOM_VEGA20_ODFEATURE_FAN_ACOUSTIC_LIMIT] &&
od8_settings->od_settings_min[OD8_SETTING_FAN_ACOUSTIC_LIMIT] > 0 &&
od8_settings->od_settings_max[OD8_SETTING_FAN_ACOUSTIC_LIMIT] > 0 &&
(od8_settings->od_settings_max[OD8_SETTING_FAN_ACOUSTIC_LIMIT] >=
od8_settings->od_settings_min[OD8_SETTING_FAN_ACOUSTIC_LIMIT])) {
od8_settings->od8_settings_array[OD8_SETTING_FAN_ACOUSTIC_LIMIT].feature_id =
OD8_ACOUSTIC_LIMIT_SCLK;
od8_settings->od8_settings_array[OD8_SETTING_FAN_ACOUSTIC_LIMIT].default_value =
od_table->FanMaximumRpm;
}
if (od8_settings->od_feature_capabilities[ATOM_VEGA20_ODFEATURE_FAN_SPEED_MIN] &&
od8_settings->od_settings_min[OD8_SETTING_FAN_MIN_SPEED] > 0 &&
od8_settings->od_settings_max[OD8_SETTING_FAN_MIN_SPEED] > 0 &&
(od8_settings->od_settings_max[OD8_SETTING_FAN_MIN_SPEED] >=
od8_settings->od_settings_min[OD8_SETTING_FAN_MIN_SPEED])) {
od8_settings->od8_settings_array[OD8_SETTING_FAN_MIN_SPEED].feature_id =
OD8_FAN_SPEED_MIN;
od8_settings->od8_settings_array[OD8_SETTING_FAN_MIN_SPEED].default_value =
od_table->FanMinimumPwm * smc_pptable->FanMaximumRpm / 100;
}
}
if (smu_feature_is_enabled(smu, SMU_FEATURE_THERMAL_BIT)) {
if (od8_settings->od_feature_capabilities[ATOM_VEGA20_ODFEATURE_TEMPERATURE_FAN] &&
od8_settings->od_settings_min[OD8_SETTING_FAN_TARGET_TEMP] > 0 &&
od8_settings->od_settings_max[OD8_SETTING_FAN_TARGET_TEMP] > 0 &&
(od8_settings->od_settings_max[OD8_SETTING_FAN_TARGET_TEMP] >=
od8_settings->od_settings_min[OD8_SETTING_FAN_TARGET_TEMP])) {
od8_settings->od8_settings_array[OD8_SETTING_FAN_TARGET_TEMP].feature_id =
OD8_TEMPERATURE_FAN;
od8_settings->od8_settings_array[OD8_SETTING_FAN_TARGET_TEMP].default_value =
od_table->FanTargetTemperature;
}
if (od8_settings->od_feature_capabilities[ATOM_VEGA20_ODFEATURE_TEMPERATURE_SYSTEM] &&
od8_settings->od_settings_min[OD8_SETTING_OPERATING_TEMP_MAX] > 0 &&
od8_settings->od_settings_max[OD8_SETTING_OPERATING_TEMP_MAX] > 0 &&
(od8_settings->od_settings_max[OD8_SETTING_OPERATING_TEMP_MAX] >=
od8_settings->od_settings_min[OD8_SETTING_OPERATING_TEMP_MAX])) {
od8_settings->od8_settings_array[OD8_SETTING_OPERATING_TEMP_MAX].feature_id =
OD8_TEMPERATURE_SYSTEM;
od8_settings->od8_settings_array[OD8_SETTING_OPERATING_TEMP_MAX].default_value =
od_table->MaxOpTemp;
}
}
for (i = 0; i < OD8_SETTING_COUNT; i++) {
if (od8_settings->od8_settings_array[i].feature_id) {
od8_settings->od8_settings_array[i].min_value =
od8_settings->od_settings_min[i];
od8_settings->od8_settings_array[i].max_value =
od8_settings->od_settings_max[i];
od8_settings->od8_settings_array[i].current_value =
od8_settings->od8_settings_array[i].default_value;
} else {
od8_settings->od8_settings_array[i].min_value = 0;
od8_settings->od8_settings_array[i].max_value = 0;
od8_settings->od8_settings_array[i].current_value = 0;
}
}
return 0;
}
static int vega20_get_metrics_table(struct smu_context *smu,
SmuMetrics_t *metrics_table)
{
struct smu_table_context *smu_table= &smu->smu_table;
int ret = 0;
if (!smu_table->metrics_time || time_after(jiffies, smu_table->metrics_time + HZ / 1000)) {
ret = smu_update_table(smu, SMU_TABLE_SMU_METRICS, 0,
(void *)smu_table->metrics_table, false);
if (ret) {
pr_info("Failed to export SMU metrics table!\n");
return ret;
}
smu_table->metrics_time = jiffies;
}
memcpy(metrics_table, smu_table->metrics_table, sizeof(SmuMetrics_t));
return ret;
}
static int vega20_set_default_od_settings(struct smu_context *smu,
bool initialize)
{
struct smu_table_context *table_context = &smu->smu_table;
int ret;
if (initialize) {
if (table_context->overdrive_table)
return -EINVAL;
table_context->overdrive_table = kzalloc(sizeof(OverDriveTable_t), GFP_KERNEL);
if (!table_context->overdrive_table)
return -ENOMEM;
ret = smu_update_table(smu, SMU_TABLE_OVERDRIVE, 0,
table_context->overdrive_table, false);
if (ret) {
pr_err("Failed to export over drive table!\n");
return ret;
}
ret = vega20_set_default_od8_setttings(smu);
if (ret)
return ret;
}
ret = smu_update_table(smu, SMU_TABLE_OVERDRIVE, 0,
table_context->overdrive_table, true);
if (ret) {
pr_err("Failed to import over drive table!\n");
return ret;
}
return 0;
}
static int vega20_get_od_percentage(struct smu_context *smu,
enum smu_clk_type clk_type)
{
struct smu_dpm_context *smu_dpm = &smu->smu_dpm;
struct vega20_dpm_table *dpm_table = NULL;
struct vega20_dpm_table *golden_table = NULL;
struct vega20_single_dpm_table *single_dpm_table;
struct vega20_single_dpm_table *golden_dpm_table;
int value, golden_value;
dpm_table = smu_dpm->dpm_context;
golden_table = smu_dpm->golden_dpm_context;
switch (clk_type) {
case SMU_OD_SCLK:
single_dpm_table = &(dpm_table->gfx_table);
golden_dpm_table = &(golden_table->gfx_table);
break;
case SMU_OD_MCLK:
single_dpm_table = &(dpm_table->mem_table);
golden_dpm_table = &(golden_table->mem_table);
break;
default:
return -EINVAL;
break;
}
value = single_dpm_table->dpm_levels[single_dpm_table->count - 1].value;
golden_value = golden_dpm_table->dpm_levels[golden_dpm_table->count - 1].value;
value -= golden_value;
value = DIV_ROUND_UP(value * 100, golden_value);
return value;
}
static int vega20_get_power_profile_mode(struct smu_context *smu, char *buf)
{
DpmActivityMonitorCoeffInt_t activity_monitor;
uint32_t i, size = 0;
int16_t workload_type = 0;
static const char *profile_name[] = {
"BOOTUP_DEFAULT",
"3D_FULL_SCREEN",
"POWER_SAVING",
"VIDEO",
"VR",
"COMPUTE",
"CUSTOM"};
static const char *title[] = {
"PROFILE_INDEX(NAME)",
"CLOCK_TYPE(NAME)",
"FPS",
"UseRlcBusy",
"MinActiveFreqType",
"MinActiveFreq",
"BoosterFreqType",
"BoosterFreq",
"PD_Data_limit_c",
"PD_Data_error_coeff",
"PD_Data_error_rate_coeff"};
int result = 0;
if (!smu->pm_enabled || !buf)
return -EINVAL;
size += sprintf(buf + size, "%16s %s %s %s %s %s %s %s %s %s %s\n",
title[0], title[1], title[2], title[3], title[4], title[5],
title[6], title[7], title[8], title[9], title[10]);
for (i = 0; i <= PP_SMC_POWER_PROFILE_CUSTOM; i++) {
/* conv PP_SMC_POWER_PROFILE* to WORKLOAD_PPLIB_*_BIT */
workload_type = smu_workload_get_type(smu, i);
if (workload_type < 0)
return -EINVAL;
result = smu_update_table(smu,
SMU_TABLE_ACTIVITY_MONITOR_COEFF, workload_type,
(void *)(&activity_monitor), false);
if (result) {
pr_err("[%s] Failed to get activity monitor!", __func__);
return result;
}
size += sprintf(buf + size, "%2d %14s%s:\n",
i, profile_name[i], (i == smu->power_profile_mode) ? "*" : " ");
size += sprintf(buf + size, "%19s %d(%13s) %7d %7d %7d %7d %7d %7d %7d %7d %7d\n",
" ",
0,
"GFXCLK",
activity_monitor.Gfx_FPS,
activity_monitor.Gfx_UseRlcBusy,
activity_monitor.Gfx_MinActiveFreqType,
activity_monitor.Gfx_MinActiveFreq,
activity_monitor.Gfx_BoosterFreqType,
activity_monitor.Gfx_BoosterFreq,
activity_monitor.Gfx_PD_Data_limit_c,
activity_monitor.Gfx_PD_Data_error_coeff,
activity_monitor.Gfx_PD_Data_error_rate_coeff);
size += sprintf(buf + size, "%19s %d(%13s) %7d %7d %7d %7d %7d %7d %7d %7d %7d\n",
" ",
1,
"SOCCLK",
activity_monitor.Soc_FPS,
activity_monitor.Soc_UseRlcBusy,
activity_monitor.Soc_MinActiveFreqType,
activity_monitor.Soc_MinActiveFreq,
activity_monitor.Soc_BoosterFreqType,
activity_monitor.Soc_BoosterFreq,
activity_monitor.Soc_PD_Data_limit_c,
activity_monitor.Soc_PD_Data_error_coeff,
activity_monitor.Soc_PD_Data_error_rate_coeff);
size += sprintf(buf + size, "%19s %d(%13s) %7d %7d %7d %7d %7d %7d %7d %7d %7d\n",
" ",
2,
"UCLK",
activity_monitor.Mem_FPS,
activity_monitor.Mem_UseRlcBusy,
activity_monitor.Mem_MinActiveFreqType,
activity_monitor.Mem_MinActiveFreq,
activity_monitor.Mem_BoosterFreqType,
activity_monitor.Mem_BoosterFreq,
activity_monitor.Mem_PD_Data_limit_c,
activity_monitor.Mem_PD_Data_error_coeff,
activity_monitor.Mem_PD_Data_error_rate_coeff);
size += sprintf(buf + size, "%19s %d(%13s) %7d %7d %7d %7d %7d %7d %7d %7d %7d\n",
" ",
3,
"FCLK",
activity_monitor.Fclk_FPS,
activity_monitor.Fclk_UseRlcBusy,
activity_monitor.Fclk_MinActiveFreqType,
activity_monitor.Fclk_MinActiveFreq,
activity_monitor.Fclk_BoosterFreqType,
activity_monitor.Fclk_BoosterFreq,
activity_monitor.Fclk_PD_Data_limit_c,
activity_monitor.Fclk_PD_Data_error_coeff,
activity_monitor.Fclk_PD_Data_error_rate_coeff);
}
return size;
}
static int vega20_set_power_profile_mode(struct smu_context *smu, long *input, uint32_t size)
{
DpmActivityMonitorCoeffInt_t activity_monitor;
int workload_type = 0, ret = 0;
smu->power_profile_mode = input[size];
if (!smu->pm_enabled)
return ret;
if (smu->power_profile_mode > PP_SMC_POWER_PROFILE_CUSTOM) {
pr_err("Invalid power profile mode %d\n", smu->power_profile_mode);
return -EINVAL;
}
if (smu->power_profile_mode == PP_SMC_POWER_PROFILE_CUSTOM) {
ret = smu_update_table(smu,
SMU_TABLE_ACTIVITY_MONITOR_COEFF, WORKLOAD_PPLIB_CUSTOM_BIT,
(void *)(&activity_monitor), false);
if (ret) {
pr_err("[%s] Failed to get activity monitor!", __func__);
return ret;
}
switch (input[0]) {
case 0: /* Gfxclk */
activity_monitor.Gfx_FPS = input[1];
activity_monitor.Gfx_UseRlcBusy = input[2];
activity_monitor.Gfx_MinActiveFreqType = input[3];
activity_monitor.Gfx_MinActiveFreq = input[4];
activity_monitor.Gfx_BoosterFreqType = input[5];
activity_monitor.Gfx_BoosterFreq = input[6];
activity_monitor.Gfx_PD_Data_limit_c = input[7];
activity_monitor.Gfx_PD_Data_error_coeff = input[8];
activity_monitor.Gfx_PD_Data_error_rate_coeff = input[9];
break;
case 1: /* Socclk */
activity_monitor.Soc_FPS = input[1];
activity_monitor.Soc_UseRlcBusy = input[2];
activity_monitor.Soc_MinActiveFreqType = input[3];
activity_monitor.Soc_MinActiveFreq = input[4];
activity_monitor.Soc_BoosterFreqType = input[5];
activity_monitor.Soc_BoosterFreq = input[6];
activity_monitor.Soc_PD_Data_limit_c = input[7];
activity_monitor.Soc_PD_Data_error_coeff = input[8];
activity_monitor.Soc_PD_Data_error_rate_coeff = input[9];
break;
case 2: /* Uclk */
activity_monitor.Mem_FPS = input[1];
activity_monitor.Mem_UseRlcBusy = input[2];
activity_monitor.Mem_MinActiveFreqType = input[3];
activity_monitor.Mem_MinActiveFreq = input[4];
activity_monitor.Mem_BoosterFreqType = input[5];
activity_monitor.Mem_BoosterFreq = input[6];
activity_monitor.Mem_PD_Data_limit_c = input[7];
activity_monitor.Mem_PD_Data_error_coeff = input[8];
activity_monitor.Mem_PD_Data_error_rate_coeff = input[9];
break;
case 3: /* Fclk */
activity_monitor.Fclk_FPS = input[1];
activity_monitor.Fclk_UseRlcBusy = input[2];
activity_monitor.Fclk_MinActiveFreqType = input[3];
activity_monitor.Fclk_MinActiveFreq = input[4];
activity_monitor.Fclk_BoosterFreqType = input[5];
activity_monitor.Fclk_BoosterFreq = input[6];
activity_monitor.Fclk_PD_Data_limit_c = input[7];
activity_monitor.Fclk_PD_Data_error_coeff = input[8];
activity_monitor.Fclk_PD_Data_error_rate_coeff = input[9];
break;
}
ret = smu_update_table(smu,
SMU_TABLE_ACTIVITY_MONITOR_COEFF, WORKLOAD_PPLIB_CUSTOM_BIT,
(void *)(&activity_monitor), true);
if (ret) {
pr_err("[%s] Failed to set activity monitor!", __func__);
return ret;
}
}
/* conv PP_SMC_POWER_PROFILE* to WORKLOAD_PPLIB_*_BIT */
workload_type = smu_workload_get_type(smu, smu->power_profile_mode);
if (workload_type < 0)
return -EINVAL;
smu_send_smc_msg_with_param(smu, SMU_MSG_SetWorkloadMask,
1 << workload_type);
return ret;
}
static int
vega20_get_profiling_clk_mask(struct smu_context *smu,
enum amd_dpm_forced_level level,
uint32_t *sclk_mask,
uint32_t *mclk_mask,
uint32_t *soc_mask)
{
struct vega20_dpm_table *dpm_table = (struct vega20_dpm_table *)smu->smu_dpm.dpm_context;
struct vega20_single_dpm_table *gfx_dpm_table;
struct vega20_single_dpm_table *mem_dpm_table;
struct vega20_single_dpm_table *soc_dpm_table;
if (!smu->smu_dpm.dpm_context)
return -EINVAL;
gfx_dpm_table = &dpm_table->gfx_table;
mem_dpm_table = &dpm_table->mem_table;
soc_dpm_table = &dpm_table->soc_table;
*sclk_mask = 0;
*mclk_mask = 0;
*soc_mask = 0;
if (gfx_dpm_table->count > VEGA20_UMD_PSTATE_GFXCLK_LEVEL &&
mem_dpm_table->count > VEGA20_UMD_PSTATE_MCLK_LEVEL &&
soc_dpm_table->count > VEGA20_UMD_PSTATE_SOCCLK_LEVEL) {
*sclk_mask = VEGA20_UMD_PSTATE_GFXCLK_LEVEL;
*mclk_mask = VEGA20_UMD_PSTATE_MCLK_LEVEL;
*soc_mask = VEGA20_UMD_PSTATE_SOCCLK_LEVEL;
}
if (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK) {
*sclk_mask = 0;
} else if (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK) {
*mclk_mask = 0;
} else if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) {
*sclk_mask = gfx_dpm_table->count - 1;
*mclk_mask = mem_dpm_table->count - 1;
*soc_mask = soc_dpm_table->count - 1;
}
return 0;
}
static int
vega20_set_uclk_to_highest_dpm_level(struct smu_context *smu,
struct vega20_single_dpm_table *dpm_table)
{
int ret = 0;
struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm);
if (!smu_dpm_ctx->dpm_context)
return -EINVAL;
if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT)) {
if (dpm_table->count <= 0) {
pr_err("[%s] Dpm table has no entry!", __func__);
return -EINVAL;
}
if (dpm_table->count > NUM_UCLK_DPM_LEVELS) {
pr_err("[%s] Dpm table has too many entries!", __func__);
return -EINVAL;
}
dpm_table->dpm_state.hard_min_level = dpm_table->dpm_levels[dpm_table->count - 1].value;
ret = smu_send_smc_msg_with_param(smu,
SMU_MSG_SetHardMinByFreq,
(PPCLK_UCLK << 16) | dpm_table->dpm_state.hard_min_level);
if (ret) {
pr_err("[%s] Set hard min uclk failed!", __func__);
return ret;
}
}
return ret;
}
static int vega20_pre_display_config_changed(struct smu_context *smu)
{
int ret = 0;
struct vega20_dpm_table *dpm_table = smu->smu_dpm.dpm_context;
if (!smu->smu_dpm.dpm_context)
return -EINVAL;
smu_send_smc_msg_with_param(smu, SMU_MSG_NumOfDisplays, 0);
ret = vega20_set_uclk_to_highest_dpm_level(smu,
&dpm_table->mem_table);
if (ret)
pr_err("Failed to set uclk to highest dpm level");
return ret;
}
static int vega20_display_config_changed(struct smu_context *smu)
{
int ret = 0;
if ((smu->watermarks_bitmap & WATERMARKS_EXIST) &&
!(smu->watermarks_bitmap & WATERMARKS_LOADED)) {
ret = smu_write_watermarks_table(smu);
if (ret) {
pr_err("Failed to update WMTABLE!");
return ret;
}
smu->watermarks_bitmap |= WATERMARKS_LOADED;
}
if ((smu->watermarks_bitmap & WATERMARKS_EXIST) &&
smu_feature_is_supported(smu, SMU_FEATURE_DPM_DCEFCLK_BIT) &&
smu_feature_is_supported(smu, SMU_FEATURE_DPM_SOCCLK_BIT)) {
smu_send_smc_msg_with_param(smu,
SMU_MSG_NumOfDisplays,
smu->display_config->num_display);
}
return ret;
}
static int vega20_apply_clocks_adjust_rules(struct smu_context *smu)
{
struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm);
struct vega20_dpm_table *dpm_ctx = (struct vega20_dpm_table *)(smu_dpm_ctx->dpm_context);
struct vega20_single_dpm_table *dpm_table;
bool vblank_too_short = false;
bool disable_mclk_switching;
uint32_t i, latency;
disable_mclk_switching = ((1 < smu->display_config->num_display) &&
!smu->display_config->multi_monitor_in_sync) || vblank_too_short;
latency = smu->display_config->dce_tolerable_mclk_in_active_latency;
/* gfxclk */
dpm_table = &(dpm_ctx->gfx_table);
dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[0].value;
dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value;
dpm_table->dpm_state.hard_min_level = dpm_table->dpm_levels[0].value;
dpm_table->dpm_state.hard_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value;
if (VEGA20_UMD_PSTATE_GFXCLK_LEVEL < dpm_table->count) {
dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[VEGA20_UMD_PSTATE_GFXCLK_LEVEL].value;
dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[VEGA20_UMD_PSTATE_GFXCLK_LEVEL].value;
}
if (smu_dpm_ctx->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK) {
dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[0].value;
dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[0].value;
}
if (smu_dpm_ctx->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) {
dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[dpm_table->count - 1].value;
dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value;
}
/* memclk */
dpm_table = &(dpm_ctx->mem_table);
dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[0].value;
dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value;
dpm_table->dpm_state.hard_min_level = dpm_table->dpm_levels[0].value;
dpm_table->dpm_state.hard_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value;
if (VEGA20_UMD_PSTATE_MCLK_LEVEL < dpm_table->count) {
dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[VEGA20_UMD_PSTATE_MCLK_LEVEL].value;
dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[VEGA20_UMD_PSTATE_MCLK_LEVEL].value;
}
if (smu_dpm_ctx->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK) {
dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[0].value;
dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[0].value;
}
if (smu_dpm_ctx->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) {
dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[dpm_table->count - 1].value;
dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value;
}
/* honour DAL's UCLK Hardmin */
if (dpm_table->dpm_state.hard_min_level < (smu->display_config->min_mem_set_clock / 100))
dpm_table->dpm_state.hard_min_level = smu->display_config->min_mem_set_clock / 100;
/* Hardmin is dependent on displayconfig */
if (disable_mclk_switching) {
dpm_table->dpm_state.hard_min_level = dpm_table->dpm_levels[dpm_table->count - 1].value;
for (i = 0; i < smu_dpm_ctx->mclk_latency_table->count - 1; i++) {
if (smu_dpm_ctx->mclk_latency_table->entries[i].latency <= latency) {
if (dpm_table->dpm_levels[i].value >= (smu->display_config->min_mem_set_clock / 100)) {
dpm_table->dpm_state.hard_min_level = dpm_table->dpm_levels[i].value;
break;
}
}
}
}
if (smu->display_config->nb_pstate_switch_disable)
dpm_table->dpm_state.hard_min_level = dpm_table->dpm_levels[dpm_table->count - 1].value;
/* vclk */
dpm_table = &(dpm_ctx->vclk_table);
dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[0].value;
dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value;
dpm_table->dpm_state.hard_min_level = dpm_table->dpm_levels[0].value;
dpm_table->dpm_state.hard_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value;
if (VEGA20_UMD_PSTATE_UVDCLK_LEVEL < dpm_table->count) {
dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[VEGA20_UMD_PSTATE_UVDCLK_LEVEL].value;
dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[VEGA20_UMD_PSTATE_UVDCLK_LEVEL].value;
}
if (smu_dpm_ctx->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) {
dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[dpm_table->count - 1].value;
dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value;
}
/* dclk */
dpm_table = &(dpm_ctx->dclk_table);
dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[0].value;
dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value;
dpm_table->dpm_state.hard_min_level = dpm_table->dpm_levels[0].value;
dpm_table->dpm_state.hard_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value;
if (VEGA20_UMD_PSTATE_UVDCLK_LEVEL < dpm_table->count) {
dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[VEGA20_UMD_PSTATE_UVDCLK_LEVEL].value;
dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[VEGA20_UMD_PSTATE_UVDCLK_LEVEL].value;
}
if (smu_dpm_ctx->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) {
dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[dpm_table->count - 1].value;
dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value;
}
/* socclk */
dpm_table = &(dpm_ctx->soc_table);
dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[0].value;
dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value;
dpm_table->dpm_state.hard_min_level = dpm_table->dpm_levels[0].value;
dpm_table->dpm_state.hard_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value;
if (VEGA20_UMD_PSTATE_SOCCLK_LEVEL < dpm_table->count) {
dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[VEGA20_UMD_PSTATE_SOCCLK_LEVEL].value;
dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[VEGA20_UMD_PSTATE_SOCCLK_LEVEL].value;
}
if (smu_dpm_ctx->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) {
dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[dpm_table->count - 1].value;
dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value;
}
/* eclk */
dpm_table = &(dpm_ctx->eclk_table);
dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[0].value;
dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value;
dpm_table->dpm_state.hard_min_level = dpm_table->dpm_levels[0].value;
dpm_table->dpm_state.hard_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value;
if (VEGA20_UMD_PSTATE_VCEMCLK_LEVEL < dpm_table->count) {
dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[VEGA20_UMD_PSTATE_VCEMCLK_LEVEL].value;
dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[VEGA20_UMD_PSTATE_VCEMCLK_LEVEL].value;
}
if (smu_dpm_ctx->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) {
dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[dpm_table->count - 1].value;
dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value;
}
return 0;
}
static int
vega20_notify_smc_dispaly_config(struct smu_context *smu)
{
struct vega20_dpm_table *dpm_table = smu->smu_dpm.dpm_context;
struct vega20_single_dpm_table *memtable = &dpm_table->mem_table;
struct smu_clocks min_clocks = {0};
struct pp_display_clock_request clock_req;
int ret = 0;
min_clocks.dcef_clock = smu->display_config->min_dcef_set_clk;
min_clocks.dcef_clock_in_sr = smu->display_config->min_dcef_deep_sleep_set_clk;
min_clocks.memory_clock = smu->display_config->min_mem_set_clock;
if (smu_feature_is_supported(smu, SMU_FEATURE_DPM_DCEFCLK_BIT)) {
clock_req.clock_type = amd_pp_dcef_clock;
clock_req.clock_freq_in_khz = min_clocks.dcef_clock * 10;
if (!smu->funcs->display_clock_voltage_request(smu, &clock_req)) {
if (smu_feature_is_supported(smu, SMU_FEATURE_DS_DCEFCLK_BIT)) {
ret = smu_send_smc_msg_with_param(smu,
SMU_MSG_SetMinDeepSleepDcefclk,
min_clocks.dcef_clock_in_sr/100);
if (ret) {
pr_err("Attempt to set divider for DCEFCLK Failed!");
return ret;
}
}
} else {
pr_info("Attempt to set Hard Min for DCEFCLK Failed!");
}
}
if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT)) {
memtable->dpm_state.hard_min_level = min_clocks.memory_clock/100;
ret = smu_send_smc_msg_with_param(smu,
SMU_MSG_SetHardMinByFreq,
(PPCLK_UCLK << 16) | memtable->dpm_state.hard_min_level);
if (ret) {
pr_err("[%s] Set hard min uclk failed!", __func__);
return ret;
}
}
return 0;
}
static uint32_t vega20_find_lowest_dpm_level(struct vega20_single_dpm_table *table)
{
uint32_t i;
for (i = 0; i < table->count; i++) {
if (table->dpm_levels[i].enabled)
break;
}
if (i >= table->count) {
i = 0;
table->dpm_levels[i].enabled = true;
}
return i;
}
static uint32_t vega20_find_highest_dpm_level(struct vega20_single_dpm_table *table)
{
int i = 0;
if (!table) {
pr_err("[%s] DPM Table does not exist!", __func__);
return 0;
}
if (table->count <= 0) {
pr_err("[%s] DPM Table has no entry!", __func__);
return 0;
}
if (table->count > MAX_REGULAR_DPM_NUMBER) {
pr_err("[%s] DPM Table has too many entries!", __func__);
return MAX_REGULAR_DPM_NUMBER - 1;
}
for (i = table->count - 1; i >= 0; i--) {
if (table->dpm_levels[i].enabled)
break;
}
if (i < 0) {
i = 0;
table->dpm_levels[i].enabled = true;
}
return i;
}
static int vega20_force_dpm_limit_value(struct smu_context *smu, bool highest)
{
uint32_t soft_level;
int ret = 0;
struct vega20_dpm_table *dpm_table =
(struct vega20_dpm_table *)smu->smu_dpm.dpm_context;
if (highest)
soft_level = vega20_find_highest_dpm_level(&(dpm_table->gfx_table));
else
soft_level = vega20_find_lowest_dpm_level(&(dpm_table->gfx_table));
dpm_table->gfx_table.dpm_state.soft_min_level =
dpm_table->gfx_table.dpm_state.soft_max_level =
dpm_table->gfx_table.dpm_levels[soft_level].value;
if (highest)
soft_level = vega20_find_highest_dpm_level(&(dpm_table->mem_table));
else
soft_level = vega20_find_lowest_dpm_level(&(dpm_table->mem_table));
dpm_table->mem_table.dpm_state.soft_min_level =
dpm_table->mem_table.dpm_state.soft_max_level =
dpm_table->mem_table.dpm_levels[soft_level].value;
if (highest)
soft_level = vega20_find_highest_dpm_level(&(dpm_table->soc_table));
else
soft_level = vega20_find_lowest_dpm_level(&(dpm_table->soc_table));
dpm_table->soc_table.dpm_state.soft_min_level =
dpm_table->soc_table.dpm_state.soft_max_level =
dpm_table->soc_table.dpm_levels[soft_level].value;
ret = vega20_upload_dpm_level(smu, false, 0xFFFFFFFF);
if (ret) {
pr_err("Failed to upload boot level to %s!\n",
highest ? "highest" : "lowest");
return ret;
}
ret = vega20_upload_dpm_level(smu, true, 0xFFFFFFFF);
if (ret) {
pr_err("Failed to upload dpm max level to %s!\n!",
highest ? "highest" : "lowest");
return ret;
}
return ret;
}
static int vega20_unforce_dpm_levels(struct smu_context *smu)
{
uint32_t soft_min_level, soft_max_level;
int ret = 0;
struct vega20_dpm_table *dpm_table =
(struct vega20_dpm_table *)smu->smu_dpm.dpm_context;
soft_min_level = vega20_find_lowest_dpm_level(&(dpm_table->gfx_table));
soft_max_level = vega20_find_highest_dpm_level(&(dpm_table->gfx_table));
dpm_table->gfx_table.dpm_state.soft_min_level =
dpm_table->gfx_table.dpm_levels[soft_min_level].value;
dpm_table->gfx_table.dpm_state.soft_max_level =
dpm_table->gfx_table.dpm_levels[soft_max_level].value;
soft_min_level = vega20_find_lowest_dpm_level(&(dpm_table->mem_table));
soft_max_level = vega20_find_highest_dpm_level(&(dpm_table->mem_table));
dpm_table->mem_table.dpm_state.soft_min_level =
dpm_table->gfx_table.dpm_levels[soft_min_level].value;
dpm_table->mem_table.dpm_state.soft_max_level =
dpm_table->gfx_table.dpm_levels[soft_max_level].value;
soft_min_level = vega20_find_lowest_dpm_level(&(dpm_table->soc_table));
soft_max_level = vega20_find_highest_dpm_level(&(dpm_table->soc_table));
dpm_table->soc_table.dpm_state.soft_min_level =
dpm_table->soc_table.dpm_levels[soft_min_level].value;
dpm_table->soc_table.dpm_state.soft_max_level =
dpm_table->soc_table.dpm_levels[soft_max_level].value;
ret = vega20_upload_dpm_level(smu, false, 0xFFFFFFFF);
if (ret) {
pr_err("Failed to upload DPM Bootup Levels!");
return ret;
}
ret = vega20_upload_dpm_level(smu, true, 0xFFFFFFFF);
if (ret) {
pr_err("Failed to upload DPM Max Levels!");
return ret;
}
return ret;
}
static int vega20_update_specified_od8_value(struct smu_context *smu,
uint32_t index,
uint32_t value)
{
struct smu_table_context *table_context = &smu->smu_table;
OverDriveTable_t *od_table =
(OverDriveTable_t *)(table_context->overdrive_table);
struct vega20_od8_settings *od8_settings =
(struct vega20_od8_settings *)smu->od_settings;
switch (index) {
case OD8_SETTING_GFXCLK_FMIN:
od_table->GfxclkFmin = (uint16_t)value;
break;
case OD8_SETTING_GFXCLK_FMAX:
if (value < od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMAX].min_value ||
value > od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMAX].max_value)
return -EINVAL;
od_table->GfxclkFmax = (uint16_t)value;
break;
case OD8_SETTING_GFXCLK_FREQ1:
od_table->GfxclkFreq1 = (uint16_t)value;
break;
case OD8_SETTING_GFXCLK_VOLTAGE1:
od_table->GfxclkVolt1 = (uint16_t)value;
break;
case OD8_SETTING_GFXCLK_FREQ2:
od_table->GfxclkFreq2 = (uint16_t)value;
break;
case OD8_SETTING_GFXCLK_VOLTAGE2:
od_table->GfxclkVolt2 = (uint16_t)value;
break;
case OD8_SETTING_GFXCLK_FREQ3:
od_table->GfxclkFreq3 = (uint16_t)value;
break;
case OD8_SETTING_GFXCLK_VOLTAGE3:
od_table->GfxclkVolt3 = (uint16_t)value;
break;
case OD8_SETTING_UCLK_FMAX:
if (value < od8_settings->od8_settings_array[OD8_SETTING_UCLK_FMAX].min_value ||
value > od8_settings->od8_settings_array[OD8_SETTING_UCLK_FMAX].max_value)
return -EINVAL;
od_table->UclkFmax = (uint16_t)value;
break;
case OD8_SETTING_POWER_PERCENTAGE:
od_table->OverDrivePct = (int16_t)value;
break;
case OD8_SETTING_FAN_ACOUSTIC_LIMIT:
od_table->FanMaximumRpm = (uint16_t)value;
break;
case OD8_SETTING_FAN_MIN_SPEED:
od_table->FanMinimumPwm = (uint16_t)value;
break;
case OD8_SETTING_FAN_TARGET_TEMP:
od_table->FanTargetTemperature = (uint16_t)value;
break;
case OD8_SETTING_OPERATING_TEMP_MAX:
od_table->MaxOpTemp = (uint16_t)value;
break;
}
return 0;
}
static int vega20_update_od8_settings(struct smu_context *smu,
uint32_t index,
uint32_t value)
{
struct smu_table_context *table_context = &smu->smu_table;
int ret;
ret = smu_update_table(smu, SMU_TABLE_OVERDRIVE, 0,
table_context->overdrive_table, false);
if (ret) {
pr_err("Failed to export over drive table!\n");
return ret;
}
ret = vega20_update_specified_od8_value(smu, index, value);
if (ret)
return ret;
ret = smu_update_table(smu, SMU_TABLE_OVERDRIVE, 0,
table_context->overdrive_table, true);
if (ret) {
pr_err("Failed to import over drive table!\n");
return ret;
}
return 0;
}
static int vega20_set_od_percentage(struct smu_context *smu,
enum smu_clk_type clk_type,
uint32_t value)
{
struct smu_dpm_context *smu_dpm = &smu->smu_dpm;
struct vega20_dpm_table *dpm_table = NULL;
struct vega20_dpm_table *golden_table = NULL;
struct vega20_single_dpm_table *single_dpm_table;
struct vega20_single_dpm_table *golden_dpm_table;
uint32_t od_clk, index;
int ret = 0;
int feature_enabled;
PPCLK_e clk_id;
mutex_lock(&(smu->mutex));
dpm_table = smu_dpm->dpm_context;
golden_table = smu_dpm->golden_dpm_context;
switch (clk_type) {
case SMU_OD_SCLK:
single_dpm_table = &(dpm_table->gfx_table);
golden_dpm_table = &(golden_table->gfx_table);
feature_enabled = smu_feature_is_enabled(smu, SMU_FEATURE_DPM_GFXCLK_BIT);
clk_id = PPCLK_GFXCLK;
index = OD8_SETTING_GFXCLK_FMAX;
break;
case SMU_OD_MCLK:
single_dpm_table = &(dpm_table->mem_table);
golden_dpm_table = &(golden_table->mem_table);
feature_enabled = smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT);
clk_id = PPCLK_UCLK;
index = OD8_SETTING_UCLK_FMAX;
break;
default:
ret = -EINVAL;
break;
}
if (ret)
goto set_od_failed;
od_clk = golden_dpm_table->dpm_levels[golden_dpm_table->count - 1].value * value;
od_clk /= 100;
od_clk += golden_dpm_table->dpm_levels[golden_dpm_table->count - 1].value;
ret = vega20_update_od8_settings(smu, index, od_clk);
if (ret) {
pr_err("[Setoverdrive] failed to set od clk!\n");
goto set_od_failed;
}
if (feature_enabled) {
ret = vega20_set_single_dpm_table(smu, single_dpm_table,
clk_id);
if (ret) {
pr_err("[Setoverdrive] failed to refresh dpm table!\n");
goto set_od_failed;
}
} else {
single_dpm_table->count = 1;
single_dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.gfxclk / 100;
}
ret = smu_handle_task(smu, smu_dpm->dpm_level,
AMD_PP_TASK_READJUST_POWER_STATE);
set_od_failed:
mutex_unlock(&(smu->mutex));
return ret;
}
static int vega20_odn_edit_dpm_table(struct smu_context *smu,
enum PP_OD_DPM_TABLE_COMMAND type,
long *input, uint32_t size)
{
struct smu_table_context *table_context = &smu->smu_table;
OverDriveTable_t *od_table =
(OverDriveTable_t *)(table_context->overdrive_table);
struct smu_dpm_context *smu_dpm = &smu->smu_dpm;
struct vega20_dpm_table *dpm_table = NULL;
struct vega20_single_dpm_table *single_dpm_table;
struct vega20_od8_settings *od8_settings =
(struct vega20_od8_settings *)smu->od_settings;
struct pp_clock_levels_with_latency clocks;
int32_t input_index, input_clk, input_vol, i;
int od8_id;
int ret = 0;
dpm_table = smu_dpm->dpm_context;
if (!input) {
pr_warn("NULL user input for clock and voltage\n");
return -EINVAL;
}
switch (type) {
case PP_OD_EDIT_SCLK_VDDC_TABLE:
if (!(od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMIN].feature_id &&
od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMAX].feature_id)) {
pr_info("Sclk min/max frequency overdrive not supported\n");
return -EOPNOTSUPP;
}
for (i = 0; i < size; i += 2) {
if (i + 2 > size) {
pr_info("invalid number of input parameters %d\n", size);
return -EINVAL;
}
input_index = input[i];
input_clk = input[i + 1];
if (input_index != 0 && input_index != 1) {
pr_info("Invalid index %d\n", input_index);
pr_info("Support min/max sclk frequency settingonly which index by 0/1\n");
return -EINVAL;
}
if (input_clk < od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMIN].min_value ||
input_clk > od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMAX].max_value) {
pr_info("clock freq %d is not within allowed range [%d - %d]\n",
input_clk,
od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMIN].min_value,
od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMAX].max_value);
return -EINVAL;
}
if (input_index == 0 && od_table->GfxclkFmin != input_clk) {
od_table->GfxclkFmin = input_clk;
od8_settings->od_gfxclk_update = true;
} else if (input_index == 1 && od_table->GfxclkFmax != input_clk) {
od_table->GfxclkFmax = input_clk;
od8_settings->od_gfxclk_update = true;
}
}
break;
case PP_OD_EDIT_MCLK_VDDC_TABLE:
if (!od8_settings->od8_settings_array[OD8_SETTING_UCLK_FMAX].feature_id) {
pr_info("Mclk max frequency overdrive not supported\n");
return -EOPNOTSUPP;
}
single_dpm_table = &(dpm_table->mem_table);
ret = vega20_get_clk_table(smu, &clocks, single_dpm_table);
if (ret) {
pr_err("Attempt to get memory clk levels Failed!");
return ret;
}
for (i = 0; i < size; i += 2) {
if (i + 2 > size) {
pr_info("invalid number of input parameters %d\n",
size);
return -EINVAL;
}
input_index = input[i];
input_clk = input[i + 1];
if (input_index != 1) {
pr_info("Invalid index %d\n", input_index);
pr_info("Support max Mclk frequency setting only which index by 1\n");
return -EINVAL;
}
if (input_clk < clocks.data[0].clocks_in_khz / 1000 ||
input_clk > od8_settings->od8_settings_array[OD8_SETTING_UCLK_FMAX].max_value) {
pr_info("clock freq %d is not within allowed range [%d - %d]\n",
input_clk,
clocks.data[0].clocks_in_khz / 1000,
od8_settings->od8_settings_array[OD8_SETTING_UCLK_FMAX].max_value);
return -EINVAL;
}
if (input_index == 1 && od_table->UclkFmax != input_clk) {
od8_settings->od_gfxclk_update = true;
od_table->UclkFmax = input_clk;
}
}
break;
case PP_OD_EDIT_VDDC_CURVE:
if (!(od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ1].feature_id &&
od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ2].feature_id &&
od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ3].feature_id &&
od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE1].feature_id &&
od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE2].feature_id &&
od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE3].feature_id)) {
pr_info("Voltage curve calibrate not supported\n");
return -EOPNOTSUPP;
}
for (i = 0; i < size; i += 3) {
if (i + 3 > size) {
pr_info("invalid number of input parameters %d\n",
size);
return -EINVAL;
}
input_index = input[i];
input_clk = input[i + 1];
input_vol = input[i + 2];
if (input_index > 2) {
pr_info("Setting for point %d is not supported\n",
input_index + 1);
pr_info("Three supported points index by 0, 1, 2\n");
return -EINVAL;
}
od8_id = OD8_SETTING_GFXCLK_FREQ1 + 2 * input_index;
if (input_clk < od8_settings->od8_settings_array[od8_id].min_value ||
input_clk > od8_settings->od8_settings_array[od8_id].max_value) {
pr_info("clock freq %d is not within allowed range [%d - %d]\n",
input_clk,
od8_settings->od8_settings_array[od8_id].min_value,
od8_settings->od8_settings_array[od8_id].max_value);
return -EINVAL;
}
od8_id = OD8_SETTING_GFXCLK_VOLTAGE1 + 2 * input_index;
if (input_vol < od8_settings->od8_settings_array[od8_id].min_value ||
input_vol > od8_settings->od8_settings_array[od8_id].max_value) {
pr_info("clock voltage %d is not within allowed range [%d- %d]\n",
input_vol,
od8_settings->od8_settings_array[od8_id].min_value,
od8_settings->od8_settings_array[od8_id].max_value);
return -EINVAL;
}
switch (input_index) {
case 0:
od_table->GfxclkFreq1 = input_clk;
od_table->GfxclkVolt1 = input_vol * VOLTAGE_SCALE;
break;
case 1:
od_table->GfxclkFreq2 = input_clk;
od_table->GfxclkVolt2 = input_vol * VOLTAGE_SCALE;
break;
case 2:
od_table->GfxclkFreq3 = input_clk;
od_table->GfxclkVolt3 = input_vol * VOLTAGE_SCALE;
break;
}
}
break;
case PP_OD_RESTORE_DEFAULT_TABLE:
ret = smu_update_table(smu, SMU_TABLE_OVERDRIVE, 0, table_context->overdrive_table, false);
if (ret) {
pr_err("Failed to export over drive table!\n");
return ret;
}
break;
case PP_OD_COMMIT_DPM_TABLE:
ret = smu_update_table(smu, SMU_TABLE_OVERDRIVE, 0, table_context->overdrive_table, true);
if (ret) {
pr_err("Failed to import over drive table!\n");
return ret;
}
/* retrieve updated gfxclk table */
if (od8_settings->od_gfxclk_update) {
od8_settings->od_gfxclk_update = false;
single_dpm_table = &(dpm_table->gfx_table);
if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_GFXCLK_BIT)) {
ret = vega20_set_single_dpm_table(smu, single_dpm_table,
PPCLK_GFXCLK);
if (ret) {
pr_err("[Setoverdrive] failed to refresh dpm table!\n");
return ret;
}
} else {
single_dpm_table->count = 1;
single_dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.gfxclk / 100;
}
}
break;
default:
return -EINVAL;
}
if (type == PP_OD_COMMIT_DPM_TABLE) {
mutex_lock(&(smu->mutex));
ret = smu_handle_task(smu, smu_dpm->dpm_level,
AMD_PP_TASK_READJUST_POWER_STATE);
mutex_unlock(&(smu->mutex));
}
return ret;
}
static int vega20_dpm_set_uvd_enable(struct smu_context *smu, bool enable)
{
if (!smu_feature_is_supported(smu, SMU_FEATURE_DPM_UVD_BIT))
return 0;
if (enable == smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UVD_BIT))
return 0;
return smu_feature_set_enabled(smu, SMU_FEATURE_DPM_UVD_BIT, enable);
}
static int vega20_dpm_set_vce_enable(struct smu_context *smu, bool enable)
{
if (!smu_feature_is_supported(smu, SMU_FEATURE_DPM_VCE_BIT))
return 0;
if (enable == smu_feature_is_enabled(smu, SMU_FEATURE_DPM_VCE_BIT))
return 0;
return smu_feature_set_enabled(smu, SMU_FEATURE_DPM_VCE_BIT, enable);
}
static bool vega20_is_dpm_running(struct smu_context *smu)
{
int ret = 0;
uint32_t feature_mask[2];
unsigned long feature_enabled;
ret = smu_feature_get_enabled_mask(smu, feature_mask, 2);
feature_enabled = (unsigned long)((uint64_t)feature_mask[0] |
((uint64_t)feature_mask[1] << 32));
return !!(feature_enabled & SMC_DPM_FEATURE);
}
static int vega20_set_thermal_fan_table(struct smu_context *smu)
{
int ret;
struct smu_table_context *table_context = &smu->smu_table;
PPTable_t *pptable = table_context->driver_pptable;
ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetFanTemperatureTarget,
(uint32_t)pptable->FanTargetTemperature);
return ret;
}
static int vega20_get_fan_speed_rpm(struct smu_context *smu,
uint32_t *speed)
{
int ret;
ret = smu_send_smc_msg(smu, SMU_MSG_GetCurrentRpm);
if (ret) {
pr_err("Attempt to get current RPM from SMC Failed!\n");
return ret;
}
smu_read_smc_arg(smu, speed);
return 0;
}
static int vega20_get_fan_speed_percent(struct smu_context *smu,
uint32_t *speed)
{
int ret = 0;
uint32_t current_rpm = 0, percent = 0;
PPTable_t *pptable = smu->smu_table.driver_pptable;
ret = vega20_get_fan_speed_rpm(smu, &current_rpm);
if (ret)
return ret;
percent = current_rpm * 100 / pptable->FanMaximumRpm;
*speed = percent > 100 ? 100 : percent;
return 0;
}
static int vega20_get_gpu_power(struct smu_context *smu, uint32_t *value)
{
uint32_t smu_version;
int ret = 0;
SmuMetrics_t metrics;
if (!value)
return -EINVAL;
ret = vega20_get_metrics_table(smu, &metrics);
if (ret)
return ret;
ret = smu_get_smc_version(smu, NULL, &smu_version);
if (ret)
return ret;
if (smu_version < 0x282e00)
*value = metrics.CurrSocketPower << 8;
else
*value = metrics.AverageSocketPower << 8;
return 0;
}
static int vega20_get_current_activity_percent(struct smu_context *smu,
enum amd_pp_sensors sensor,
uint32_t *value)
{
int ret = 0;
SmuMetrics_t metrics;
if (!value)
return -EINVAL;
ret = vega20_get_metrics_table(smu, &metrics);
if (ret)
return ret;
switch (sensor) {
case AMDGPU_PP_SENSOR_GPU_LOAD:
*value = metrics.AverageGfxActivity;
break;
case AMDGPU_PP_SENSOR_MEM_LOAD:
*value = metrics.AverageUclkActivity;
break;
default:
pr_err("Invalid sensor for retrieving clock activity\n");
return -EINVAL;
}
return 0;
}
static int vega20_thermal_get_temperature(struct smu_context *smu,
enum amd_pp_sensors sensor,
uint32_t *value)
{
struct amdgpu_device *adev = smu->adev;
SmuMetrics_t metrics;
uint32_t temp = 0;
int ret = 0;
if (!value)
return -EINVAL;
ret = vega20_get_metrics_table(smu, &metrics);
if (ret)
return ret;
switch (sensor) {
case AMDGPU_PP_SENSOR_HOTSPOT_TEMP:
temp = RREG32_SOC15(THM, 0, mmCG_MULT_THERMAL_STATUS);
temp = (temp & CG_MULT_THERMAL_STATUS__CTF_TEMP_MASK) >>
CG_MULT_THERMAL_STATUS__CTF_TEMP__SHIFT;
temp = temp & 0x1ff;
temp *= SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
*value = temp;
break;
case AMDGPU_PP_SENSOR_EDGE_TEMP:
*value = metrics.TemperatureEdge *
SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
break;
case AMDGPU_PP_SENSOR_MEM_TEMP:
*value = metrics.TemperatureHBM *
SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
break;
default:
pr_err("Invalid sensor for retrieving temp\n");
return -EINVAL;
}
return 0;
}
static int vega20_read_sensor(struct smu_context *smu,
enum amd_pp_sensors sensor,
void *data, uint32_t *size)
{
int ret = 0;
struct smu_table_context *table_context = &smu->smu_table;
PPTable_t *pptable = table_context->driver_pptable;
if(!data || !size)
return -EINVAL;
switch (sensor) {
case AMDGPU_PP_SENSOR_MAX_FAN_RPM:
*(uint32_t *)data = pptable->FanMaximumRpm;
*size = 4;
break;
case AMDGPU_PP_SENSOR_MEM_LOAD:
case AMDGPU_PP_SENSOR_GPU_LOAD:
ret = vega20_get_current_activity_percent(smu,
sensor,
(uint32_t *)data);
*size = 4;
break;
case AMDGPU_PP_SENSOR_GPU_POWER:
ret = vega20_get_gpu_power(smu, (uint32_t *)data);
*size = 4;
break;
case AMDGPU_PP_SENSOR_HOTSPOT_TEMP:
case AMDGPU_PP_SENSOR_EDGE_TEMP:
case AMDGPU_PP_SENSOR_MEM_TEMP:
ret = vega20_thermal_get_temperature(smu, sensor, (uint32_t *)data);
*size = 4;
break;
default:
ret = smu_smc_read_sensor(smu, sensor, data, size);
}
return ret;
}
static int vega20_set_watermarks_table(struct smu_context *smu,
void *watermarks, struct
dm_pp_wm_sets_with_clock_ranges_soc15
*clock_ranges)
{
int i;
Watermarks_t *table = watermarks;
if (!table || !clock_ranges)
return -EINVAL;
if (clock_ranges->num_wm_dmif_sets > 4 ||
clock_ranges->num_wm_mcif_sets > 4)
return -EINVAL;
for (i = 0; i < clock_ranges->num_wm_dmif_sets; i++) {
table->WatermarkRow[1][i].MinClock =
cpu_to_le16((uint16_t)
(clock_ranges->wm_dmif_clocks_ranges[i].wm_min_dcfclk_clk_in_khz /
1000));
table->WatermarkRow[1][i].MaxClock =
cpu_to_le16((uint16_t)
(clock_ranges->wm_dmif_clocks_ranges[i].wm_max_dcfclk_clk_in_khz /
1000));
table->WatermarkRow[1][i].MinUclk =
cpu_to_le16((uint16_t)
(clock_ranges->wm_dmif_clocks_ranges[i].wm_min_mem_clk_in_khz /
1000));
table->WatermarkRow[1][i].MaxUclk =
cpu_to_le16((uint16_t)
(clock_ranges->wm_dmif_clocks_ranges[i].wm_max_mem_clk_in_khz /
1000));
table->WatermarkRow[1][i].WmSetting = (uint8_t)
clock_ranges->wm_dmif_clocks_ranges[i].wm_set_id;
}
for (i = 0; i < clock_ranges->num_wm_mcif_sets; i++) {
table->WatermarkRow[0][i].MinClock =
cpu_to_le16((uint16_t)
(clock_ranges->wm_mcif_clocks_ranges[i].wm_min_socclk_clk_in_khz /
1000));
table->WatermarkRow[0][i].MaxClock =
cpu_to_le16((uint16_t)
(clock_ranges->wm_mcif_clocks_ranges[i].wm_max_socclk_clk_in_khz /
1000));
table->WatermarkRow[0][i].MinUclk =
cpu_to_le16((uint16_t)
(clock_ranges->wm_mcif_clocks_ranges[i].wm_min_mem_clk_in_khz /
1000));
table->WatermarkRow[0][i].MaxUclk =
cpu_to_le16((uint16_t)
(clock_ranges->wm_mcif_clocks_ranges[i].wm_max_mem_clk_in_khz /
1000));
table->WatermarkRow[0][i].WmSetting = (uint8_t)
clock_ranges->wm_mcif_clocks_ranges[i].wm_set_id;
}
return 0;
}
static int vega20_get_thermal_temperature_range(struct smu_context *smu,
struct smu_temperature_range *range)
{
struct smu_table_context *table_context = &smu->smu_table;
ATOM_Vega20_POWERPLAYTABLE *powerplay_table = table_context->power_play_table;
PPTable_t *pptable = smu->smu_table.driver_pptable;
if (!range || !powerplay_table)
return -EINVAL;
range->max = powerplay_table->usSoftwareShutdownTemp *
SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
range->edge_emergency_max = (pptable->TedgeLimit + CTF_OFFSET_EDGE) *
SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
range->hotspot_crit_max = pptable->ThotspotLimit *
SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
range->hotspot_emergency_max = (pptable->ThotspotLimit + CTF_OFFSET_HOTSPOT) *
SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
range->mem_crit_max = pptable->ThbmLimit *
SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
range->mem_emergency_max = (pptable->ThbmLimit + CTF_OFFSET_HBM) *
SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
return 0;
}
static const struct pptable_funcs vega20_ppt_funcs = {
.tables_init = vega20_tables_init,
.alloc_dpm_context = vega20_allocate_dpm_context,
.store_powerplay_table = vega20_store_powerplay_table,
.check_powerplay_table = vega20_check_powerplay_table,
.append_powerplay_table = vega20_append_powerplay_table,
.get_smu_msg_index = vega20_get_smu_msg_index,
.get_smu_clk_index = vega20_get_smu_clk_index,
.get_smu_feature_index = vega20_get_smu_feature_index,
.get_smu_table_index = vega20_get_smu_table_index,
.get_smu_power_index = vega20_get_pwr_src_index,
.get_workload_type = vega20_get_workload_type,
.run_afll_btc = vega20_run_btc_afll,
.get_allowed_feature_mask = vega20_get_allowed_feature_mask,
.get_current_power_state = vega20_get_current_power_state,
.set_default_dpm_table = vega20_set_default_dpm_table,
.set_power_state = NULL,
.populate_umd_state_clk = vega20_populate_umd_state_clk,
.print_clk_levels = vega20_print_clk_levels,
.force_clk_levels = vega20_force_clk_levels,
.get_clock_by_type_with_latency = vega20_get_clock_by_type_with_latency,
.get_od_percentage = vega20_get_od_percentage,
.get_power_profile_mode = vega20_get_power_profile_mode,
.set_power_profile_mode = vega20_set_power_profile_mode,
.set_od_percentage = vega20_set_od_percentage,
.set_default_od_settings = vega20_set_default_od_settings,
.od_edit_dpm_table = vega20_odn_edit_dpm_table,
.dpm_set_uvd_enable = vega20_dpm_set_uvd_enable,
.dpm_set_vce_enable = vega20_dpm_set_vce_enable,
.read_sensor = vega20_read_sensor,
.pre_display_config_changed = vega20_pre_display_config_changed,
.display_config_changed = vega20_display_config_changed,
.apply_clocks_adjust_rules = vega20_apply_clocks_adjust_rules,
.notify_smc_dispaly_config = vega20_notify_smc_dispaly_config,
.force_dpm_limit_value = vega20_force_dpm_limit_value,
.unforce_dpm_levels = vega20_unforce_dpm_levels,
.get_profiling_clk_mask = vega20_get_profiling_clk_mask,
.is_dpm_running = vega20_is_dpm_running,
.set_thermal_fan_table = vega20_set_thermal_fan_table,
.get_fan_speed_percent = vega20_get_fan_speed_percent,
.get_fan_speed_rpm = vega20_get_fan_speed_rpm,
.set_watermarks_table = vega20_set_watermarks_table,
.get_thermal_temperature_range = vega20_get_thermal_temperature_range
};
void vega20_set_ppt_funcs(struct smu_context *smu)
{
struct smu_table_context *smu_table = &smu->smu_table;
smu->ppt_funcs = &vega20_ppt_funcs;
smu_table->table_count = TABLE_COUNT;
}