linux_dsm_epyc7002/kernel/time/tick-broadcast.c
Thomas Gleixner dd5fd9b91a tick: Clear broadcast pending bit when switching to oneshot
AMD systems which use the C1E workaround in the amd_e400_idle routine
trigger the WARN_ON_ONCE in the broadcast code when onlining a CPU.

The reason is that the idle routine of those AMD systems switches the
cpu into forced broadcast mode early on before the newly brought up
CPU can switch over to high resolution / NOHZ mode. The timer related
CPU1 bringup looks like this:

  clockevent_register_device(local_apic);
  tick_setup(local_apic);
  ...
  idle()
	tick_broadcast_on_off(FORCE);
	tick_broadcast_oneshot_control(ENTER)
	  cpumask_set(cpu, broadcast_oneshot_mask);
	halt();

Now the broadcast interrupt on CPU0 sets CPU1 in the
broadcast_pending_mask and wakes CPU1. So CPU1 continues:

	local_apic_timer_interrupt()
	   tick_handle_periodic();
	   softirq()
	     tick_init_highres();
	       cpumask_clr(cpu, broadcast_oneshot_mask);
	
	tick_broadcast_oneshot_control(ENTER)
	   WARN_ON(cpumask_test(cpu, broadcast_pending_mask);

So while we remove CPU1 from the broadcast_oneshot_mask when we switch
over to highres mode, we do not clear the pending bit, which then
triggers the warning when we go back to idle.

The reason why this is only visible on C1E affected AMD systems is
that the other machines enter the deep sleep states via
acpi_idle/intel_idle and exit the broadcast mode before executing the
remote triggered local_apic_timer_interrupt. So the pending bit is
already cleared when the switch over to highres mode is clearing the
oneshot mask.

The solution is simple: Clear the pending bit together with the mask
bit when we switch over to highres mode.

Stanislaw came up independently with the same patch by enforcing the
C1E workaround and debugging the fallout. I picked mine, because mine
has a changelog :)

Reported-by: poma <pomidorabelisima@gmail.com>
Debugged-by: Stanislaw Gruszka <sgruszka@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Olaf Hering <olaf@aepfle.de>
Cc: Dave Jones <davej@redhat.com>
Cc: Justin M. Forbes <jforbes@redhat.com>
Cc: Josh Boyer <jwboyer@redhat.com>
Link: http://lkml.kernel.org/r/alpine.DEB.2.02.1402111434180.21991@ionos.tec.linutronix.de
Cc: stable@vger.kernel.org # 3.10+
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2014-02-13 21:55:54 +01:00

889 lines
23 KiB
C

/*
* linux/kernel/time/tick-broadcast.c
*
* This file contains functions which emulate a local clock-event
* device via a broadcast event source.
*
* Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
* Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
* Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
*
* This code is licenced under the GPL version 2. For details see
* kernel-base/COPYING.
*/
#include <linux/cpu.h>
#include <linux/err.h>
#include <linux/hrtimer.h>
#include <linux/interrupt.h>
#include <linux/percpu.h>
#include <linux/profile.h>
#include <linux/sched.h>
#include <linux/smp.h>
#include <linux/module.h>
#include "tick-internal.h"
/*
* Broadcast support for broken x86 hardware, where the local apic
* timer stops in C3 state.
*/
static struct tick_device tick_broadcast_device;
static cpumask_var_t tick_broadcast_mask;
static cpumask_var_t tick_broadcast_on;
static cpumask_var_t tmpmask;
static DEFINE_RAW_SPINLOCK(tick_broadcast_lock);
static int tick_broadcast_force;
#ifdef CONFIG_TICK_ONESHOT
static void tick_broadcast_clear_oneshot(int cpu);
#else
static inline void tick_broadcast_clear_oneshot(int cpu) { }
#endif
/*
* Debugging: see timer_list.c
*/
struct tick_device *tick_get_broadcast_device(void)
{
return &tick_broadcast_device;
}
struct cpumask *tick_get_broadcast_mask(void)
{
return tick_broadcast_mask;
}
/*
* Start the device in periodic mode
*/
static void tick_broadcast_start_periodic(struct clock_event_device *bc)
{
if (bc)
tick_setup_periodic(bc, 1);
}
/*
* Check, if the device can be utilized as broadcast device:
*/
static bool tick_check_broadcast_device(struct clock_event_device *curdev,
struct clock_event_device *newdev)
{
if ((newdev->features & CLOCK_EVT_FEAT_DUMMY) ||
(newdev->features & CLOCK_EVT_FEAT_PERCPU) ||
(newdev->features & CLOCK_EVT_FEAT_C3STOP))
return false;
if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT &&
!(newdev->features & CLOCK_EVT_FEAT_ONESHOT))
return false;
return !curdev || newdev->rating > curdev->rating;
}
/*
* Conditionally install/replace broadcast device
*/
void tick_install_broadcast_device(struct clock_event_device *dev)
{
struct clock_event_device *cur = tick_broadcast_device.evtdev;
if (!tick_check_broadcast_device(cur, dev))
return;
if (!try_module_get(dev->owner))
return;
clockevents_exchange_device(cur, dev);
if (cur)
cur->event_handler = clockevents_handle_noop;
tick_broadcast_device.evtdev = dev;
if (!cpumask_empty(tick_broadcast_mask))
tick_broadcast_start_periodic(dev);
/*
* Inform all cpus about this. We might be in a situation
* where we did not switch to oneshot mode because the per cpu
* devices are affected by CLOCK_EVT_FEAT_C3STOP and the lack
* of a oneshot capable broadcast device. Without that
* notification the systems stays stuck in periodic mode
* forever.
*/
if (dev->features & CLOCK_EVT_FEAT_ONESHOT)
tick_clock_notify();
}
/*
* Check, if the device is the broadcast device
*/
int tick_is_broadcast_device(struct clock_event_device *dev)
{
return (dev && tick_broadcast_device.evtdev == dev);
}
static void err_broadcast(const struct cpumask *mask)
{
pr_crit_once("Failed to broadcast timer tick. Some CPUs may be unresponsive.\n");
}
static void tick_device_setup_broadcast_func(struct clock_event_device *dev)
{
if (!dev->broadcast)
dev->broadcast = tick_broadcast;
if (!dev->broadcast) {
pr_warn_once("%s depends on broadcast, but no broadcast function available\n",
dev->name);
dev->broadcast = err_broadcast;
}
}
/*
* Check, if the device is disfunctional and a place holder, which
* needs to be handled by the broadcast device.
*/
int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu)
{
struct clock_event_device *bc = tick_broadcast_device.evtdev;
unsigned long flags;
int ret;
raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
/*
* Devices might be registered with both periodic and oneshot
* mode disabled. This signals, that the device needs to be
* operated from the broadcast device and is a placeholder for
* the cpu local device.
*/
if (!tick_device_is_functional(dev)) {
dev->event_handler = tick_handle_periodic;
tick_device_setup_broadcast_func(dev);
cpumask_set_cpu(cpu, tick_broadcast_mask);
if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
tick_broadcast_start_periodic(bc);
else
tick_broadcast_setup_oneshot(bc);
ret = 1;
} else {
/*
* Clear the broadcast bit for this cpu if the
* device is not power state affected.
*/
if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
cpumask_clear_cpu(cpu, tick_broadcast_mask);
else
tick_device_setup_broadcast_func(dev);
/*
* Clear the broadcast bit if the CPU is not in
* periodic broadcast on state.
*/
if (!cpumask_test_cpu(cpu, tick_broadcast_on))
cpumask_clear_cpu(cpu, tick_broadcast_mask);
switch (tick_broadcast_device.mode) {
case TICKDEV_MODE_ONESHOT:
/*
* If the system is in oneshot mode we can
* unconditionally clear the oneshot mask bit,
* because the CPU is running and therefore
* not in an idle state which causes the power
* state affected device to stop. Let the
* caller initialize the device.
*/
tick_broadcast_clear_oneshot(cpu);
ret = 0;
break;
case TICKDEV_MODE_PERIODIC:
/*
* If the system is in periodic mode, check
* whether the broadcast device can be
* switched off now.
*/
if (cpumask_empty(tick_broadcast_mask) && bc)
clockevents_shutdown(bc);
/*
* If we kept the cpu in the broadcast mask,
* tell the caller to leave the per cpu device
* in shutdown state. The periodic interrupt
* is delivered by the broadcast device.
*/
ret = cpumask_test_cpu(cpu, tick_broadcast_mask);
break;
default:
/* Nothing to do */
ret = 0;
break;
}
}
raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
return ret;
}
#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
int tick_receive_broadcast(void)
{
struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
struct clock_event_device *evt = td->evtdev;
if (!evt)
return -ENODEV;
if (!evt->event_handler)
return -EINVAL;
evt->event_handler(evt);
return 0;
}
#endif
/*
* Broadcast the event to the cpus, which are set in the mask (mangled).
*/
static void tick_do_broadcast(struct cpumask *mask)
{
int cpu = smp_processor_id();
struct tick_device *td;
/*
* Check, if the current cpu is in the mask
*/
if (cpumask_test_cpu(cpu, mask)) {
cpumask_clear_cpu(cpu, mask);
td = &per_cpu(tick_cpu_device, cpu);
td->evtdev->event_handler(td->evtdev);
}
if (!cpumask_empty(mask)) {
/*
* It might be necessary to actually check whether the devices
* have different broadcast functions. For now, just use the
* one of the first device. This works as long as we have this
* misfeature only on x86 (lapic)
*/
td = &per_cpu(tick_cpu_device, cpumask_first(mask));
td->evtdev->broadcast(mask);
}
}
/*
* Periodic broadcast:
* - invoke the broadcast handlers
*/
static void tick_do_periodic_broadcast(void)
{
raw_spin_lock(&tick_broadcast_lock);
cpumask_and(tmpmask, cpu_online_mask, tick_broadcast_mask);
tick_do_broadcast(tmpmask);
raw_spin_unlock(&tick_broadcast_lock);
}
/*
* Event handler for periodic broadcast ticks
*/
static void tick_handle_periodic_broadcast(struct clock_event_device *dev)
{
ktime_t next;
tick_do_periodic_broadcast();
/*
* The device is in periodic mode. No reprogramming necessary:
*/
if (dev->mode == CLOCK_EVT_MODE_PERIODIC)
return;
/*
* Setup the next period for devices, which do not have
* periodic mode. We read dev->next_event first and add to it
* when the event already expired. clockevents_program_event()
* sets dev->next_event only when the event is really
* programmed to the device.
*/
for (next = dev->next_event; ;) {
next = ktime_add(next, tick_period);
if (!clockevents_program_event(dev, next, false))
return;
tick_do_periodic_broadcast();
}
}
/*
* Powerstate information: The system enters/leaves a state, where
* affected devices might stop
*/
static void tick_do_broadcast_on_off(unsigned long *reason)
{
struct clock_event_device *bc, *dev;
struct tick_device *td;
unsigned long flags;
int cpu, bc_stopped;
raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
cpu = smp_processor_id();
td = &per_cpu(tick_cpu_device, cpu);
dev = td->evtdev;
bc = tick_broadcast_device.evtdev;
/*
* Is the device not affected by the powerstate ?
*/
if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP))
goto out;
if (!tick_device_is_functional(dev))
goto out;
bc_stopped = cpumask_empty(tick_broadcast_mask);
switch (*reason) {
case CLOCK_EVT_NOTIFY_BROADCAST_ON:
case CLOCK_EVT_NOTIFY_BROADCAST_FORCE:
cpumask_set_cpu(cpu, tick_broadcast_on);
if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_mask)) {
if (tick_broadcast_device.mode ==
TICKDEV_MODE_PERIODIC)
clockevents_shutdown(dev);
}
if (*reason == CLOCK_EVT_NOTIFY_BROADCAST_FORCE)
tick_broadcast_force = 1;
break;
case CLOCK_EVT_NOTIFY_BROADCAST_OFF:
if (tick_broadcast_force)
break;
cpumask_clear_cpu(cpu, tick_broadcast_on);
if (!tick_device_is_functional(dev))
break;
if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_mask)) {
if (tick_broadcast_device.mode ==
TICKDEV_MODE_PERIODIC)
tick_setup_periodic(dev, 0);
}
break;
}
if (cpumask_empty(tick_broadcast_mask)) {
if (!bc_stopped)
clockevents_shutdown(bc);
} else if (bc_stopped) {
if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
tick_broadcast_start_periodic(bc);
else
tick_broadcast_setup_oneshot(bc);
}
out:
raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
}
/*
* Powerstate information: The system enters/leaves a state, where
* affected devices might stop.
*/
void tick_broadcast_on_off(unsigned long reason, int *oncpu)
{
if (!cpumask_test_cpu(*oncpu, cpu_online_mask))
printk(KERN_ERR "tick-broadcast: ignoring broadcast for "
"offline CPU #%d\n", *oncpu);
else
tick_do_broadcast_on_off(&reason);
}
/*
* Set the periodic handler depending on broadcast on/off
*/
void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast)
{
if (!broadcast)
dev->event_handler = tick_handle_periodic;
else
dev->event_handler = tick_handle_periodic_broadcast;
}
/*
* Remove a CPU from broadcasting
*/
void tick_shutdown_broadcast(unsigned int *cpup)
{
struct clock_event_device *bc;
unsigned long flags;
unsigned int cpu = *cpup;
raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
bc = tick_broadcast_device.evtdev;
cpumask_clear_cpu(cpu, tick_broadcast_mask);
cpumask_clear_cpu(cpu, tick_broadcast_on);
if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
if (bc && cpumask_empty(tick_broadcast_mask))
clockevents_shutdown(bc);
}
raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
}
void tick_suspend_broadcast(void)
{
struct clock_event_device *bc;
unsigned long flags;
raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
bc = tick_broadcast_device.evtdev;
if (bc)
clockevents_shutdown(bc);
raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
}
int tick_resume_broadcast(void)
{
struct clock_event_device *bc;
unsigned long flags;
int broadcast = 0;
raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
bc = tick_broadcast_device.evtdev;
if (bc) {
clockevents_set_mode(bc, CLOCK_EVT_MODE_RESUME);
switch (tick_broadcast_device.mode) {
case TICKDEV_MODE_PERIODIC:
if (!cpumask_empty(tick_broadcast_mask))
tick_broadcast_start_periodic(bc);
broadcast = cpumask_test_cpu(smp_processor_id(),
tick_broadcast_mask);
break;
case TICKDEV_MODE_ONESHOT:
if (!cpumask_empty(tick_broadcast_mask))
broadcast = tick_resume_broadcast_oneshot(bc);
break;
}
}
raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
return broadcast;
}
#ifdef CONFIG_TICK_ONESHOT
static cpumask_var_t tick_broadcast_oneshot_mask;
static cpumask_var_t tick_broadcast_pending_mask;
static cpumask_var_t tick_broadcast_force_mask;
/*
* Exposed for debugging: see timer_list.c
*/
struct cpumask *tick_get_broadcast_oneshot_mask(void)
{
return tick_broadcast_oneshot_mask;
}
/*
* Called before going idle with interrupts disabled. Checks whether a
* broadcast event from the other core is about to happen. We detected
* that in tick_broadcast_oneshot_control(). The callsite can use this
* to avoid a deep idle transition as we are about to get the
* broadcast IPI right away.
*/
int tick_check_broadcast_expired(void)
{
return cpumask_test_cpu(smp_processor_id(), tick_broadcast_force_mask);
}
/*
* Set broadcast interrupt affinity
*/
static void tick_broadcast_set_affinity(struct clock_event_device *bc,
const struct cpumask *cpumask)
{
if (!(bc->features & CLOCK_EVT_FEAT_DYNIRQ))
return;
if (cpumask_equal(bc->cpumask, cpumask))
return;
bc->cpumask = cpumask;
irq_set_affinity(bc->irq, bc->cpumask);
}
static int tick_broadcast_set_event(struct clock_event_device *bc, int cpu,
ktime_t expires, int force)
{
int ret;
if (bc->mode != CLOCK_EVT_MODE_ONESHOT)
clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
ret = clockevents_program_event(bc, expires, force);
if (!ret)
tick_broadcast_set_affinity(bc, cpumask_of(cpu));
return ret;
}
int tick_resume_broadcast_oneshot(struct clock_event_device *bc)
{
clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
return 0;
}
/*
* Called from irq_enter() when idle was interrupted to reenable the
* per cpu device.
*/
void tick_check_oneshot_broadcast_this_cpu(void)
{
if (cpumask_test_cpu(smp_processor_id(), tick_broadcast_oneshot_mask)) {
struct tick_device *td = &__get_cpu_var(tick_cpu_device);
/*
* We might be in the middle of switching over from
* periodic to oneshot. If the CPU has not yet
* switched over, leave the device alone.
*/
if (td->mode == TICKDEV_MODE_ONESHOT) {
clockevents_set_mode(td->evtdev,
CLOCK_EVT_MODE_ONESHOT);
}
}
}
/*
* Handle oneshot mode broadcasting
*/
static void tick_handle_oneshot_broadcast(struct clock_event_device *dev)
{
struct tick_device *td;
ktime_t now, next_event;
int cpu, next_cpu = 0;
raw_spin_lock(&tick_broadcast_lock);
again:
dev->next_event.tv64 = KTIME_MAX;
next_event.tv64 = KTIME_MAX;
cpumask_clear(tmpmask);
now = ktime_get();
/* Find all expired events */
for_each_cpu(cpu, tick_broadcast_oneshot_mask) {
td = &per_cpu(tick_cpu_device, cpu);
if (td->evtdev->next_event.tv64 <= now.tv64) {
cpumask_set_cpu(cpu, tmpmask);
/*
* Mark the remote cpu in the pending mask, so
* it can avoid reprogramming the cpu local
* timer in tick_broadcast_oneshot_control().
*/
cpumask_set_cpu(cpu, tick_broadcast_pending_mask);
} else if (td->evtdev->next_event.tv64 < next_event.tv64) {
next_event.tv64 = td->evtdev->next_event.tv64;
next_cpu = cpu;
}
}
/*
* Remove the current cpu from the pending mask. The event is
* delivered immediately in tick_do_broadcast() !
*/
cpumask_clear_cpu(smp_processor_id(), tick_broadcast_pending_mask);
/* Take care of enforced broadcast requests */
cpumask_or(tmpmask, tmpmask, tick_broadcast_force_mask);
cpumask_clear(tick_broadcast_force_mask);
/*
* Sanity check. Catch the case where we try to broadcast to
* offline cpus.
*/
if (WARN_ON_ONCE(!cpumask_subset(tmpmask, cpu_online_mask)))
cpumask_and(tmpmask, tmpmask, cpu_online_mask);
/*
* Wakeup the cpus which have an expired event.
*/
tick_do_broadcast(tmpmask);
/*
* Two reasons for reprogram:
*
* - The global event did not expire any CPU local
* events. This happens in dyntick mode, as the maximum PIT
* delta is quite small.
*
* - There are pending events on sleeping CPUs which were not
* in the event mask
*/
if (next_event.tv64 != KTIME_MAX) {
/*
* Rearm the broadcast device. If event expired,
* repeat the above
*/
if (tick_broadcast_set_event(dev, next_cpu, next_event, 0))
goto again;
}
raw_spin_unlock(&tick_broadcast_lock);
}
/*
* Powerstate information: The system enters/leaves a state, where
* affected devices might stop
*/
void tick_broadcast_oneshot_control(unsigned long reason)
{
struct clock_event_device *bc, *dev;
struct tick_device *td;
unsigned long flags;
ktime_t now;
int cpu;
/*
* Periodic mode does not care about the enter/exit of power
* states
*/
if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
return;
/*
* We are called with preemtion disabled from the depth of the
* idle code, so we can't be moved away.
*/
cpu = smp_processor_id();
td = &per_cpu(tick_cpu_device, cpu);
dev = td->evtdev;
if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
return;
bc = tick_broadcast_device.evtdev;
raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
if (reason == CLOCK_EVT_NOTIFY_BROADCAST_ENTER) {
if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_oneshot_mask)) {
WARN_ON_ONCE(cpumask_test_cpu(cpu, tick_broadcast_pending_mask));
clockevents_set_mode(dev, CLOCK_EVT_MODE_SHUTDOWN);
/*
* We only reprogram the broadcast timer if we
* did not mark ourself in the force mask and
* if the cpu local event is earlier than the
* broadcast event. If the current CPU is in
* the force mask, then we are going to be
* woken by the IPI right away.
*/
if (!cpumask_test_cpu(cpu, tick_broadcast_force_mask) &&
dev->next_event.tv64 < bc->next_event.tv64)
tick_broadcast_set_event(bc, cpu, dev->next_event, 1);
}
} else {
if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_oneshot_mask)) {
clockevents_set_mode(dev, CLOCK_EVT_MODE_ONESHOT);
/*
* The cpu which was handling the broadcast
* timer marked this cpu in the broadcast
* pending mask and fired the broadcast
* IPI. So we are going to handle the expired
* event anyway via the broadcast IPI
* handler. No need to reprogram the timer
* with an already expired event.
*/
if (cpumask_test_and_clear_cpu(cpu,
tick_broadcast_pending_mask))
goto out;
/*
* Bail out if there is no next event.
*/
if (dev->next_event.tv64 == KTIME_MAX)
goto out;
/*
* If the pending bit is not set, then we are
* either the CPU handling the broadcast
* interrupt or we got woken by something else.
*
* We are not longer in the broadcast mask, so
* if the cpu local expiry time is already
* reached, we would reprogram the cpu local
* timer with an already expired event.
*
* This can lead to a ping-pong when we return
* to idle and therefor rearm the broadcast
* timer before the cpu local timer was able
* to fire. This happens because the forced
* reprogramming makes sure that the event
* will happen in the future and depending on
* the min_delta setting this might be far
* enough out that the ping-pong starts.
*
* If the cpu local next_event has expired
* then we know that the broadcast timer
* next_event has expired as well and
* broadcast is about to be handled. So we
* avoid reprogramming and enforce that the
* broadcast handler, which did not run yet,
* will invoke the cpu local handler.
*
* We cannot call the handler directly from
* here, because we might be in a NOHZ phase
* and we did not go through the irq_enter()
* nohz fixups.
*/
now = ktime_get();
if (dev->next_event.tv64 <= now.tv64) {
cpumask_set_cpu(cpu, tick_broadcast_force_mask);
goto out;
}
/*
* We got woken by something else. Reprogram
* the cpu local timer device.
*/
tick_program_event(dev->next_event, 1);
}
}
out:
raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
}
/*
* Reset the one shot broadcast for a cpu
*
* Called with tick_broadcast_lock held
*/
static void tick_broadcast_clear_oneshot(int cpu)
{
cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
cpumask_clear_cpu(cpu, tick_broadcast_pending_mask);
}
static void tick_broadcast_init_next_event(struct cpumask *mask,
ktime_t expires)
{
struct tick_device *td;
int cpu;
for_each_cpu(cpu, mask) {
td = &per_cpu(tick_cpu_device, cpu);
if (td->evtdev)
td->evtdev->next_event = expires;
}
}
/**
* tick_broadcast_setup_oneshot - setup the broadcast device
*/
void tick_broadcast_setup_oneshot(struct clock_event_device *bc)
{
int cpu = smp_processor_id();
/* Set it up only once ! */
if (bc->event_handler != tick_handle_oneshot_broadcast) {
int was_periodic = bc->mode == CLOCK_EVT_MODE_PERIODIC;
bc->event_handler = tick_handle_oneshot_broadcast;
/*
* We must be careful here. There might be other CPUs
* waiting for periodic broadcast. We need to set the
* oneshot_mask bits for those and program the
* broadcast device to fire.
*/
cpumask_copy(tmpmask, tick_broadcast_mask);
cpumask_clear_cpu(cpu, tmpmask);
cpumask_or(tick_broadcast_oneshot_mask,
tick_broadcast_oneshot_mask, tmpmask);
if (was_periodic && !cpumask_empty(tmpmask)) {
clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
tick_broadcast_init_next_event(tmpmask,
tick_next_period);
tick_broadcast_set_event(bc, cpu, tick_next_period, 1);
} else
bc->next_event.tv64 = KTIME_MAX;
} else {
/*
* The first cpu which switches to oneshot mode sets
* the bit for all other cpus which are in the general
* (periodic) broadcast mask. So the bit is set and
* would prevent the first broadcast enter after this
* to program the bc device.
*/
tick_broadcast_clear_oneshot(cpu);
}
}
/*
* Select oneshot operating mode for the broadcast device
*/
void tick_broadcast_switch_to_oneshot(void)
{
struct clock_event_device *bc;
unsigned long flags;
raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT;
bc = tick_broadcast_device.evtdev;
if (bc)
tick_broadcast_setup_oneshot(bc);
raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
}
/*
* Remove a dead CPU from broadcasting
*/
void tick_shutdown_broadcast_oneshot(unsigned int *cpup)
{
unsigned long flags;
unsigned int cpu = *cpup;
raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
/*
* Clear the broadcast masks for the dead cpu, but do not stop
* the broadcast device!
*/
cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
cpumask_clear_cpu(cpu, tick_broadcast_pending_mask);
cpumask_clear_cpu(cpu, tick_broadcast_force_mask);
raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
}
/*
* Check, whether the broadcast device is in one shot mode
*/
int tick_broadcast_oneshot_active(void)
{
return tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT;
}
/*
* Check whether the broadcast device supports oneshot.
*/
bool tick_broadcast_oneshot_available(void)
{
struct clock_event_device *bc = tick_broadcast_device.evtdev;
return bc ? bc->features & CLOCK_EVT_FEAT_ONESHOT : false;
}
#endif
void __init tick_broadcast_init(void)
{
zalloc_cpumask_var(&tick_broadcast_mask, GFP_NOWAIT);
zalloc_cpumask_var(&tick_broadcast_on, GFP_NOWAIT);
zalloc_cpumask_var(&tmpmask, GFP_NOWAIT);
#ifdef CONFIG_TICK_ONESHOT
zalloc_cpumask_var(&tick_broadcast_oneshot_mask, GFP_NOWAIT);
zalloc_cpumask_var(&tick_broadcast_pending_mask, GFP_NOWAIT);
zalloc_cpumask_var(&tick_broadcast_force_mask, GFP_NOWAIT);
#endif
}