linux_dsm_epyc7002/drivers/net/wireless/quantenna/qtnfmac/qlink_util.c
Igor Mitsyanko c698bce015 qtnfmac: allow each MAC to specify its own regulatory rules
Currently driver uses the same regulatory rules to register all wiphy
instances. This is not logically correct since each wiphy may have
different capabilities (different supported bands, EIRP etc).
Allow firmware to pass regulatory rules for each MAC separately.

Signed-off-by: Igor Mitsyanko <igor.mitsyanko.os@quantenna.com>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-04 12:57:28 +03:00

302 lines
7.3 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/* Copyright (c) 2015-2016 Quantenna Communications. All rights reserved. */
#include <linux/nl80211.h>
#include "qlink_util.h"
u16 qlink_iface_type_to_nl_mask(u16 qlink_type)
{
u16 result = 0;
switch (qlink_type) {
case QLINK_IFTYPE_AP:
result |= BIT(NL80211_IFTYPE_AP);
break;
case QLINK_IFTYPE_STATION:
result |= BIT(NL80211_IFTYPE_STATION);
break;
case QLINK_IFTYPE_ADHOC:
result |= BIT(NL80211_IFTYPE_ADHOC);
break;
case QLINK_IFTYPE_MONITOR:
result |= BIT(NL80211_IFTYPE_MONITOR);
break;
case QLINK_IFTYPE_WDS:
result |= BIT(NL80211_IFTYPE_WDS);
break;
case QLINK_IFTYPE_AP_VLAN:
result |= BIT(NL80211_IFTYPE_AP_VLAN);
break;
}
return result;
}
u8 qlink_chan_width_mask_to_nl(u16 qlink_mask)
{
u8 result = 0;
if (qlink_mask & BIT(QLINK_CHAN_WIDTH_5))
result |= BIT(NL80211_CHAN_WIDTH_5);
if (qlink_mask & BIT(QLINK_CHAN_WIDTH_10))
result |= BIT(NL80211_CHAN_WIDTH_10);
if (qlink_mask & BIT(QLINK_CHAN_WIDTH_20_NOHT))
result |= BIT(NL80211_CHAN_WIDTH_20_NOHT);
if (qlink_mask & BIT(QLINK_CHAN_WIDTH_20))
result |= BIT(NL80211_CHAN_WIDTH_20);
if (qlink_mask & BIT(QLINK_CHAN_WIDTH_40))
result |= BIT(NL80211_CHAN_WIDTH_40);
if (qlink_mask & BIT(QLINK_CHAN_WIDTH_80))
result |= BIT(NL80211_CHAN_WIDTH_80);
if (qlink_mask & BIT(QLINK_CHAN_WIDTH_80P80))
result |= BIT(NL80211_CHAN_WIDTH_80P80);
if (qlink_mask & BIT(QLINK_CHAN_WIDTH_160))
result |= BIT(NL80211_CHAN_WIDTH_160);
return result;
}
static enum nl80211_chan_width qlink_chanwidth_to_nl(u8 qlw)
{
switch (qlw) {
case QLINK_CHAN_WIDTH_20_NOHT:
return NL80211_CHAN_WIDTH_20_NOHT;
case QLINK_CHAN_WIDTH_20:
return NL80211_CHAN_WIDTH_20;
case QLINK_CHAN_WIDTH_40:
return NL80211_CHAN_WIDTH_40;
case QLINK_CHAN_WIDTH_80:
return NL80211_CHAN_WIDTH_80;
case QLINK_CHAN_WIDTH_80P80:
return NL80211_CHAN_WIDTH_80P80;
case QLINK_CHAN_WIDTH_160:
return NL80211_CHAN_WIDTH_160;
case QLINK_CHAN_WIDTH_5:
return NL80211_CHAN_WIDTH_5;
case QLINK_CHAN_WIDTH_10:
return NL80211_CHAN_WIDTH_10;
default:
return -1;
}
}
static u8 qlink_chanwidth_nl_to_qlink(enum nl80211_chan_width nlwidth)
{
switch (nlwidth) {
case NL80211_CHAN_WIDTH_20_NOHT:
return QLINK_CHAN_WIDTH_20_NOHT;
case NL80211_CHAN_WIDTH_20:
return QLINK_CHAN_WIDTH_20;
case NL80211_CHAN_WIDTH_40:
return QLINK_CHAN_WIDTH_40;
case NL80211_CHAN_WIDTH_80:
return QLINK_CHAN_WIDTH_80;
case NL80211_CHAN_WIDTH_80P80:
return QLINK_CHAN_WIDTH_80P80;
case NL80211_CHAN_WIDTH_160:
return QLINK_CHAN_WIDTH_160;
case NL80211_CHAN_WIDTH_5:
return QLINK_CHAN_WIDTH_5;
case NL80211_CHAN_WIDTH_10:
return QLINK_CHAN_WIDTH_10;
default:
return -1;
}
}
void qlink_chandef_q2cfg(struct wiphy *wiphy,
const struct qlink_chandef *qch,
struct cfg80211_chan_def *chdef)
{
struct ieee80211_channel *chan;
chan = ieee80211_get_channel(wiphy, le16_to_cpu(qch->chan.center_freq));
chdef->chan = chan;
chdef->center_freq1 = le16_to_cpu(qch->center_freq1);
chdef->center_freq2 = le16_to_cpu(qch->center_freq2);
chdef->width = qlink_chanwidth_to_nl(qch->width);
}
void qlink_chandef_cfg2q(const struct cfg80211_chan_def *chdef,
struct qlink_chandef *qch)
{
struct ieee80211_channel *chan = chdef->chan;
qch->chan.hw_value = cpu_to_le16(chan->hw_value);
qch->chan.center_freq = cpu_to_le16(chan->center_freq);
qch->chan.flags = cpu_to_le32(chan->flags);
qch->center_freq1 = cpu_to_le16(chdef->center_freq1);
qch->center_freq2 = cpu_to_le16(chdef->center_freq2);
qch->width = qlink_chanwidth_nl_to_qlink(chdef->width);
}
enum qlink_hidden_ssid qlink_hidden_ssid_nl2q(enum nl80211_hidden_ssid nl_val)
{
switch (nl_val) {
case NL80211_HIDDEN_SSID_ZERO_LEN:
return QLINK_HIDDEN_SSID_ZERO_LEN;
case NL80211_HIDDEN_SSID_ZERO_CONTENTS:
return QLINK_HIDDEN_SSID_ZERO_CONTENTS;
case NL80211_HIDDEN_SSID_NOT_IN_USE:
default:
return QLINK_HIDDEN_SSID_NOT_IN_USE;
}
}
bool qtnf_utils_is_bit_set(const u8 *arr, unsigned int bit,
unsigned int arr_max_len)
{
unsigned int idx = bit / BITS_PER_BYTE;
u8 mask = 1 << (bit - (idx * BITS_PER_BYTE));
if (idx >= arr_max_len)
return false;
return arr[idx] & mask;
}
void qlink_acl_data_cfg2q(const struct cfg80211_acl_data *acl,
struct qlink_acl_data *qacl)
{
switch (acl->acl_policy) {
case NL80211_ACL_POLICY_ACCEPT_UNLESS_LISTED:
qacl->policy =
cpu_to_le32(QLINK_ACL_POLICY_ACCEPT_UNLESS_LISTED);
break;
case NL80211_ACL_POLICY_DENY_UNLESS_LISTED:
qacl->policy = cpu_to_le32(QLINK_ACL_POLICY_DENY_UNLESS_LISTED);
break;
}
qacl->num_entries = cpu_to_le32(acl->n_acl_entries);
memcpy(qacl->mac_addrs, acl->mac_addrs,
acl->n_acl_entries * sizeof(*qacl->mac_addrs));
}
enum qlink_band qlink_utils_band_cfg2q(enum nl80211_band band)
{
switch (band) {
case NL80211_BAND_2GHZ:
return QLINK_BAND_2GHZ;
case NL80211_BAND_5GHZ:
return QLINK_BAND_5GHZ;
case NL80211_BAND_60GHZ:
return QLINK_BAND_60GHZ;
default:
return -EINVAL;
}
}
enum qlink_dfs_state qlink_utils_dfs_state_cfg2q(enum nl80211_dfs_state state)
{
switch (state) {
case NL80211_DFS_USABLE:
return QLINK_DFS_USABLE;
case NL80211_DFS_AVAILABLE:
return QLINK_DFS_AVAILABLE;
case NL80211_DFS_UNAVAILABLE:
default:
return QLINK_DFS_UNAVAILABLE;
}
}
u32 qlink_utils_chflags_cfg2q(u32 cfgflags)
{
u32 flags = 0;
if (cfgflags & IEEE80211_CHAN_DISABLED)
flags |= QLINK_CHAN_DISABLED;
if (cfgflags & IEEE80211_CHAN_NO_IR)
flags |= QLINK_CHAN_NO_IR;
if (cfgflags & IEEE80211_CHAN_RADAR)
flags |= QLINK_CHAN_RADAR;
if (cfgflags & IEEE80211_CHAN_NO_HT40PLUS)
flags |= QLINK_CHAN_NO_HT40PLUS;
if (cfgflags & IEEE80211_CHAN_NO_HT40MINUS)
flags |= QLINK_CHAN_NO_HT40MINUS;
if (cfgflags & IEEE80211_CHAN_NO_80MHZ)
flags |= QLINK_CHAN_NO_80MHZ;
if (cfgflags & IEEE80211_CHAN_NO_160MHZ)
flags |= QLINK_CHAN_NO_160MHZ;
return flags;
}
static u32 qtnf_reg_rule_flags_parse(u32 qflags)
{
u32 flags = 0;
if (qflags & QLINK_RRF_NO_OFDM)
flags |= NL80211_RRF_NO_OFDM;
if (qflags & QLINK_RRF_NO_CCK)
flags |= NL80211_RRF_NO_CCK;
if (qflags & QLINK_RRF_NO_INDOOR)
flags |= NL80211_RRF_NO_INDOOR;
if (qflags & QLINK_RRF_NO_OUTDOOR)
flags |= NL80211_RRF_NO_OUTDOOR;
if (qflags & QLINK_RRF_DFS)
flags |= NL80211_RRF_DFS;
if (qflags & QLINK_RRF_PTP_ONLY)
flags |= NL80211_RRF_PTP_ONLY;
if (qflags & QLINK_RRF_PTMP_ONLY)
flags |= NL80211_RRF_PTMP_ONLY;
if (qflags & QLINK_RRF_NO_IR)
flags |= NL80211_RRF_NO_IR;
if (qflags & QLINK_RRF_AUTO_BW)
flags |= NL80211_RRF_AUTO_BW;
if (qflags & QLINK_RRF_IR_CONCURRENT)
flags |= NL80211_RRF_IR_CONCURRENT;
if (qflags & QLINK_RRF_NO_HT40MINUS)
flags |= NL80211_RRF_NO_HT40MINUS;
if (qflags & QLINK_RRF_NO_HT40PLUS)
flags |= NL80211_RRF_NO_HT40PLUS;
if (qflags & QLINK_RRF_NO_80MHZ)
flags |= NL80211_RRF_NO_80MHZ;
if (qflags & QLINK_RRF_NO_160MHZ)
flags |= NL80211_RRF_NO_160MHZ;
return flags;
}
void qlink_utils_regrule_q2nl(struct ieee80211_reg_rule *rule,
const struct qlink_tlv_reg_rule *tlv)
{
rule->freq_range.start_freq_khz = le32_to_cpu(tlv->start_freq_khz);
rule->freq_range.end_freq_khz = le32_to_cpu(tlv->end_freq_khz);
rule->freq_range.max_bandwidth_khz =
le32_to_cpu(tlv->max_bandwidth_khz);
rule->power_rule.max_antenna_gain = le32_to_cpu(tlv->max_antenna_gain);
rule->power_rule.max_eirp = le32_to_cpu(tlv->max_eirp);
rule->dfs_cac_ms = le32_to_cpu(tlv->dfs_cac_ms);
rule->flags = qtnf_reg_rule_flags_parse(le32_to_cpu(tlv->flags));
}