mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-22 17:35:17 +07:00
b24413180f
Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
1925 lines
45 KiB
C
1925 lines
45 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/* MN10300 GDB stub
|
|
*
|
|
* Originally written by Glenn Engel, Lake Stevens Instrument Division
|
|
*
|
|
* Contributed by HP Systems
|
|
*
|
|
* Modified for SPARC by Stu Grossman, Cygnus Support.
|
|
*
|
|
* Modified for Linux/MIPS (and MIPS in general) by Andreas Busse
|
|
* Send complaints, suggestions etc. to <andy@waldorf-gmbh.de>
|
|
*
|
|
* Copyright (C) 1995 Andreas Busse
|
|
*
|
|
* Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
|
|
* Modified for Linux/mn10300 by David Howells <dhowells@redhat.com>
|
|
*/
|
|
|
|
/*
|
|
* To enable debugger support, two things need to happen. One, a
|
|
* call to set_debug_traps() is necessary in order to allow any breakpoints
|
|
* or error conditions to be properly intercepted and reported to gdb.
|
|
* Two, a breakpoint needs to be generated to begin communication. This
|
|
* is most easily accomplished by a call to breakpoint(). Breakpoint()
|
|
* simulates a breakpoint by executing a BREAK instruction.
|
|
*
|
|
*
|
|
* The following gdb commands are supported:
|
|
*
|
|
* command function Return value
|
|
*
|
|
* g return the value of the CPU registers hex data or ENN
|
|
* G set the value of the CPU registers OK or ENN
|
|
*
|
|
* mAA..AA,LLLL Read LLLL bytes at address AA..AA hex data or ENN
|
|
* MAA..AA,LLLL: Write LLLL bytes at address AA.AA OK or ENN
|
|
*
|
|
* c Resume at current address SNN ( signal NN)
|
|
* cAA..AA Continue at address AA..AA SNN
|
|
*
|
|
* s Step one instruction SNN
|
|
* sAA..AA Step one instruction from AA..AA SNN
|
|
*
|
|
* k kill
|
|
*
|
|
* ? What was the last sigval ? SNN (signal NN)
|
|
*
|
|
* bBB..BB Set baud rate to BB..BB OK or BNN, then sets
|
|
* baud rate
|
|
*
|
|
* All commands and responses are sent with a packet which includes a
|
|
* checksum. A packet consists of
|
|
*
|
|
* $<packet info>#<checksum>.
|
|
*
|
|
* where
|
|
* <packet info> :: <characters representing the command or response>
|
|
* <checksum> :: < two hex digits computed as modulo 256 sum of <packetinfo>>
|
|
*
|
|
* When a packet is received, it is first acknowledged with either '+' or '-'.
|
|
* '+' indicates a successful transfer. '-' indicates a failed transfer.
|
|
*
|
|
* Example:
|
|
*
|
|
* Host: Reply:
|
|
* $m0,10#2a +$00010203040506070809101112131415#42
|
|
*
|
|
*
|
|
* ==============
|
|
* MORE EXAMPLES:
|
|
* ==============
|
|
*
|
|
* For reference -- the following are the steps that one
|
|
* company took (RidgeRun Inc) to get remote gdb debugging
|
|
* going. In this scenario the host machine was a PC and the
|
|
* target platform was a Galileo EVB64120A MIPS evaluation
|
|
* board.
|
|
*
|
|
* Step 1:
|
|
* First download gdb-5.0.tar.gz from the internet.
|
|
* and then build/install the package.
|
|
*
|
|
* Example:
|
|
* $ tar zxf gdb-5.0.tar.gz
|
|
* $ cd gdb-5.0
|
|
* $ ./configure --target=am33_2.0-linux-gnu
|
|
* $ make
|
|
* $ install
|
|
* am33_2.0-linux-gnu-gdb
|
|
*
|
|
* Step 2:
|
|
* Configure linux for remote debugging and build it.
|
|
*
|
|
* Example:
|
|
* $ cd ~/linux
|
|
* $ make menuconfig <go to "Kernel Hacking" and turn on remote debugging>
|
|
* $ make dep; make vmlinux
|
|
*
|
|
* Step 3:
|
|
* Download the kernel to the remote target and start
|
|
* the kernel running. It will promptly halt and wait
|
|
* for the host gdb session to connect. It does this
|
|
* since the "Kernel Hacking" option has defined
|
|
* CONFIG_REMOTE_DEBUG which in turn enables your calls
|
|
* to:
|
|
* set_debug_traps();
|
|
* breakpoint();
|
|
*
|
|
* Step 4:
|
|
* Start the gdb session on the host.
|
|
*
|
|
* Example:
|
|
* $ am33_2.0-linux-gnu-gdb vmlinux
|
|
* (gdb) set remotebaud 115200
|
|
* (gdb) target remote /dev/ttyS1
|
|
* ...at this point you are connected to
|
|
* the remote target and can use gdb
|
|
* in the normal fasion. Setting
|
|
* breakpoints, single stepping,
|
|
* printing variables, etc.
|
|
*
|
|
*/
|
|
|
|
#include <linux/string.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/signal.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/console.h>
|
|
#include <linux/init.h>
|
|
#include <linux/bug.h>
|
|
|
|
#include <asm/pgtable.h>
|
|
#include <asm/gdb-stub.h>
|
|
#include <asm/exceptions.h>
|
|
#include <asm/debugger.h>
|
|
#include <asm/serial-regs.h>
|
|
#include <asm/busctl-regs.h>
|
|
#include <unit/leds.h>
|
|
#include <unit/serial.h>
|
|
|
|
/* define to use F7F7 rather than FF which is subverted by JTAG debugger */
|
|
#undef GDBSTUB_USE_F7F7_AS_BREAKPOINT
|
|
|
|
/*
|
|
* BUFMAX defines the maximum number of characters in inbound/outbound buffers
|
|
* at least NUMREGBYTES*2 are needed for register packets
|
|
*/
|
|
#define BUFMAX 2048
|
|
|
|
static const char gdbstub_banner[] =
|
|
"Linux/MN10300 GDB Stub (c) RedHat 2007\n";
|
|
|
|
u8 gdbstub_rx_buffer[PAGE_SIZE] __attribute__((aligned(PAGE_SIZE)));
|
|
u32 gdbstub_rx_inp;
|
|
u32 gdbstub_rx_outp;
|
|
u8 gdbstub_busy;
|
|
u8 gdbstub_rx_overflow;
|
|
u8 gdbstub_rx_unget;
|
|
|
|
static u8 gdbstub_flush_caches;
|
|
static char input_buffer[BUFMAX];
|
|
static char output_buffer[BUFMAX];
|
|
static char trans_buffer[BUFMAX];
|
|
|
|
struct gdbstub_bkpt {
|
|
u8 *addr; /* address of breakpoint */
|
|
u8 len; /* size of breakpoint */
|
|
u8 origbytes[7]; /* original bytes */
|
|
};
|
|
|
|
static struct gdbstub_bkpt gdbstub_bkpts[256];
|
|
|
|
/*
|
|
* local prototypes
|
|
*/
|
|
static void getpacket(char *buffer);
|
|
static int putpacket(char *buffer);
|
|
static int computeSignal(enum exception_code excep);
|
|
static int hex(unsigned char ch);
|
|
static int hexToInt(char **ptr, int *intValue);
|
|
static unsigned char *mem2hex(const void *mem, char *buf, int count,
|
|
int may_fault);
|
|
static const char *hex2mem(const char *buf, void *_mem, int count,
|
|
int may_fault);
|
|
|
|
/*
|
|
* Convert ch from a hex digit to an int
|
|
*/
|
|
static int hex(unsigned char ch)
|
|
{
|
|
if (ch >= 'a' && ch <= 'f')
|
|
return ch - 'a' + 10;
|
|
if (ch >= '0' && ch <= '9')
|
|
return ch - '0';
|
|
if (ch >= 'A' && ch <= 'F')
|
|
return ch - 'A' + 10;
|
|
return -1;
|
|
}
|
|
|
|
#ifdef CONFIG_GDBSTUB_DEBUGGING
|
|
|
|
void debug_to_serial(const char *p, int n)
|
|
{
|
|
__debug_to_serial(p, n);
|
|
/* gdbstub_console_write(NULL, p, n); */
|
|
}
|
|
|
|
void gdbstub_printk(const char *fmt, ...)
|
|
{
|
|
va_list args;
|
|
int len;
|
|
|
|
/* Emit the output into the temporary buffer */
|
|
va_start(args, fmt);
|
|
len = vsnprintf(trans_buffer, sizeof(trans_buffer), fmt, args);
|
|
va_end(args);
|
|
debug_to_serial(trans_buffer, len);
|
|
}
|
|
|
|
#endif
|
|
|
|
static inline char *gdbstub_strcpy(char *dst, const char *src)
|
|
{
|
|
int loop = 0;
|
|
while ((dst[loop] = src[loop]))
|
|
loop++;
|
|
return dst;
|
|
}
|
|
|
|
/*
|
|
* scan for the sequence $<data>#<checksum>
|
|
*/
|
|
static void getpacket(char *buffer)
|
|
{
|
|
unsigned char checksum;
|
|
unsigned char xmitcsum;
|
|
unsigned char ch;
|
|
int count, i, ret, error;
|
|
|
|
for (;;) {
|
|
/*
|
|
* wait around for the start character,
|
|
* ignore all other characters
|
|
*/
|
|
do {
|
|
gdbstub_io_rx_char(&ch, 0);
|
|
} while (ch != '$');
|
|
|
|
checksum = 0;
|
|
xmitcsum = -1;
|
|
count = 0;
|
|
error = 0;
|
|
|
|
/*
|
|
* now, read until a # or end of buffer is found
|
|
*/
|
|
while (count < BUFMAX) {
|
|
ret = gdbstub_io_rx_char(&ch, 0);
|
|
if (ret < 0)
|
|
error = ret;
|
|
|
|
if (ch == '#')
|
|
break;
|
|
checksum += ch;
|
|
buffer[count] = ch;
|
|
count++;
|
|
}
|
|
|
|
if (error == -EIO) {
|
|
gdbstub_proto("### GDB Rx Error - Skipping packet"
|
|
" ###\n");
|
|
gdbstub_proto("### GDB Tx NAK\n");
|
|
gdbstub_io_tx_char('-');
|
|
continue;
|
|
}
|
|
|
|
if (count >= BUFMAX || error)
|
|
continue;
|
|
|
|
buffer[count] = 0;
|
|
|
|
/* read the checksum */
|
|
ret = gdbstub_io_rx_char(&ch, 0);
|
|
if (ret < 0)
|
|
error = ret;
|
|
xmitcsum = hex(ch) << 4;
|
|
|
|
ret = gdbstub_io_rx_char(&ch, 0);
|
|
if (ret < 0)
|
|
error = ret;
|
|
xmitcsum |= hex(ch);
|
|
|
|
if (error) {
|
|
if (error == -EIO)
|
|
gdbstub_io("### GDB Rx Error -"
|
|
" Skipping packet\n");
|
|
gdbstub_io("### GDB Tx NAK\n");
|
|
gdbstub_io_tx_char('-');
|
|
continue;
|
|
}
|
|
|
|
/* check the checksum */
|
|
if (checksum != xmitcsum) {
|
|
gdbstub_io("### GDB Tx NAK\n");
|
|
gdbstub_io_tx_char('-'); /* failed checksum */
|
|
continue;
|
|
}
|
|
|
|
gdbstub_proto("### GDB Rx '$%s#%02x' ###\n", buffer, checksum);
|
|
gdbstub_io("### GDB Tx ACK\n");
|
|
gdbstub_io_tx_char('+'); /* successful transfer */
|
|
|
|
/*
|
|
* if a sequence char is present,
|
|
* reply the sequence ID
|
|
*/
|
|
if (buffer[2] == ':') {
|
|
gdbstub_io_tx_char(buffer[0]);
|
|
gdbstub_io_tx_char(buffer[1]);
|
|
|
|
/*
|
|
* remove sequence chars from buffer
|
|
*/
|
|
count = 0;
|
|
while (buffer[count])
|
|
count++;
|
|
for (i = 3; i <= count; i++)
|
|
buffer[i - 3] = buffer[i];
|
|
}
|
|
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* send the packet in buffer.
|
|
* - return 0 if successfully ACK'd
|
|
* - return 1 if abandoned due to new incoming packet
|
|
*/
|
|
static int putpacket(char *buffer)
|
|
{
|
|
unsigned char checksum;
|
|
unsigned char ch;
|
|
int count;
|
|
|
|
/*
|
|
* $<packet info>#<checksum>.
|
|
*/
|
|
gdbstub_proto("### GDB Tx $'%s'#?? ###\n", buffer);
|
|
|
|
do {
|
|
gdbstub_io_tx_char('$');
|
|
checksum = 0;
|
|
count = 0;
|
|
|
|
while ((ch = buffer[count]) != 0) {
|
|
gdbstub_io_tx_char(ch);
|
|
checksum += ch;
|
|
count += 1;
|
|
}
|
|
|
|
gdbstub_io_tx_char('#');
|
|
gdbstub_io_tx_char(hex_asc_hi(checksum));
|
|
gdbstub_io_tx_char(hex_asc_lo(checksum));
|
|
|
|
} while (gdbstub_io_rx_char(&ch, 0),
|
|
ch == '-' && (gdbstub_io("### GDB Rx NAK\n"), 0),
|
|
ch != '-' && ch != '+' &&
|
|
(gdbstub_io("### GDB Rx ??? %02x\n", ch), 0),
|
|
ch != '+' && ch != '$');
|
|
|
|
if (ch == '+') {
|
|
gdbstub_io("### GDB Rx ACK\n");
|
|
return 0;
|
|
}
|
|
|
|
gdbstub_io("### GDB Tx Abandoned\n");
|
|
gdbstub_rx_unget = ch;
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* While we find nice hex chars, build an int.
|
|
* Return number of chars processed.
|
|
*/
|
|
static int hexToInt(char **ptr, int *intValue)
|
|
{
|
|
int numChars = 0;
|
|
int hexValue;
|
|
|
|
*intValue = 0;
|
|
|
|
while (**ptr) {
|
|
hexValue = hex(**ptr);
|
|
if (hexValue < 0)
|
|
break;
|
|
|
|
*intValue = (*intValue << 4) | hexValue;
|
|
numChars++;
|
|
|
|
(*ptr)++;
|
|
}
|
|
|
|
return (numChars);
|
|
}
|
|
|
|
#ifdef CONFIG_GDBSTUB_ALLOW_SINGLE_STEP
|
|
/*
|
|
* We single-step by setting breakpoints. When an exception
|
|
* is handled, we need to restore the instructions hoisted
|
|
* when the breakpoints were set.
|
|
*
|
|
* This is where we save the original instructions.
|
|
*/
|
|
static struct gdb_bp_save {
|
|
u8 *addr;
|
|
u8 opcode[2];
|
|
} step_bp[2];
|
|
|
|
static const unsigned char gdbstub_insn_sizes[256] =
|
|
{
|
|
/* 1 2 3 4 5 6 7 8 9 a b c d e f */
|
|
1, 3, 3, 3, 1, 3, 3, 3, 1, 3, 3, 3, 1, 3, 3, 3, /* 0 */
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 1 */
|
|
2, 2, 2, 2, 3, 3, 3, 3, 2, 2, 2, 2, 3, 3, 3, 3, /* 2 */
|
|
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 1, 1, 1, 1, /* 3 */
|
|
1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, /* 4 */
|
|
1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, /* 5 */
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 6 */
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 7 */
|
|
2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, /* 8 */
|
|
2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, /* 9 */
|
|
2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, /* a */
|
|
2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, /* b */
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 2, 2, /* c */
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* d */
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* e */
|
|
0, 2, 2, 2, 2, 2, 2, 4, 0, 3, 0, 4, 0, 6, 7, 1 /* f */
|
|
};
|
|
|
|
static int __gdbstub_mark_bp(u8 *addr, int ix)
|
|
{
|
|
/* vmalloc area */
|
|
if (((u8 *) VMALLOC_START <= addr) && (addr < (u8 *) VMALLOC_END))
|
|
goto okay;
|
|
/* SRAM, SDRAM */
|
|
if (((u8 *) 0x80000000UL <= addr) && (addr < (u8 *) 0xa0000000UL))
|
|
goto okay;
|
|
return 0;
|
|
|
|
okay:
|
|
if (gdbstub_read_byte(addr + 0, &step_bp[ix].opcode[0]) < 0 ||
|
|
gdbstub_read_byte(addr + 1, &step_bp[ix].opcode[1]) < 0)
|
|
return 0;
|
|
|
|
step_bp[ix].addr = addr;
|
|
return 1;
|
|
}
|
|
|
|
static inline void __gdbstub_restore_bp(void)
|
|
{
|
|
#ifdef GDBSTUB_USE_F7F7_AS_BREAKPOINT
|
|
if (step_bp[0].addr) {
|
|
gdbstub_write_byte(step_bp[0].opcode[0], step_bp[0].addr + 0);
|
|
gdbstub_write_byte(step_bp[0].opcode[1], step_bp[0].addr + 1);
|
|
}
|
|
if (step_bp[1].addr) {
|
|
gdbstub_write_byte(step_bp[1].opcode[0], step_bp[1].addr + 0);
|
|
gdbstub_write_byte(step_bp[1].opcode[1], step_bp[1].addr + 1);
|
|
}
|
|
#else
|
|
if (step_bp[0].addr)
|
|
gdbstub_write_byte(step_bp[0].opcode[0], step_bp[0].addr + 0);
|
|
if (step_bp[1].addr)
|
|
gdbstub_write_byte(step_bp[1].opcode[0], step_bp[1].addr + 0);
|
|
#endif
|
|
|
|
gdbstub_flush_caches = 1;
|
|
|
|
step_bp[0].addr = NULL;
|
|
step_bp[0].opcode[0] = 0;
|
|
step_bp[0].opcode[1] = 0;
|
|
step_bp[1].addr = NULL;
|
|
step_bp[1].opcode[0] = 0;
|
|
step_bp[1].opcode[1] = 0;
|
|
}
|
|
|
|
/*
|
|
* emulate single stepping by means of breakpoint instructions
|
|
*/
|
|
static int gdbstub_single_step(struct pt_regs *regs)
|
|
{
|
|
unsigned size;
|
|
uint32_t x;
|
|
uint8_t cur, *pc, *sp;
|
|
|
|
step_bp[0].addr = NULL;
|
|
step_bp[0].opcode[0] = 0;
|
|
step_bp[0].opcode[1] = 0;
|
|
step_bp[1].addr = NULL;
|
|
step_bp[1].opcode[0] = 0;
|
|
step_bp[1].opcode[1] = 0;
|
|
x = 0;
|
|
|
|
pc = (u8 *) regs->pc;
|
|
sp = (u8 *) (regs + 1);
|
|
if (gdbstub_read_byte(pc, &cur) < 0)
|
|
return -EFAULT;
|
|
|
|
gdbstub_bkpt("Single Step from %p { %02x }\n", pc, cur);
|
|
|
|
gdbstub_flush_caches = 1;
|
|
|
|
size = gdbstub_insn_sizes[cur];
|
|
if (size > 0) {
|
|
if (!__gdbstub_mark_bp(pc + size, 0))
|
|
goto fault;
|
|
} else {
|
|
switch (cur) {
|
|
/* Bxx (d8,PC) */
|
|
case 0xc0 ... 0xca:
|
|
if (gdbstub_read_byte(pc + 1, (u8 *) &x) < 0)
|
|
goto fault;
|
|
if (!__gdbstub_mark_bp(pc + 2, 0))
|
|
goto fault;
|
|
if ((x < 0 || x > 2) &&
|
|
!__gdbstub_mark_bp(pc + (s8) x, 1))
|
|
goto fault;
|
|
break;
|
|
|
|
/* LXX (d8,PC) */
|
|
case 0xd0 ... 0xda:
|
|
if (!__gdbstub_mark_bp(pc + 1, 0))
|
|
goto fault;
|
|
if (regs->pc != regs->lar &&
|
|
!__gdbstub_mark_bp((u8 *) regs->lar, 1))
|
|
goto fault;
|
|
break;
|
|
|
|
/* SETLB - loads the next for bytes into the LIR
|
|
* register */
|
|
case 0xdb:
|
|
if (!__gdbstub_mark_bp(pc + 1, 0))
|
|
goto fault;
|
|
break;
|
|
|
|
/* JMP (d16,PC) or CALL (d16,PC) */
|
|
case 0xcc:
|
|
case 0xcd:
|
|
if (gdbstub_read_byte(pc + 1, ((u8 *) &x) + 0) < 0 ||
|
|
gdbstub_read_byte(pc + 2, ((u8 *) &x) + 1) < 0)
|
|
goto fault;
|
|
if (!__gdbstub_mark_bp(pc + (s16) x, 0))
|
|
goto fault;
|
|
break;
|
|
|
|
/* JMP (d32,PC) or CALL (d32,PC) */
|
|
case 0xdc:
|
|
case 0xdd:
|
|
if (gdbstub_read_byte(pc + 1, ((u8 *) &x) + 0) < 0 ||
|
|
gdbstub_read_byte(pc + 2, ((u8 *) &x) + 1) < 0 ||
|
|
gdbstub_read_byte(pc + 3, ((u8 *) &x) + 2) < 0 ||
|
|
gdbstub_read_byte(pc + 4, ((u8 *) &x) + 3) < 0)
|
|
goto fault;
|
|
if (!__gdbstub_mark_bp(pc + (s32) x, 0))
|
|
goto fault;
|
|
break;
|
|
|
|
/* RETF */
|
|
case 0xde:
|
|
if (!__gdbstub_mark_bp((u8 *) regs->mdr, 0))
|
|
goto fault;
|
|
break;
|
|
|
|
/* RET */
|
|
case 0xdf:
|
|
if (gdbstub_read_byte(pc + 2, (u8 *) &x) < 0)
|
|
goto fault;
|
|
sp += (s8)x;
|
|
if (gdbstub_read_byte(sp + 0, ((u8 *) &x) + 0) < 0 ||
|
|
gdbstub_read_byte(sp + 1, ((u8 *) &x) + 1) < 0 ||
|
|
gdbstub_read_byte(sp + 2, ((u8 *) &x) + 2) < 0 ||
|
|
gdbstub_read_byte(sp + 3, ((u8 *) &x) + 3) < 0)
|
|
goto fault;
|
|
if (!__gdbstub_mark_bp((u8 *) x, 0))
|
|
goto fault;
|
|
break;
|
|
|
|
case 0xf0:
|
|
if (gdbstub_read_byte(pc + 1, &cur) < 0)
|
|
goto fault;
|
|
|
|
if (cur >= 0xf0 && cur <= 0xf7) {
|
|
/* JMP (An) / CALLS (An) */
|
|
switch (cur & 3) {
|
|
case 0: x = regs->a0; break;
|
|
case 1: x = regs->a1; break;
|
|
case 2: x = regs->a2; break;
|
|
case 3: x = regs->a3; break;
|
|
}
|
|
if (!__gdbstub_mark_bp((u8 *) x, 0))
|
|
goto fault;
|
|
} else if (cur == 0xfc) {
|
|
/* RETS */
|
|
if (gdbstub_read_byte(
|
|
sp + 0, ((u8 *) &x) + 0) < 0 ||
|
|
gdbstub_read_byte(
|
|
sp + 1, ((u8 *) &x) + 1) < 0 ||
|
|
gdbstub_read_byte(
|
|
sp + 2, ((u8 *) &x) + 2) < 0 ||
|
|
gdbstub_read_byte(
|
|
sp + 3, ((u8 *) &x) + 3) < 0)
|
|
goto fault;
|
|
if (!__gdbstub_mark_bp((u8 *) x, 0))
|
|
goto fault;
|
|
} else if (cur == 0xfd) {
|
|
/* RTI */
|
|
if (gdbstub_read_byte(
|
|
sp + 4, ((u8 *) &x) + 0) < 0 ||
|
|
gdbstub_read_byte(
|
|
sp + 5, ((u8 *) &x) + 1) < 0 ||
|
|
gdbstub_read_byte(
|
|
sp + 6, ((u8 *) &x) + 2) < 0 ||
|
|
gdbstub_read_byte(
|
|
sp + 7, ((u8 *) &x) + 3) < 0)
|
|
goto fault;
|
|
if (!__gdbstub_mark_bp((u8 *) x, 0))
|
|
goto fault;
|
|
} else {
|
|
if (!__gdbstub_mark_bp(pc + 2, 0))
|
|
goto fault;
|
|
}
|
|
|
|
break;
|
|
|
|
/* potential 3-byte conditional branches */
|
|
case 0xf8:
|
|
if (gdbstub_read_byte(pc + 1, &cur) < 0)
|
|
goto fault;
|
|
if (!__gdbstub_mark_bp(pc + 3, 0))
|
|
goto fault;
|
|
|
|
if (cur >= 0xe8 && cur <= 0xeb) {
|
|
if (gdbstub_read_byte(
|
|
pc + 2, ((u8 *) &x) + 0) < 0)
|
|
goto fault;
|
|
if ((x < 0 || x > 3) &&
|
|
!__gdbstub_mark_bp(pc + (s8) x, 1))
|
|
goto fault;
|
|
}
|
|
break;
|
|
|
|
case 0xfa:
|
|
if (gdbstub_read_byte(pc + 1, &cur) < 0)
|
|
goto fault;
|
|
|
|
if (cur == 0xff) {
|
|
/* CALLS (d16,PC) */
|
|
if (gdbstub_read_byte(
|
|
pc + 2, ((u8 *) &x) + 0) < 0 ||
|
|
gdbstub_read_byte(
|
|
pc + 3, ((u8 *) &x) + 1) < 0)
|
|
goto fault;
|
|
if (!__gdbstub_mark_bp(pc + (s16) x, 0))
|
|
goto fault;
|
|
} else {
|
|
if (!__gdbstub_mark_bp(pc + 4, 0))
|
|
goto fault;
|
|
}
|
|
break;
|
|
|
|
case 0xfc:
|
|
if (gdbstub_read_byte(pc + 1, &cur) < 0)
|
|
goto fault;
|
|
if (cur == 0xff) {
|
|
/* CALLS (d32,PC) */
|
|
if (gdbstub_read_byte(
|
|
pc + 2, ((u8 *) &x) + 0) < 0 ||
|
|
gdbstub_read_byte(
|
|
pc + 3, ((u8 *) &x) + 1) < 0 ||
|
|
gdbstub_read_byte(
|
|
pc + 4, ((u8 *) &x) + 2) < 0 ||
|
|
gdbstub_read_byte(
|
|
pc + 5, ((u8 *) &x) + 3) < 0)
|
|
goto fault;
|
|
if (!__gdbstub_mark_bp(
|
|
pc + (s32) x, 0))
|
|
goto fault;
|
|
} else {
|
|
if (!__gdbstub_mark_bp(
|
|
pc + 6, 0))
|
|
goto fault;
|
|
}
|
|
break;
|
|
|
|
}
|
|
}
|
|
|
|
gdbstub_bkpt("Step: %02x at %p; %02x at %p\n",
|
|
step_bp[0].opcode[0], step_bp[0].addr,
|
|
step_bp[1].opcode[0], step_bp[1].addr);
|
|
|
|
if (step_bp[0].addr) {
|
|
#ifdef GDBSTUB_USE_F7F7_AS_BREAKPOINT
|
|
if (gdbstub_write_byte(0xF7, step_bp[0].addr + 0) < 0 ||
|
|
gdbstub_write_byte(0xF7, step_bp[0].addr + 1) < 0)
|
|
goto fault;
|
|
#else
|
|
if (gdbstub_write_byte(0xFF, step_bp[0].addr + 0) < 0)
|
|
goto fault;
|
|
#endif
|
|
}
|
|
|
|
if (step_bp[1].addr) {
|
|
#ifdef GDBSTUB_USE_F7F7_AS_BREAKPOINT
|
|
if (gdbstub_write_byte(0xF7, step_bp[1].addr + 0) < 0 ||
|
|
gdbstub_write_byte(0xF7, step_bp[1].addr + 1) < 0)
|
|
goto fault;
|
|
#else
|
|
if (gdbstub_write_byte(0xFF, step_bp[1].addr + 0) < 0)
|
|
goto fault;
|
|
#endif
|
|
}
|
|
|
|
return 0;
|
|
|
|
fault:
|
|
/* uh-oh - silly address alert, try and restore things */
|
|
__gdbstub_restore_bp();
|
|
return -EFAULT;
|
|
}
|
|
#endif /* CONFIG_GDBSTUB_ALLOW_SINGLE_STEP */
|
|
|
|
#ifdef CONFIG_GDBSTUB_CONSOLE
|
|
|
|
void gdbstub_console_write(struct console *con, const char *p, unsigned n)
|
|
{
|
|
static const char gdbstub_cr[] = { 0x0d };
|
|
char outbuf[26];
|
|
int qty;
|
|
u8 busy;
|
|
|
|
busy = gdbstub_busy;
|
|
gdbstub_busy = 1;
|
|
|
|
outbuf[0] = 'O';
|
|
|
|
while (n > 0) {
|
|
qty = 1;
|
|
|
|
while (n > 0 && qty < 20) {
|
|
mem2hex(p, outbuf + qty, 2, 0);
|
|
qty += 2;
|
|
if (*p == 0x0a) {
|
|
mem2hex(gdbstub_cr, outbuf + qty, 2, 0);
|
|
qty += 2;
|
|
}
|
|
p++;
|
|
n--;
|
|
}
|
|
|
|
outbuf[qty] = 0;
|
|
putpacket(outbuf);
|
|
}
|
|
|
|
gdbstub_busy = busy;
|
|
}
|
|
|
|
static kdev_t gdbstub_console_dev(struct console *con)
|
|
{
|
|
return MKDEV(1, 3); /* /dev/null */
|
|
}
|
|
|
|
static struct console gdbstub_console = {
|
|
.name = "gdb",
|
|
.write = gdbstub_console_write,
|
|
.device = gdbstub_console_dev,
|
|
.flags = CON_PRINTBUFFER,
|
|
.index = -1,
|
|
};
|
|
|
|
#endif
|
|
|
|
/*
|
|
* Convert the memory pointed to by mem into hex, placing result in buf.
|
|
* - if successful, return a pointer to the last char put in buf (NUL)
|
|
* - in case of mem fault, return NULL
|
|
* may_fault is non-zero if we are reading from arbitrary memory, but is
|
|
* currently not used.
|
|
*/
|
|
static
|
|
unsigned char *mem2hex(const void *_mem, char *buf, int count, int may_fault)
|
|
{
|
|
const u8 *mem = _mem;
|
|
u8 ch[4];
|
|
|
|
if ((u32) mem & 1 && count >= 1) {
|
|
if (gdbstub_read_byte(mem, ch) != 0)
|
|
return 0;
|
|
buf = hex_byte_pack(buf, ch[0]);
|
|
mem++;
|
|
count--;
|
|
}
|
|
|
|
if ((u32) mem & 3 && count >= 2) {
|
|
if (gdbstub_read_word(mem, ch) != 0)
|
|
return 0;
|
|
buf = hex_byte_pack(buf, ch[0]);
|
|
buf = hex_byte_pack(buf, ch[1]);
|
|
mem += 2;
|
|
count -= 2;
|
|
}
|
|
|
|
while (count >= 4) {
|
|
if (gdbstub_read_dword(mem, ch) != 0)
|
|
return 0;
|
|
buf = hex_byte_pack(buf, ch[0]);
|
|
buf = hex_byte_pack(buf, ch[1]);
|
|
buf = hex_byte_pack(buf, ch[2]);
|
|
buf = hex_byte_pack(buf, ch[3]);
|
|
mem += 4;
|
|
count -= 4;
|
|
}
|
|
|
|
if (count >= 2) {
|
|
if (gdbstub_read_word(mem, ch) != 0)
|
|
return 0;
|
|
buf = hex_byte_pack(buf, ch[0]);
|
|
buf = hex_byte_pack(buf, ch[1]);
|
|
mem += 2;
|
|
count -= 2;
|
|
}
|
|
|
|
if (count >= 1) {
|
|
if (gdbstub_read_byte(mem, ch) != 0)
|
|
return 0;
|
|
buf = hex_byte_pack(buf, ch[0]);
|
|
}
|
|
|
|
*buf = 0;
|
|
return buf;
|
|
}
|
|
|
|
/*
|
|
* convert the hex array pointed to by buf into binary to be placed in mem
|
|
* return a pointer to the character AFTER the last byte written
|
|
* may_fault is non-zero if we are reading from arbitrary memory, but is
|
|
* currently not used.
|
|
*/
|
|
static
|
|
const char *hex2mem(const char *buf, void *_mem, int count, int may_fault)
|
|
{
|
|
u8 *mem = _mem;
|
|
union {
|
|
u32 val;
|
|
u8 b[4];
|
|
} ch;
|
|
|
|
if ((u32) mem & 1 && count >= 1) {
|
|
ch.b[0] = hex(*buf++) << 4;
|
|
ch.b[0] |= hex(*buf++);
|
|
if (gdbstub_write_byte(ch.val, mem) != 0)
|
|
return 0;
|
|
mem++;
|
|
count--;
|
|
}
|
|
|
|
if ((u32) mem & 3 && count >= 2) {
|
|
ch.b[0] = hex(*buf++) << 4;
|
|
ch.b[0] |= hex(*buf++);
|
|
ch.b[1] = hex(*buf++) << 4;
|
|
ch.b[1] |= hex(*buf++);
|
|
if (gdbstub_write_word(ch.val, mem) != 0)
|
|
return 0;
|
|
mem += 2;
|
|
count -= 2;
|
|
}
|
|
|
|
while (count >= 4) {
|
|
ch.b[0] = hex(*buf++) << 4;
|
|
ch.b[0] |= hex(*buf++);
|
|
ch.b[1] = hex(*buf++) << 4;
|
|
ch.b[1] |= hex(*buf++);
|
|
ch.b[2] = hex(*buf++) << 4;
|
|
ch.b[2] |= hex(*buf++);
|
|
ch.b[3] = hex(*buf++) << 4;
|
|
ch.b[3] |= hex(*buf++);
|
|
if (gdbstub_write_dword(ch.val, mem) != 0)
|
|
return 0;
|
|
mem += 4;
|
|
count -= 4;
|
|
}
|
|
|
|
if (count >= 2) {
|
|
ch.b[0] = hex(*buf++) << 4;
|
|
ch.b[0] |= hex(*buf++);
|
|
ch.b[1] = hex(*buf++) << 4;
|
|
ch.b[1] |= hex(*buf++);
|
|
if (gdbstub_write_word(ch.val, mem) != 0)
|
|
return 0;
|
|
mem += 2;
|
|
count -= 2;
|
|
}
|
|
|
|
if (count >= 1) {
|
|
ch.b[0] = hex(*buf++) << 4;
|
|
ch.b[0] |= hex(*buf++);
|
|
if (gdbstub_write_byte(ch.val, mem) != 0)
|
|
return 0;
|
|
}
|
|
|
|
return buf;
|
|
}
|
|
|
|
/*
|
|
* This table contains the mapping between MN10300 exception codes, and
|
|
* signals, which are primarily what GDB understands. It also indicates
|
|
* which hardware traps we need to commandeer when initializing the stub.
|
|
*/
|
|
static const struct excep_to_sig_map {
|
|
enum exception_code excep; /* MN10300 exception code */
|
|
unsigned char signo; /* Signal that we map this into */
|
|
} excep_to_sig_map[] = {
|
|
{ EXCEP_ITLBMISS, SIGSEGV },
|
|
{ EXCEP_DTLBMISS, SIGSEGV },
|
|
{ EXCEP_TRAP, SIGTRAP },
|
|
{ EXCEP_ISTEP, SIGTRAP },
|
|
{ EXCEP_IBREAK, SIGTRAP },
|
|
{ EXCEP_OBREAK, SIGTRAP },
|
|
{ EXCEP_UNIMPINS, SIGILL },
|
|
{ EXCEP_UNIMPEXINS, SIGILL },
|
|
{ EXCEP_MEMERR, SIGSEGV },
|
|
{ EXCEP_MISALIGN, SIGSEGV },
|
|
{ EXCEP_BUSERROR, SIGBUS },
|
|
{ EXCEP_ILLINSACC, SIGSEGV },
|
|
{ EXCEP_ILLDATACC, SIGSEGV },
|
|
{ EXCEP_IOINSACC, SIGSEGV },
|
|
{ EXCEP_PRIVINSACC, SIGSEGV },
|
|
{ EXCEP_PRIVDATACC, SIGSEGV },
|
|
{ EXCEP_FPU_DISABLED, SIGFPE },
|
|
{ EXCEP_FPU_UNIMPINS, SIGFPE },
|
|
{ EXCEP_FPU_OPERATION, SIGFPE },
|
|
{ EXCEP_WDT, SIGALRM },
|
|
{ EXCEP_NMI, SIGQUIT },
|
|
{ EXCEP_IRQ_LEVEL0, SIGINT },
|
|
{ EXCEP_IRQ_LEVEL1, SIGINT },
|
|
{ EXCEP_IRQ_LEVEL2, SIGINT },
|
|
{ EXCEP_IRQ_LEVEL3, SIGINT },
|
|
{ EXCEP_IRQ_LEVEL4, SIGINT },
|
|
{ EXCEP_IRQ_LEVEL5, SIGINT },
|
|
{ EXCEP_IRQ_LEVEL6, SIGINT },
|
|
{ 0, 0}
|
|
};
|
|
|
|
/*
|
|
* convert the MN10300 exception code into a UNIX signal number
|
|
*/
|
|
static int computeSignal(enum exception_code excep)
|
|
{
|
|
const struct excep_to_sig_map *map;
|
|
|
|
for (map = excep_to_sig_map; map->signo; map++)
|
|
if (map->excep == excep)
|
|
return map->signo;
|
|
|
|
return SIGHUP; /* default for things we don't know about */
|
|
}
|
|
|
|
static u32 gdbstub_fpcr, gdbstub_fpufs_array[32];
|
|
|
|
/*
|
|
*
|
|
*/
|
|
static void gdbstub_store_fpu(void)
|
|
{
|
|
#ifdef CONFIG_FPU
|
|
|
|
asm volatile(
|
|
"or %2,epsw\n"
|
|
#ifdef CONFIG_MN10300_PROC_MN103E010
|
|
"nop\n"
|
|
"nop\n"
|
|
#endif
|
|
"mov %1, a1\n"
|
|
"fmov fs0, (a1+)\n"
|
|
"fmov fs1, (a1+)\n"
|
|
"fmov fs2, (a1+)\n"
|
|
"fmov fs3, (a1+)\n"
|
|
"fmov fs4, (a1+)\n"
|
|
"fmov fs5, (a1+)\n"
|
|
"fmov fs6, (a1+)\n"
|
|
"fmov fs7, (a1+)\n"
|
|
"fmov fs8, (a1+)\n"
|
|
"fmov fs9, (a1+)\n"
|
|
"fmov fs10, (a1+)\n"
|
|
"fmov fs11, (a1+)\n"
|
|
"fmov fs12, (a1+)\n"
|
|
"fmov fs13, (a1+)\n"
|
|
"fmov fs14, (a1+)\n"
|
|
"fmov fs15, (a1+)\n"
|
|
"fmov fs16, (a1+)\n"
|
|
"fmov fs17, (a1+)\n"
|
|
"fmov fs18, (a1+)\n"
|
|
"fmov fs19, (a1+)\n"
|
|
"fmov fs20, (a1+)\n"
|
|
"fmov fs21, (a1+)\n"
|
|
"fmov fs22, (a1+)\n"
|
|
"fmov fs23, (a1+)\n"
|
|
"fmov fs24, (a1+)\n"
|
|
"fmov fs25, (a1+)\n"
|
|
"fmov fs26, (a1+)\n"
|
|
"fmov fs27, (a1+)\n"
|
|
"fmov fs28, (a1+)\n"
|
|
"fmov fs29, (a1+)\n"
|
|
"fmov fs30, (a1+)\n"
|
|
"fmov fs31, (a1+)\n"
|
|
"fmov fpcr, %0\n"
|
|
: "=d"(gdbstub_fpcr)
|
|
: "g" (&gdbstub_fpufs_array), "i"(EPSW_FE)
|
|
: "a1"
|
|
);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
*
|
|
*/
|
|
static void gdbstub_load_fpu(void)
|
|
{
|
|
#ifdef CONFIG_FPU
|
|
|
|
asm volatile(
|
|
"or %1,epsw\n"
|
|
#ifdef CONFIG_MN10300_PROC_MN103E010
|
|
"nop\n"
|
|
"nop\n"
|
|
#endif
|
|
"mov %0, a1\n"
|
|
"fmov (a1+), fs0\n"
|
|
"fmov (a1+), fs1\n"
|
|
"fmov (a1+), fs2\n"
|
|
"fmov (a1+), fs3\n"
|
|
"fmov (a1+), fs4\n"
|
|
"fmov (a1+), fs5\n"
|
|
"fmov (a1+), fs6\n"
|
|
"fmov (a1+), fs7\n"
|
|
"fmov (a1+), fs8\n"
|
|
"fmov (a1+), fs9\n"
|
|
"fmov (a1+), fs10\n"
|
|
"fmov (a1+), fs11\n"
|
|
"fmov (a1+), fs12\n"
|
|
"fmov (a1+), fs13\n"
|
|
"fmov (a1+), fs14\n"
|
|
"fmov (a1+), fs15\n"
|
|
"fmov (a1+), fs16\n"
|
|
"fmov (a1+), fs17\n"
|
|
"fmov (a1+), fs18\n"
|
|
"fmov (a1+), fs19\n"
|
|
"fmov (a1+), fs20\n"
|
|
"fmov (a1+), fs21\n"
|
|
"fmov (a1+), fs22\n"
|
|
"fmov (a1+), fs23\n"
|
|
"fmov (a1+), fs24\n"
|
|
"fmov (a1+), fs25\n"
|
|
"fmov (a1+), fs26\n"
|
|
"fmov (a1+), fs27\n"
|
|
"fmov (a1+), fs28\n"
|
|
"fmov (a1+), fs29\n"
|
|
"fmov (a1+), fs30\n"
|
|
"fmov (a1+), fs31\n"
|
|
"fmov %2, fpcr\n"
|
|
:
|
|
: "g" (&gdbstub_fpufs_array), "i"(EPSW_FE), "d"(gdbstub_fpcr)
|
|
: "a1"
|
|
);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* set a software breakpoint
|
|
*/
|
|
int gdbstub_set_breakpoint(u8 *addr, int len)
|
|
{
|
|
int bkpt, loop, xloop;
|
|
|
|
#ifdef GDBSTUB_USE_F7F7_AS_BREAKPOINT
|
|
len = (len + 1) & ~1;
|
|
#endif
|
|
|
|
gdbstub_bkpt("setbkpt(%p,%d)\n", addr, len);
|
|
|
|
for (bkpt = 255; bkpt >= 0; bkpt--)
|
|
if (!gdbstub_bkpts[bkpt].addr)
|
|
break;
|
|
if (bkpt < 0)
|
|
return -ENOSPC;
|
|
|
|
for (loop = 0; loop < len; loop++)
|
|
if (gdbstub_read_byte(&addr[loop],
|
|
&gdbstub_bkpts[bkpt].origbytes[loop]
|
|
) < 0)
|
|
return -EFAULT;
|
|
|
|
gdbstub_flush_caches = 1;
|
|
|
|
#ifdef GDBSTUB_USE_F7F7_AS_BREAKPOINT
|
|
for (loop = 0; loop < len; loop++)
|
|
if (gdbstub_write_byte(0xF7, &addr[loop]) < 0)
|
|
goto restore;
|
|
#else
|
|
for (loop = 0; loop < len; loop++)
|
|
if (gdbstub_write_byte(0xFF, &addr[loop]) < 0)
|
|
goto restore;
|
|
#endif
|
|
|
|
gdbstub_bkpts[bkpt].addr = addr;
|
|
gdbstub_bkpts[bkpt].len = len;
|
|
|
|
gdbstub_bkpt("Set BKPT[%02x]: %p-%p {%02x%02x%02x%02x%02x%02x%02x}\n",
|
|
bkpt,
|
|
gdbstub_bkpts[bkpt].addr,
|
|
gdbstub_bkpts[bkpt].addr + gdbstub_bkpts[bkpt].len - 1,
|
|
gdbstub_bkpts[bkpt].origbytes[0],
|
|
gdbstub_bkpts[bkpt].origbytes[1],
|
|
gdbstub_bkpts[bkpt].origbytes[2],
|
|
gdbstub_bkpts[bkpt].origbytes[3],
|
|
gdbstub_bkpts[bkpt].origbytes[4],
|
|
gdbstub_bkpts[bkpt].origbytes[5],
|
|
gdbstub_bkpts[bkpt].origbytes[6]
|
|
);
|
|
|
|
return 0;
|
|
|
|
restore:
|
|
for (xloop = 0; xloop < loop; xloop++)
|
|
gdbstub_write_byte(gdbstub_bkpts[bkpt].origbytes[xloop],
|
|
addr + xloop);
|
|
return -EFAULT;
|
|
}
|
|
|
|
/*
|
|
* clear a software breakpoint
|
|
*/
|
|
int gdbstub_clear_breakpoint(u8 *addr, int len)
|
|
{
|
|
int bkpt, loop;
|
|
|
|
#ifdef GDBSTUB_USE_F7F7_AS_BREAKPOINT
|
|
len = (len + 1) & ~1;
|
|
#endif
|
|
|
|
gdbstub_bkpt("clearbkpt(%p,%d)\n", addr, len);
|
|
|
|
for (bkpt = 255; bkpt >= 0; bkpt--)
|
|
if (gdbstub_bkpts[bkpt].addr == addr &&
|
|
gdbstub_bkpts[bkpt].len == len)
|
|
break;
|
|
if (bkpt < 0)
|
|
return -ENOENT;
|
|
|
|
gdbstub_bkpts[bkpt].addr = NULL;
|
|
|
|
gdbstub_flush_caches = 1;
|
|
|
|
for (loop = 0; loop < len; loop++)
|
|
if (gdbstub_write_byte(gdbstub_bkpts[bkpt].origbytes[loop],
|
|
addr + loop) < 0)
|
|
return -EFAULT;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This function does all command processing for interfacing to gdb
|
|
* - returns 0 if the exception should be skipped, -ERROR otherwise.
|
|
*/
|
|
static int gdbstub(struct pt_regs *regs, enum exception_code excep)
|
|
{
|
|
unsigned long *stack;
|
|
unsigned long epsw, mdr;
|
|
uint32_t zero, ssp;
|
|
uint8_t broke;
|
|
char *ptr;
|
|
int sigval;
|
|
int addr;
|
|
int length;
|
|
int loop;
|
|
|
|
if (excep == EXCEP_FPU_DISABLED)
|
|
return -ENOTSUPP;
|
|
|
|
gdbstub_flush_caches = 0;
|
|
|
|
mn10300_set_gdbleds(1);
|
|
|
|
asm volatile("mov mdr,%0" : "=d"(mdr));
|
|
local_save_flags(epsw);
|
|
arch_local_change_intr_mask_level(
|
|
NUM2EPSW_IM(CONFIG_DEBUGGER_IRQ_LEVEL + 1));
|
|
|
|
gdbstub_store_fpu();
|
|
|
|
#ifdef CONFIG_GDBSTUB_IMMEDIATE
|
|
/* skip the initial pause loop */
|
|
if (regs->pc == (unsigned long) __gdbstub_pause)
|
|
regs->pc = (unsigned long) start_kernel;
|
|
#endif
|
|
|
|
/* if we were single stepping, restore the opcodes hoisted for the
|
|
* breakpoint[s] */
|
|
broke = 0;
|
|
#ifdef CONFIG_GDBSTUB_ALLOW_SINGLE_STEP
|
|
if ((step_bp[0].addr && step_bp[0].addr == (u8 *) regs->pc) ||
|
|
(step_bp[1].addr && step_bp[1].addr == (u8 *) regs->pc))
|
|
broke = 1;
|
|
|
|
__gdbstub_restore_bp();
|
|
#endif
|
|
|
|
if (gdbstub_rx_unget) {
|
|
sigval = SIGINT;
|
|
if (gdbstub_rx_unget != 3)
|
|
goto packet_waiting;
|
|
gdbstub_rx_unget = 0;
|
|
}
|
|
|
|
stack = (unsigned long *) regs->sp;
|
|
sigval = broke ? SIGTRAP : computeSignal(excep);
|
|
|
|
/* send information about a BUG() */
|
|
if (!user_mode(regs) && excep == EXCEP_SYSCALL15) {
|
|
const struct bug_entry *bug;
|
|
|
|
bug = find_bug(regs->pc);
|
|
if (bug)
|
|
goto found_bug;
|
|
length = snprintf(trans_buffer, sizeof(trans_buffer),
|
|
"BUG() at address %lx\n", regs->pc);
|
|
goto send_bug_pkt;
|
|
|
|
found_bug:
|
|
length = snprintf(trans_buffer, sizeof(trans_buffer),
|
|
"BUG() at address %lx (%s:%d)\n",
|
|
regs->pc, bug->file, bug->line);
|
|
|
|
send_bug_pkt:
|
|
ptr = output_buffer;
|
|
*ptr++ = 'O';
|
|
ptr = mem2hex(trans_buffer, ptr, length, 0);
|
|
*ptr = 0;
|
|
putpacket(output_buffer);
|
|
|
|
regs->pc -= 2;
|
|
sigval = SIGABRT;
|
|
} else if (regs->pc == (unsigned long) __gdbstub_bug_trap) {
|
|
regs->pc = regs->mdr;
|
|
sigval = SIGABRT;
|
|
}
|
|
|
|
/*
|
|
* send a message to the debugger's user saying what happened if it may
|
|
* not be clear cut (we can't map exceptions onto signals properly)
|
|
*/
|
|
if (sigval != SIGINT && sigval != SIGTRAP && sigval != SIGILL) {
|
|
static const char title[] = "Excep ", tbcberr[] = "BCBERR ";
|
|
static const char crlf[] = "\r\n";
|
|
char hx;
|
|
u32 bcberr = BCBERR;
|
|
|
|
ptr = output_buffer;
|
|
*ptr++ = 'O';
|
|
ptr = mem2hex(title, ptr, sizeof(title) - 1, 0);
|
|
|
|
hx = hex_asc_hi(excep >> 8);
|
|
ptr = hex_byte_pack(ptr, hx);
|
|
hx = hex_asc_lo(excep >> 8);
|
|
ptr = hex_byte_pack(ptr, hx);
|
|
hx = hex_asc_hi(excep);
|
|
ptr = hex_byte_pack(ptr, hx);
|
|
hx = hex_asc_lo(excep);
|
|
ptr = hex_byte_pack(ptr, hx);
|
|
|
|
ptr = mem2hex(crlf, ptr, sizeof(crlf) - 1, 0);
|
|
*ptr = 0;
|
|
putpacket(output_buffer); /* send it off... */
|
|
|
|
/* BCBERR */
|
|
ptr = output_buffer;
|
|
*ptr++ = 'O';
|
|
ptr = mem2hex(tbcberr, ptr, sizeof(tbcberr) - 1, 0);
|
|
|
|
hx = hex_asc_hi(bcberr >> 24);
|
|
ptr = hex_byte_pack(ptr, hx);
|
|
hx = hex_asc_lo(bcberr >> 24);
|
|
ptr = hex_byte_pack(ptr, hx);
|
|
hx = hex_asc_hi(bcberr >> 16);
|
|
ptr = hex_byte_pack(ptr, hx);
|
|
hx = hex_asc_lo(bcberr >> 16);
|
|
ptr = hex_byte_pack(ptr, hx);
|
|
hx = hex_asc_hi(bcberr >> 8);
|
|
ptr = hex_byte_pack(ptr, hx);
|
|
hx = hex_asc_lo(bcberr >> 8);
|
|
ptr = hex_byte_pack(ptr, hx);
|
|
hx = hex_asc_hi(bcberr);
|
|
ptr = hex_byte_pack(ptr, hx);
|
|
hx = hex_asc_lo(bcberr);
|
|
ptr = hex_byte_pack(ptr, hx);
|
|
|
|
ptr = mem2hex(crlf, ptr, sizeof(crlf) - 1, 0);
|
|
*ptr = 0;
|
|
putpacket(output_buffer); /* send it off... */
|
|
}
|
|
|
|
/*
|
|
* tell the debugger that an exception has occurred
|
|
*/
|
|
ptr = output_buffer;
|
|
|
|
/*
|
|
* Send trap type (converted to signal)
|
|
*/
|
|
*ptr++ = 'T';
|
|
ptr = hex_byte_pack(ptr, sigval);
|
|
|
|
/*
|
|
* Send Error PC
|
|
*/
|
|
ptr = hex_byte_pack(ptr, GDB_REGID_PC);
|
|
*ptr++ = ':';
|
|
ptr = mem2hex(®s->pc, ptr, 4, 0);
|
|
*ptr++ = ';';
|
|
|
|
/*
|
|
* Send frame pointer
|
|
*/
|
|
ptr = hex_byte_pack(ptr, GDB_REGID_FP);
|
|
*ptr++ = ':';
|
|
ptr = mem2hex(®s->a3, ptr, 4, 0);
|
|
*ptr++ = ';';
|
|
|
|
/*
|
|
* Send stack pointer
|
|
*/
|
|
ssp = (unsigned long) (regs + 1);
|
|
ptr = hex_byte_pack(ptr, GDB_REGID_SP);
|
|
*ptr++ = ':';
|
|
ptr = mem2hex(&ssp, ptr, 4, 0);
|
|
*ptr++ = ';';
|
|
|
|
*ptr++ = 0;
|
|
putpacket(output_buffer); /* send it off... */
|
|
|
|
packet_waiting:
|
|
/*
|
|
* Wait for input from remote GDB
|
|
*/
|
|
while (1) {
|
|
output_buffer[0] = 0;
|
|
getpacket(input_buffer);
|
|
|
|
switch (input_buffer[0]) {
|
|
/* request repeat of last signal number */
|
|
case '?':
|
|
output_buffer[0] = 'S';
|
|
output_buffer[1] = hex_asc_hi(sigval);
|
|
output_buffer[2] = hex_asc_lo(sigval);
|
|
output_buffer[3] = 0;
|
|
break;
|
|
|
|
case 'd':
|
|
/* toggle debug flag */
|
|
break;
|
|
|
|
/*
|
|
* Return the value of the CPU registers
|
|
*/
|
|
case 'g':
|
|
zero = 0;
|
|
ssp = (u32) (regs + 1);
|
|
ptr = output_buffer;
|
|
ptr = mem2hex(®s->d0, ptr, 4, 0);
|
|
ptr = mem2hex(®s->d1, ptr, 4, 0);
|
|
ptr = mem2hex(®s->d2, ptr, 4, 0);
|
|
ptr = mem2hex(®s->d3, ptr, 4, 0);
|
|
ptr = mem2hex(®s->a0, ptr, 4, 0);
|
|
ptr = mem2hex(®s->a1, ptr, 4, 0);
|
|
ptr = mem2hex(®s->a2, ptr, 4, 0);
|
|
ptr = mem2hex(®s->a3, ptr, 4, 0);
|
|
|
|
ptr = mem2hex(&ssp, ptr, 4, 0); /* 8 */
|
|
ptr = mem2hex(®s->pc, ptr, 4, 0);
|
|
ptr = mem2hex(®s->mdr, ptr, 4, 0);
|
|
ptr = mem2hex(®s->epsw, ptr, 4, 0);
|
|
ptr = mem2hex(®s->lir, ptr, 4, 0);
|
|
ptr = mem2hex(®s->lar, ptr, 4, 0);
|
|
ptr = mem2hex(®s->mdrq, ptr, 4, 0);
|
|
|
|
ptr = mem2hex(®s->e0, ptr, 4, 0); /* 15 */
|
|
ptr = mem2hex(®s->e1, ptr, 4, 0);
|
|
ptr = mem2hex(®s->e2, ptr, 4, 0);
|
|
ptr = mem2hex(®s->e3, ptr, 4, 0);
|
|
ptr = mem2hex(®s->e4, ptr, 4, 0);
|
|
ptr = mem2hex(®s->e5, ptr, 4, 0);
|
|
ptr = mem2hex(®s->e6, ptr, 4, 0);
|
|
ptr = mem2hex(®s->e7, ptr, 4, 0);
|
|
|
|
ptr = mem2hex(&ssp, ptr, 4, 0);
|
|
ptr = mem2hex(®s, ptr, 4, 0);
|
|
ptr = mem2hex(®s->sp, ptr, 4, 0);
|
|
ptr = mem2hex(®s->mcrh, ptr, 4, 0); /* 26 */
|
|
ptr = mem2hex(®s->mcrl, ptr, 4, 0);
|
|
ptr = mem2hex(®s->mcvf, ptr, 4, 0);
|
|
|
|
ptr = mem2hex(&gdbstub_fpcr, ptr, 4, 0); /* 29 - FPCR */
|
|
ptr = mem2hex(&zero, ptr, 4, 0);
|
|
ptr = mem2hex(&zero, ptr, 4, 0);
|
|
for (loop = 0; loop < 32; loop++)
|
|
ptr = mem2hex(&gdbstub_fpufs_array[loop],
|
|
ptr, 4, 0); /* 32 - FS0-31 */
|
|
|
|
break;
|
|
|
|
/*
|
|
* set the value of the CPU registers - return OK
|
|
*/
|
|
case 'G':
|
|
{
|
|
const char *ptr;
|
|
|
|
ptr = &input_buffer[1];
|
|
ptr = hex2mem(ptr, ®s->d0, 4, 0);
|
|
ptr = hex2mem(ptr, ®s->d1, 4, 0);
|
|
ptr = hex2mem(ptr, ®s->d2, 4, 0);
|
|
ptr = hex2mem(ptr, ®s->d3, 4, 0);
|
|
ptr = hex2mem(ptr, ®s->a0, 4, 0);
|
|
ptr = hex2mem(ptr, ®s->a1, 4, 0);
|
|
ptr = hex2mem(ptr, ®s->a2, 4, 0);
|
|
ptr = hex2mem(ptr, ®s->a3, 4, 0);
|
|
|
|
ptr = hex2mem(ptr, &ssp, 4, 0); /* 8 */
|
|
ptr = hex2mem(ptr, ®s->pc, 4, 0);
|
|
ptr = hex2mem(ptr, ®s->mdr, 4, 0);
|
|
ptr = hex2mem(ptr, ®s->epsw, 4, 0);
|
|
ptr = hex2mem(ptr, ®s->lir, 4, 0);
|
|
ptr = hex2mem(ptr, ®s->lar, 4, 0);
|
|
ptr = hex2mem(ptr, ®s->mdrq, 4, 0);
|
|
|
|
ptr = hex2mem(ptr, ®s->e0, 4, 0); /* 15 */
|
|
ptr = hex2mem(ptr, ®s->e1, 4, 0);
|
|
ptr = hex2mem(ptr, ®s->e2, 4, 0);
|
|
ptr = hex2mem(ptr, ®s->e3, 4, 0);
|
|
ptr = hex2mem(ptr, ®s->e4, 4, 0);
|
|
ptr = hex2mem(ptr, ®s->e5, 4, 0);
|
|
ptr = hex2mem(ptr, ®s->e6, 4, 0);
|
|
ptr = hex2mem(ptr, ®s->e7, 4, 0);
|
|
|
|
ptr = hex2mem(ptr, &ssp, 4, 0);
|
|
ptr = hex2mem(ptr, &zero, 4, 0);
|
|
ptr = hex2mem(ptr, ®s->sp, 4, 0);
|
|
ptr = hex2mem(ptr, ®s->mcrh, 4, 0); /* 26 */
|
|
ptr = hex2mem(ptr, ®s->mcrl, 4, 0);
|
|
ptr = hex2mem(ptr, ®s->mcvf, 4, 0);
|
|
|
|
ptr = hex2mem(ptr, &zero, 4, 0); /* 29 - FPCR */
|
|
ptr = hex2mem(ptr, &zero, 4, 0);
|
|
ptr = hex2mem(ptr, &zero, 4, 0);
|
|
for (loop = 0; loop < 32; loop++) /* 32 - FS0-31 */
|
|
ptr = hex2mem(ptr, &zero, 4, 0);
|
|
|
|
#if 0
|
|
/*
|
|
* See if the stack pointer has moved. If so, then copy
|
|
* the saved locals and ins to the new location.
|
|
*/
|
|
unsigned long *newsp = (unsigned long *) registers[SP];
|
|
if (sp != newsp)
|
|
sp = memcpy(newsp, sp, 16 * 4);
|
|
#endif
|
|
|
|
gdbstub_strcpy(output_buffer, "OK");
|
|
}
|
|
break;
|
|
|
|
/*
|
|
* mAA..AA,LLLL Read LLLL bytes at address AA..AA
|
|
*/
|
|
case 'm':
|
|
ptr = &input_buffer[1];
|
|
|
|
if (hexToInt(&ptr, &addr) &&
|
|
*ptr++ == ',' &&
|
|
hexToInt(&ptr, &length)
|
|
) {
|
|
if (mem2hex((char *) addr, output_buffer,
|
|
length, 1))
|
|
break;
|
|
gdbstub_strcpy(output_buffer, "E03");
|
|
} else {
|
|
gdbstub_strcpy(output_buffer, "E01");
|
|
}
|
|
break;
|
|
|
|
/*
|
|
* MAA..AA,LLLL: Write LLLL bytes at address AA.AA
|
|
* return OK
|
|
*/
|
|
case 'M':
|
|
ptr = &input_buffer[1];
|
|
|
|
if (hexToInt(&ptr, &addr) &&
|
|
*ptr++ == ',' &&
|
|
hexToInt(&ptr, &length) &&
|
|
*ptr++ == ':'
|
|
) {
|
|
if (hex2mem(ptr, (char *) addr, length, 1))
|
|
gdbstub_strcpy(output_buffer, "OK");
|
|
else
|
|
gdbstub_strcpy(output_buffer, "E03");
|
|
|
|
gdbstub_flush_caches = 1;
|
|
} else {
|
|
gdbstub_strcpy(output_buffer, "E02");
|
|
}
|
|
break;
|
|
|
|
/*
|
|
* cAA..AA Continue at address AA..AA(optional)
|
|
*/
|
|
case 'c':
|
|
/* try to read optional parameter, pc unchanged if no
|
|
* parm */
|
|
|
|
ptr = &input_buffer[1];
|
|
if (hexToInt(&ptr, &addr))
|
|
regs->pc = addr;
|
|
goto done;
|
|
|
|
/*
|
|
* kill the program
|
|
*/
|
|
case 'k' :
|
|
goto done; /* just continue */
|
|
|
|
/*
|
|
* Reset the whole machine (FIXME: system dependent)
|
|
*/
|
|
case 'r':
|
|
break;
|
|
|
|
/*
|
|
* Step to next instruction
|
|
*/
|
|
case 's':
|
|
/* Using the T flag doesn't seem to perform single
|
|
* stepping (it seems to wind up being caught by the
|
|
* JTAG unit), so we have to use breakpoints and
|
|
* continue instead.
|
|
*/
|
|
#ifdef CONFIG_GDBSTUB_ALLOW_SINGLE_STEP
|
|
if (gdbstub_single_step(regs) < 0)
|
|
/* ignore any fault error for now */
|
|
gdbstub_printk("unable to set single-step"
|
|
" bp\n");
|
|
goto done;
|
|
#else
|
|
gdbstub_strcpy(output_buffer, "E01");
|
|
break;
|
|
#endif
|
|
|
|
/*
|
|
* Set baud rate (bBB)
|
|
*/
|
|
case 'b':
|
|
do {
|
|
int baudrate;
|
|
|
|
ptr = &input_buffer[1];
|
|
if (!hexToInt(&ptr, &baudrate)) {
|
|
gdbstub_strcpy(output_buffer, "B01");
|
|
break;
|
|
}
|
|
|
|
if (baudrate) {
|
|
/* ACK before changing speed */
|
|
putpacket("OK");
|
|
gdbstub_io_set_baud(baudrate);
|
|
}
|
|
} while (0);
|
|
break;
|
|
|
|
/*
|
|
* Set breakpoint
|
|
*/
|
|
case 'Z':
|
|
ptr = &input_buffer[1];
|
|
|
|
if (!hexToInt(&ptr, &loop) || *ptr++ != ',' ||
|
|
!hexToInt(&ptr, &addr) || *ptr++ != ',' ||
|
|
!hexToInt(&ptr, &length)
|
|
) {
|
|
gdbstub_strcpy(output_buffer, "E01");
|
|
break;
|
|
}
|
|
|
|
/* only support software breakpoints */
|
|
gdbstub_strcpy(output_buffer, "E03");
|
|
if (loop != 0 ||
|
|
length < 1 ||
|
|
length > 7 ||
|
|
(unsigned long) addr < 4096)
|
|
break;
|
|
|
|
if (gdbstub_set_breakpoint((u8 *) addr, length) < 0)
|
|
break;
|
|
|
|
gdbstub_strcpy(output_buffer, "OK");
|
|
break;
|
|
|
|
/*
|
|
* Clear breakpoint
|
|
*/
|
|
case 'z':
|
|
ptr = &input_buffer[1];
|
|
|
|
if (!hexToInt(&ptr, &loop) || *ptr++ != ',' ||
|
|
!hexToInt(&ptr, &addr) || *ptr++ != ',' ||
|
|
!hexToInt(&ptr, &length)
|
|
) {
|
|
gdbstub_strcpy(output_buffer, "E01");
|
|
break;
|
|
}
|
|
|
|
/* only support software breakpoints */
|
|
gdbstub_strcpy(output_buffer, "E03");
|
|
if (loop != 0 ||
|
|
length < 1 ||
|
|
length > 7 ||
|
|
(unsigned long) addr < 4096)
|
|
break;
|
|
|
|
if (gdbstub_clear_breakpoint((u8 *) addr, length) < 0)
|
|
break;
|
|
|
|
gdbstub_strcpy(output_buffer, "OK");
|
|
break;
|
|
|
|
default:
|
|
gdbstub_proto("### GDB Unsupported Cmd '%s'\n",
|
|
input_buffer);
|
|
break;
|
|
}
|
|
|
|
/* reply to the request */
|
|
putpacket(output_buffer);
|
|
}
|
|
|
|
done:
|
|
/*
|
|
* Need to flush the instruction cache here, as we may
|
|
* have deposited a breakpoint, and the icache probably
|
|
* has no way of knowing that a data ref to some location
|
|
* may have changed something that is in the instruction
|
|
* cache.
|
|
* NB: We flush both caches, just to be sure...
|
|
*/
|
|
if (gdbstub_flush_caches)
|
|
debugger_local_cache_flushinv();
|
|
|
|
gdbstub_load_fpu();
|
|
mn10300_set_gdbleds(0);
|
|
if (excep == EXCEP_NMI)
|
|
NMICR = NMICR_NMIF;
|
|
|
|
touch_softlockup_watchdog();
|
|
|
|
local_irq_restore(epsw);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Determine if we hit a debugger special breakpoint that needs skipping over
|
|
* automatically.
|
|
*/
|
|
int at_debugger_breakpoint(struct pt_regs *regs)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* handle event interception
|
|
*/
|
|
asmlinkage int debugger_intercept(enum exception_code excep,
|
|
int signo, int si_code, struct pt_regs *regs)
|
|
{
|
|
static u8 notfirst = 1;
|
|
int ret;
|
|
|
|
if (gdbstub_busy)
|
|
gdbstub_printk("--> gdbstub reentered itself\n");
|
|
gdbstub_busy = 1;
|
|
|
|
if (notfirst) {
|
|
unsigned long mdr;
|
|
asm("mov mdr,%0" : "=d"(mdr));
|
|
|
|
gdbstub_entry(
|
|
"--> debugger_intercept(%p,%04x) [MDR=%lx PC=%lx]\n",
|
|
regs, excep, mdr, regs->pc);
|
|
|
|
gdbstub_entry(
|
|
"PC: %08lx EPSW: %08lx SSP: %08lx mode: %s\n",
|
|
regs->pc, regs->epsw, (unsigned long) &ret,
|
|
user_mode(regs) ? "User" : "Super");
|
|
gdbstub_entry(
|
|
"d0: %08lx d1: %08lx d2: %08lx d3: %08lx\n",
|
|
regs->d0, regs->d1, regs->d2, regs->d3);
|
|
gdbstub_entry(
|
|
"a0: %08lx a1: %08lx a2: %08lx a3: %08lx\n",
|
|
regs->a0, regs->a1, regs->a2, regs->a3);
|
|
gdbstub_entry(
|
|
"e0: %08lx e1: %08lx e2: %08lx e3: %08lx\n",
|
|
regs->e0, regs->e1, regs->e2, regs->e3);
|
|
gdbstub_entry(
|
|
"e4: %08lx e5: %08lx e6: %08lx e7: %08lx\n",
|
|
regs->e4, regs->e5, regs->e6, regs->e7);
|
|
gdbstub_entry(
|
|
"lar: %08lx lir: %08lx mdr: %08lx usp: %08lx\n",
|
|
regs->lar, regs->lir, regs->mdr, regs->sp);
|
|
gdbstub_entry(
|
|
"cvf: %08lx crl: %08lx crh: %08lx drq: %08lx\n",
|
|
regs->mcvf, regs->mcrl, regs->mcrh, regs->mdrq);
|
|
gdbstub_entry(
|
|
"threadinfo=%p task=%p)\n",
|
|
current_thread_info(), current);
|
|
} else {
|
|
notfirst = 1;
|
|
}
|
|
|
|
ret = gdbstub(regs, excep);
|
|
|
|
gdbstub_entry("<-- debugger_intercept()\n");
|
|
gdbstub_busy = 0;
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* handle the GDB stub itself causing an exception
|
|
*/
|
|
asmlinkage void gdbstub_exception(struct pt_regs *regs,
|
|
enum exception_code excep)
|
|
{
|
|
unsigned long mdr;
|
|
|
|
asm("mov mdr,%0" : "=d"(mdr));
|
|
gdbstub_entry("--> gdbstub exception({%p},%04x) [MDR=%lx]\n",
|
|
regs, excep, mdr);
|
|
|
|
while ((unsigned long) regs == 0xffffffff) {}
|
|
|
|
/* handle guarded memory accesses where we know it might fault */
|
|
if (regs->pc == (unsigned) gdbstub_read_byte_guard) {
|
|
regs->pc = (unsigned) gdbstub_read_byte_cont;
|
|
goto fault;
|
|
}
|
|
|
|
if (regs->pc == (unsigned) gdbstub_read_word_guard) {
|
|
regs->pc = (unsigned) gdbstub_read_word_cont;
|
|
goto fault;
|
|
}
|
|
|
|
if (regs->pc == (unsigned) gdbstub_read_dword_guard) {
|
|
regs->pc = (unsigned) gdbstub_read_dword_cont;
|
|
goto fault;
|
|
}
|
|
|
|
if (regs->pc == (unsigned) gdbstub_write_byte_guard) {
|
|
regs->pc = (unsigned) gdbstub_write_byte_cont;
|
|
goto fault;
|
|
}
|
|
|
|
if (regs->pc == (unsigned) gdbstub_write_word_guard) {
|
|
regs->pc = (unsigned) gdbstub_write_word_cont;
|
|
goto fault;
|
|
}
|
|
|
|
if (regs->pc == (unsigned) gdbstub_write_dword_guard) {
|
|
regs->pc = (unsigned) gdbstub_write_dword_cont;
|
|
goto fault;
|
|
}
|
|
|
|
gdbstub_printk("\n### GDB stub caused an exception ###\n");
|
|
|
|
/* something went horribly wrong */
|
|
console_verbose();
|
|
show_registers(regs);
|
|
|
|
panic("GDB Stub caused an unexpected exception - can't continue\n");
|
|
|
|
/* we caught an attempt by the stub to access silly memory */
|
|
fault:
|
|
gdbstub_entry("<-- gdbstub exception() = EFAULT\n");
|
|
regs->d0 = -EFAULT;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* send an exit message to GDB
|
|
*/
|
|
void gdbstub_exit(int status)
|
|
{
|
|
unsigned char checksum;
|
|
unsigned char ch;
|
|
int count;
|
|
|
|
gdbstub_busy = 1;
|
|
output_buffer[0] = 'W';
|
|
output_buffer[1] = hex_asc_hi(status);
|
|
output_buffer[2] = hex_asc_lo(status);
|
|
output_buffer[3] = 0;
|
|
|
|
gdbstub_io_tx_char('$');
|
|
checksum = 0;
|
|
count = 0;
|
|
|
|
while ((ch = output_buffer[count]) != 0) {
|
|
gdbstub_io_tx_char(ch);
|
|
checksum += ch;
|
|
count += 1;
|
|
}
|
|
|
|
gdbstub_io_tx_char('#');
|
|
gdbstub_io_tx_char(hex_asc_hi(checksum));
|
|
gdbstub_io_tx_char(hex_asc_lo(checksum));
|
|
|
|
/* make sure the output is flushed, or else RedBoot might clobber it */
|
|
gdbstub_io_tx_flush();
|
|
|
|
gdbstub_busy = 0;
|
|
}
|
|
|
|
/*
|
|
* initialise the GDB stub
|
|
*/
|
|
asmlinkage void __init gdbstub_init(void)
|
|
{
|
|
#ifdef CONFIG_GDBSTUB_IMMEDIATE
|
|
unsigned char ch;
|
|
int ret;
|
|
#endif
|
|
|
|
gdbstub_busy = 1;
|
|
|
|
printk(KERN_INFO "%s", gdbstub_banner);
|
|
|
|
gdbstub_io_init();
|
|
|
|
gdbstub_entry("--> gdbstub_init\n");
|
|
|
|
/* try to talk to GDB (or anyone insane enough to want to type GDB
|
|
* protocol by hand) */
|
|
gdbstub_io("### GDB Tx ACK\n");
|
|
gdbstub_io_tx_char('+'); /* 'hello world' */
|
|
|
|
#ifdef CONFIG_GDBSTUB_IMMEDIATE
|
|
gdbstub_printk("GDB Stub waiting for packet\n");
|
|
|
|
/* in case GDB is started before us, ACK any packets that are already
|
|
* sitting there (presumably "$?#xx")
|
|
*/
|
|
do { gdbstub_io_rx_char(&ch, 0); } while (ch != '$');
|
|
do { gdbstub_io_rx_char(&ch, 0); } while (ch != '#');
|
|
/* eat first csum byte */
|
|
do { ret = gdbstub_io_rx_char(&ch, 0); } while (ret != 0);
|
|
/* eat second csum byte */
|
|
do { ret = gdbstub_io_rx_char(&ch, 0); } while (ret != 0);
|
|
|
|
gdbstub_io("### GDB Tx NAK\n");
|
|
gdbstub_io_tx_char('-'); /* NAK it */
|
|
|
|
#else
|
|
printk("GDB Stub ready\n");
|
|
#endif
|
|
|
|
gdbstub_busy = 0;
|
|
gdbstub_entry("<-- gdbstub_init\n");
|
|
}
|
|
|
|
/*
|
|
* register the console at a more appropriate time
|
|
*/
|
|
#ifdef CONFIG_GDBSTUB_CONSOLE
|
|
static int __init gdbstub_postinit(void)
|
|
{
|
|
printk(KERN_NOTICE "registering console\n");
|
|
register_console(&gdbstub_console);
|
|
return 0;
|
|
}
|
|
|
|
__initcall(gdbstub_postinit);
|
|
#endif
|
|
|
|
/*
|
|
* handle character reception on GDB serial port
|
|
* - jump into the GDB stub if BREAK is detected on the serial line
|
|
*/
|
|
asmlinkage void gdbstub_rx_irq(struct pt_regs *regs, enum exception_code excep)
|
|
{
|
|
char ch;
|
|
int ret;
|
|
|
|
gdbstub_entry("--> gdbstub_rx_irq\n");
|
|
|
|
do {
|
|
ret = gdbstub_io_rx_char(&ch, 1);
|
|
if (ret != -EIO && ret != -EAGAIN) {
|
|
if (ret != -EINTR)
|
|
gdbstub_rx_unget = ch;
|
|
gdbstub(regs, excep);
|
|
}
|
|
} while (ret != -EAGAIN);
|
|
|
|
gdbstub_entry("<-- gdbstub_rx_irq\n");
|
|
}
|