linux_dsm_epyc7002/kernel/trace/trace_clock.c
Steven Rostedt 8b2a5dac78 tracing: do not disable interrupts for trace_clock_local
Disabling interrupts in trace_clock_local takes quite a performance
hit to the recording of traces. Using perf top we see:

------------------------------------------------------------------------------
   PerfTop:     244 irqs/sec  kernel:100.0% [1000Hz cpu-clock-msecs],  (all, 4 CPUs)
------------------------------------------------------------------------------

             samples    pcnt   kernel function
             _______   _____   _______________

             2842.00 - 40.4% : trace_clock_local
             1043.00 - 14.8% : rb_reserve_next_event
              784.00 - 11.1% : ring_buffer_lock_reserve
              600.00 -  8.5% : __rb_reserve_next
              579.00 -  8.2% : rb_end_commit
              440.00 -  6.3% : ring_buffer_unlock_commit
              290.00 -  4.1% : ring_buffer_producer_thread 	[ring_buffer_benchmark]
              155.00 -  2.2% : debug_smp_processor_id
              117.00 -  1.7% : trace_recursive_unlock
              103.00 -  1.5% : ring_buffer_event_data
               28.00 -  0.4% : do_gettimeofday
               22.00 -  0.3% : _spin_unlock_irq
               14.00 -  0.2% : native_read_tsc
               11.00 -  0.2% : getnstimeofday

Where trace_clock_local is 40% of the tracing, and the time for recording
a trace according to ring_buffer_benchmark is 210ns. After converting
the interrupts to preemption disabling we have from perf top:

------------------------------------------------------------------------------
   PerfTop:    1084 irqs/sec  kernel:99.9% [1000Hz cpu-clock-msecs],  (all, 4 CPUs)
------------------------------------------------------------------------------

             samples    pcnt   kernel function
             _______   _____   _______________

             1277.00 - 16.8% : native_read_tsc
             1148.00 - 15.1% : rb_reserve_next_event
              896.00 - 11.8% : ring_buffer_lock_reserve
              688.00 -  9.1% : __rb_reserve_next
              664.00 -  8.8% : rb_end_commit
              563.00 -  7.4% : ring_buffer_unlock_commit
              508.00 -  6.7% : _spin_unlock_irq
              365.00 -  4.8% : debug_smp_processor_id
              321.00 -  4.2% : trace_clock_local
              303.00 -  4.0% : ring_buffer_producer_thread 	[ring_buffer_benchmark]
              273.00 -  3.6% : native_sched_clock
              122.00 -  1.6% : trace_recursive_unlock
              113.00 -  1.5% : sched_clock
              101.00 -  1.3% : ring_buffer_event_data
               53.00 -  0.7% : tick_nohz_stop_sched_tick

Where trace_clock_local drops from 40% to only taking 4% of the total time.
The trace time also goes from 210ns down to 179ns (31ns).

I talked with Peter Zijlstra about the impact that sched_clock may have
without having interrupts disabled, and he told me that if a timer interrupt
comes in, sched_clock may report a wrong time.

Balancing a seldom incorrect timestamp with a 15% performance boost, I'll
take the performance boost.

Acked-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2009-11-11 23:38:33 -05:00

116 lines
2.7 KiB
C

/*
* tracing clocks
*
* Copyright (C) 2009 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
*
* Implements 3 trace clock variants, with differing scalability/precision
* tradeoffs:
*
* - local: CPU-local trace clock
* - medium: scalable global clock with some jitter
* - global: globally monotonic, serialized clock
*
* Tracer plugins will chose a default from these clocks.
*/
#include <linux/spinlock.h>
#include <linux/hardirq.h>
#include <linux/module.h>
#include <linux/percpu.h>
#include <linux/sched.h>
#include <linux/ktime.h>
#include <linux/trace_clock.h>
#include "trace.h"
/*
* trace_clock_local(): the simplest and least coherent tracing clock.
*
* Useful for tracing that does not cross to other CPUs nor
* does it go through idle events.
*/
u64 notrace trace_clock_local(void)
{
u64 clock;
int resched;
/*
* sched_clock() is an architecture implemented, fast, scalable,
* lockless clock. It is not guaranteed to be coherent across
* CPUs, nor across CPU idle events.
*/
resched = ftrace_preempt_disable();
clock = sched_clock();
ftrace_preempt_enable(resched);
return clock;
}
/*
* trace_clock(): 'inbetween' trace clock. Not completely serialized,
* but not completely incorrect when crossing CPUs either.
*
* This is based on cpu_clock(), which will allow at most ~1 jiffy of
* jitter between CPUs. So it's a pretty scalable clock, but there
* can be offsets in the trace data.
*/
u64 notrace trace_clock(void)
{
return cpu_clock(raw_smp_processor_id());
}
/*
* trace_clock_global(): special globally coherent trace clock
*
* It has higher overhead than the other trace clocks but is still
* an order of magnitude faster than GTOD derived hardware clocks.
*
* Used by plugins that need globally coherent timestamps.
*/
/* keep prev_time and lock in the same cacheline. */
static struct {
u64 prev_time;
raw_spinlock_t lock;
} trace_clock_struct ____cacheline_aligned_in_smp =
{
.lock = (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED,
};
u64 notrace trace_clock_global(void)
{
unsigned long flags;
int this_cpu;
u64 now;
raw_local_irq_save(flags);
this_cpu = raw_smp_processor_id();
now = cpu_clock(this_cpu);
/*
* If in an NMI context then dont risk lockups and return the
* cpu_clock() time:
*/
if (unlikely(in_nmi()))
goto out;
__raw_spin_lock(&trace_clock_struct.lock);
/*
* TODO: if this happens often then maybe we should reset
* my_scd->clock to prev_time+1, to make sure
* we start ticking with the local clock from now on?
*/
if ((s64)(now - trace_clock_struct.prev_time) < 0)
now = trace_clock_struct.prev_time + 1;
trace_clock_struct.prev_time = now;
__raw_spin_unlock(&trace_clock_struct.lock);
out:
raw_local_irq_restore(flags);
return now;
}