mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-14 19:46:27 +07:00
fc246c389d
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
838 lines
21 KiB
C
838 lines
21 KiB
C
/*
|
|
* Copyright (C) 2001 Allan Trautman, IBM Corporation
|
|
*
|
|
* iSeries specific routines for PCI.
|
|
*
|
|
* Based on code from pci.c and iSeries_pci.c 32bit
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*/
|
|
#include <linux/kernel.h>
|
|
#include <linux/list.h>
|
|
#include <linux/string.h>
|
|
#include <linux/init.h>
|
|
#include <linux/module.h>
|
|
#include <linux/ide.h>
|
|
#include <linux/pci.h>
|
|
|
|
#include <asm/io.h>
|
|
#include <asm/irq.h>
|
|
#include <asm/prom.h>
|
|
#include <asm/machdep.h>
|
|
#include <asm/pci-bridge.h>
|
|
#include <asm/iommu.h>
|
|
#include <asm/abs_addr.h>
|
|
#include <asm/firmware.h>
|
|
|
|
#include <asm/iseries/hv_call_xm.h>
|
|
#include <asm/iseries/mf.h>
|
|
#include <asm/iseries/iommu.h>
|
|
|
|
#include <asm/ppc-pci.h>
|
|
|
|
#include "irq.h"
|
|
#include "pci.h"
|
|
#include "call_pci.h"
|
|
|
|
/*
|
|
* Forward declares of prototypes.
|
|
*/
|
|
static struct device_node *find_Device_Node(int bus, int devfn);
|
|
|
|
static int Pci_Retry_Max = 3; /* Only retry 3 times */
|
|
static int Pci_Error_Flag = 1; /* Set Retry Error on. */
|
|
|
|
static struct pci_ops iSeries_pci_ops;
|
|
|
|
/*
|
|
* Table defines
|
|
* Each Entry size is 4 MB * 1024 Entries = 4GB I/O address space.
|
|
*/
|
|
#define IOMM_TABLE_MAX_ENTRIES 1024
|
|
#define IOMM_TABLE_ENTRY_SIZE 0x0000000000400000UL
|
|
#define BASE_IO_MEMORY 0xE000000000000000UL
|
|
|
|
static unsigned long max_io_memory = BASE_IO_MEMORY;
|
|
static long current_iomm_table_entry;
|
|
|
|
/*
|
|
* Lookup Tables.
|
|
*/
|
|
static struct device_node *iomm_table[IOMM_TABLE_MAX_ENTRIES];
|
|
static u8 iobar_table[IOMM_TABLE_MAX_ENTRIES];
|
|
|
|
static const char pci_io_text[] = "iSeries PCI I/O";
|
|
static DEFINE_SPINLOCK(iomm_table_lock);
|
|
|
|
/*
|
|
* iomm_table_allocate_entry
|
|
*
|
|
* Adds pci_dev entry in address translation table
|
|
*
|
|
* - Allocates the number of entries required in table base on BAR
|
|
* size.
|
|
* - Allocates starting at BASE_IO_MEMORY and increases.
|
|
* - The size is round up to be a multiple of entry size.
|
|
* - CurrentIndex is incremented to keep track of the last entry.
|
|
* - Builds the resource entry for allocated BARs.
|
|
*/
|
|
static void iomm_table_allocate_entry(struct pci_dev *dev, int bar_num)
|
|
{
|
|
struct resource *bar_res = &dev->resource[bar_num];
|
|
long bar_size = pci_resource_len(dev, bar_num);
|
|
|
|
/*
|
|
* No space to allocate, quick exit, skip Allocation.
|
|
*/
|
|
if (bar_size == 0)
|
|
return;
|
|
/*
|
|
* Set Resource values.
|
|
*/
|
|
spin_lock(&iomm_table_lock);
|
|
bar_res->name = pci_io_text;
|
|
bar_res->start = BASE_IO_MEMORY +
|
|
IOMM_TABLE_ENTRY_SIZE * current_iomm_table_entry;
|
|
bar_res->end = bar_res->start + bar_size - 1;
|
|
/*
|
|
* Allocate the number of table entries needed for BAR.
|
|
*/
|
|
while (bar_size > 0 ) {
|
|
iomm_table[current_iomm_table_entry] = dev->sysdata;
|
|
iobar_table[current_iomm_table_entry] = bar_num;
|
|
bar_size -= IOMM_TABLE_ENTRY_SIZE;
|
|
++current_iomm_table_entry;
|
|
}
|
|
max_io_memory = BASE_IO_MEMORY +
|
|
IOMM_TABLE_ENTRY_SIZE * current_iomm_table_entry;
|
|
spin_unlock(&iomm_table_lock);
|
|
}
|
|
|
|
/*
|
|
* allocate_device_bars
|
|
*
|
|
* - Allocates ALL pci_dev BAR's and updates the resources with the
|
|
* BAR value. BARS with zero length will have the resources
|
|
* The HvCallPci_getBarParms is used to get the size of the BAR
|
|
* space. It calls iomm_table_allocate_entry to allocate
|
|
* each entry.
|
|
* - Loops through The Bar resources(0 - 5) including the ROM
|
|
* is resource(6).
|
|
*/
|
|
static void allocate_device_bars(struct pci_dev *dev)
|
|
{
|
|
int bar_num;
|
|
|
|
for (bar_num = 0; bar_num <= PCI_ROM_RESOURCE; ++bar_num)
|
|
iomm_table_allocate_entry(dev, bar_num);
|
|
}
|
|
|
|
/*
|
|
* Log error information to system console.
|
|
* Filter out the device not there errors.
|
|
* PCI: EADs Connect Failed 0x18.58.10 Rc: 0x00xx
|
|
* PCI: Read Vendor Failed 0x18.58.10 Rc: 0x00xx
|
|
* PCI: Connect Bus Unit Failed 0x18.58.10 Rc: 0x00xx
|
|
*/
|
|
static void pci_Log_Error(char *Error_Text, int Bus, int SubBus,
|
|
int AgentId, int HvRc)
|
|
{
|
|
if (HvRc == 0x0302)
|
|
return;
|
|
printk(KERN_ERR "PCI: %s Failed: 0x%02X.%02X.%02X Rc: 0x%04X",
|
|
Error_Text, Bus, SubBus, AgentId, HvRc);
|
|
}
|
|
|
|
/*
|
|
* iSeries_pcibios_init
|
|
*
|
|
* Description:
|
|
* This function checks for all possible system PCI host bridges that connect
|
|
* PCI buses. The system hypervisor is queried as to the guest partition
|
|
* ownership status. A pci_controller is built for any bus which is partially
|
|
* owned or fully owned by this guest partition.
|
|
*/
|
|
void iSeries_pcibios_init(void)
|
|
{
|
|
struct pci_controller *phb;
|
|
struct device_node *root = of_find_node_by_path("/");
|
|
struct device_node *node = NULL;
|
|
|
|
if (root == NULL) {
|
|
printk(KERN_CRIT "iSeries_pcibios_init: can't find root "
|
|
"of device tree\n");
|
|
return;
|
|
}
|
|
while ((node = of_get_next_child(root, node)) != NULL) {
|
|
HvBusNumber bus;
|
|
const u32 *busp;
|
|
|
|
if ((node->type == NULL) || (strcmp(node->type, "pci") != 0))
|
|
continue;
|
|
|
|
busp = get_property(node, "bus-range", NULL);
|
|
if (busp == NULL)
|
|
continue;
|
|
bus = *busp;
|
|
printk("bus %d appears to exist\n", bus);
|
|
phb = pcibios_alloc_controller(node);
|
|
if (phb == NULL)
|
|
continue;
|
|
|
|
phb->pci_mem_offset = phb->local_number = bus;
|
|
phb->first_busno = bus;
|
|
phb->last_busno = bus;
|
|
phb->ops = &iSeries_pci_ops;
|
|
}
|
|
|
|
of_node_put(root);
|
|
|
|
pci_devs_phb_init();
|
|
}
|
|
|
|
/*
|
|
* iSeries_pci_final_fixup(void)
|
|
*/
|
|
void __init iSeries_pci_final_fixup(void)
|
|
{
|
|
struct pci_dev *pdev = NULL;
|
|
struct device_node *node;
|
|
int DeviceCount = 0;
|
|
|
|
/* Fix up at the device node and pci_dev relationship */
|
|
mf_display_src(0xC9000100);
|
|
|
|
printk("pcibios_final_fixup\n");
|
|
for_each_pci_dev(pdev) {
|
|
node = find_Device_Node(pdev->bus->number, pdev->devfn);
|
|
printk("pci dev %p (%x.%x), node %p\n", pdev,
|
|
pdev->bus->number, pdev->devfn, node);
|
|
|
|
if (node != NULL) {
|
|
struct pci_dn *pdn = PCI_DN(node);
|
|
const u32 *agent;
|
|
|
|
agent = get_property(node, "linux,agent-id", NULL);
|
|
if ((pdn != NULL) && (agent != NULL)) {
|
|
u8 irq = iSeries_allocate_IRQ(pdn->busno, 0,
|
|
pdn->bussubno);
|
|
int err;
|
|
|
|
err = HvCallXm_connectBusUnit(pdn->busno, pdn->bussubno,
|
|
*agent, irq);
|
|
if (err)
|
|
pci_Log_Error("Connect Bus Unit",
|
|
pdn->busno, pdn->bussubno, *agent, err);
|
|
else {
|
|
err = HvCallPci_configStore8(pdn->busno, pdn->bussubno,
|
|
*agent,
|
|
PCI_INTERRUPT_LINE,
|
|
irq);
|
|
if (err)
|
|
pci_Log_Error("PciCfgStore Irq Failed!",
|
|
pdn->busno, pdn->bussubno, *agent, err);
|
|
}
|
|
if (!err)
|
|
pdev->irq = irq;
|
|
}
|
|
|
|
++DeviceCount;
|
|
pdev->sysdata = (void *)node;
|
|
PCI_DN(node)->pcidev = pdev;
|
|
allocate_device_bars(pdev);
|
|
iSeries_Device_Information(pdev, DeviceCount);
|
|
iommu_devnode_init_iSeries(node);
|
|
} else
|
|
printk("PCI: Device Tree not found for 0x%016lX\n",
|
|
(unsigned long)pdev);
|
|
}
|
|
iSeries_activate_IRQs();
|
|
mf_display_src(0xC9000200);
|
|
}
|
|
|
|
/*
|
|
* Look down the chain to find the matching Device Device
|
|
*/
|
|
static struct device_node *find_Device_Node(int bus, int devfn)
|
|
{
|
|
struct device_node *node;
|
|
|
|
for (node = NULL; (node = of_find_all_nodes(node)); ) {
|
|
struct pci_dn *pdn = PCI_DN(node);
|
|
|
|
if (pdn && (bus == pdn->busno) && (devfn == pdn->devfn))
|
|
return node;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
#if 0
|
|
/*
|
|
* Returns the device node for the passed pci_dev
|
|
* Sanity Check Node PciDev to passed pci_dev
|
|
* If none is found, returns a NULL which the client must handle.
|
|
*/
|
|
static struct device_node *get_Device_Node(struct pci_dev *pdev)
|
|
{
|
|
struct device_node *node;
|
|
|
|
node = pdev->sysdata;
|
|
if (node == NULL || PCI_DN(node)->pcidev != pdev)
|
|
node = find_Device_Node(pdev->bus->number, pdev->devfn);
|
|
return node;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Config space read and write functions.
|
|
* For now at least, we look for the device node for the bus and devfn
|
|
* that we are asked to access. It may be possible to translate the devfn
|
|
* to a subbus and deviceid more directly.
|
|
*/
|
|
static u64 hv_cfg_read_func[4] = {
|
|
HvCallPciConfigLoad8, HvCallPciConfigLoad16,
|
|
HvCallPciConfigLoad32, HvCallPciConfigLoad32
|
|
};
|
|
|
|
static u64 hv_cfg_write_func[4] = {
|
|
HvCallPciConfigStore8, HvCallPciConfigStore16,
|
|
HvCallPciConfigStore32, HvCallPciConfigStore32
|
|
};
|
|
|
|
/*
|
|
* Read PCI config space
|
|
*/
|
|
static int iSeries_pci_read_config(struct pci_bus *bus, unsigned int devfn,
|
|
int offset, int size, u32 *val)
|
|
{
|
|
struct device_node *node = find_Device_Node(bus->number, devfn);
|
|
u64 fn;
|
|
struct HvCallPci_LoadReturn ret;
|
|
|
|
if (node == NULL)
|
|
return PCIBIOS_DEVICE_NOT_FOUND;
|
|
if (offset > 255) {
|
|
*val = ~0;
|
|
return PCIBIOS_BAD_REGISTER_NUMBER;
|
|
}
|
|
|
|
fn = hv_cfg_read_func[(size - 1) & 3];
|
|
HvCall3Ret16(fn, &ret, iseries_ds_addr(node), offset, 0);
|
|
|
|
if (ret.rc != 0) {
|
|
*val = ~0;
|
|
return PCIBIOS_DEVICE_NOT_FOUND; /* or something */
|
|
}
|
|
|
|
*val = ret.value;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Write PCI config space
|
|
*/
|
|
|
|
static int iSeries_pci_write_config(struct pci_bus *bus, unsigned int devfn,
|
|
int offset, int size, u32 val)
|
|
{
|
|
struct device_node *node = find_Device_Node(bus->number, devfn);
|
|
u64 fn;
|
|
u64 ret;
|
|
|
|
if (node == NULL)
|
|
return PCIBIOS_DEVICE_NOT_FOUND;
|
|
if (offset > 255)
|
|
return PCIBIOS_BAD_REGISTER_NUMBER;
|
|
|
|
fn = hv_cfg_write_func[(size - 1) & 3];
|
|
ret = HvCall4(fn, iseries_ds_addr(node), offset, val, 0);
|
|
|
|
if (ret != 0)
|
|
return PCIBIOS_DEVICE_NOT_FOUND;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct pci_ops iSeries_pci_ops = {
|
|
.read = iSeries_pci_read_config,
|
|
.write = iSeries_pci_write_config
|
|
};
|
|
|
|
/*
|
|
* Check Return Code
|
|
* -> On Failure, print and log information.
|
|
* Increment Retry Count, if exceeds max, panic partition.
|
|
*
|
|
* PCI: Device 23.90 ReadL I/O Error( 0): 0x1234
|
|
* PCI: Device 23.90 ReadL Retry( 1)
|
|
* PCI: Device 23.90 ReadL Retry Successful(1)
|
|
*/
|
|
static int CheckReturnCode(char *TextHdr, struct device_node *DevNode,
|
|
int *retry, u64 ret)
|
|
{
|
|
if (ret != 0) {
|
|
struct pci_dn *pdn = PCI_DN(DevNode);
|
|
|
|
(*retry)++;
|
|
printk("PCI: %s: Device 0x%04X:%02X I/O Error(%2d): 0x%04X\n",
|
|
TextHdr, pdn->busno, pdn->devfn,
|
|
*retry, (int)ret);
|
|
/*
|
|
* Bump the retry and check for retry count exceeded.
|
|
* If, Exceeded, panic the system.
|
|
*/
|
|
if (((*retry) > Pci_Retry_Max) &&
|
|
(Pci_Error_Flag > 0)) {
|
|
mf_display_src(0xB6000103);
|
|
panic_timeout = 0;
|
|
panic("PCI: Hardware I/O Error, SRC B6000103, "
|
|
"Automatic Reboot Disabled.\n");
|
|
}
|
|
return -1; /* Retry Try */
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Translate the I/O Address into a device node, bar, and bar offset.
|
|
* Note: Make sure the passed variable end up on the stack to avoid
|
|
* the exposure of being device global.
|
|
*/
|
|
static inline struct device_node *xlate_iomm_address(
|
|
const volatile void __iomem *IoAddress,
|
|
u64 *dsaptr, u64 *BarOffsetPtr)
|
|
{
|
|
unsigned long OrigIoAddr;
|
|
unsigned long BaseIoAddr;
|
|
unsigned long TableIndex;
|
|
struct device_node *DevNode;
|
|
|
|
OrigIoAddr = (unsigned long __force)IoAddress;
|
|
if ((OrigIoAddr < BASE_IO_MEMORY) || (OrigIoAddr >= max_io_memory))
|
|
return NULL;
|
|
BaseIoAddr = OrigIoAddr - BASE_IO_MEMORY;
|
|
TableIndex = BaseIoAddr / IOMM_TABLE_ENTRY_SIZE;
|
|
DevNode = iomm_table[TableIndex];
|
|
|
|
if (DevNode != NULL) {
|
|
int barnum = iobar_table[TableIndex];
|
|
*dsaptr = iseries_ds_addr(DevNode) | (barnum << 24);
|
|
*BarOffsetPtr = BaseIoAddr % IOMM_TABLE_ENTRY_SIZE;
|
|
} else
|
|
panic("PCI: Invalid PCI IoAddress detected!\n");
|
|
return DevNode;
|
|
}
|
|
|
|
/*
|
|
* Read MM I/O Instructions for the iSeries
|
|
* On MM I/O error, all ones are returned and iSeries_pci_IoError is cal
|
|
* else, data is returned in big Endian format.
|
|
*
|
|
* iSeries_Read_Byte = Read Byte ( 8 bit)
|
|
* iSeries_Read_Word = Read Word (16 bit)
|
|
* iSeries_Read_Long = Read Long (32 bit)
|
|
*/
|
|
static u8 iSeries_Read_Byte(const volatile void __iomem *IoAddress)
|
|
{
|
|
u64 BarOffset;
|
|
u64 dsa;
|
|
int retry = 0;
|
|
struct HvCallPci_LoadReturn ret;
|
|
struct device_node *DevNode =
|
|
xlate_iomm_address(IoAddress, &dsa, &BarOffset);
|
|
|
|
if (DevNode == NULL) {
|
|
static unsigned long last_jiffies;
|
|
static int num_printed;
|
|
|
|
if ((jiffies - last_jiffies) > 60 * HZ) {
|
|
last_jiffies = jiffies;
|
|
num_printed = 0;
|
|
}
|
|
if (num_printed++ < 10)
|
|
printk(KERN_ERR "iSeries_Read_Byte: invalid access at IO address %p\n", IoAddress);
|
|
return 0xff;
|
|
}
|
|
do {
|
|
HvCall3Ret16(HvCallPciBarLoad8, &ret, dsa, BarOffset, 0);
|
|
} while (CheckReturnCode("RDB", DevNode, &retry, ret.rc) != 0);
|
|
|
|
return (u8)ret.value;
|
|
}
|
|
|
|
static u16 iSeries_Read_Word(const volatile void __iomem *IoAddress)
|
|
{
|
|
u64 BarOffset;
|
|
u64 dsa;
|
|
int retry = 0;
|
|
struct HvCallPci_LoadReturn ret;
|
|
struct device_node *DevNode =
|
|
xlate_iomm_address(IoAddress, &dsa, &BarOffset);
|
|
|
|
if (DevNode == NULL) {
|
|
static unsigned long last_jiffies;
|
|
static int num_printed;
|
|
|
|
if ((jiffies - last_jiffies) > 60 * HZ) {
|
|
last_jiffies = jiffies;
|
|
num_printed = 0;
|
|
}
|
|
if (num_printed++ < 10)
|
|
printk(KERN_ERR "iSeries_Read_Word: invalid access at IO address %p\n", IoAddress);
|
|
return 0xffff;
|
|
}
|
|
do {
|
|
HvCall3Ret16(HvCallPciBarLoad16, &ret, dsa,
|
|
BarOffset, 0);
|
|
} while (CheckReturnCode("RDW", DevNode, &retry, ret.rc) != 0);
|
|
|
|
return swab16((u16)ret.value);
|
|
}
|
|
|
|
static u32 iSeries_Read_Long(const volatile void __iomem *IoAddress)
|
|
{
|
|
u64 BarOffset;
|
|
u64 dsa;
|
|
int retry = 0;
|
|
struct HvCallPci_LoadReturn ret;
|
|
struct device_node *DevNode =
|
|
xlate_iomm_address(IoAddress, &dsa, &BarOffset);
|
|
|
|
if (DevNode == NULL) {
|
|
static unsigned long last_jiffies;
|
|
static int num_printed;
|
|
|
|
if ((jiffies - last_jiffies) > 60 * HZ) {
|
|
last_jiffies = jiffies;
|
|
num_printed = 0;
|
|
}
|
|
if (num_printed++ < 10)
|
|
printk(KERN_ERR "iSeries_Read_Long: invalid access at IO address %p\n", IoAddress);
|
|
return 0xffffffff;
|
|
}
|
|
do {
|
|
HvCall3Ret16(HvCallPciBarLoad32, &ret, dsa,
|
|
BarOffset, 0);
|
|
} while (CheckReturnCode("RDL", DevNode, &retry, ret.rc) != 0);
|
|
|
|
return swab32((u32)ret.value);
|
|
}
|
|
|
|
/*
|
|
* Write MM I/O Instructions for the iSeries
|
|
*
|
|
* iSeries_Write_Byte = Write Byte (8 bit)
|
|
* iSeries_Write_Word = Write Word(16 bit)
|
|
* iSeries_Write_Long = Write Long(32 bit)
|
|
*/
|
|
static void iSeries_Write_Byte(u8 data, volatile void __iomem *IoAddress)
|
|
{
|
|
u64 BarOffset;
|
|
u64 dsa;
|
|
int retry = 0;
|
|
u64 rc;
|
|
struct device_node *DevNode =
|
|
xlate_iomm_address(IoAddress, &dsa, &BarOffset);
|
|
|
|
if (DevNode == NULL) {
|
|
static unsigned long last_jiffies;
|
|
static int num_printed;
|
|
|
|
if ((jiffies - last_jiffies) > 60 * HZ) {
|
|
last_jiffies = jiffies;
|
|
num_printed = 0;
|
|
}
|
|
if (num_printed++ < 10)
|
|
printk(KERN_ERR "iSeries_Write_Byte: invalid access at IO address %p\n", IoAddress);
|
|
return;
|
|
}
|
|
do {
|
|
rc = HvCall4(HvCallPciBarStore8, dsa, BarOffset, data, 0);
|
|
} while (CheckReturnCode("WWB", DevNode, &retry, rc) != 0);
|
|
}
|
|
|
|
static void iSeries_Write_Word(u16 data, volatile void __iomem *IoAddress)
|
|
{
|
|
u64 BarOffset;
|
|
u64 dsa;
|
|
int retry = 0;
|
|
u64 rc;
|
|
struct device_node *DevNode =
|
|
xlate_iomm_address(IoAddress, &dsa, &BarOffset);
|
|
|
|
if (DevNode == NULL) {
|
|
static unsigned long last_jiffies;
|
|
static int num_printed;
|
|
|
|
if ((jiffies - last_jiffies) > 60 * HZ) {
|
|
last_jiffies = jiffies;
|
|
num_printed = 0;
|
|
}
|
|
if (num_printed++ < 10)
|
|
printk(KERN_ERR "iSeries_Write_Word: invalid access at IO address %p\n", IoAddress);
|
|
return;
|
|
}
|
|
do {
|
|
rc = HvCall4(HvCallPciBarStore16, dsa, BarOffset, swab16(data), 0);
|
|
} while (CheckReturnCode("WWW", DevNode, &retry, rc) != 0);
|
|
}
|
|
|
|
static void iSeries_Write_Long(u32 data, volatile void __iomem *IoAddress)
|
|
{
|
|
u64 BarOffset;
|
|
u64 dsa;
|
|
int retry = 0;
|
|
u64 rc;
|
|
struct device_node *DevNode =
|
|
xlate_iomm_address(IoAddress, &dsa, &BarOffset);
|
|
|
|
if (DevNode == NULL) {
|
|
static unsigned long last_jiffies;
|
|
static int num_printed;
|
|
|
|
if ((jiffies - last_jiffies) > 60 * HZ) {
|
|
last_jiffies = jiffies;
|
|
num_printed = 0;
|
|
}
|
|
if (num_printed++ < 10)
|
|
printk(KERN_ERR "iSeries_Write_Long: invalid access at IO address %p\n", IoAddress);
|
|
return;
|
|
}
|
|
do {
|
|
rc = HvCall4(HvCallPciBarStore32, dsa, BarOffset, swab32(data), 0);
|
|
} while (CheckReturnCode("WWL", DevNode, &retry, rc) != 0);
|
|
}
|
|
|
|
extern unsigned char __raw_readb(const volatile void __iomem *addr)
|
|
{
|
|
BUG_ON(firmware_has_feature(FW_FEATURE_ISERIES));
|
|
|
|
return *(volatile unsigned char __force *)addr;
|
|
}
|
|
EXPORT_SYMBOL(__raw_readb);
|
|
|
|
extern unsigned short __raw_readw(const volatile void __iomem *addr)
|
|
{
|
|
BUG_ON(firmware_has_feature(FW_FEATURE_ISERIES));
|
|
|
|
return *(volatile unsigned short __force *)addr;
|
|
}
|
|
EXPORT_SYMBOL(__raw_readw);
|
|
|
|
extern unsigned int __raw_readl(const volatile void __iomem *addr)
|
|
{
|
|
BUG_ON(firmware_has_feature(FW_FEATURE_ISERIES));
|
|
|
|
return *(volatile unsigned int __force *)addr;
|
|
}
|
|
EXPORT_SYMBOL(__raw_readl);
|
|
|
|
extern unsigned long __raw_readq(const volatile void __iomem *addr)
|
|
{
|
|
BUG_ON(firmware_has_feature(FW_FEATURE_ISERIES));
|
|
|
|
return *(volatile unsigned long __force *)addr;
|
|
}
|
|
EXPORT_SYMBOL(__raw_readq);
|
|
|
|
extern void __raw_writeb(unsigned char v, volatile void __iomem *addr)
|
|
{
|
|
BUG_ON(firmware_has_feature(FW_FEATURE_ISERIES));
|
|
|
|
*(volatile unsigned char __force *)addr = v;
|
|
}
|
|
EXPORT_SYMBOL(__raw_writeb);
|
|
|
|
extern void __raw_writew(unsigned short v, volatile void __iomem *addr)
|
|
{
|
|
BUG_ON(firmware_has_feature(FW_FEATURE_ISERIES));
|
|
|
|
*(volatile unsigned short __force *)addr = v;
|
|
}
|
|
EXPORT_SYMBOL(__raw_writew);
|
|
|
|
extern void __raw_writel(unsigned int v, volatile void __iomem *addr)
|
|
{
|
|
BUG_ON(firmware_has_feature(FW_FEATURE_ISERIES));
|
|
|
|
*(volatile unsigned int __force *)addr = v;
|
|
}
|
|
EXPORT_SYMBOL(__raw_writel);
|
|
|
|
extern void __raw_writeq(unsigned long v, volatile void __iomem *addr)
|
|
{
|
|
BUG_ON(firmware_has_feature(FW_FEATURE_ISERIES));
|
|
|
|
*(volatile unsigned long __force *)addr = v;
|
|
}
|
|
EXPORT_SYMBOL(__raw_writeq);
|
|
|
|
int in_8(const volatile unsigned char __iomem *addr)
|
|
{
|
|
if (firmware_has_feature(FW_FEATURE_ISERIES))
|
|
return iSeries_Read_Byte(addr);
|
|
return __in_8(addr);
|
|
}
|
|
EXPORT_SYMBOL(in_8);
|
|
|
|
void out_8(volatile unsigned char __iomem *addr, int val)
|
|
{
|
|
if (firmware_has_feature(FW_FEATURE_ISERIES))
|
|
iSeries_Write_Byte(val, addr);
|
|
else
|
|
__out_8(addr, val);
|
|
}
|
|
EXPORT_SYMBOL(out_8);
|
|
|
|
int in_le16(const volatile unsigned short __iomem *addr)
|
|
{
|
|
if (firmware_has_feature(FW_FEATURE_ISERIES))
|
|
return iSeries_Read_Word(addr);
|
|
return __in_le16(addr);
|
|
}
|
|
EXPORT_SYMBOL(in_le16);
|
|
|
|
int in_be16(const volatile unsigned short __iomem *addr)
|
|
{
|
|
BUG_ON(firmware_has_feature(FW_FEATURE_ISERIES));
|
|
|
|
return __in_be16(addr);
|
|
}
|
|
EXPORT_SYMBOL(in_be16);
|
|
|
|
void out_le16(volatile unsigned short __iomem *addr, int val)
|
|
{
|
|
if (firmware_has_feature(FW_FEATURE_ISERIES))
|
|
iSeries_Write_Word(val, addr);
|
|
else
|
|
__out_le16(addr, val);
|
|
}
|
|
EXPORT_SYMBOL(out_le16);
|
|
|
|
void out_be16(volatile unsigned short __iomem *addr, int val)
|
|
{
|
|
BUG_ON(firmware_has_feature(FW_FEATURE_ISERIES));
|
|
|
|
__out_be16(addr, val);
|
|
}
|
|
EXPORT_SYMBOL(out_be16);
|
|
|
|
unsigned in_le32(const volatile unsigned __iomem *addr)
|
|
{
|
|
if (firmware_has_feature(FW_FEATURE_ISERIES))
|
|
return iSeries_Read_Long(addr);
|
|
return __in_le32(addr);
|
|
}
|
|
EXPORT_SYMBOL(in_le32);
|
|
|
|
unsigned in_be32(const volatile unsigned __iomem *addr)
|
|
{
|
|
BUG_ON(firmware_has_feature(FW_FEATURE_ISERIES));
|
|
|
|
return __in_be32(addr);
|
|
}
|
|
EXPORT_SYMBOL(in_be32);
|
|
|
|
void out_le32(volatile unsigned __iomem *addr, int val)
|
|
{
|
|
if (firmware_has_feature(FW_FEATURE_ISERIES))
|
|
iSeries_Write_Long(val, addr);
|
|
else
|
|
__out_le32(addr, val);
|
|
}
|
|
EXPORT_SYMBOL(out_le32);
|
|
|
|
void out_be32(volatile unsigned __iomem *addr, int val)
|
|
{
|
|
BUG_ON(firmware_has_feature(FW_FEATURE_ISERIES));
|
|
|
|
__out_be32(addr, val);
|
|
}
|
|
EXPORT_SYMBOL(out_be32);
|
|
|
|
unsigned long in_le64(const volatile unsigned long __iomem *addr)
|
|
{
|
|
BUG_ON(firmware_has_feature(FW_FEATURE_ISERIES));
|
|
|
|
return __in_le64(addr);
|
|
}
|
|
EXPORT_SYMBOL(in_le64);
|
|
|
|
unsigned long in_be64(const volatile unsigned long __iomem *addr)
|
|
{
|
|
BUG_ON(firmware_has_feature(FW_FEATURE_ISERIES));
|
|
|
|
return __in_be64(addr);
|
|
}
|
|
EXPORT_SYMBOL(in_be64);
|
|
|
|
void out_le64(volatile unsigned long __iomem *addr, unsigned long val)
|
|
{
|
|
BUG_ON(firmware_has_feature(FW_FEATURE_ISERIES));
|
|
|
|
__out_le64(addr, val);
|
|
}
|
|
EXPORT_SYMBOL(out_le64);
|
|
|
|
void out_be64(volatile unsigned long __iomem *addr, unsigned long val)
|
|
{
|
|
BUG_ON(firmware_has_feature(FW_FEATURE_ISERIES));
|
|
|
|
__out_be64(addr, val);
|
|
}
|
|
EXPORT_SYMBOL(out_be64);
|
|
|
|
void memset_io(volatile void __iomem *addr, int c, unsigned long n)
|
|
{
|
|
if (firmware_has_feature(FW_FEATURE_ISERIES)) {
|
|
volatile char __iomem *d = addr;
|
|
|
|
while (n-- > 0) {
|
|
iSeries_Write_Byte(c, d++);
|
|
}
|
|
} else
|
|
eeh_memset_io(addr, c, n);
|
|
}
|
|
EXPORT_SYMBOL(memset_io);
|
|
|
|
void memcpy_fromio(void *dest, const volatile void __iomem *src,
|
|
unsigned long n)
|
|
{
|
|
if (firmware_has_feature(FW_FEATURE_ISERIES)) {
|
|
char *d = dest;
|
|
const volatile char __iomem *s = src;
|
|
|
|
while (n-- > 0) {
|
|
*d++ = iSeries_Read_Byte(s++);
|
|
}
|
|
} else
|
|
eeh_memcpy_fromio(dest, src, n);
|
|
}
|
|
EXPORT_SYMBOL(memcpy_fromio);
|
|
|
|
void memcpy_toio(volatile void __iomem *dest, const void *src, unsigned long n)
|
|
{
|
|
if (firmware_has_feature(FW_FEATURE_ISERIES)) {
|
|
const char *s = src;
|
|
volatile char __iomem *d = dest;
|
|
|
|
while (n-- > 0) {
|
|
iSeries_Write_Byte(*s++, d++);
|
|
}
|
|
} else
|
|
eeh_memcpy_toio(dest, src, n);
|
|
}
|
|
EXPORT_SYMBOL(memcpy_toio);
|