mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-27 16:45:02 +07:00
203f45003a
queue_cache_init is first called for the Control Word Queue (n2_crypto_probe). At that time, queue_cache[0] is NULL and a new kmem_cache will be allocated. If the subsequent n2_register_algs call fails, the kmem_cache will be released in queue_cache_destroy, but queue_cache_init[0] is not set back to NULL. So when the Module Arithmetic Unit gets probed next (n2_mau_probe), queue_cache_init will not allocate a kmem_cache again, but leave it as its bogus value, causing a BUG() to trigger when queue_cache[0] is eventually passed to kmem_cache_zalloc: n2_crypto: Found N2CP at /virtual-devices@100/n2cp@7 n2_crypto: Registered NCS HVAPI version 2.0 called queue_cache_init n2_crypto: md5 alg registration failed n2cp f028687c: /virtual-devices@100/n2cp@7: Unable to register algorithms. called queue_cache_destroy n2cp: probe of f028687c failed with error -22 n2_crypto: Found NCP at /virtual-devices@100/ncp@6 n2_crypto: Registered NCS HVAPI version 2.0 called queue_cache_init kernel BUG at mm/slab.c:2993! Call Trace: [0000000000604488] kmem_cache_alloc+0x1a8/0x1e0 (inlined) kmem_cache_zalloc (inlined) new_queue (inlined) spu_queue_setup (inlined) handle_exec_unit [0000000010c61eb4] spu_mdesc_scan+0x1f4/0x460 [n2_crypto] [0000000010c62b80] n2_mau_probe+0x100/0x220 [n2_crypto] [000000000084b174] platform_drv_probe+0x34/0xc0 Cc: <stable@vger.kernel.org> Signed-off-by: Jan Engelhardt <jengelh@inai.de> Acked-by: David S. Miller <davem@davemloft.net> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2238 lines
52 KiB
C
2238 lines
52 KiB
C
/* n2_core.c: Niagara2 Stream Processing Unit (SPU) crypto support.
|
|
*
|
|
* Copyright (C) 2010, 2011 David S. Miller <davem@davemloft.net>
|
|
*/
|
|
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/of.h>
|
|
#include <linux/of_device.h>
|
|
#include <linux/cpumask.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/crypto.h>
|
|
#include <crypto/md5.h>
|
|
#include <crypto/sha.h>
|
|
#include <crypto/aes.h>
|
|
#include <crypto/des.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/sched.h>
|
|
|
|
#include <crypto/internal/hash.h>
|
|
#include <crypto/scatterwalk.h>
|
|
#include <crypto/algapi.h>
|
|
|
|
#include <asm/hypervisor.h>
|
|
#include <asm/mdesc.h>
|
|
|
|
#include "n2_core.h"
|
|
|
|
#define DRV_MODULE_NAME "n2_crypto"
|
|
#define DRV_MODULE_VERSION "0.2"
|
|
#define DRV_MODULE_RELDATE "July 28, 2011"
|
|
|
|
static const char version[] =
|
|
DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
|
|
|
|
MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
|
|
MODULE_DESCRIPTION("Niagara2 Crypto driver");
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_VERSION(DRV_MODULE_VERSION);
|
|
|
|
#define N2_CRA_PRIORITY 200
|
|
|
|
static DEFINE_MUTEX(spu_lock);
|
|
|
|
struct spu_queue {
|
|
cpumask_t sharing;
|
|
unsigned long qhandle;
|
|
|
|
spinlock_t lock;
|
|
u8 q_type;
|
|
void *q;
|
|
unsigned long head;
|
|
unsigned long tail;
|
|
struct list_head jobs;
|
|
|
|
unsigned long devino;
|
|
|
|
char irq_name[32];
|
|
unsigned int irq;
|
|
|
|
struct list_head list;
|
|
};
|
|
|
|
struct spu_qreg {
|
|
struct spu_queue *queue;
|
|
unsigned long type;
|
|
};
|
|
|
|
static struct spu_queue **cpu_to_cwq;
|
|
static struct spu_queue **cpu_to_mau;
|
|
|
|
static unsigned long spu_next_offset(struct spu_queue *q, unsigned long off)
|
|
{
|
|
if (q->q_type == HV_NCS_QTYPE_MAU) {
|
|
off += MAU_ENTRY_SIZE;
|
|
if (off == (MAU_ENTRY_SIZE * MAU_NUM_ENTRIES))
|
|
off = 0;
|
|
} else {
|
|
off += CWQ_ENTRY_SIZE;
|
|
if (off == (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES))
|
|
off = 0;
|
|
}
|
|
return off;
|
|
}
|
|
|
|
struct n2_request_common {
|
|
struct list_head entry;
|
|
unsigned int offset;
|
|
};
|
|
#define OFFSET_NOT_RUNNING (~(unsigned int)0)
|
|
|
|
/* An async job request records the final tail value it used in
|
|
* n2_request_common->offset, test to see if that offset is in
|
|
* the range old_head, new_head, inclusive.
|
|
*/
|
|
static inline bool job_finished(struct spu_queue *q, unsigned int offset,
|
|
unsigned long old_head, unsigned long new_head)
|
|
{
|
|
if (old_head <= new_head) {
|
|
if (offset > old_head && offset <= new_head)
|
|
return true;
|
|
} else {
|
|
if (offset > old_head || offset <= new_head)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/* When the HEAD marker is unequal to the actual HEAD, we get
|
|
* a virtual device INO interrupt. We should process the
|
|
* completed CWQ entries and adjust the HEAD marker to clear
|
|
* the IRQ.
|
|
*/
|
|
static irqreturn_t cwq_intr(int irq, void *dev_id)
|
|
{
|
|
unsigned long off, new_head, hv_ret;
|
|
struct spu_queue *q = dev_id;
|
|
|
|
pr_err("CPU[%d]: Got CWQ interrupt for qhdl[%lx]\n",
|
|
smp_processor_id(), q->qhandle);
|
|
|
|
spin_lock(&q->lock);
|
|
|
|
hv_ret = sun4v_ncs_gethead(q->qhandle, &new_head);
|
|
|
|
pr_err("CPU[%d]: CWQ gethead[%lx] hv_ret[%lu]\n",
|
|
smp_processor_id(), new_head, hv_ret);
|
|
|
|
for (off = q->head; off != new_head; off = spu_next_offset(q, off)) {
|
|
/* XXX ... XXX */
|
|
}
|
|
|
|
hv_ret = sun4v_ncs_sethead_marker(q->qhandle, new_head);
|
|
if (hv_ret == HV_EOK)
|
|
q->head = new_head;
|
|
|
|
spin_unlock(&q->lock);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static irqreturn_t mau_intr(int irq, void *dev_id)
|
|
{
|
|
struct spu_queue *q = dev_id;
|
|
unsigned long head, hv_ret;
|
|
|
|
spin_lock(&q->lock);
|
|
|
|
pr_err("CPU[%d]: Got MAU interrupt for qhdl[%lx]\n",
|
|
smp_processor_id(), q->qhandle);
|
|
|
|
hv_ret = sun4v_ncs_gethead(q->qhandle, &head);
|
|
|
|
pr_err("CPU[%d]: MAU gethead[%lx] hv_ret[%lu]\n",
|
|
smp_processor_id(), head, hv_ret);
|
|
|
|
sun4v_ncs_sethead_marker(q->qhandle, head);
|
|
|
|
spin_unlock(&q->lock);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static void *spu_queue_next(struct spu_queue *q, void *cur)
|
|
{
|
|
return q->q + spu_next_offset(q, cur - q->q);
|
|
}
|
|
|
|
static int spu_queue_num_free(struct spu_queue *q)
|
|
{
|
|
unsigned long head = q->head;
|
|
unsigned long tail = q->tail;
|
|
unsigned long end = (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES);
|
|
unsigned long diff;
|
|
|
|
if (head > tail)
|
|
diff = head - tail;
|
|
else
|
|
diff = (end - tail) + head;
|
|
|
|
return (diff / CWQ_ENTRY_SIZE) - 1;
|
|
}
|
|
|
|
static void *spu_queue_alloc(struct spu_queue *q, int num_entries)
|
|
{
|
|
int avail = spu_queue_num_free(q);
|
|
|
|
if (avail >= num_entries)
|
|
return q->q + q->tail;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static unsigned long spu_queue_submit(struct spu_queue *q, void *last)
|
|
{
|
|
unsigned long hv_ret, new_tail;
|
|
|
|
new_tail = spu_next_offset(q, last - q->q);
|
|
|
|
hv_ret = sun4v_ncs_settail(q->qhandle, new_tail);
|
|
if (hv_ret == HV_EOK)
|
|
q->tail = new_tail;
|
|
return hv_ret;
|
|
}
|
|
|
|
static u64 control_word_base(unsigned int len, unsigned int hmac_key_len,
|
|
int enc_type, int auth_type,
|
|
unsigned int hash_len,
|
|
bool sfas, bool sob, bool eob, bool encrypt,
|
|
int opcode)
|
|
{
|
|
u64 word = (len - 1) & CONTROL_LEN;
|
|
|
|
word |= ((u64) opcode << CONTROL_OPCODE_SHIFT);
|
|
word |= ((u64) enc_type << CONTROL_ENC_TYPE_SHIFT);
|
|
word |= ((u64) auth_type << CONTROL_AUTH_TYPE_SHIFT);
|
|
if (sfas)
|
|
word |= CONTROL_STORE_FINAL_AUTH_STATE;
|
|
if (sob)
|
|
word |= CONTROL_START_OF_BLOCK;
|
|
if (eob)
|
|
word |= CONTROL_END_OF_BLOCK;
|
|
if (encrypt)
|
|
word |= CONTROL_ENCRYPT;
|
|
if (hmac_key_len)
|
|
word |= ((u64) (hmac_key_len - 1)) << CONTROL_HMAC_KEY_LEN_SHIFT;
|
|
if (hash_len)
|
|
word |= ((u64) (hash_len - 1)) << CONTROL_HASH_LEN_SHIFT;
|
|
|
|
return word;
|
|
}
|
|
|
|
#if 0
|
|
static inline bool n2_should_run_async(struct spu_queue *qp, int this_len)
|
|
{
|
|
if (this_len >= 64 ||
|
|
qp->head != qp->tail)
|
|
return true;
|
|
return false;
|
|
}
|
|
#endif
|
|
|
|
struct n2_ahash_alg {
|
|
struct list_head entry;
|
|
const u8 *hash_zero;
|
|
const u32 *hash_init;
|
|
u8 hw_op_hashsz;
|
|
u8 digest_size;
|
|
u8 auth_type;
|
|
u8 hmac_type;
|
|
struct ahash_alg alg;
|
|
};
|
|
|
|
static inline struct n2_ahash_alg *n2_ahash_alg(struct crypto_tfm *tfm)
|
|
{
|
|
struct crypto_alg *alg = tfm->__crt_alg;
|
|
struct ahash_alg *ahash_alg;
|
|
|
|
ahash_alg = container_of(alg, struct ahash_alg, halg.base);
|
|
|
|
return container_of(ahash_alg, struct n2_ahash_alg, alg);
|
|
}
|
|
|
|
struct n2_hmac_alg {
|
|
const char *child_alg;
|
|
struct n2_ahash_alg derived;
|
|
};
|
|
|
|
static inline struct n2_hmac_alg *n2_hmac_alg(struct crypto_tfm *tfm)
|
|
{
|
|
struct crypto_alg *alg = tfm->__crt_alg;
|
|
struct ahash_alg *ahash_alg;
|
|
|
|
ahash_alg = container_of(alg, struct ahash_alg, halg.base);
|
|
|
|
return container_of(ahash_alg, struct n2_hmac_alg, derived.alg);
|
|
}
|
|
|
|
struct n2_hash_ctx {
|
|
struct crypto_ahash *fallback_tfm;
|
|
};
|
|
|
|
#define N2_HASH_KEY_MAX 32 /* HW limit for all HMAC requests */
|
|
|
|
struct n2_hmac_ctx {
|
|
struct n2_hash_ctx base;
|
|
|
|
struct crypto_shash *child_shash;
|
|
|
|
int hash_key_len;
|
|
unsigned char hash_key[N2_HASH_KEY_MAX];
|
|
};
|
|
|
|
struct n2_hash_req_ctx {
|
|
union {
|
|
struct md5_state md5;
|
|
struct sha1_state sha1;
|
|
struct sha256_state sha256;
|
|
} u;
|
|
|
|
struct ahash_request fallback_req;
|
|
};
|
|
|
|
static int n2_hash_async_init(struct ahash_request *req)
|
|
{
|
|
struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
|
|
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
|
|
struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
|
|
|
|
ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
|
|
rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
|
|
|
|
return crypto_ahash_init(&rctx->fallback_req);
|
|
}
|
|
|
|
static int n2_hash_async_update(struct ahash_request *req)
|
|
{
|
|
struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
|
|
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
|
|
struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
|
|
|
|
ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
|
|
rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
|
|
rctx->fallback_req.nbytes = req->nbytes;
|
|
rctx->fallback_req.src = req->src;
|
|
|
|
return crypto_ahash_update(&rctx->fallback_req);
|
|
}
|
|
|
|
static int n2_hash_async_final(struct ahash_request *req)
|
|
{
|
|
struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
|
|
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
|
|
struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
|
|
|
|
ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
|
|
rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
|
|
rctx->fallback_req.result = req->result;
|
|
|
|
return crypto_ahash_final(&rctx->fallback_req);
|
|
}
|
|
|
|
static int n2_hash_async_finup(struct ahash_request *req)
|
|
{
|
|
struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
|
|
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
|
|
struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
|
|
|
|
ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
|
|
rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
|
|
rctx->fallback_req.nbytes = req->nbytes;
|
|
rctx->fallback_req.src = req->src;
|
|
rctx->fallback_req.result = req->result;
|
|
|
|
return crypto_ahash_finup(&rctx->fallback_req);
|
|
}
|
|
|
|
static int n2_hash_cra_init(struct crypto_tfm *tfm)
|
|
{
|
|
const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
|
|
struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
|
|
struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);
|
|
struct crypto_ahash *fallback_tfm;
|
|
int err;
|
|
|
|
fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0,
|
|
CRYPTO_ALG_NEED_FALLBACK);
|
|
if (IS_ERR(fallback_tfm)) {
|
|
pr_warning("Fallback driver '%s' could not be loaded!\n",
|
|
fallback_driver_name);
|
|
err = PTR_ERR(fallback_tfm);
|
|
goto out;
|
|
}
|
|
|
|
crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) +
|
|
crypto_ahash_reqsize(fallback_tfm)));
|
|
|
|
ctx->fallback_tfm = fallback_tfm;
|
|
return 0;
|
|
|
|
out:
|
|
return err;
|
|
}
|
|
|
|
static void n2_hash_cra_exit(struct crypto_tfm *tfm)
|
|
{
|
|
struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
|
|
struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);
|
|
|
|
crypto_free_ahash(ctx->fallback_tfm);
|
|
}
|
|
|
|
static int n2_hmac_cra_init(struct crypto_tfm *tfm)
|
|
{
|
|
const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
|
|
struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
|
|
struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash);
|
|
struct n2_hmac_alg *n2alg = n2_hmac_alg(tfm);
|
|
struct crypto_ahash *fallback_tfm;
|
|
struct crypto_shash *child_shash;
|
|
int err;
|
|
|
|
fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0,
|
|
CRYPTO_ALG_NEED_FALLBACK);
|
|
if (IS_ERR(fallback_tfm)) {
|
|
pr_warning("Fallback driver '%s' could not be loaded!\n",
|
|
fallback_driver_name);
|
|
err = PTR_ERR(fallback_tfm);
|
|
goto out;
|
|
}
|
|
|
|
child_shash = crypto_alloc_shash(n2alg->child_alg, 0, 0);
|
|
if (IS_ERR(child_shash)) {
|
|
pr_warning("Child shash '%s' could not be loaded!\n",
|
|
n2alg->child_alg);
|
|
err = PTR_ERR(child_shash);
|
|
goto out_free_fallback;
|
|
}
|
|
|
|
crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) +
|
|
crypto_ahash_reqsize(fallback_tfm)));
|
|
|
|
ctx->child_shash = child_shash;
|
|
ctx->base.fallback_tfm = fallback_tfm;
|
|
return 0;
|
|
|
|
out_free_fallback:
|
|
crypto_free_ahash(fallback_tfm);
|
|
|
|
out:
|
|
return err;
|
|
}
|
|
|
|
static void n2_hmac_cra_exit(struct crypto_tfm *tfm)
|
|
{
|
|
struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
|
|
struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash);
|
|
|
|
crypto_free_ahash(ctx->base.fallback_tfm);
|
|
crypto_free_shash(ctx->child_shash);
|
|
}
|
|
|
|
static int n2_hmac_async_setkey(struct crypto_ahash *tfm, const u8 *key,
|
|
unsigned int keylen)
|
|
{
|
|
struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm);
|
|
struct crypto_shash *child_shash = ctx->child_shash;
|
|
struct crypto_ahash *fallback_tfm;
|
|
SHASH_DESC_ON_STACK(shash, child_shash);
|
|
int err, bs, ds;
|
|
|
|
fallback_tfm = ctx->base.fallback_tfm;
|
|
err = crypto_ahash_setkey(fallback_tfm, key, keylen);
|
|
if (err)
|
|
return err;
|
|
|
|
shash->tfm = child_shash;
|
|
shash->flags = crypto_ahash_get_flags(tfm) &
|
|
CRYPTO_TFM_REQ_MAY_SLEEP;
|
|
|
|
bs = crypto_shash_blocksize(child_shash);
|
|
ds = crypto_shash_digestsize(child_shash);
|
|
BUG_ON(ds > N2_HASH_KEY_MAX);
|
|
if (keylen > bs) {
|
|
err = crypto_shash_digest(shash, key, keylen,
|
|
ctx->hash_key);
|
|
if (err)
|
|
return err;
|
|
keylen = ds;
|
|
} else if (keylen <= N2_HASH_KEY_MAX)
|
|
memcpy(ctx->hash_key, key, keylen);
|
|
|
|
ctx->hash_key_len = keylen;
|
|
|
|
return err;
|
|
}
|
|
|
|
static unsigned long wait_for_tail(struct spu_queue *qp)
|
|
{
|
|
unsigned long head, hv_ret;
|
|
|
|
do {
|
|
hv_ret = sun4v_ncs_gethead(qp->qhandle, &head);
|
|
if (hv_ret != HV_EOK) {
|
|
pr_err("Hypervisor error on gethead\n");
|
|
break;
|
|
}
|
|
if (head == qp->tail) {
|
|
qp->head = head;
|
|
break;
|
|
}
|
|
} while (1);
|
|
return hv_ret;
|
|
}
|
|
|
|
static unsigned long submit_and_wait_for_tail(struct spu_queue *qp,
|
|
struct cwq_initial_entry *ent)
|
|
{
|
|
unsigned long hv_ret = spu_queue_submit(qp, ent);
|
|
|
|
if (hv_ret == HV_EOK)
|
|
hv_ret = wait_for_tail(qp);
|
|
|
|
return hv_ret;
|
|
}
|
|
|
|
static int n2_do_async_digest(struct ahash_request *req,
|
|
unsigned int auth_type, unsigned int digest_size,
|
|
unsigned int result_size, void *hash_loc,
|
|
unsigned long auth_key, unsigned int auth_key_len)
|
|
{
|
|
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
|
|
struct cwq_initial_entry *ent;
|
|
struct crypto_hash_walk walk;
|
|
struct spu_queue *qp;
|
|
unsigned long flags;
|
|
int err = -ENODEV;
|
|
int nbytes, cpu;
|
|
|
|
/* The total effective length of the operation may not
|
|
* exceed 2^16.
|
|
*/
|
|
if (unlikely(req->nbytes > (1 << 16))) {
|
|
struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
|
|
struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
|
|
|
|
ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
|
|
rctx->fallback_req.base.flags =
|
|
req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
|
|
rctx->fallback_req.nbytes = req->nbytes;
|
|
rctx->fallback_req.src = req->src;
|
|
rctx->fallback_req.result = req->result;
|
|
|
|
return crypto_ahash_digest(&rctx->fallback_req);
|
|
}
|
|
|
|
nbytes = crypto_hash_walk_first(req, &walk);
|
|
|
|
cpu = get_cpu();
|
|
qp = cpu_to_cwq[cpu];
|
|
if (!qp)
|
|
goto out;
|
|
|
|
spin_lock_irqsave(&qp->lock, flags);
|
|
|
|
/* XXX can do better, improve this later by doing a by-hand scatterlist
|
|
* XXX walk, etc.
|
|
*/
|
|
ent = qp->q + qp->tail;
|
|
|
|
ent->control = control_word_base(nbytes, auth_key_len, 0,
|
|
auth_type, digest_size,
|
|
false, true, false, false,
|
|
OPCODE_INPLACE_BIT |
|
|
OPCODE_AUTH_MAC);
|
|
ent->src_addr = __pa(walk.data);
|
|
ent->auth_key_addr = auth_key;
|
|
ent->auth_iv_addr = __pa(hash_loc);
|
|
ent->final_auth_state_addr = 0UL;
|
|
ent->enc_key_addr = 0UL;
|
|
ent->enc_iv_addr = 0UL;
|
|
ent->dest_addr = __pa(hash_loc);
|
|
|
|
nbytes = crypto_hash_walk_done(&walk, 0);
|
|
while (nbytes > 0) {
|
|
ent = spu_queue_next(qp, ent);
|
|
|
|
ent->control = (nbytes - 1);
|
|
ent->src_addr = __pa(walk.data);
|
|
ent->auth_key_addr = 0UL;
|
|
ent->auth_iv_addr = 0UL;
|
|
ent->final_auth_state_addr = 0UL;
|
|
ent->enc_key_addr = 0UL;
|
|
ent->enc_iv_addr = 0UL;
|
|
ent->dest_addr = 0UL;
|
|
|
|
nbytes = crypto_hash_walk_done(&walk, 0);
|
|
}
|
|
ent->control |= CONTROL_END_OF_BLOCK;
|
|
|
|
if (submit_and_wait_for_tail(qp, ent) != HV_EOK)
|
|
err = -EINVAL;
|
|
else
|
|
err = 0;
|
|
|
|
spin_unlock_irqrestore(&qp->lock, flags);
|
|
|
|
if (!err)
|
|
memcpy(req->result, hash_loc, result_size);
|
|
out:
|
|
put_cpu();
|
|
|
|
return err;
|
|
}
|
|
|
|
static int n2_hash_async_digest(struct ahash_request *req)
|
|
{
|
|
struct n2_ahash_alg *n2alg = n2_ahash_alg(req->base.tfm);
|
|
struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
|
|
int ds;
|
|
|
|
ds = n2alg->digest_size;
|
|
if (unlikely(req->nbytes == 0)) {
|
|
memcpy(req->result, n2alg->hash_zero, ds);
|
|
return 0;
|
|
}
|
|
memcpy(&rctx->u, n2alg->hash_init, n2alg->hw_op_hashsz);
|
|
|
|
return n2_do_async_digest(req, n2alg->auth_type,
|
|
n2alg->hw_op_hashsz, ds,
|
|
&rctx->u, 0UL, 0);
|
|
}
|
|
|
|
static int n2_hmac_async_digest(struct ahash_request *req)
|
|
{
|
|
struct n2_hmac_alg *n2alg = n2_hmac_alg(req->base.tfm);
|
|
struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
|
|
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
|
|
struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm);
|
|
int ds;
|
|
|
|
ds = n2alg->derived.digest_size;
|
|
if (unlikely(req->nbytes == 0) ||
|
|
unlikely(ctx->hash_key_len > N2_HASH_KEY_MAX)) {
|
|
struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
|
|
struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
|
|
|
|
ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
|
|
rctx->fallback_req.base.flags =
|
|
req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
|
|
rctx->fallback_req.nbytes = req->nbytes;
|
|
rctx->fallback_req.src = req->src;
|
|
rctx->fallback_req.result = req->result;
|
|
|
|
return crypto_ahash_digest(&rctx->fallback_req);
|
|
}
|
|
memcpy(&rctx->u, n2alg->derived.hash_init,
|
|
n2alg->derived.hw_op_hashsz);
|
|
|
|
return n2_do_async_digest(req, n2alg->derived.hmac_type,
|
|
n2alg->derived.hw_op_hashsz, ds,
|
|
&rctx->u,
|
|
__pa(&ctx->hash_key),
|
|
ctx->hash_key_len);
|
|
}
|
|
|
|
struct n2_cipher_context {
|
|
int key_len;
|
|
int enc_type;
|
|
union {
|
|
u8 aes[AES_MAX_KEY_SIZE];
|
|
u8 des[DES_KEY_SIZE];
|
|
u8 des3[3 * DES_KEY_SIZE];
|
|
u8 arc4[258]; /* S-box, X, Y */
|
|
} key;
|
|
};
|
|
|
|
#define N2_CHUNK_ARR_LEN 16
|
|
|
|
struct n2_crypto_chunk {
|
|
struct list_head entry;
|
|
unsigned long iv_paddr : 44;
|
|
unsigned long arr_len : 20;
|
|
unsigned long dest_paddr;
|
|
unsigned long dest_final;
|
|
struct {
|
|
unsigned long src_paddr : 44;
|
|
unsigned long src_len : 20;
|
|
} arr[N2_CHUNK_ARR_LEN];
|
|
};
|
|
|
|
struct n2_request_context {
|
|
struct ablkcipher_walk walk;
|
|
struct list_head chunk_list;
|
|
struct n2_crypto_chunk chunk;
|
|
u8 temp_iv[16];
|
|
};
|
|
|
|
/* The SPU allows some level of flexibility for partial cipher blocks
|
|
* being specified in a descriptor.
|
|
*
|
|
* It merely requires that every descriptor's length field is at least
|
|
* as large as the cipher block size. This means that a cipher block
|
|
* can span at most 2 descriptors. However, this does not allow a
|
|
* partial block to span into the final descriptor as that would
|
|
* violate the rule (since every descriptor's length must be at lest
|
|
* the block size). So, for example, assuming an 8 byte block size:
|
|
*
|
|
* 0xe --> 0xa --> 0x8
|
|
*
|
|
* is a valid length sequence, whereas:
|
|
*
|
|
* 0xe --> 0xb --> 0x7
|
|
*
|
|
* is not a valid sequence.
|
|
*/
|
|
|
|
struct n2_cipher_alg {
|
|
struct list_head entry;
|
|
u8 enc_type;
|
|
struct crypto_alg alg;
|
|
};
|
|
|
|
static inline struct n2_cipher_alg *n2_cipher_alg(struct crypto_tfm *tfm)
|
|
{
|
|
struct crypto_alg *alg = tfm->__crt_alg;
|
|
|
|
return container_of(alg, struct n2_cipher_alg, alg);
|
|
}
|
|
|
|
struct n2_cipher_request_context {
|
|
struct ablkcipher_walk walk;
|
|
};
|
|
|
|
static int n2_aes_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
|
|
unsigned int keylen)
|
|
{
|
|
struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
|
|
struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
|
|
struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);
|
|
|
|
ctx->enc_type = (n2alg->enc_type & ENC_TYPE_CHAINING_MASK);
|
|
|
|
switch (keylen) {
|
|
case AES_KEYSIZE_128:
|
|
ctx->enc_type |= ENC_TYPE_ALG_AES128;
|
|
break;
|
|
case AES_KEYSIZE_192:
|
|
ctx->enc_type |= ENC_TYPE_ALG_AES192;
|
|
break;
|
|
case AES_KEYSIZE_256:
|
|
ctx->enc_type |= ENC_TYPE_ALG_AES256;
|
|
break;
|
|
default:
|
|
crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
|
|
return -EINVAL;
|
|
}
|
|
|
|
ctx->key_len = keylen;
|
|
memcpy(ctx->key.aes, key, keylen);
|
|
return 0;
|
|
}
|
|
|
|
static int n2_des_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
|
|
unsigned int keylen)
|
|
{
|
|
struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
|
|
struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
|
|
struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);
|
|
u32 tmp[DES_EXPKEY_WORDS];
|
|
int err;
|
|
|
|
ctx->enc_type = n2alg->enc_type;
|
|
|
|
if (keylen != DES_KEY_SIZE) {
|
|
crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
|
|
return -EINVAL;
|
|
}
|
|
|
|
err = des_ekey(tmp, key);
|
|
if (err == 0 && (tfm->crt_flags & CRYPTO_TFM_REQ_WEAK_KEY)) {
|
|
tfm->crt_flags |= CRYPTO_TFM_RES_WEAK_KEY;
|
|
return -EINVAL;
|
|
}
|
|
|
|
ctx->key_len = keylen;
|
|
memcpy(ctx->key.des, key, keylen);
|
|
return 0;
|
|
}
|
|
|
|
static int n2_3des_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
|
|
unsigned int keylen)
|
|
{
|
|
struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
|
|
struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
|
|
struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);
|
|
|
|
ctx->enc_type = n2alg->enc_type;
|
|
|
|
if (keylen != (3 * DES_KEY_SIZE)) {
|
|
crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
|
|
return -EINVAL;
|
|
}
|
|
ctx->key_len = keylen;
|
|
memcpy(ctx->key.des3, key, keylen);
|
|
return 0;
|
|
}
|
|
|
|
static int n2_arc4_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
|
|
unsigned int keylen)
|
|
{
|
|
struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
|
|
struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
|
|
struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);
|
|
u8 *s = ctx->key.arc4;
|
|
u8 *x = s + 256;
|
|
u8 *y = x + 1;
|
|
int i, j, k;
|
|
|
|
ctx->enc_type = n2alg->enc_type;
|
|
|
|
j = k = 0;
|
|
*x = 0;
|
|
*y = 0;
|
|
for (i = 0; i < 256; i++)
|
|
s[i] = i;
|
|
for (i = 0; i < 256; i++) {
|
|
u8 a = s[i];
|
|
j = (j + key[k] + a) & 0xff;
|
|
s[i] = s[j];
|
|
s[j] = a;
|
|
if (++k >= keylen)
|
|
k = 0;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline int cipher_descriptor_len(int nbytes, unsigned int block_size)
|
|
{
|
|
int this_len = nbytes;
|
|
|
|
this_len -= (nbytes & (block_size - 1));
|
|
return this_len > (1 << 16) ? (1 << 16) : this_len;
|
|
}
|
|
|
|
static int __n2_crypt_chunk(struct crypto_tfm *tfm, struct n2_crypto_chunk *cp,
|
|
struct spu_queue *qp, bool encrypt)
|
|
{
|
|
struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
|
|
struct cwq_initial_entry *ent;
|
|
bool in_place;
|
|
int i;
|
|
|
|
ent = spu_queue_alloc(qp, cp->arr_len);
|
|
if (!ent) {
|
|
pr_info("queue_alloc() of %d fails\n",
|
|
cp->arr_len);
|
|
return -EBUSY;
|
|
}
|
|
|
|
in_place = (cp->dest_paddr == cp->arr[0].src_paddr);
|
|
|
|
ent->control = control_word_base(cp->arr[0].src_len,
|
|
0, ctx->enc_type, 0, 0,
|
|
false, true, false, encrypt,
|
|
OPCODE_ENCRYPT |
|
|
(in_place ? OPCODE_INPLACE_BIT : 0));
|
|
ent->src_addr = cp->arr[0].src_paddr;
|
|
ent->auth_key_addr = 0UL;
|
|
ent->auth_iv_addr = 0UL;
|
|
ent->final_auth_state_addr = 0UL;
|
|
ent->enc_key_addr = __pa(&ctx->key);
|
|
ent->enc_iv_addr = cp->iv_paddr;
|
|
ent->dest_addr = (in_place ? 0UL : cp->dest_paddr);
|
|
|
|
for (i = 1; i < cp->arr_len; i++) {
|
|
ent = spu_queue_next(qp, ent);
|
|
|
|
ent->control = cp->arr[i].src_len - 1;
|
|
ent->src_addr = cp->arr[i].src_paddr;
|
|
ent->auth_key_addr = 0UL;
|
|
ent->auth_iv_addr = 0UL;
|
|
ent->final_auth_state_addr = 0UL;
|
|
ent->enc_key_addr = 0UL;
|
|
ent->enc_iv_addr = 0UL;
|
|
ent->dest_addr = 0UL;
|
|
}
|
|
ent->control |= CONTROL_END_OF_BLOCK;
|
|
|
|
return (spu_queue_submit(qp, ent) != HV_EOK) ? -EINVAL : 0;
|
|
}
|
|
|
|
static int n2_compute_chunks(struct ablkcipher_request *req)
|
|
{
|
|
struct n2_request_context *rctx = ablkcipher_request_ctx(req);
|
|
struct ablkcipher_walk *walk = &rctx->walk;
|
|
struct n2_crypto_chunk *chunk;
|
|
unsigned long dest_prev;
|
|
unsigned int tot_len;
|
|
bool prev_in_place;
|
|
int err, nbytes;
|
|
|
|
ablkcipher_walk_init(walk, req->dst, req->src, req->nbytes);
|
|
err = ablkcipher_walk_phys(req, walk);
|
|
if (err)
|
|
return err;
|
|
|
|
INIT_LIST_HEAD(&rctx->chunk_list);
|
|
|
|
chunk = &rctx->chunk;
|
|
INIT_LIST_HEAD(&chunk->entry);
|
|
|
|
chunk->iv_paddr = 0UL;
|
|
chunk->arr_len = 0;
|
|
chunk->dest_paddr = 0UL;
|
|
|
|
prev_in_place = false;
|
|
dest_prev = ~0UL;
|
|
tot_len = 0;
|
|
|
|
while ((nbytes = walk->nbytes) != 0) {
|
|
unsigned long dest_paddr, src_paddr;
|
|
bool in_place;
|
|
int this_len;
|
|
|
|
src_paddr = (page_to_phys(walk->src.page) +
|
|
walk->src.offset);
|
|
dest_paddr = (page_to_phys(walk->dst.page) +
|
|
walk->dst.offset);
|
|
in_place = (src_paddr == dest_paddr);
|
|
this_len = cipher_descriptor_len(nbytes, walk->blocksize);
|
|
|
|
if (chunk->arr_len != 0) {
|
|
if (in_place != prev_in_place ||
|
|
(!prev_in_place &&
|
|
dest_paddr != dest_prev) ||
|
|
chunk->arr_len == N2_CHUNK_ARR_LEN ||
|
|
tot_len + this_len > (1 << 16)) {
|
|
chunk->dest_final = dest_prev;
|
|
list_add_tail(&chunk->entry,
|
|
&rctx->chunk_list);
|
|
chunk = kzalloc(sizeof(*chunk), GFP_ATOMIC);
|
|
if (!chunk) {
|
|
err = -ENOMEM;
|
|
break;
|
|
}
|
|
INIT_LIST_HEAD(&chunk->entry);
|
|
}
|
|
}
|
|
if (chunk->arr_len == 0) {
|
|
chunk->dest_paddr = dest_paddr;
|
|
tot_len = 0;
|
|
}
|
|
chunk->arr[chunk->arr_len].src_paddr = src_paddr;
|
|
chunk->arr[chunk->arr_len].src_len = this_len;
|
|
chunk->arr_len++;
|
|
|
|
dest_prev = dest_paddr + this_len;
|
|
prev_in_place = in_place;
|
|
tot_len += this_len;
|
|
|
|
err = ablkcipher_walk_done(req, walk, nbytes - this_len);
|
|
if (err)
|
|
break;
|
|
}
|
|
if (!err && chunk->arr_len != 0) {
|
|
chunk->dest_final = dest_prev;
|
|
list_add_tail(&chunk->entry, &rctx->chunk_list);
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
static void n2_chunk_complete(struct ablkcipher_request *req, void *final_iv)
|
|
{
|
|
struct n2_request_context *rctx = ablkcipher_request_ctx(req);
|
|
struct n2_crypto_chunk *c, *tmp;
|
|
|
|
if (final_iv)
|
|
memcpy(rctx->walk.iv, final_iv, rctx->walk.blocksize);
|
|
|
|
ablkcipher_walk_complete(&rctx->walk);
|
|
list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
|
|
list_del(&c->entry);
|
|
if (unlikely(c != &rctx->chunk))
|
|
kfree(c);
|
|
}
|
|
|
|
}
|
|
|
|
static int n2_do_ecb(struct ablkcipher_request *req, bool encrypt)
|
|
{
|
|
struct n2_request_context *rctx = ablkcipher_request_ctx(req);
|
|
struct crypto_tfm *tfm = req->base.tfm;
|
|
int err = n2_compute_chunks(req);
|
|
struct n2_crypto_chunk *c, *tmp;
|
|
unsigned long flags, hv_ret;
|
|
struct spu_queue *qp;
|
|
|
|
if (err)
|
|
return err;
|
|
|
|
qp = cpu_to_cwq[get_cpu()];
|
|
err = -ENODEV;
|
|
if (!qp)
|
|
goto out;
|
|
|
|
spin_lock_irqsave(&qp->lock, flags);
|
|
|
|
list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
|
|
err = __n2_crypt_chunk(tfm, c, qp, encrypt);
|
|
if (err)
|
|
break;
|
|
list_del(&c->entry);
|
|
if (unlikely(c != &rctx->chunk))
|
|
kfree(c);
|
|
}
|
|
if (!err) {
|
|
hv_ret = wait_for_tail(qp);
|
|
if (hv_ret != HV_EOK)
|
|
err = -EINVAL;
|
|
}
|
|
|
|
spin_unlock_irqrestore(&qp->lock, flags);
|
|
|
|
out:
|
|
put_cpu();
|
|
|
|
n2_chunk_complete(req, NULL);
|
|
return err;
|
|
}
|
|
|
|
static int n2_encrypt_ecb(struct ablkcipher_request *req)
|
|
{
|
|
return n2_do_ecb(req, true);
|
|
}
|
|
|
|
static int n2_decrypt_ecb(struct ablkcipher_request *req)
|
|
{
|
|
return n2_do_ecb(req, false);
|
|
}
|
|
|
|
static int n2_do_chaining(struct ablkcipher_request *req, bool encrypt)
|
|
{
|
|
struct n2_request_context *rctx = ablkcipher_request_ctx(req);
|
|
struct crypto_tfm *tfm = req->base.tfm;
|
|
unsigned long flags, hv_ret, iv_paddr;
|
|
int err = n2_compute_chunks(req);
|
|
struct n2_crypto_chunk *c, *tmp;
|
|
struct spu_queue *qp;
|
|
void *final_iv_addr;
|
|
|
|
final_iv_addr = NULL;
|
|
|
|
if (err)
|
|
return err;
|
|
|
|
qp = cpu_to_cwq[get_cpu()];
|
|
err = -ENODEV;
|
|
if (!qp)
|
|
goto out;
|
|
|
|
spin_lock_irqsave(&qp->lock, flags);
|
|
|
|
if (encrypt) {
|
|
iv_paddr = __pa(rctx->walk.iv);
|
|
list_for_each_entry_safe(c, tmp, &rctx->chunk_list,
|
|
entry) {
|
|
c->iv_paddr = iv_paddr;
|
|
err = __n2_crypt_chunk(tfm, c, qp, true);
|
|
if (err)
|
|
break;
|
|
iv_paddr = c->dest_final - rctx->walk.blocksize;
|
|
list_del(&c->entry);
|
|
if (unlikely(c != &rctx->chunk))
|
|
kfree(c);
|
|
}
|
|
final_iv_addr = __va(iv_paddr);
|
|
} else {
|
|
list_for_each_entry_safe_reverse(c, tmp, &rctx->chunk_list,
|
|
entry) {
|
|
if (c == &rctx->chunk) {
|
|
iv_paddr = __pa(rctx->walk.iv);
|
|
} else {
|
|
iv_paddr = (tmp->arr[tmp->arr_len-1].src_paddr +
|
|
tmp->arr[tmp->arr_len-1].src_len -
|
|
rctx->walk.blocksize);
|
|
}
|
|
if (!final_iv_addr) {
|
|
unsigned long pa;
|
|
|
|
pa = (c->arr[c->arr_len-1].src_paddr +
|
|
c->arr[c->arr_len-1].src_len -
|
|
rctx->walk.blocksize);
|
|
final_iv_addr = rctx->temp_iv;
|
|
memcpy(rctx->temp_iv, __va(pa),
|
|
rctx->walk.blocksize);
|
|
}
|
|
c->iv_paddr = iv_paddr;
|
|
err = __n2_crypt_chunk(tfm, c, qp, false);
|
|
if (err)
|
|
break;
|
|
list_del(&c->entry);
|
|
if (unlikely(c != &rctx->chunk))
|
|
kfree(c);
|
|
}
|
|
}
|
|
if (!err) {
|
|
hv_ret = wait_for_tail(qp);
|
|
if (hv_ret != HV_EOK)
|
|
err = -EINVAL;
|
|
}
|
|
|
|
spin_unlock_irqrestore(&qp->lock, flags);
|
|
|
|
out:
|
|
put_cpu();
|
|
|
|
n2_chunk_complete(req, err ? NULL : final_iv_addr);
|
|
return err;
|
|
}
|
|
|
|
static int n2_encrypt_chaining(struct ablkcipher_request *req)
|
|
{
|
|
return n2_do_chaining(req, true);
|
|
}
|
|
|
|
static int n2_decrypt_chaining(struct ablkcipher_request *req)
|
|
{
|
|
return n2_do_chaining(req, false);
|
|
}
|
|
|
|
struct n2_cipher_tmpl {
|
|
const char *name;
|
|
const char *drv_name;
|
|
u8 block_size;
|
|
u8 enc_type;
|
|
struct ablkcipher_alg ablkcipher;
|
|
};
|
|
|
|
static const struct n2_cipher_tmpl cipher_tmpls[] = {
|
|
/* ARC4: only ECB is supported (chaining bits ignored) */
|
|
{ .name = "ecb(arc4)",
|
|
.drv_name = "ecb-arc4",
|
|
.block_size = 1,
|
|
.enc_type = (ENC_TYPE_ALG_RC4_STREAM |
|
|
ENC_TYPE_CHAINING_ECB),
|
|
.ablkcipher = {
|
|
.min_keysize = 1,
|
|
.max_keysize = 256,
|
|
.setkey = n2_arc4_setkey,
|
|
.encrypt = n2_encrypt_ecb,
|
|
.decrypt = n2_decrypt_ecb,
|
|
},
|
|
},
|
|
|
|
/* DES: ECB CBC and CFB are supported */
|
|
{ .name = "ecb(des)",
|
|
.drv_name = "ecb-des",
|
|
.block_size = DES_BLOCK_SIZE,
|
|
.enc_type = (ENC_TYPE_ALG_DES |
|
|
ENC_TYPE_CHAINING_ECB),
|
|
.ablkcipher = {
|
|
.min_keysize = DES_KEY_SIZE,
|
|
.max_keysize = DES_KEY_SIZE,
|
|
.setkey = n2_des_setkey,
|
|
.encrypt = n2_encrypt_ecb,
|
|
.decrypt = n2_decrypt_ecb,
|
|
},
|
|
},
|
|
{ .name = "cbc(des)",
|
|
.drv_name = "cbc-des",
|
|
.block_size = DES_BLOCK_SIZE,
|
|
.enc_type = (ENC_TYPE_ALG_DES |
|
|
ENC_TYPE_CHAINING_CBC),
|
|
.ablkcipher = {
|
|
.ivsize = DES_BLOCK_SIZE,
|
|
.min_keysize = DES_KEY_SIZE,
|
|
.max_keysize = DES_KEY_SIZE,
|
|
.setkey = n2_des_setkey,
|
|
.encrypt = n2_encrypt_chaining,
|
|
.decrypt = n2_decrypt_chaining,
|
|
},
|
|
},
|
|
{ .name = "cfb(des)",
|
|
.drv_name = "cfb-des",
|
|
.block_size = DES_BLOCK_SIZE,
|
|
.enc_type = (ENC_TYPE_ALG_DES |
|
|
ENC_TYPE_CHAINING_CFB),
|
|
.ablkcipher = {
|
|
.min_keysize = DES_KEY_SIZE,
|
|
.max_keysize = DES_KEY_SIZE,
|
|
.setkey = n2_des_setkey,
|
|
.encrypt = n2_encrypt_chaining,
|
|
.decrypt = n2_decrypt_chaining,
|
|
},
|
|
},
|
|
|
|
/* 3DES: ECB CBC and CFB are supported */
|
|
{ .name = "ecb(des3_ede)",
|
|
.drv_name = "ecb-3des",
|
|
.block_size = DES_BLOCK_SIZE,
|
|
.enc_type = (ENC_TYPE_ALG_3DES |
|
|
ENC_TYPE_CHAINING_ECB),
|
|
.ablkcipher = {
|
|
.min_keysize = 3 * DES_KEY_SIZE,
|
|
.max_keysize = 3 * DES_KEY_SIZE,
|
|
.setkey = n2_3des_setkey,
|
|
.encrypt = n2_encrypt_ecb,
|
|
.decrypt = n2_decrypt_ecb,
|
|
},
|
|
},
|
|
{ .name = "cbc(des3_ede)",
|
|
.drv_name = "cbc-3des",
|
|
.block_size = DES_BLOCK_SIZE,
|
|
.enc_type = (ENC_TYPE_ALG_3DES |
|
|
ENC_TYPE_CHAINING_CBC),
|
|
.ablkcipher = {
|
|
.ivsize = DES_BLOCK_SIZE,
|
|
.min_keysize = 3 * DES_KEY_SIZE,
|
|
.max_keysize = 3 * DES_KEY_SIZE,
|
|
.setkey = n2_3des_setkey,
|
|
.encrypt = n2_encrypt_chaining,
|
|
.decrypt = n2_decrypt_chaining,
|
|
},
|
|
},
|
|
{ .name = "cfb(des3_ede)",
|
|
.drv_name = "cfb-3des",
|
|
.block_size = DES_BLOCK_SIZE,
|
|
.enc_type = (ENC_TYPE_ALG_3DES |
|
|
ENC_TYPE_CHAINING_CFB),
|
|
.ablkcipher = {
|
|
.min_keysize = 3 * DES_KEY_SIZE,
|
|
.max_keysize = 3 * DES_KEY_SIZE,
|
|
.setkey = n2_3des_setkey,
|
|
.encrypt = n2_encrypt_chaining,
|
|
.decrypt = n2_decrypt_chaining,
|
|
},
|
|
},
|
|
/* AES: ECB CBC and CTR are supported */
|
|
{ .name = "ecb(aes)",
|
|
.drv_name = "ecb-aes",
|
|
.block_size = AES_BLOCK_SIZE,
|
|
.enc_type = (ENC_TYPE_ALG_AES128 |
|
|
ENC_TYPE_CHAINING_ECB),
|
|
.ablkcipher = {
|
|
.min_keysize = AES_MIN_KEY_SIZE,
|
|
.max_keysize = AES_MAX_KEY_SIZE,
|
|
.setkey = n2_aes_setkey,
|
|
.encrypt = n2_encrypt_ecb,
|
|
.decrypt = n2_decrypt_ecb,
|
|
},
|
|
},
|
|
{ .name = "cbc(aes)",
|
|
.drv_name = "cbc-aes",
|
|
.block_size = AES_BLOCK_SIZE,
|
|
.enc_type = (ENC_TYPE_ALG_AES128 |
|
|
ENC_TYPE_CHAINING_CBC),
|
|
.ablkcipher = {
|
|
.ivsize = AES_BLOCK_SIZE,
|
|
.min_keysize = AES_MIN_KEY_SIZE,
|
|
.max_keysize = AES_MAX_KEY_SIZE,
|
|
.setkey = n2_aes_setkey,
|
|
.encrypt = n2_encrypt_chaining,
|
|
.decrypt = n2_decrypt_chaining,
|
|
},
|
|
},
|
|
{ .name = "ctr(aes)",
|
|
.drv_name = "ctr-aes",
|
|
.block_size = AES_BLOCK_SIZE,
|
|
.enc_type = (ENC_TYPE_ALG_AES128 |
|
|
ENC_TYPE_CHAINING_COUNTER),
|
|
.ablkcipher = {
|
|
.ivsize = AES_BLOCK_SIZE,
|
|
.min_keysize = AES_MIN_KEY_SIZE,
|
|
.max_keysize = AES_MAX_KEY_SIZE,
|
|
.setkey = n2_aes_setkey,
|
|
.encrypt = n2_encrypt_chaining,
|
|
.decrypt = n2_encrypt_chaining,
|
|
},
|
|
},
|
|
|
|
};
|
|
#define NUM_CIPHER_TMPLS ARRAY_SIZE(cipher_tmpls)
|
|
|
|
static LIST_HEAD(cipher_algs);
|
|
|
|
struct n2_hash_tmpl {
|
|
const char *name;
|
|
const u8 *hash_zero;
|
|
const u32 *hash_init;
|
|
u8 hw_op_hashsz;
|
|
u8 digest_size;
|
|
u8 block_size;
|
|
u8 auth_type;
|
|
u8 hmac_type;
|
|
};
|
|
|
|
static const u32 md5_init[MD5_HASH_WORDS] = {
|
|
cpu_to_le32(MD5_H0),
|
|
cpu_to_le32(MD5_H1),
|
|
cpu_to_le32(MD5_H2),
|
|
cpu_to_le32(MD5_H3),
|
|
};
|
|
static const u32 sha1_init[SHA1_DIGEST_SIZE / 4] = {
|
|
SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4,
|
|
};
|
|
static const u32 sha256_init[SHA256_DIGEST_SIZE / 4] = {
|
|
SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3,
|
|
SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7,
|
|
};
|
|
static const u32 sha224_init[SHA256_DIGEST_SIZE / 4] = {
|
|
SHA224_H0, SHA224_H1, SHA224_H2, SHA224_H3,
|
|
SHA224_H4, SHA224_H5, SHA224_H6, SHA224_H7,
|
|
};
|
|
|
|
static const struct n2_hash_tmpl hash_tmpls[] = {
|
|
{ .name = "md5",
|
|
.hash_zero = md5_zero_message_hash,
|
|
.hash_init = md5_init,
|
|
.auth_type = AUTH_TYPE_MD5,
|
|
.hmac_type = AUTH_TYPE_HMAC_MD5,
|
|
.hw_op_hashsz = MD5_DIGEST_SIZE,
|
|
.digest_size = MD5_DIGEST_SIZE,
|
|
.block_size = MD5_HMAC_BLOCK_SIZE },
|
|
{ .name = "sha1",
|
|
.hash_zero = sha1_zero_message_hash,
|
|
.hash_init = sha1_init,
|
|
.auth_type = AUTH_TYPE_SHA1,
|
|
.hmac_type = AUTH_TYPE_HMAC_SHA1,
|
|
.hw_op_hashsz = SHA1_DIGEST_SIZE,
|
|
.digest_size = SHA1_DIGEST_SIZE,
|
|
.block_size = SHA1_BLOCK_SIZE },
|
|
{ .name = "sha256",
|
|
.hash_zero = sha256_zero_message_hash,
|
|
.hash_init = sha256_init,
|
|
.auth_type = AUTH_TYPE_SHA256,
|
|
.hmac_type = AUTH_TYPE_HMAC_SHA256,
|
|
.hw_op_hashsz = SHA256_DIGEST_SIZE,
|
|
.digest_size = SHA256_DIGEST_SIZE,
|
|
.block_size = SHA256_BLOCK_SIZE },
|
|
{ .name = "sha224",
|
|
.hash_zero = sha224_zero_message_hash,
|
|
.hash_init = sha224_init,
|
|
.auth_type = AUTH_TYPE_SHA256,
|
|
.hmac_type = AUTH_TYPE_RESERVED,
|
|
.hw_op_hashsz = SHA256_DIGEST_SIZE,
|
|
.digest_size = SHA224_DIGEST_SIZE,
|
|
.block_size = SHA224_BLOCK_SIZE },
|
|
};
|
|
#define NUM_HASH_TMPLS ARRAY_SIZE(hash_tmpls)
|
|
|
|
static LIST_HEAD(ahash_algs);
|
|
static LIST_HEAD(hmac_algs);
|
|
|
|
static int algs_registered;
|
|
|
|
static void __n2_unregister_algs(void)
|
|
{
|
|
struct n2_cipher_alg *cipher, *cipher_tmp;
|
|
struct n2_ahash_alg *alg, *alg_tmp;
|
|
struct n2_hmac_alg *hmac, *hmac_tmp;
|
|
|
|
list_for_each_entry_safe(cipher, cipher_tmp, &cipher_algs, entry) {
|
|
crypto_unregister_alg(&cipher->alg);
|
|
list_del(&cipher->entry);
|
|
kfree(cipher);
|
|
}
|
|
list_for_each_entry_safe(hmac, hmac_tmp, &hmac_algs, derived.entry) {
|
|
crypto_unregister_ahash(&hmac->derived.alg);
|
|
list_del(&hmac->derived.entry);
|
|
kfree(hmac);
|
|
}
|
|
list_for_each_entry_safe(alg, alg_tmp, &ahash_algs, entry) {
|
|
crypto_unregister_ahash(&alg->alg);
|
|
list_del(&alg->entry);
|
|
kfree(alg);
|
|
}
|
|
}
|
|
|
|
static int n2_cipher_cra_init(struct crypto_tfm *tfm)
|
|
{
|
|
tfm->crt_ablkcipher.reqsize = sizeof(struct n2_request_context);
|
|
return 0;
|
|
}
|
|
|
|
static int __n2_register_one_cipher(const struct n2_cipher_tmpl *tmpl)
|
|
{
|
|
struct n2_cipher_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
|
|
struct crypto_alg *alg;
|
|
int err;
|
|
|
|
if (!p)
|
|
return -ENOMEM;
|
|
|
|
alg = &p->alg;
|
|
|
|
snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
|
|
snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->drv_name);
|
|
alg->cra_priority = N2_CRA_PRIORITY;
|
|
alg->cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
|
|
CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC;
|
|
alg->cra_blocksize = tmpl->block_size;
|
|
p->enc_type = tmpl->enc_type;
|
|
alg->cra_ctxsize = sizeof(struct n2_cipher_context);
|
|
alg->cra_type = &crypto_ablkcipher_type;
|
|
alg->cra_u.ablkcipher = tmpl->ablkcipher;
|
|
alg->cra_init = n2_cipher_cra_init;
|
|
alg->cra_module = THIS_MODULE;
|
|
|
|
list_add(&p->entry, &cipher_algs);
|
|
err = crypto_register_alg(alg);
|
|
if (err) {
|
|
pr_err("%s alg registration failed\n", alg->cra_name);
|
|
list_del(&p->entry);
|
|
kfree(p);
|
|
} else {
|
|
pr_info("%s alg registered\n", alg->cra_name);
|
|
}
|
|
return err;
|
|
}
|
|
|
|
static int __n2_register_one_hmac(struct n2_ahash_alg *n2ahash)
|
|
{
|
|
struct n2_hmac_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
|
|
struct ahash_alg *ahash;
|
|
struct crypto_alg *base;
|
|
int err;
|
|
|
|
if (!p)
|
|
return -ENOMEM;
|
|
|
|
p->child_alg = n2ahash->alg.halg.base.cra_name;
|
|
memcpy(&p->derived, n2ahash, sizeof(struct n2_ahash_alg));
|
|
INIT_LIST_HEAD(&p->derived.entry);
|
|
|
|
ahash = &p->derived.alg;
|
|
ahash->digest = n2_hmac_async_digest;
|
|
ahash->setkey = n2_hmac_async_setkey;
|
|
|
|
base = &ahash->halg.base;
|
|
snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "hmac(%s)", p->child_alg);
|
|
snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "hmac-%s-n2", p->child_alg);
|
|
|
|
base->cra_ctxsize = sizeof(struct n2_hmac_ctx);
|
|
base->cra_init = n2_hmac_cra_init;
|
|
base->cra_exit = n2_hmac_cra_exit;
|
|
|
|
list_add(&p->derived.entry, &hmac_algs);
|
|
err = crypto_register_ahash(ahash);
|
|
if (err) {
|
|
pr_err("%s alg registration failed\n", base->cra_name);
|
|
list_del(&p->derived.entry);
|
|
kfree(p);
|
|
} else {
|
|
pr_info("%s alg registered\n", base->cra_name);
|
|
}
|
|
return err;
|
|
}
|
|
|
|
static int __n2_register_one_ahash(const struct n2_hash_tmpl *tmpl)
|
|
{
|
|
struct n2_ahash_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
|
|
struct hash_alg_common *halg;
|
|
struct crypto_alg *base;
|
|
struct ahash_alg *ahash;
|
|
int err;
|
|
|
|
if (!p)
|
|
return -ENOMEM;
|
|
|
|
p->hash_zero = tmpl->hash_zero;
|
|
p->hash_init = tmpl->hash_init;
|
|
p->auth_type = tmpl->auth_type;
|
|
p->hmac_type = tmpl->hmac_type;
|
|
p->hw_op_hashsz = tmpl->hw_op_hashsz;
|
|
p->digest_size = tmpl->digest_size;
|
|
|
|
ahash = &p->alg;
|
|
ahash->init = n2_hash_async_init;
|
|
ahash->update = n2_hash_async_update;
|
|
ahash->final = n2_hash_async_final;
|
|
ahash->finup = n2_hash_async_finup;
|
|
ahash->digest = n2_hash_async_digest;
|
|
|
|
halg = &ahash->halg;
|
|
halg->digestsize = tmpl->digest_size;
|
|
|
|
base = &halg->base;
|
|
snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
|
|
snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->name);
|
|
base->cra_priority = N2_CRA_PRIORITY;
|
|
base->cra_flags = CRYPTO_ALG_TYPE_AHASH |
|
|
CRYPTO_ALG_KERN_DRIVER_ONLY |
|
|
CRYPTO_ALG_NEED_FALLBACK;
|
|
base->cra_blocksize = tmpl->block_size;
|
|
base->cra_ctxsize = sizeof(struct n2_hash_ctx);
|
|
base->cra_module = THIS_MODULE;
|
|
base->cra_init = n2_hash_cra_init;
|
|
base->cra_exit = n2_hash_cra_exit;
|
|
|
|
list_add(&p->entry, &ahash_algs);
|
|
err = crypto_register_ahash(ahash);
|
|
if (err) {
|
|
pr_err("%s alg registration failed\n", base->cra_name);
|
|
list_del(&p->entry);
|
|
kfree(p);
|
|
} else {
|
|
pr_info("%s alg registered\n", base->cra_name);
|
|
}
|
|
if (!err && p->hmac_type != AUTH_TYPE_RESERVED)
|
|
err = __n2_register_one_hmac(p);
|
|
return err;
|
|
}
|
|
|
|
static int n2_register_algs(void)
|
|
{
|
|
int i, err = 0;
|
|
|
|
mutex_lock(&spu_lock);
|
|
if (algs_registered++)
|
|
goto out;
|
|
|
|
for (i = 0; i < NUM_HASH_TMPLS; i++) {
|
|
err = __n2_register_one_ahash(&hash_tmpls[i]);
|
|
if (err) {
|
|
__n2_unregister_algs();
|
|
goto out;
|
|
}
|
|
}
|
|
for (i = 0; i < NUM_CIPHER_TMPLS; i++) {
|
|
err = __n2_register_one_cipher(&cipher_tmpls[i]);
|
|
if (err) {
|
|
__n2_unregister_algs();
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
out:
|
|
mutex_unlock(&spu_lock);
|
|
return err;
|
|
}
|
|
|
|
static void n2_unregister_algs(void)
|
|
{
|
|
mutex_lock(&spu_lock);
|
|
if (!--algs_registered)
|
|
__n2_unregister_algs();
|
|
mutex_unlock(&spu_lock);
|
|
}
|
|
|
|
/* To map CWQ queues to interrupt sources, the hypervisor API provides
|
|
* a devino. This isn't very useful to us because all of the
|
|
* interrupts listed in the device_node have been translated to
|
|
* Linux virtual IRQ cookie numbers.
|
|
*
|
|
* So we have to back-translate, going through the 'intr' and 'ino'
|
|
* property tables of the n2cp MDESC node, matching it with the OF
|
|
* 'interrupts' property entries, in order to to figure out which
|
|
* devino goes to which already-translated IRQ.
|
|
*/
|
|
static int find_devino_index(struct platform_device *dev, struct spu_mdesc_info *ip,
|
|
unsigned long dev_ino)
|
|
{
|
|
const unsigned int *dev_intrs;
|
|
unsigned int intr;
|
|
int i;
|
|
|
|
for (i = 0; i < ip->num_intrs; i++) {
|
|
if (ip->ino_table[i].ino == dev_ino)
|
|
break;
|
|
}
|
|
if (i == ip->num_intrs)
|
|
return -ENODEV;
|
|
|
|
intr = ip->ino_table[i].intr;
|
|
|
|
dev_intrs = of_get_property(dev->dev.of_node, "interrupts", NULL);
|
|
if (!dev_intrs)
|
|
return -ENODEV;
|
|
|
|
for (i = 0; i < dev->archdata.num_irqs; i++) {
|
|
if (dev_intrs[i] == intr)
|
|
return i;
|
|
}
|
|
|
|
return -ENODEV;
|
|
}
|
|
|
|
static int spu_map_ino(struct platform_device *dev, struct spu_mdesc_info *ip,
|
|
const char *irq_name, struct spu_queue *p,
|
|
irq_handler_t handler)
|
|
{
|
|
unsigned long herr;
|
|
int index;
|
|
|
|
herr = sun4v_ncs_qhandle_to_devino(p->qhandle, &p->devino);
|
|
if (herr)
|
|
return -EINVAL;
|
|
|
|
index = find_devino_index(dev, ip, p->devino);
|
|
if (index < 0)
|
|
return index;
|
|
|
|
p->irq = dev->archdata.irqs[index];
|
|
|
|
sprintf(p->irq_name, "%s-%d", irq_name, index);
|
|
|
|
return request_irq(p->irq, handler, 0, p->irq_name, p);
|
|
}
|
|
|
|
static struct kmem_cache *queue_cache[2];
|
|
|
|
static void *new_queue(unsigned long q_type)
|
|
{
|
|
return kmem_cache_zalloc(queue_cache[q_type - 1], GFP_KERNEL);
|
|
}
|
|
|
|
static void free_queue(void *p, unsigned long q_type)
|
|
{
|
|
kmem_cache_free(queue_cache[q_type - 1], p);
|
|
}
|
|
|
|
static int queue_cache_init(void)
|
|
{
|
|
if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
|
|
queue_cache[HV_NCS_QTYPE_MAU - 1] =
|
|
kmem_cache_create("mau_queue",
|
|
(MAU_NUM_ENTRIES *
|
|
MAU_ENTRY_SIZE),
|
|
MAU_ENTRY_SIZE, 0, NULL);
|
|
if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
|
|
return -ENOMEM;
|
|
|
|
if (!queue_cache[HV_NCS_QTYPE_CWQ - 1])
|
|
queue_cache[HV_NCS_QTYPE_CWQ - 1] =
|
|
kmem_cache_create("cwq_queue",
|
|
(CWQ_NUM_ENTRIES *
|
|
CWQ_ENTRY_SIZE),
|
|
CWQ_ENTRY_SIZE, 0, NULL);
|
|
if (!queue_cache[HV_NCS_QTYPE_CWQ - 1]) {
|
|
kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
|
|
queue_cache[HV_NCS_QTYPE_MAU - 1] = NULL;
|
|
return -ENOMEM;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void queue_cache_destroy(void)
|
|
{
|
|
kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
|
|
kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_CWQ - 1]);
|
|
queue_cache[HV_NCS_QTYPE_MAU - 1] = NULL;
|
|
queue_cache[HV_NCS_QTYPE_CWQ - 1] = NULL;
|
|
}
|
|
|
|
static long spu_queue_register_workfn(void *arg)
|
|
{
|
|
struct spu_qreg *qr = arg;
|
|
struct spu_queue *p = qr->queue;
|
|
unsigned long q_type = qr->type;
|
|
unsigned long hv_ret;
|
|
|
|
hv_ret = sun4v_ncs_qconf(q_type, __pa(p->q),
|
|
CWQ_NUM_ENTRIES, &p->qhandle);
|
|
if (!hv_ret)
|
|
sun4v_ncs_sethead_marker(p->qhandle, 0);
|
|
|
|
return hv_ret ? -EINVAL : 0;
|
|
}
|
|
|
|
static int spu_queue_register(struct spu_queue *p, unsigned long q_type)
|
|
{
|
|
int cpu = cpumask_any_and(&p->sharing, cpu_online_mask);
|
|
struct spu_qreg qr = { .queue = p, .type = q_type };
|
|
|
|
return work_on_cpu_safe(cpu, spu_queue_register_workfn, &qr);
|
|
}
|
|
|
|
static int spu_queue_setup(struct spu_queue *p)
|
|
{
|
|
int err;
|
|
|
|
p->q = new_queue(p->q_type);
|
|
if (!p->q)
|
|
return -ENOMEM;
|
|
|
|
err = spu_queue_register(p, p->q_type);
|
|
if (err) {
|
|
free_queue(p->q, p->q_type);
|
|
p->q = NULL;
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
static void spu_queue_destroy(struct spu_queue *p)
|
|
{
|
|
unsigned long hv_ret;
|
|
|
|
if (!p->q)
|
|
return;
|
|
|
|
hv_ret = sun4v_ncs_qconf(p->q_type, p->qhandle, 0, &p->qhandle);
|
|
|
|
if (!hv_ret)
|
|
free_queue(p->q, p->q_type);
|
|
}
|
|
|
|
static void spu_list_destroy(struct list_head *list)
|
|
{
|
|
struct spu_queue *p, *n;
|
|
|
|
list_for_each_entry_safe(p, n, list, list) {
|
|
int i;
|
|
|
|
for (i = 0; i < NR_CPUS; i++) {
|
|
if (cpu_to_cwq[i] == p)
|
|
cpu_to_cwq[i] = NULL;
|
|
}
|
|
|
|
if (p->irq) {
|
|
free_irq(p->irq, p);
|
|
p->irq = 0;
|
|
}
|
|
spu_queue_destroy(p);
|
|
list_del(&p->list);
|
|
kfree(p);
|
|
}
|
|
}
|
|
|
|
/* Walk the backward arcs of a CWQ 'exec-unit' node,
|
|
* gathering cpu membership information.
|
|
*/
|
|
static int spu_mdesc_walk_arcs(struct mdesc_handle *mdesc,
|
|
struct platform_device *dev,
|
|
u64 node, struct spu_queue *p,
|
|
struct spu_queue **table)
|
|
{
|
|
u64 arc;
|
|
|
|
mdesc_for_each_arc(arc, mdesc, node, MDESC_ARC_TYPE_BACK) {
|
|
u64 tgt = mdesc_arc_target(mdesc, arc);
|
|
const char *name = mdesc_node_name(mdesc, tgt);
|
|
const u64 *id;
|
|
|
|
if (strcmp(name, "cpu"))
|
|
continue;
|
|
id = mdesc_get_property(mdesc, tgt, "id", NULL);
|
|
if (table[*id] != NULL) {
|
|
dev_err(&dev->dev, "%pOF: SPU cpu slot already set.\n",
|
|
dev->dev.of_node);
|
|
return -EINVAL;
|
|
}
|
|
cpumask_set_cpu(*id, &p->sharing);
|
|
table[*id] = p;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Process an 'exec-unit' MDESC node of type 'cwq'. */
|
|
static int handle_exec_unit(struct spu_mdesc_info *ip, struct list_head *list,
|
|
struct platform_device *dev, struct mdesc_handle *mdesc,
|
|
u64 node, const char *iname, unsigned long q_type,
|
|
irq_handler_t handler, struct spu_queue **table)
|
|
{
|
|
struct spu_queue *p;
|
|
int err;
|
|
|
|
p = kzalloc(sizeof(struct spu_queue), GFP_KERNEL);
|
|
if (!p) {
|
|
dev_err(&dev->dev, "%pOF: Could not allocate SPU queue.\n",
|
|
dev->dev.of_node);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
cpumask_clear(&p->sharing);
|
|
spin_lock_init(&p->lock);
|
|
p->q_type = q_type;
|
|
INIT_LIST_HEAD(&p->jobs);
|
|
list_add(&p->list, list);
|
|
|
|
err = spu_mdesc_walk_arcs(mdesc, dev, node, p, table);
|
|
if (err)
|
|
return err;
|
|
|
|
err = spu_queue_setup(p);
|
|
if (err)
|
|
return err;
|
|
|
|
return spu_map_ino(dev, ip, iname, p, handler);
|
|
}
|
|
|
|
static int spu_mdesc_scan(struct mdesc_handle *mdesc, struct platform_device *dev,
|
|
struct spu_mdesc_info *ip, struct list_head *list,
|
|
const char *exec_name, unsigned long q_type,
|
|
irq_handler_t handler, struct spu_queue **table)
|
|
{
|
|
int err = 0;
|
|
u64 node;
|
|
|
|
mdesc_for_each_node_by_name(mdesc, node, "exec-unit") {
|
|
const char *type;
|
|
|
|
type = mdesc_get_property(mdesc, node, "type", NULL);
|
|
if (!type || strcmp(type, exec_name))
|
|
continue;
|
|
|
|
err = handle_exec_unit(ip, list, dev, mdesc, node,
|
|
exec_name, q_type, handler, table);
|
|
if (err) {
|
|
spu_list_destroy(list);
|
|
break;
|
|
}
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
static int get_irq_props(struct mdesc_handle *mdesc, u64 node,
|
|
struct spu_mdesc_info *ip)
|
|
{
|
|
const u64 *ino;
|
|
int ino_len;
|
|
int i;
|
|
|
|
ino = mdesc_get_property(mdesc, node, "ino", &ino_len);
|
|
if (!ino) {
|
|
printk("NO 'ino'\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
ip->num_intrs = ino_len / sizeof(u64);
|
|
ip->ino_table = kzalloc((sizeof(struct ino_blob) *
|
|
ip->num_intrs),
|
|
GFP_KERNEL);
|
|
if (!ip->ino_table)
|
|
return -ENOMEM;
|
|
|
|
for (i = 0; i < ip->num_intrs; i++) {
|
|
struct ino_blob *b = &ip->ino_table[i];
|
|
b->intr = i + 1;
|
|
b->ino = ino[i];
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int grab_mdesc_irq_props(struct mdesc_handle *mdesc,
|
|
struct platform_device *dev,
|
|
struct spu_mdesc_info *ip,
|
|
const char *node_name)
|
|
{
|
|
const unsigned int *reg;
|
|
u64 node;
|
|
|
|
reg = of_get_property(dev->dev.of_node, "reg", NULL);
|
|
if (!reg)
|
|
return -ENODEV;
|
|
|
|
mdesc_for_each_node_by_name(mdesc, node, "virtual-device") {
|
|
const char *name;
|
|
const u64 *chdl;
|
|
|
|
name = mdesc_get_property(mdesc, node, "name", NULL);
|
|
if (!name || strcmp(name, node_name))
|
|
continue;
|
|
chdl = mdesc_get_property(mdesc, node, "cfg-handle", NULL);
|
|
if (!chdl || (*chdl != *reg))
|
|
continue;
|
|
ip->cfg_handle = *chdl;
|
|
return get_irq_props(mdesc, node, ip);
|
|
}
|
|
|
|
return -ENODEV;
|
|
}
|
|
|
|
static unsigned long n2_spu_hvapi_major;
|
|
static unsigned long n2_spu_hvapi_minor;
|
|
|
|
static int n2_spu_hvapi_register(void)
|
|
{
|
|
int err;
|
|
|
|
n2_spu_hvapi_major = 2;
|
|
n2_spu_hvapi_minor = 0;
|
|
|
|
err = sun4v_hvapi_register(HV_GRP_NCS,
|
|
n2_spu_hvapi_major,
|
|
&n2_spu_hvapi_minor);
|
|
|
|
if (!err)
|
|
pr_info("Registered NCS HVAPI version %lu.%lu\n",
|
|
n2_spu_hvapi_major,
|
|
n2_spu_hvapi_minor);
|
|
|
|
return err;
|
|
}
|
|
|
|
static void n2_spu_hvapi_unregister(void)
|
|
{
|
|
sun4v_hvapi_unregister(HV_GRP_NCS);
|
|
}
|
|
|
|
static int global_ref;
|
|
|
|
static int grab_global_resources(void)
|
|
{
|
|
int err = 0;
|
|
|
|
mutex_lock(&spu_lock);
|
|
|
|
if (global_ref++)
|
|
goto out;
|
|
|
|
err = n2_spu_hvapi_register();
|
|
if (err)
|
|
goto out;
|
|
|
|
err = queue_cache_init();
|
|
if (err)
|
|
goto out_hvapi_release;
|
|
|
|
err = -ENOMEM;
|
|
cpu_to_cwq = kzalloc(sizeof(struct spu_queue *) * NR_CPUS,
|
|
GFP_KERNEL);
|
|
if (!cpu_to_cwq)
|
|
goto out_queue_cache_destroy;
|
|
|
|
cpu_to_mau = kzalloc(sizeof(struct spu_queue *) * NR_CPUS,
|
|
GFP_KERNEL);
|
|
if (!cpu_to_mau)
|
|
goto out_free_cwq_table;
|
|
|
|
err = 0;
|
|
|
|
out:
|
|
if (err)
|
|
global_ref--;
|
|
mutex_unlock(&spu_lock);
|
|
return err;
|
|
|
|
out_free_cwq_table:
|
|
kfree(cpu_to_cwq);
|
|
cpu_to_cwq = NULL;
|
|
|
|
out_queue_cache_destroy:
|
|
queue_cache_destroy();
|
|
|
|
out_hvapi_release:
|
|
n2_spu_hvapi_unregister();
|
|
goto out;
|
|
}
|
|
|
|
static void release_global_resources(void)
|
|
{
|
|
mutex_lock(&spu_lock);
|
|
if (!--global_ref) {
|
|
kfree(cpu_to_cwq);
|
|
cpu_to_cwq = NULL;
|
|
|
|
kfree(cpu_to_mau);
|
|
cpu_to_mau = NULL;
|
|
|
|
queue_cache_destroy();
|
|
n2_spu_hvapi_unregister();
|
|
}
|
|
mutex_unlock(&spu_lock);
|
|
}
|
|
|
|
static struct n2_crypto *alloc_n2cp(void)
|
|
{
|
|
struct n2_crypto *np = kzalloc(sizeof(struct n2_crypto), GFP_KERNEL);
|
|
|
|
if (np)
|
|
INIT_LIST_HEAD(&np->cwq_list);
|
|
|
|
return np;
|
|
}
|
|
|
|
static void free_n2cp(struct n2_crypto *np)
|
|
{
|
|
kfree(np->cwq_info.ino_table);
|
|
np->cwq_info.ino_table = NULL;
|
|
|
|
kfree(np);
|
|
}
|
|
|
|
static void n2_spu_driver_version(void)
|
|
{
|
|
static int n2_spu_version_printed;
|
|
|
|
if (n2_spu_version_printed++ == 0)
|
|
pr_info("%s", version);
|
|
}
|
|
|
|
static int n2_crypto_probe(struct platform_device *dev)
|
|
{
|
|
struct mdesc_handle *mdesc;
|
|
struct n2_crypto *np;
|
|
int err;
|
|
|
|
n2_spu_driver_version();
|
|
|
|
pr_info("Found N2CP at %pOF\n", dev->dev.of_node);
|
|
|
|
np = alloc_n2cp();
|
|
if (!np) {
|
|
dev_err(&dev->dev, "%pOF: Unable to allocate n2cp.\n",
|
|
dev->dev.of_node);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
err = grab_global_resources();
|
|
if (err) {
|
|
dev_err(&dev->dev, "%pOF: Unable to grab global resources.\n",
|
|
dev->dev.of_node);
|
|
goto out_free_n2cp;
|
|
}
|
|
|
|
mdesc = mdesc_grab();
|
|
|
|
if (!mdesc) {
|
|
dev_err(&dev->dev, "%pOF: Unable to grab MDESC.\n",
|
|
dev->dev.of_node);
|
|
err = -ENODEV;
|
|
goto out_free_global;
|
|
}
|
|
err = grab_mdesc_irq_props(mdesc, dev, &np->cwq_info, "n2cp");
|
|
if (err) {
|
|
dev_err(&dev->dev, "%pOF: Unable to grab IRQ props.\n",
|
|
dev->dev.of_node);
|
|
mdesc_release(mdesc);
|
|
goto out_free_global;
|
|
}
|
|
|
|
err = spu_mdesc_scan(mdesc, dev, &np->cwq_info, &np->cwq_list,
|
|
"cwq", HV_NCS_QTYPE_CWQ, cwq_intr,
|
|
cpu_to_cwq);
|
|
mdesc_release(mdesc);
|
|
|
|
if (err) {
|
|
dev_err(&dev->dev, "%pOF: CWQ MDESC scan failed.\n",
|
|
dev->dev.of_node);
|
|
goto out_free_global;
|
|
}
|
|
|
|
err = n2_register_algs();
|
|
if (err) {
|
|
dev_err(&dev->dev, "%pOF: Unable to register algorithms.\n",
|
|
dev->dev.of_node);
|
|
goto out_free_spu_list;
|
|
}
|
|
|
|
dev_set_drvdata(&dev->dev, np);
|
|
|
|
return 0;
|
|
|
|
out_free_spu_list:
|
|
spu_list_destroy(&np->cwq_list);
|
|
|
|
out_free_global:
|
|
release_global_resources();
|
|
|
|
out_free_n2cp:
|
|
free_n2cp(np);
|
|
|
|
return err;
|
|
}
|
|
|
|
static int n2_crypto_remove(struct platform_device *dev)
|
|
{
|
|
struct n2_crypto *np = dev_get_drvdata(&dev->dev);
|
|
|
|
n2_unregister_algs();
|
|
|
|
spu_list_destroy(&np->cwq_list);
|
|
|
|
release_global_resources();
|
|
|
|
free_n2cp(np);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct n2_mau *alloc_ncp(void)
|
|
{
|
|
struct n2_mau *mp = kzalloc(sizeof(struct n2_mau), GFP_KERNEL);
|
|
|
|
if (mp)
|
|
INIT_LIST_HEAD(&mp->mau_list);
|
|
|
|
return mp;
|
|
}
|
|
|
|
static void free_ncp(struct n2_mau *mp)
|
|
{
|
|
kfree(mp->mau_info.ino_table);
|
|
mp->mau_info.ino_table = NULL;
|
|
|
|
kfree(mp);
|
|
}
|
|
|
|
static int n2_mau_probe(struct platform_device *dev)
|
|
{
|
|
struct mdesc_handle *mdesc;
|
|
struct n2_mau *mp;
|
|
int err;
|
|
|
|
n2_spu_driver_version();
|
|
|
|
pr_info("Found NCP at %pOF\n", dev->dev.of_node);
|
|
|
|
mp = alloc_ncp();
|
|
if (!mp) {
|
|
dev_err(&dev->dev, "%pOF: Unable to allocate ncp.\n",
|
|
dev->dev.of_node);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
err = grab_global_resources();
|
|
if (err) {
|
|
dev_err(&dev->dev, "%pOF: Unable to grab global resources.\n",
|
|
dev->dev.of_node);
|
|
goto out_free_ncp;
|
|
}
|
|
|
|
mdesc = mdesc_grab();
|
|
|
|
if (!mdesc) {
|
|
dev_err(&dev->dev, "%pOF: Unable to grab MDESC.\n",
|
|
dev->dev.of_node);
|
|
err = -ENODEV;
|
|
goto out_free_global;
|
|
}
|
|
|
|
err = grab_mdesc_irq_props(mdesc, dev, &mp->mau_info, "ncp");
|
|
if (err) {
|
|
dev_err(&dev->dev, "%pOF: Unable to grab IRQ props.\n",
|
|
dev->dev.of_node);
|
|
mdesc_release(mdesc);
|
|
goto out_free_global;
|
|
}
|
|
|
|
err = spu_mdesc_scan(mdesc, dev, &mp->mau_info, &mp->mau_list,
|
|
"mau", HV_NCS_QTYPE_MAU, mau_intr,
|
|
cpu_to_mau);
|
|
mdesc_release(mdesc);
|
|
|
|
if (err) {
|
|
dev_err(&dev->dev, "%pOF: MAU MDESC scan failed.\n",
|
|
dev->dev.of_node);
|
|
goto out_free_global;
|
|
}
|
|
|
|
dev_set_drvdata(&dev->dev, mp);
|
|
|
|
return 0;
|
|
|
|
out_free_global:
|
|
release_global_resources();
|
|
|
|
out_free_ncp:
|
|
free_ncp(mp);
|
|
|
|
return err;
|
|
}
|
|
|
|
static int n2_mau_remove(struct platform_device *dev)
|
|
{
|
|
struct n2_mau *mp = dev_get_drvdata(&dev->dev);
|
|
|
|
spu_list_destroy(&mp->mau_list);
|
|
|
|
release_global_resources();
|
|
|
|
free_ncp(mp);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct of_device_id n2_crypto_match[] = {
|
|
{
|
|
.name = "n2cp",
|
|
.compatible = "SUNW,n2-cwq",
|
|
},
|
|
{
|
|
.name = "n2cp",
|
|
.compatible = "SUNW,vf-cwq",
|
|
},
|
|
{
|
|
.name = "n2cp",
|
|
.compatible = "SUNW,kt-cwq",
|
|
},
|
|
{},
|
|
};
|
|
|
|
MODULE_DEVICE_TABLE(of, n2_crypto_match);
|
|
|
|
static struct platform_driver n2_crypto_driver = {
|
|
.driver = {
|
|
.name = "n2cp",
|
|
.of_match_table = n2_crypto_match,
|
|
},
|
|
.probe = n2_crypto_probe,
|
|
.remove = n2_crypto_remove,
|
|
};
|
|
|
|
static const struct of_device_id n2_mau_match[] = {
|
|
{
|
|
.name = "ncp",
|
|
.compatible = "SUNW,n2-mau",
|
|
},
|
|
{
|
|
.name = "ncp",
|
|
.compatible = "SUNW,vf-mau",
|
|
},
|
|
{
|
|
.name = "ncp",
|
|
.compatible = "SUNW,kt-mau",
|
|
},
|
|
{},
|
|
};
|
|
|
|
MODULE_DEVICE_TABLE(of, n2_mau_match);
|
|
|
|
static struct platform_driver n2_mau_driver = {
|
|
.driver = {
|
|
.name = "ncp",
|
|
.of_match_table = n2_mau_match,
|
|
},
|
|
.probe = n2_mau_probe,
|
|
.remove = n2_mau_remove,
|
|
};
|
|
|
|
static struct platform_driver * const drivers[] = {
|
|
&n2_crypto_driver,
|
|
&n2_mau_driver,
|
|
};
|
|
|
|
static int __init n2_init(void)
|
|
{
|
|
return platform_register_drivers(drivers, ARRAY_SIZE(drivers));
|
|
}
|
|
|
|
static void __exit n2_exit(void)
|
|
{
|
|
platform_unregister_drivers(drivers, ARRAY_SIZE(drivers));
|
|
}
|
|
|
|
module_init(n2_init);
|
|
module_exit(n2_exit);
|