mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-28 11:18:45 +07:00
ce446b4b2d
->exec_op() is passed a check_only argument that encodes when the controller should just check whether the operation is supported or not without executing it. Some controllers simply ignore this arguments, others don't but keep modifying some of the registers before returning. Let's fix all those drivers. Signed-off-by: Boris Brezillon <boris.brezillon@collabora.com> Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com> Link: https://lore.kernel.org/linux-mtd/20200418194217.1016060-1-boris.brezillon@collabora.com
3038 lines
81 KiB
C
3038 lines
81 KiB
C
// SPDX-License-Identifier: GPL-2.0+
|
|
/*
|
|
* Cadence NAND flash controller driver
|
|
*
|
|
* Copyright (C) 2019 Cadence
|
|
*
|
|
* Author: Piotr Sroka <piotrs@cadence.com>
|
|
*/
|
|
|
|
#include <linux/bitfield.h>
|
|
#include <linux/clk.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/dmaengine.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/module.h>
|
|
#include <linux/mtd/mtd.h>
|
|
#include <linux/mtd/rawnand.h>
|
|
#include <linux/of_device.h>
|
|
#include <linux/iopoll.h>
|
|
|
|
/*
|
|
* HPNFC can work in 3 modes:
|
|
* - PIO - can work in master or slave DMA
|
|
* - CDMA - needs Master DMA for accessing command descriptors.
|
|
* - Generic mode - can use only slave DMA.
|
|
* CDMA and PIO modes can be used to execute only base commands.
|
|
* Generic mode can be used to execute any command
|
|
* on NAND flash memory. Driver uses CDMA mode for
|
|
* block erasing, page reading, page programing.
|
|
* Generic mode is used for executing rest of commands.
|
|
*/
|
|
|
|
#define MAX_ADDRESS_CYC 6
|
|
#define MAX_ERASE_ADDRESS_CYC 3
|
|
#define MAX_DATA_SIZE 0xFFFC
|
|
#define DMA_DATA_SIZE_ALIGN 8
|
|
|
|
/* Register definition. */
|
|
/*
|
|
* Command register 0.
|
|
* Writing data to this register will initiate a new transaction
|
|
* of the NF controller.
|
|
*/
|
|
#define CMD_REG0 0x0000
|
|
/* Command type field mask. */
|
|
#define CMD_REG0_CT GENMASK(31, 30)
|
|
/* Command type CDMA. */
|
|
#define CMD_REG0_CT_CDMA 0uL
|
|
/* Command type generic. */
|
|
#define CMD_REG0_CT_GEN 3uL
|
|
/* Command thread number field mask. */
|
|
#define CMD_REG0_TN GENMASK(27, 24)
|
|
|
|
/* Command register 2. */
|
|
#define CMD_REG2 0x0008
|
|
/* Command register 3. */
|
|
#define CMD_REG3 0x000C
|
|
/* Pointer register to select which thread status will be selected. */
|
|
#define CMD_STATUS_PTR 0x0010
|
|
/* Command status register for selected thread. */
|
|
#define CMD_STATUS 0x0014
|
|
|
|
/* Interrupt status register. */
|
|
#define INTR_STATUS 0x0110
|
|
#define INTR_STATUS_SDMA_ERR BIT(22)
|
|
#define INTR_STATUS_SDMA_TRIGG BIT(21)
|
|
#define INTR_STATUS_UNSUPP_CMD BIT(19)
|
|
#define INTR_STATUS_DDMA_TERR BIT(18)
|
|
#define INTR_STATUS_CDMA_TERR BIT(17)
|
|
#define INTR_STATUS_CDMA_IDL BIT(16)
|
|
|
|
/* Interrupt enable register. */
|
|
#define INTR_ENABLE 0x0114
|
|
#define INTR_ENABLE_INTR_EN BIT(31)
|
|
#define INTR_ENABLE_SDMA_ERR_EN BIT(22)
|
|
#define INTR_ENABLE_SDMA_TRIGG_EN BIT(21)
|
|
#define INTR_ENABLE_UNSUPP_CMD_EN BIT(19)
|
|
#define INTR_ENABLE_DDMA_TERR_EN BIT(18)
|
|
#define INTR_ENABLE_CDMA_TERR_EN BIT(17)
|
|
#define INTR_ENABLE_CDMA_IDLE_EN BIT(16)
|
|
|
|
/* Controller internal state. */
|
|
#define CTRL_STATUS 0x0118
|
|
#define CTRL_STATUS_INIT_COMP BIT(9)
|
|
#define CTRL_STATUS_CTRL_BUSY BIT(8)
|
|
|
|
/* Command Engine threads state. */
|
|
#define TRD_STATUS 0x0120
|
|
|
|
/* Command Engine interrupt thread error status. */
|
|
#define TRD_ERR_INT_STATUS 0x0128
|
|
/* Command Engine interrupt thread error enable. */
|
|
#define TRD_ERR_INT_STATUS_EN 0x0130
|
|
/* Command Engine interrupt thread complete status. */
|
|
#define TRD_COMP_INT_STATUS 0x0138
|
|
|
|
/*
|
|
* Transfer config 0 register.
|
|
* Configures data transfer parameters.
|
|
*/
|
|
#define TRAN_CFG_0 0x0400
|
|
/* Offset value from the beginning of the page. */
|
|
#define TRAN_CFG_0_OFFSET GENMASK(31, 16)
|
|
/* Numbers of sectors to transfer within singlNF device's page. */
|
|
#define TRAN_CFG_0_SEC_CNT GENMASK(7, 0)
|
|
|
|
/*
|
|
* Transfer config 1 register.
|
|
* Configures data transfer parameters.
|
|
*/
|
|
#define TRAN_CFG_1 0x0404
|
|
/* Size of last data sector. */
|
|
#define TRAN_CFG_1_LAST_SEC_SIZE GENMASK(31, 16)
|
|
/* Size of not-last data sector. */
|
|
#define TRAN_CFG_1_SECTOR_SIZE GENMASK(15, 0)
|
|
|
|
/* ECC engine configuration register 0. */
|
|
#define ECC_CONFIG_0 0x0428
|
|
/* Correction strength. */
|
|
#define ECC_CONFIG_0_CORR_STR GENMASK(10, 8)
|
|
/* Enable erased pages detection mechanism. */
|
|
#define ECC_CONFIG_0_ERASE_DET_EN BIT(1)
|
|
/* Enable controller ECC check bits generation and correction. */
|
|
#define ECC_CONFIG_0_ECC_EN BIT(0)
|
|
|
|
/* ECC engine configuration register 1. */
|
|
#define ECC_CONFIG_1 0x042C
|
|
|
|
/* Multiplane settings register. */
|
|
#define MULTIPLANE_CFG 0x0434
|
|
/* Cache operation settings. */
|
|
#define CACHE_CFG 0x0438
|
|
|
|
/* DMA settings register. */
|
|
#define DMA_SETINGS 0x043C
|
|
/* Enable SDMA error report on access unprepared slave DMA interface. */
|
|
#define DMA_SETINGS_SDMA_ERR_RSP BIT(17)
|
|
|
|
/* Transferred data block size for the slave DMA module. */
|
|
#define SDMA_SIZE 0x0440
|
|
|
|
/* Thread number associated with transferred data block
|
|
* for the slave DMA module.
|
|
*/
|
|
#define SDMA_TRD_NUM 0x0444
|
|
/* Thread number mask. */
|
|
#define SDMA_TRD_NUM_SDMA_TRD GENMASK(2, 0)
|
|
|
|
#define CONTROL_DATA_CTRL 0x0494
|
|
/* Thread number mask. */
|
|
#define CONTROL_DATA_CTRL_SIZE GENMASK(15, 0)
|
|
|
|
#define CTRL_VERSION 0x800
|
|
#define CTRL_VERSION_REV GENMASK(7, 0)
|
|
|
|
/* Available hardware features of the controller. */
|
|
#define CTRL_FEATURES 0x804
|
|
/* Support for NV-DDR2/3 work mode. */
|
|
#define CTRL_FEATURES_NVDDR_2_3 BIT(28)
|
|
/* Support for NV-DDR work mode. */
|
|
#define CTRL_FEATURES_NVDDR BIT(27)
|
|
/* Support for asynchronous work mode. */
|
|
#define CTRL_FEATURES_ASYNC BIT(26)
|
|
/* Support for asynchronous work mode. */
|
|
#define CTRL_FEATURES_N_BANKS GENMASK(25, 24)
|
|
/* Slave and Master DMA data width. */
|
|
#define CTRL_FEATURES_DMA_DWITH64 BIT(21)
|
|
/* Availability of Control Data feature.*/
|
|
#define CTRL_FEATURES_CONTROL_DATA BIT(10)
|
|
|
|
/* BCH Engine identification register 0 - correction strengths. */
|
|
#define BCH_CFG_0 0x838
|
|
#define BCH_CFG_0_CORR_CAP_0 GENMASK(7, 0)
|
|
#define BCH_CFG_0_CORR_CAP_1 GENMASK(15, 8)
|
|
#define BCH_CFG_0_CORR_CAP_2 GENMASK(23, 16)
|
|
#define BCH_CFG_0_CORR_CAP_3 GENMASK(31, 24)
|
|
|
|
/* BCH Engine identification register 1 - correction strengths. */
|
|
#define BCH_CFG_1 0x83C
|
|
#define BCH_CFG_1_CORR_CAP_4 GENMASK(7, 0)
|
|
#define BCH_CFG_1_CORR_CAP_5 GENMASK(15, 8)
|
|
#define BCH_CFG_1_CORR_CAP_6 GENMASK(23, 16)
|
|
#define BCH_CFG_1_CORR_CAP_7 GENMASK(31, 24)
|
|
|
|
/* BCH Engine identification register 2 - sector sizes. */
|
|
#define BCH_CFG_2 0x840
|
|
#define BCH_CFG_2_SECT_0 GENMASK(15, 0)
|
|
#define BCH_CFG_2_SECT_1 GENMASK(31, 16)
|
|
|
|
/* BCH Engine identification register 3. */
|
|
#define BCH_CFG_3 0x844
|
|
#define BCH_CFG_3_METADATA_SIZE GENMASK(23, 16)
|
|
|
|
/* Ready/Busy# line status. */
|
|
#define RBN_SETINGS 0x1004
|
|
|
|
/* Common settings. */
|
|
#define COMMON_SET 0x1008
|
|
/* 16 bit device connected to the NAND Flash interface. */
|
|
#define COMMON_SET_DEVICE_16BIT BIT(8)
|
|
|
|
/* Skip_bytes registers. */
|
|
#define SKIP_BYTES_CONF 0x100C
|
|
#define SKIP_BYTES_MARKER_VALUE GENMASK(31, 16)
|
|
#define SKIP_BYTES_NUM_OF_BYTES GENMASK(7, 0)
|
|
|
|
#define SKIP_BYTES_OFFSET 0x1010
|
|
#define SKIP_BYTES_OFFSET_VALUE GENMASK(23, 0)
|
|
|
|
/* Timings configuration. */
|
|
#define ASYNC_TOGGLE_TIMINGS 0x101c
|
|
#define ASYNC_TOGGLE_TIMINGS_TRH GENMASK(28, 24)
|
|
#define ASYNC_TOGGLE_TIMINGS_TRP GENMASK(20, 16)
|
|
#define ASYNC_TOGGLE_TIMINGS_TWH GENMASK(12, 8)
|
|
#define ASYNC_TOGGLE_TIMINGS_TWP GENMASK(4, 0)
|
|
|
|
#define TIMINGS0 0x1024
|
|
#define TIMINGS0_TADL GENMASK(31, 24)
|
|
#define TIMINGS0_TCCS GENMASK(23, 16)
|
|
#define TIMINGS0_TWHR GENMASK(15, 8)
|
|
#define TIMINGS0_TRHW GENMASK(7, 0)
|
|
|
|
#define TIMINGS1 0x1028
|
|
#define TIMINGS1_TRHZ GENMASK(31, 24)
|
|
#define TIMINGS1_TWB GENMASK(23, 16)
|
|
#define TIMINGS1_TVDLY GENMASK(7, 0)
|
|
|
|
#define TIMINGS2 0x102c
|
|
#define TIMINGS2_TFEAT GENMASK(25, 16)
|
|
#define TIMINGS2_CS_HOLD_TIME GENMASK(13, 8)
|
|
#define TIMINGS2_CS_SETUP_TIME GENMASK(5, 0)
|
|
|
|
/* Configuration of the resynchronization of slave DLL of PHY. */
|
|
#define DLL_PHY_CTRL 0x1034
|
|
#define DLL_PHY_CTRL_DLL_RST_N BIT(24)
|
|
#define DLL_PHY_CTRL_EXTENDED_WR_MODE BIT(17)
|
|
#define DLL_PHY_CTRL_EXTENDED_RD_MODE BIT(16)
|
|
#define DLL_PHY_CTRL_RS_HIGH_WAIT_CNT GENMASK(11, 8)
|
|
#define DLL_PHY_CTRL_RS_IDLE_CNT GENMASK(7, 0)
|
|
|
|
/* Register controlling DQ related timing. */
|
|
#define PHY_DQ_TIMING 0x2000
|
|
/* Register controlling DSQ related timing. */
|
|
#define PHY_DQS_TIMING 0x2004
|
|
#define PHY_DQS_TIMING_DQS_SEL_OE_END GENMASK(3, 0)
|
|
#define PHY_DQS_TIMING_PHONY_DQS_SEL BIT(16)
|
|
#define PHY_DQS_TIMING_USE_PHONY_DQS BIT(20)
|
|
|
|
/* Register controlling the gate and loopback control related timing. */
|
|
#define PHY_GATE_LPBK_CTRL 0x2008
|
|
#define PHY_GATE_LPBK_CTRL_RDS GENMASK(24, 19)
|
|
|
|
/* Register holds the control for the master DLL logic. */
|
|
#define PHY_DLL_MASTER_CTRL 0x200C
|
|
#define PHY_DLL_MASTER_CTRL_BYPASS_MODE BIT(23)
|
|
|
|
/* Register holds the control for the slave DLL logic. */
|
|
#define PHY_DLL_SLAVE_CTRL 0x2010
|
|
|
|
/* This register handles the global control settings for the PHY. */
|
|
#define PHY_CTRL 0x2080
|
|
#define PHY_CTRL_SDR_DQS BIT(14)
|
|
#define PHY_CTRL_PHONY_DQS GENMASK(9, 4)
|
|
|
|
/*
|
|
* This register handles the global control settings
|
|
* for the termination selects for reads.
|
|
*/
|
|
#define PHY_TSEL 0x2084
|
|
|
|
/* Generic command layout. */
|
|
#define GCMD_LAY_CS GENMASK_ULL(11, 8)
|
|
/*
|
|
* This bit informs the minicotroller if it has to wait for tWB
|
|
* after sending the last CMD/ADDR/DATA in the sequence.
|
|
*/
|
|
#define GCMD_LAY_TWB BIT_ULL(6)
|
|
/* Type of generic instruction. */
|
|
#define GCMD_LAY_INSTR GENMASK_ULL(5, 0)
|
|
|
|
/* Generic CMD sequence type. */
|
|
#define GCMD_LAY_INSTR_CMD 0
|
|
/* Generic ADDR sequence type. */
|
|
#define GCMD_LAY_INSTR_ADDR 1
|
|
/* Generic data transfer sequence type. */
|
|
#define GCMD_LAY_INSTR_DATA 2
|
|
|
|
/* Input part of generic command type of input is command. */
|
|
#define GCMD_LAY_INPUT_CMD GENMASK_ULL(23, 16)
|
|
|
|
/* Generic command address sequence - address fields. */
|
|
#define GCMD_LAY_INPUT_ADDR GENMASK_ULL(63, 16)
|
|
/* Generic command address sequence - address size. */
|
|
#define GCMD_LAY_INPUT_ADDR_SIZE GENMASK_ULL(13, 11)
|
|
|
|
/* Transfer direction field of generic command data sequence. */
|
|
#define GCMD_DIR BIT_ULL(11)
|
|
/* Read transfer direction of generic command data sequence. */
|
|
#define GCMD_DIR_READ 0
|
|
/* Write transfer direction of generic command data sequence. */
|
|
#define GCMD_DIR_WRITE 1
|
|
|
|
/* ECC enabled flag of generic command data sequence - ECC enabled. */
|
|
#define GCMD_ECC_EN BIT_ULL(12)
|
|
/* Generic command data sequence - sector size. */
|
|
#define GCMD_SECT_SIZE GENMASK_ULL(31, 16)
|
|
/* Generic command data sequence - sector count. */
|
|
#define GCMD_SECT_CNT GENMASK_ULL(39, 32)
|
|
/* Generic command data sequence - last sector size. */
|
|
#define GCMD_LAST_SIZE GENMASK_ULL(55, 40)
|
|
|
|
/* CDMA descriptor fields. */
|
|
/* Erase command type of CDMA descriptor. */
|
|
#define CDMA_CT_ERASE 0x1000
|
|
/* Program page command type of CDMA descriptor. */
|
|
#define CDMA_CT_WR 0x2100
|
|
/* Read page command type of CDMA descriptor. */
|
|
#define CDMA_CT_RD 0x2200
|
|
|
|
/* Flash pointer memory shift. */
|
|
#define CDMA_CFPTR_MEM_SHIFT 24
|
|
/* Flash pointer memory mask. */
|
|
#define CDMA_CFPTR_MEM GENMASK(26, 24)
|
|
|
|
/*
|
|
* Command DMA descriptor flags. If set causes issue interrupt after
|
|
* the completion of descriptor processing.
|
|
*/
|
|
#define CDMA_CF_INT BIT(8)
|
|
/*
|
|
* Command DMA descriptor flags - the next descriptor
|
|
* address field is valid and descriptor processing should continue.
|
|
*/
|
|
#define CDMA_CF_CONT BIT(9)
|
|
/* DMA master flag of command DMA descriptor. */
|
|
#define CDMA_CF_DMA_MASTER BIT(10)
|
|
|
|
/* Operation complete status of command descriptor. */
|
|
#define CDMA_CS_COMP BIT(15)
|
|
/* Operation complete status of command descriptor. */
|
|
/* Command descriptor status - operation fail. */
|
|
#define CDMA_CS_FAIL BIT(14)
|
|
/* Command descriptor status - page erased. */
|
|
#define CDMA_CS_ERP BIT(11)
|
|
/* Command descriptor status - timeout occurred. */
|
|
#define CDMA_CS_TOUT BIT(10)
|
|
/*
|
|
* Maximum amount of correction applied to one ECC sector.
|
|
* It is part of command descriptor status.
|
|
*/
|
|
#define CDMA_CS_MAXERR GENMASK(9, 2)
|
|
/* Command descriptor status - uncorrectable ECC error. */
|
|
#define CDMA_CS_UNCE BIT(1)
|
|
/* Command descriptor status - descriptor error. */
|
|
#define CDMA_CS_ERR BIT(0)
|
|
|
|
/* Status of operation - OK. */
|
|
#define STAT_OK 0
|
|
/* Status of operation - FAIL. */
|
|
#define STAT_FAIL 2
|
|
/* Status of operation - uncorrectable ECC error. */
|
|
#define STAT_ECC_UNCORR 3
|
|
/* Status of operation - page erased. */
|
|
#define STAT_ERASED 5
|
|
/* Status of operation - correctable ECC error. */
|
|
#define STAT_ECC_CORR 6
|
|
/* Status of operation - unsuspected state. */
|
|
#define STAT_UNKNOWN 7
|
|
/* Status of operation - operation is not completed yet. */
|
|
#define STAT_BUSY 0xFF
|
|
|
|
#define BCH_MAX_NUM_CORR_CAPS 8
|
|
#define BCH_MAX_NUM_SECTOR_SIZES 2
|
|
|
|
struct cadence_nand_timings {
|
|
u32 async_toggle_timings;
|
|
u32 timings0;
|
|
u32 timings1;
|
|
u32 timings2;
|
|
u32 dll_phy_ctrl;
|
|
u32 phy_ctrl;
|
|
u32 phy_dqs_timing;
|
|
u32 phy_gate_lpbk_ctrl;
|
|
};
|
|
|
|
/* Command DMA descriptor. */
|
|
struct cadence_nand_cdma_desc {
|
|
/* Next descriptor address. */
|
|
u64 next_pointer;
|
|
|
|
/* Flash address is a 32-bit address comprising of BANK and ROW ADDR. */
|
|
u32 flash_pointer;
|
|
/*field appears in HPNFC version 13*/
|
|
u16 bank;
|
|
u16 rsvd0;
|
|
|
|
/* Operation the controller needs to perform. */
|
|
u16 command_type;
|
|
u16 rsvd1;
|
|
/* Flags for operation of this command. */
|
|
u16 command_flags;
|
|
u16 rsvd2;
|
|
|
|
/* System/host memory address required for data DMA commands. */
|
|
u64 memory_pointer;
|
|
|
|
/* Status of operation. */
|
|
u32 status;
|
|
u32 rsvd3;
|
|
|
|
/* Address pointer to sync buffer location. */
|
|
u64 sync_flag_pointer;
|
|
|
|
/* Controls the buffer sync mechanism. */
|
|
u32 sync_arguments;
|
|
u32 rsvd4;
|
|
|
|
/* Control data pointer. */
|
|
u64 ctrl_data_ptr;
|
|
};
|
|
|
|
/* Interrupt status. */
|
|
struct cadence_nand_irq_status {
|
|
/* Thread operation complete status. */
|
|
u32 trd_status;
|
|
/* Thread operation error. */
|
|
u32 trd_error;
|
|
/* Controller status. */
|
|
u32 status;
|
|
};
|
|
|
|
/* Cadence NAND flash controller capabilities get from driver data. */
|
|
struct cadence_nand_dt_devdata {
|
|
/* Skew value of the output signals of the NAND Flash interface. */
|
|
u32 if_skew;
|
|
/* It informs if slave DMA interface is connected to DMA engine. */
|
|
unsigned int has_dma:1;
|
|
};
|
|
|
|
/* Cadence NAND flash controller capabilities read from registers. */
|
|
struct cdns_nand_caps {
|
|
/* Maximum number of banks supported by hardware. */
|
|
u8 max_banks;
|
|
/* Slave and Master DMA data width in bytes (4 or 8). */
|
|
u8 data_dma_width;
|
|
/* Control Data feature supported. */
|
|
bool data_control_supp;
|
|
/* Is PHY type DLL. */
|
|
bool is_phy_type_dll;
|
|
};
|
|
|
|
struct cdns_nand_ctrl {
|
|
struct device *dev;
|
|
struct nand_controller controller;
|
|
struct cadence_nand_cdma_desc *cdma_desc;
|
|
/* IP capability. */
|
|
const struct cadence_nand_dt_devdata *caps1;
|
|
struct cdns_nand_caps caps2;
|
|
u8 ctrl_rev;
|
|
dma_addr_t dma_cdma_desc;
|
|
u8 *buf;
|
|
u32 buf_size;
|
|
u8 curr_corr_str_idx;
|
|
|
|
/* Register interface. */
|
|
void __iomem *reg;
|
|
|
|
struct {
|
|
void __iomem *virt;
|
|
dma_addr_t dma;
|
|
} io;
|
|
|
|
int irq;
|
|
/* Interrupts that have happened. */
|
|
struct cadence_nand_irq_status irq_status;
|
|
/* Interrupts we are waiting for. */
|
|
struct cadence_nand_irq_status irq_mask;
|
|
struct completion complete;
|
|
/* Protect irq_mask and irq_status. */
|
|
spinlock_t irq_lock;
|
|
|
|
int ecc_strengths[BCH_MAX_NUM_CORR_CAPS];
|
|
struct nand_ecc_step_info ecc_stepinfos[BCH_MAX_NUM_SECTOR_SIZES];
|
|
struct nand_ecc_caps ecc_caps;
|
|
|
|
int curr_trans_type;
|
|
|
|
struct dma_chan *dmac;
|
|
|
|
u32 nf_clk_rate;
|
|
/*
|
|
* Estimated Board delay. The value includes the total
|
|
* round trip delay for the signals and is used for deciding on values
|
|
* associated with data read capture.
|
|
*/
|
|
u32 board_delay;
|
|
|
|
struct nand_chip *selected_chip;
|
|
|
|
unsigned long assigned_cs;
|
|
struct list_head chips;
|
|
u8 bch_metadata_size;
|
|
};
|
|
|
|
struct cdns_nand_chip {
|
|
struct cadence_nand_timings timings;
|
|
struct nand_chip chip;
|
|
u8 nsels;
|
|
struct list_head node;
|
|
|
|
/*
|
|
* part of oob area of NAND flash memory page.
|
|
* This part is available for user to read or write.
|
|
*/
|
|
u32 avail_oob_size;
|
|
|
|
/* Sector size. There are few sectors per mtd->writesize */
|
|
u32 sector_size;
|
|
u32 sector_count;
|
|
|
|
/* Offset of BBM. */
|
|
u8 bbm_offs;
|
|
/* Number of bytes reserved for BBM. */
|
|
u8 bbm_len;
|
|
/* ECC strength index. */
|
|
u8 corr_str_idx;
|
|
|
|
u8 cs[];
|
|
};
|
|
|
|
struct ecc_info {
|
|
int (*calc_ecc_bytes)(int step_size, int strength);
|
|
int max_step_size;
|
|
};
|
|
|
|
static inline struct
|
|
cdns_nand_chip *to_cdns_nand_chip(struct nand_chip *chip)
|
|
{
|
|
return container_of(chip, struct cdns_nand_chip, chip);
|
|
}
|
|
|
|
static inline struct
|
|
cdns_nand_ctrl *to_cdns_nand_ctrl(struct nand_controller *controller)
|
|
{
|
|
return container_of(controller, struct cdns_nand_ctrl, controller);
|
|
}
|
|
|
|
static bool
|
|
cadence_nand_dma_buf_ok(struct cdns_nand_ctrl *cdns_ctrl, const void *buf,
|
|
u32 buf_len)
|
|
{
|
|
u8 data_dma_width = cdns_ctrl->caps2.data_dma_width;
|
|
|
|
return buf && virt_addr_valid(buf) &&
|
|
likely(IS_ALIGNED((uintptr_t)buf, data_dma_width)) &&
|
|
likely(IS_ALIGNED(buf_len, DMA_DATA_SIZE_ALIGN));
|
|
}
|
|
|
|
static int cadence_nand_wait_for_value(struct cdns_nand_ctrl *cdns_ctrl,
|
|
u32 reg_offset, u32 timeout_us,
|
|
u32 mask, bool is_clear)
|
|
{
|
|
u32 val;
|
|
int ret;
|
|
|
|
ret = readl_relaxed_poll_timeout(cdns_ctrl->reg + reg_offset,
|
|
val, !(val & mask) == is_clear,
|
|
10, timeout_us);
|
|
|
|
if (ret < 0) {
|
|
dev_err(cdns_ctrl->dev,
|
|
"Timeout while waiting for reg %x with mask %x is clear %d\n",
|
|
reg_offset, mask, is_clear);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int cadence_nand_set_ecc_enable(struct cdns_nand_ctrl *cdns_ctrl,
|
|
bool enable)
|
|
{
|
|
u32 reg;
|
|
|
|
if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
|
|
1000000,
|
|
CTRL_STATUS_CTRL_BUSY, true))
|
|
return -ETIMEDOUT;
|
|
|
|
reg = readl_relaxed(cdns_ctrl->reg + ECC_CONFIG_0);
|
|
|
|
if (enable)
|
|
reg |= ECC_CONFIG_0_ECC_EN;
|
|
else
|
|
reg &= ~ECC_CONFIG_0_ECC_EN;
|
|
|
|
writel_relaxed(reg, cdns_ctrl->reg + ECC_CONFIG_0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void cadence_nand_set_ecc_strength(struct cdns_nand_ctrl *cdns_ctrl,
|
|
u8 corr_str_idx)
|
|
{
|
|
u32 reg;
|
|
|
|
if (cdns_ctrl->curr_corr_str_idx == corr_str_idx)
|
|
return;
|
|
|
|
reg = readl_relaxed(cdns_ctrl->reg + ECC_CONFIG_0);
|
|
reg &= ~ECC_CONFIG_0_CORR_STR;
|
|
reg |= FIELD_PREP(ECC_CONFIG_0_CORR_STR, corr_str_idx);
|
|
writel_relaxed(reg, cdns_ctrl->reg + ECC_CONFIG_0);
|
|
|
|
cdns_ctrl->curr_corr_str_idx = corr_str_idx;
|
|
}
|
|
|
|
static int cadence_nand_get_ecc_strength_idx(struct cdns_nand_ctrl *cdns_ctrl,
|
|
u8 strength)
|
|
{
|
|
int i, corr_str_idx = -1;
|
|
|
|
for (i = 0; i < BCH_MAX_NUM_CORR_CAPS; i++) {
|
|
if (cdns_ctrl->ecc_strengths[i] == strength) {
|
|
corr_str_idx = i;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return corr_str_idx;
|
|
}
|
|
|
|
static int cadence_nand_set_skip_marker_val(struct cdns_nand_ctrl *cdns_ctrl,
|
|
u16 marker_value)
|
|
{
|
|
u32 reg;
|
|
|
|
if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
|
|
1000000,
|
|
CTRL_STATUS_CTRL_BUSY, true))
|
|
return -ETIMEDOUT;
|
|
|
|
reg = readl_relaxed(cdns_ctrl->reg + SKIP_BYTES_CONF);
|
|
reg &= ~SKIP_BYTES_MARKER_VALUE;
|
|
reg |= FIELD_PREP(SKIP_BYTES_MARKER_VALUE,
|
|
marker_value);
|
|
|
|
writel_relaxed(reg, cdns_ctrl->reg + SKIP_BYTES_CONF);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cadence_nand_set_skip_bytes_conf(struct cdns_nand_ctrl *cdns_ctrl,
|
|
u8 num_of_bytes,
|
|
u32 offset_value,
|
|
int enable)
|
|
{
|
|
u32 reg, skip_bytes_offset;
|
|
|
|
if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
|
|
1000000,
|
|
CTRL_STATUS_CTRL_BUSY, true))
|
|
return -ETIMEDOUT;
|
|
|
|
if (!enable) {
|
|
num_of_bytes = 0;
|
|
offset_value = 0;
|
|
}
|
|
|
|
reg = readl_relaxed(cdns_ctrl->reg + SKIP_BYTES_CONF);
|
|
reg &= ~SKIP_BYTES_NUM_OF_BYTES;
|
|
reg |= FIELD_PREP(SKIP_BYTES_NUM_OF_BYTES,
|
|
num_of_bytes);
|
|
skip_bytes_offset = FIELD_PREP(SKIP_BYTES_OFFSET_VALUE,
|
|
offset_value);
|
|
|
|
writel_relaxed(reg, cdns_ctrl->reg + SKIP_BYTES_CONF);
|
|
writel_relaxed(skip_bytes_offset, cdns_ctrl->reg + SKIP_BYTES_OFFSET);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Functions enables/disables hardware detection of erased data */
|
|
static void cadence_nand_set_erase_detection(struct cdns_nand_ctrl *cdns_ctrl,
|
|
bool enable,
|
|
u8 bitflips_threshold)
|
|
{
|
|
u32 reg;
|
|
|
|
reg = readl_relaxed(cdns_ctrl->reg + ECC_CONFIG_0);
|
|
|
|
if (enable)
|
|
reg |= ECC_CONFIG_0_ERASE_DET_EN;
|
|
else
|
|
reg &= ~ECC_CONFIG_0_ERASE_DET_EN;
|
|
|
|
writel_relaxed(reg, cdns_ctrl->reg + ECC_CONFIG_0);
|
|
writel_relaxed(bitflips_threshold, cdns_ctrl->reg + ECC_CONFIG_1);
|
|
}
|
|
|
|
static int cadence_nand_set_access_width16(struct cdns_nand_ctrl *cdns_ctrl,
|
|
bool bit_bus16)
|
|
{
|
|
u32 reg;
|
|
|
|
if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
|
|
1000000,
|
|
CTRL_STATUS_CTRL_BUSY, true))
|
|
return -ETIMEDOUT;
|
|
|
|
reg = readl_relaxed(cdns_ctrl->reg + COMMON_SET);
|
|
|
|
if (!bit_bus16)
|
|
reg &= ~COMMON_SET_DEVICE_16BIT;
|
|
else
|
|
reg |= COMMON_SET_DEVICE_16BIT;
|
|
writel_relaxed(reg, cdns_ctrl->reg + COMMON_SET);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
cadence_nand_clear_interrupt(struct cdns_nand_ctrl *cdns_ctrl,
|
|
struct cadence_nand_irq_status *irq_status)
|
|
{
|
|
writel_relaxed(irq_status->status, cdns_ctrl->reg + INTR_STATUS);
|
|
writel_relaxed(irq_status->trd_status,
|
|
cdns_ctrl->reg + TRD_COMP_INT_STATUS);
|
|
writel_relaxed(irq_status->trd_error,
|
|
cdns_ctrl->reg + TRD_ERR_INT_STATUS);
|
|
}
|
|
|
|
static void
|
|
cadence_nand_read_int_status(struct cdns_nand_ctrl *cdns_ctrl,
|
|
struct cadence_nand_irq_status *irq_status)
|
|
{
|
|
irq_status->status = readl_relaxed(cdns_ctrl->reg + INTR_STATUS);
|
|
irq_status->trd_status = readl_relaxed(cdns_ctrl->reg
|
|
+ TRD_COMP_INT_STATUS);
|
|
irq_status->trd_error = readl_relaxed(cdns_ctrl->reg
|
|
+ TRD_ERR_INT_STATUS);
|
|
}
|
|
|
|
static u32 irq_detected(struct cdns_nand_ctrl *cdns_ctrl,
|
|
struct cadence_nand_irq_status *irq_status)
|
|
{
|
|
cadence_nand_read_int_status(cdns_ctrl, irq_status);
|
|
|
|
return irq_status->status || irq_status->trd_status ||
|
|
irq_status->trd_error;
|
|
}
|
|
|
|
static void cadence_nand_reset_irq(struct cdns_nand_ctrl *cdns_ctrl)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&cdns_ctrl->irq_lock, flags);
|
|
memset(&cdns_ctrl->irq_status, 0, sizeof(cdns_ctrl->irq_status));
|
|
memset(&cdns_ctrl->irq_mask, 0, sizeof(cdns_ctrl->irq_mask));
|
|
spin_unlock_irqrestore(&cdns_ctrl->irq_lock, flags);
|
|
}
|
|
|
|
/*
|
|
* This is the interrupt service routine. It handles all interrupts
|
|
* sent to this device.
|
|
*/
|
|
static irqreturn_t cadence_nand_isr(int irq, void *dev_id)
|
|
{
|
|
struct cdns_nand_ctrl *cdns_ctrl = dev_id;
|
|
struct cadence_nand_irq_status irq_status;
|
|
irqreturn_t result = IRQ_NONE;
|
|
|
|
spin_lock(&cdns_ctrl->irq_lock);
|
|
|
|
if (irq_detected(cdns_ctrl, &irq_status)) {
|
|
/* Handle interrupt. */
|
|
/* First acknowledge it. */
|
|
cadence_nand_clear_interrupt(cdns_ctrl, &irq_status);
|
|
/* Status in the device context for someone to read. */
|
|
cdns_ctrl->irq_status.status |= irq_status.status;
|
|
cdns_ctrl->irq_status.trd_status |= irq_status.trd_status;
|
|
cdns_ctrl->irq_status.trd_error |= irq_status.trd_error;
|
|
/* Notify anyone who cares that it happened. */
|
|
complete(&cdns_ctrl->complete);
|
|
/* Tell the OS that we've handled this. */
|
|
result = IRQ_HANDLED;
|
|
}
|
|
spin_unlock(&cdns_ctrl->irq_lock);
|
|
|
|
return result;
|
|
}
|
|
|
|
static void cadence_nand_set_irq_mask(struct cdns_nand_ctrl *cdns_ctrl,
|
|
struct cadence_nand_irq_status *irq_mask)
|
|
{
|
|
writel_relaxed(INTR_ENABLE_INTR_EN | irq_mask->status,
|
|
cdns_ctrl->reg + INTR_ENABLE);
|
|
|
|
writel_relaxed(irq_mask->trd_error,
|
|
cdns_ctrl->reg + TRD_ERR_INT_STATUS_EN);
|
|
}
|
|
|
|
static void
|
|
cadence_nand_wait_for_irq(struct cdns_nand_ctrl *cdns_ctrl,
|
|
struct cadence_nand_irq_status *irq_mask,
|
|
struct cadence_nand_irq_status *irq_status)
|
|
{
|
|
unsigned long timeout = msecs_to_jiffies(10000);
|
|
unsigned long time_left;
|
|
|
|
time_left = wait_for_completion_timeout(&cdns_ctrl->complete,
|
|
timeout);
|
|
|
|
*irq_status = cdns_ctrl->irq_status;
|
|
if (time_left == 0) {
|
|
/* Timeout error. */
|
|
dev_err(cdns_ctrl->dev, "timeout occurred:\n");
|
|
dev_err(cdns_ctrl->dev, "\tstatus = 0x%x, mask = 0x%x\n",
|
|
irq_status->status, irq_mask->status);
|
|
dev_err(cdns_ctrl->dev,
|
|
"\ttrd_status = 0x%x, trd_status mask = 0x%x\n",
|
|
irq_status->trd_status, irq_mask->trd_status);
|
|
dev_err(cdns_ctrl->dev,
|
|
"\t trd_error = 0x%x, trd_error mask = 0x%x\n",
|
|
irq_status->trd_error, irq_mask->trd_error);
|
|
}
|
|
}
|
|
|
|
/* Execute generic command on NAND controller. */
|
|
static int cadence_nand_generic_cmd_send(struct cdns_nand_ctrl *cdns_ctrl,
|
|
u8 chip_nr,
|
|
u64 mini_ctrl_cmd)
|
|
{
|
|
u32 mini_ctrl_cmd_l, mini_ctrl_cmd_h, reg;
|
|
|
|
mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_CS, chip_nr);
|
|
mini_ctrl_cmd_l = mini_ctrl_cmd & 0xFFFFFFFF;
|
|
mini_ctrl_cmd_h = mini_ctrl_cmd >> 32;
|
|
|
|
if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
|
|
1000000,
|
|
CTRL_STATUS_CTRL_BUSY, true))
|
|
return -ETIMEDOUT;
|
|
|
|
cadence_nand_reset_irq(cdns_ctrl);
|
|
|
|
writel_relaxed(mini_ctrl_cmd_l, cdns_ctrl->reg + CMD_REG2);
|
|
writel_relaxed(mini_ctrl_cmd_h, cdns_ctrl->reg + CMD_REG3);
|
|
|
|
/* Select generic command. */
|
|
reg = FIELD_PREP(CMD_REG0_CT, CMD_REG0_CT_GEN);
|
|
/* Thread number. */
|
|
reg |= FIELD_PREP(CMD_REG0_TN, 0);
|
|
|
|
/* Issue command. */
|
|
writel_relaxed(reg, cdns_ctrl->reg + CMD_REG0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Wait for data on slave DMA interface. */
|
|
static int cadence_nand_wait_on_sdma(struct cdns_nand_ctrl *cdns_ctrl,
|
|
u8 *out_sdma_trd,
|
|
u32 *out_sdma_size)
|
|
{
|
|
struct cadence_nand_irq_status irq_mask, irq_status;
|
|
|
|
irq_mask.trd_status = 0;
|
|
irq_mask.trd_error = 0;
|
|
irq_mask.status = INTR_STATUS_SDMA_TRIGG
|
|
| INTR_STATUS_SDMA_ERR
|
|
| INTR_STATUS_UNSUPP_CMD;
|
|
|
|
cadence_nand_set_irq_mask(cdns_ctrl, &irq_mask);
|
|
cadence_nand_wait_for_irq(cdns_ctrl, &irq_mask, &irq_status);
|
|
if (irq_status.status == 0) {
|
|
dev_err(cdns_ctrl->dev, "Timeout while waiting for SDMA\n");
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
if (irq_status.status & INTR_STATUS_SDMA_TRIGG) {
|
|
*out_sdma_size = readl_relaxed(cdns_ctrl->reg + SDMA_SIZE);
|
|
*out_sdma_trd = readl_relaxed(cdns_ctrl->reg + SDMA_TRD_NUM);
|
|
*out_sdma_trd =
|
|
FIELD_GET(SDMA_TRD_NUM_SDMA_TRD, *out_sdma_trd);
|
|
} else {
|
|
dev_err(cdns_ctrl->dev, "SDMA error - irq_status %x\n",
|
|
irq_status.status);
|
|
return -EIO;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void cadence_nand_get_caps(struct cdns_nand_ctrl *cdns_ctrl)
|
|
{
|
|
u32 reg;
|
|
|
|
reg = readl_relaxed(cdns_ctrl->reg + CTRL_FEATURES);
|
|
|
|
cdns_ctrl->caps2.max_banks = 1 << FIELD_GET(CTRL_FEATURES_N_BANKS, reg);
|
|
|
|
if (FIELD_GET(CTRL_FEATURES_DMA_DWITH64, reg))
|
|
cdns_ctrl->caps2.data_dma_width = 8;
|
|
else
|
|
cdns_ctrl->caps2.data_dma_width = 4;
|
|
|
|
if (reg & CTRL_FEATURES_CONTROL_DATA)
|
|
cdns_ctrl->caps2.data_control_supp = true;
|
|
|
|
if (reg & (CTRL_FEATURES_NVDDR_2_3
|
|
| CTRL_FEATURES_NVDDR))
|
|
cdns_ctrl->caps2.is_phy_type_dll = true;
|
|
}
|
|
|
|
/* Prepare CDMA descriptor. */
|
|
static void
|
|
cadence_nand_cdma_desc_prepare(struct cdns_nand_ctrl *cdns_ctrl,
|
|
char nf_mem, u32 flash_ptr, dma_addr_t mem_ptr,
|
|
dma_addr_t ctrl_data_ptr, u16 ctype)
|
|
{
|
|
struct cadence_nand_cdma_desc *cdma_desc = cdns_ctrl->cdma_desc;
|
|
|
|
memset(cdma_desc, 0, sizeof(struct cadence_nand_cdma_desc));
|
|
|
|
/* Set fields for one descriptor. */
|
|
cdma_desc->flash_pointer = flash_ptr;
|
|
if (cdns_ctrl->ctrl_rev >= 13)
|
|
cdma_desc->bank = nf_mem;
|
|
else
|
|
cdma_desc->flash_pointer |= (nf_mem << CDMA_CFPTR_MEM_SHIFT);
|
|
|
|
cdma_desc->command_flags |= CDMA_CF_DMA_MASTER;
|
|
cdma_desc->command_flags |= CDMA_CF_INT;
|
|
|
|
cdma_desc->memory_pointer = mem_ptr;
|
|
cdma_desc->status = 0;
|
|
cdma_desc->sync_flag_pointer = 0;
|
|
cdma_desc->sync_arguments = 0;
|
|
|
|
cdma_desc->command_type = ctype;
|
|
cdma_desc->ctrl_data_ptr = ctrl_data_ptr;
|
|
}
|
|
|
|
static u8 cadence_nand_check_desc_error(struct cdns_nand_ctrl *cdns_ctrl,
|
|
u32 desc_status)
|
|
{
|
|
if (desc_status & CDMA_CS_ERP)
|
|
return STAT_ERASED;
|
|
|
|
if (desc_status & CDMA_CS_UNCE)
|
|
return STAT_ECC_UNCORR;
|
|
|
|
if (desc_status & CDMA_CS_ERR) {
|
|
dev_err(cdns_ctrl->dev, ":CDMA desc error flag detected.\n");
|
|
return STAT_FAIL;
|
|
}
|
|
|
|
if (FIELD_GET(CDMA_CS_MAXERR, desc_status))
|
|
return STAT_ECC_CORR;
|
|
|
|
return STAT_FAIL;
|
|
}
|
|
|
|
static int cadence_nand_cdma_finish(struct cdns_nand_ctrl *cdns_ctrl)
|
|
{
|
|
struct cadence_nand_cdma_desc *desc_ptr = cdns_ctrl->cdma_desc;
|
|
u8 status = STAT_BUSY;
|
|
|
|
if (desc_ptr->status & CDMA_CS_FAIL) {
|
|
status = cadence_nand_check_desc_error(cdns_ctrl,
|
|
desc_ptr->status);
|
|
dev_err(cdns_ctrl->dev, ":CDMA error %x\n", desc_ptr->status);
|
|
} else if (desc_ptr->status & CDMA_CS_COMP) {
|
|
/* Descriptor finished with no errors. */
|
|
if (desc_ptr->command_flags & CDMA_CF_CONT) {
|
|
dev_info(cdns_ctrl->dev, "DMA unsupported flag is set");
|
|
status = STAT_UNKNOWN;
|
|
} else {
|
|
/* Last descriptor. */
|
|
status = STAT_OK;
|
|
}
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
static int cadence_nand_cdma_send(struct cdns_nand_ctrl *cdns_ctrl,
|
|
u8 thread)
|
|
{
|
|
u32 reg;
|
|
int status;
|
|
|
|
/* Wait for thread ready. */
|
|
status = cadence_nand_wait_for_value(cdns_ctrl, TRD_STATUS,
|
|
1000000,
|
|
BIT(thread), true);
|
|
if (status)
|
|
return status;
|
|
|
|
cadence_nand_reset_irq(cdns_ctrl);
|
|
reinit_completion(&cdns_ctrl->complete);
|
|
|
|
writel_relaxed((u32)cdns_ctrl->dma_cdma_desc,
|
|
cdns_ctrl->reg + CMD_REG2);
|
|
writel_relaxed(0, cdns_ctrl->reg + CMD_REG3);
|
|
|
|
/* Select CDMA mode. */
|
|
reg = FIELD_PREP(CMD_REG0_CT, CMD_REG0_CT_CDMA);
|
|
/* Thread number. */
|
|
reg |= FIELD_PREP(CMD_REG0_TN, thread);
|
|
/* Issue command. */
|
|
writel_relaxed(reg, cdns_ctrl->reg + CMD_REG0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Send SDMA command and wait for finish. */
|
|
static u32
|
|
cadence_nand_cdma_send_and_wait(struct cdns_nand_ctrl *cdns_ctrl,
|
|
u8 thread)
|
|
{
|
|
struct cadence_nand_irq_status irq_mask, irq_status = {0};
|
|
int status;
|
|
|
|
irq_mask.trd_status = BIT(thread);
|
|
irq_mask.trd_error = BIT(thread);
|
|
irq_mask.status = INTR_STATUS_CDMA_TERR;
|
|
|
|
cadence_nand_set_irq_mask(cdns_ctrl, &irq_mask);
|
|
|
|
status = cadence_nand_cdma_send(cdns_ctrl, thread);
|
|
if (status)
|
|
return status;
|
|
|
|
cadence_nand_wait_for_irq(cdns_ctrl, &irq_mask, &irq_status);
|
|
|
|
if (irq_status.status == 0 && irq_status.trd_status == 0 &&
|
|
irq_status.trd_error == 0) {
|
|
dev_err(cdns_ctrl->dev, "CDMA command timeout\n");
|
|
return -ETIMEDOUT;
|
|
}
|
|
if (irq_status.status & irq_mask.status) {
|
|
dev_err(cdns_ctrl->dev, "CDMA command failed\n");
|
|
return -EIO;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* ECC size depends on configured ECC strength and on maximum supported
|
|
* ECC step size.
|
|
*/
|
|
static int cadence_nand_calc_ecc_bytes(int max_step_size, int strength)
|
|
{
|
|
int nbytes = DIV_ROUND_UP(fls(8 * max_step_size) * strength, 8);
|
|
|
|
return ALIGN(nbytes, 2);
|
|
}
|
|
|
|
#define CADENCE_NAND_CALC_ECC_BYTES(max_step_size) \
|
|
static int \
|
|
cadence_nand_calc_ecc_bytes_##max_step_size(int step_size, \
|
|
int strength)\
|
|
{\
|
|
return cadence_nand_calc_ecc_bytes(max_step_size, strength);\
|
|
}
|
|
|
|
CADENCE_NAND_CALC_ECC_BYTES(256)
|
|
CADENCE_NAND_CALC_ECC_BYTES(512)
|
|
CADENCE_NAND_CALC_ECC_BYTES(1024)
|
|
CADENCE_NAND_CALC_ECC_BYTES(2048)
|
|
CADENCE_NAND_CALC_ECC_BYTES(4096)
|
|
|
|
/* Function reads BCH capabilities. */
|
|
static int cadence_nand_read_bch_caps(struct cdns_nand_ctrl *cdns_ctrl)
|
|
{
|
|
struct nand_ecc_caps *ecc_caps = &cdns_ctrl->ecc_caps;
|
|
int max_step_size = 0, nstrengths, i;
|
|
u32 reg;
|
|
|
|
reg = readl_relaxed(cdns_ctrl->reg + BCH_CFG_3);
|
|
cdns_ctrl->bch_metadata_size = FIELD_GET(BCH_CFG_3_METADATA_SIZE, reg);
|
|
if (cdns_ctrl->bch_metadata_size < 4) {
|
|
dev_err(cdns_ctrl->dev,
|
|
"Driver needs at least 4 bytes of BCH meta data\n");
|
|
return -EIO;
|
|
}
|
|
|
|
reg = readl_relaxed(cdns_ctrl->reg + BCH_CFG_0);
|
|
cdns_ctrl->ecc_strengths[0] = FIELD_GET(BCH_CFG_0_CORR_CAP_0, reg);
|
|
cdns_ctrl->ecc_strengths[1] = FIELD_GET(BCH_CFG_0_CORR_CAP_1, reg);
|
|
cdns_ctrl->ecc_strengths[2] = FIELD_GET(BCH_CFG_0_CORR_CAP_2, reg);
|
|
cdns_ctrl->ecc_strengths[3] = FIELD_GET(BCH_CFG_0_CORR_CAP_3, reg);
|
|
|
|
reg = readl_relaxed(cdns_ctrl->reg + BCH_CFG_1);
|
|
cdns_ctrl->ecc_strengths[4] = FIELD_GET(BCH_CFG_1_CORR_CAP_4, reg);
|
|
cdns_ctrl->ecc_strengths[5] = FIELD_GET(BCH_CFG_1_CORR_CAP_5, reg);
|
|
cdns_ctrl->ecc_strengths[6] = FIELD_GET(BCH_CFG_1_CORR_CAP_6, reg);
|
|
cdns_ctrl->ecc_strengths[7] = FIELD_GET(BCH_CFG_1_CORR_CAP_7, reg);
|
|
|
|
reg = readl_relaxed(cdns_ctrl->reg + BCH_CFG_2);
|
|
cdns_ctrl->ecc_stepinfos[0].stepsize =
|
|
FIELD_GET(BCH_CFG_2_SECT_0, reg);
|
|
|
|
cdns_ctrl->ecc_stepinfos[1].stepsize =
|
|
FIELD_GET(BCH_CFG_2_SECT_1, reg);
|
|
|
|
nstrengths = 0;
|
|
for (i = 0; i < BCH_MAX_NUM_CORR_CAPS; i++) {
|
|
if (cdns_ctrl->ecc_strengths[i] != 0)
|
|
nstrengths++;
|
|
}
|
|
|
|
ecc_caps->nstepinfos = 0;
|
|
for (i = 0; i < BCH_MAX_NUM_SECTOR_SIZES; i++) {
|
|
/* ECC strengths are common for all step infos. */
|
|
cdns_ctrl->ecc_stepinfos[i].nstrengths = nstrengths;
|
|
cdns_ctrl->ecc_stepinfos[i].strengths =
|
|
cdns_ctrl->ecc_strengths;
|
|
|
|
if (cdns_ctrl->ecc_stepinfos[i].stepsize != 0)
|
|
ecc_caps->nstepinfos++;
|
|
|
|
if (cdns_ctrl->ecc_stepinfos[i].stepsize > max_step_size)
|
|
max_step_size = cdns_ctrl->ecc_stepinfos[i].stepsize;
|
|
}
|
|
ecc_caps->stepinfos = &cdns_ctrl->ecc_stepinfos[0];
|
|
|
|
switch (max_step_size) {
|
|
case 256:
|
|
ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_256;
|
|
break;
|
|
case 512:
|
|
ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_512;
|
|
break;
|
|
case 1024:
|
|
ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_1024;
|
|
break;
|
|
case 2048:
|
|
ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_2048;
|
|
break;
|
|
case 4096:
|
|
ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_4096;
|
|
break;
|
|
default:
|
|
dev_err(cdns_ctrl->dev,
|
|
"Unsupported sector size(ecc step size) %d\n",
|
|
max_step_size);
|
|
return -EIO;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Hardware initialization. */
|
|
static int cadence_nand_hw_init(struct cdns_nand_ctrl *cdns_ctrl)
|
|
{
|
|
int status;
|
|
u32 reg;
|
|
|
|
status = cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
|
|
1000000,
|
|
CTRL_STATUS_INIT_COMP, false);
|
|
if (status)
|
|
return status;
|
|
|
|
reg = readl_relaxed(cdns_ctrl->reg + CTRL_VERSION);
|
|
cdns_ctrl->ctrl_rev = FIELD_GET(CTRL_VERSION_REV, reg);
|
|
|
|
dev_info(cdns_ctrl->dev,
|
|
"%s: cadence nand controller version reg %x\n",
|
|
__func__, reg);
|
|
|
|
/* Disable cache and multiplane. */
|
|
writel_relaxed(0, cdns_ctrl->reg + MULTIPLANE_CFG);
|
|
writel_relaxed(0, cdns_ctrl->reg + CACHE_CFG);
|
|
|
|
/* Clear all interrupts. */
|
|
writel_relaxed(0xFFFFFFFF, cdns_ctrl->reg + INTR_STATUS);
|
|
|
|
cadence_nand_get_caps(cdns_ctrl);
|
|
if (cadence_nand_read_bch_caps(cdns_ctrl))
|
|
return -EIO;
|
|
|
|
/*
|
|
* Set IO width access to 8.
|
|
* It is because during SW device discovering width access
|
|
* is expected to be 8.
|
|
*/
|
|
status = cadence_nand_set_access_width16(cdns_ctrl, false);
|
|
|
|
return status;
|
|
}
|
|
|
|
#define TT_MAIN_OOB_AREAS 2
|
|
#define TT_RAW_PAGE 3
|
|
#define TT_BBM 4
|
|
#define TT_MAIN_OOB_AREA_EXT 5
|
|
|
|
/* Prepare size of data to transfer. */
|
|
static void
|
|
cadence_nand_prepare_data_size(struct nand_chip *chip,
|
|
int transfer_type)
|
|
{
|
|
struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
|
|
struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
u32 sec_size = 0, offset = 0, sec_cnt = 1;
|
|
u32 last_sec_size = cdns_chip->sector_size;
|
|
u32 data_ctrl_size = 0;
|
|
u32 reg = 0;
|
|
|
|
if (cdns_ctrl->curr_trans_type == transfer_type)
|
|
return;
|
|
|
|
switch (transfer_type) {
|
|
case TT_MAIN_OOB_AREA_EXT:
|
|
sec_cnt = cdns_chip->sector_count;
|
|
sec_size = cdns_chip->sector_size;
|
|
data_ctrl_size = cdns_chip->avail_oob_size;
|
|
break;
|
|
case TT_MAIN_OOB_AREAS:
|
|
sec_cnt = cdns_chip->sector_count;
|
|
last_sec_size = cdns_chip->sector_size
|
|
+ cdns_chip->avail_oob_size;
|
|
sec_size = cdns_chip->sector_size;
|
|
break;
|
|
case TT_RAW_PAGE:
|
|
last_sec_size = mtd->writesize + mtd->oobsize;
|
|
break;
|
|
case TT_BBM:
|
|
offset = mtd->writesize + cdns_chip->bbm_offs;
|
|
last_sec_size = 8;
|
|
break;
|
|
}
|
|
|
|
reg = 0;
|
|
reg |= FIELD_PREP(TRAN_CFG_0_OFFSET, offset);
|
|
reg |= FIELD_PREP(TRAN_CFG_0_SEC_CNT, sec_cnt);
|
|
writel_relaxed(reg, cdns_ctrl->reg + TRAN_CFG_0);
|
|
|
|
reg = 0;
|
|
reg |= FIELD_PREP(TRAN_CFG_1_LAST_SEC_SIZE, last_sec_size);
|
|
reg |= FIELD_PREP(TRAN_CFG_1_SECTOR_SIZE, sec_size);
|
|
writel_relaxed(reg, cdns_ctrl->reg + TRAN_CFG_1);
|
|
|
|
if (cdns_ctrl->caps2.data_control_supp) {
|
|
reg = readl_relaxed(cdns_ctrl->reg + CONTROL_DATA_CTRL);
|
|
reg &= ~CONTROL_DATA_CTRL_SIZE;
|
|
reg |= FIELD_PREP(CONTROL_DATA_CTRL_SIZE, data_ctrl_size);
|
|
writel_relaxed(reg, cdns_ctrl->reg + CONTROL_DATA_CTRL);
|
|
}
|
|
|
|
cdns_ctrl->curr_trans_type = transfer_type;
|
|
}
|
|
|
|
static int
|
|
cadence_nand_cdma_transfer(struct cdns_nand_ctrl *cdns_ctrl, u8 chip_nr,
|
|
int page, void *buf, void *ctrl_dat, u32 buf_size,
|
|
u32 ctrl_dat_size, enum dma_data_direction dir,
|
|
bool with_ecc)
|
|
{
|
|
dma_addr_t dma_buf, dma_ctrl_dat = 0;
|
|
u8 thread_nr = chip_nr;
|
|
int status;
|
|
u16 ctype;
|
|
|
|
if (dir == DMA_FROM_DEVICE)
|
|
ctype = CDMA_CT_RD;
|
|
else
|
|
ctype = CDMA_CT_WR;
|
|
|
|
cadence_nand_set_ecc_enable(cdns_ctrl, with_ecc);
|
|
|
|
dma_buf = dma_map_single(cdns_ctrl->dev, buf, buf_size, dir);
|
|
if (dma_mapping_error(cdns_ctrl->dev, dma_buf)) {
|
|
dev_err(cdns_ctrl->dev, "Failed to map DMA buffer\n");
|
|
return -EIO;
|
|
}
|
|
|
|
if (ctrl_dat && ctrl_dat_size) {
|
|
dma_ctrl_dat = dma_map_single(cdns_ctrl->dev, ctrl_dat,
|
|
ctrl_dat_size, dir);
|
|
if (dma_mapping_error(cdns_ctrl->dev, dma_ctrl_dat)) {
|
|
dma_unmap_single(cdns_ctrl->dev, dma_buf,
|
|
buf_size, dir);
|
|
dev_err(cdns_ctrl->dev, "Failed to map DMA buffer\n");
|
|
return -EIO;
|
|
}
|
|
}
|
|
|
|
cadence_nand_cdma_desc_prepare(cdns_ctrl, chip_nr, page,
|
|
dma_buf, dma_ctrl_dat, ctype);
|
|
|
|
status = cadence_nand_cdma_send_and_wait(cdns_ctrl, thread_nr);
|
|
|
|
dma_unmap_single(cdns_ctrl->dev, dma_buf,
|
|
buf_size, dir);
|
|
|
|
if (ctrl_dat && ctrl_dat_size)
|
|
dma_unmap_single(cdns_ctrl->dev, dma_ctrl_dat,
|
|
ctrl_dat_size, dir);
|
|
if (status)
|
|
return status;
|
|
|
|
return cadence_nand_cdma_finish(cdns_ctrl);
|
|
}
|
|
|
|
static void cadence_nand_set_timings(struct cdns_nand_ctrl *cdns_ctrl,
|
|
struct cadence_nand_timings *t)
|
|
{
|
|
writel_relaxed(t->async_toggle_timings,
|
|
cdns_ctrl->reg + ASYNC_TOGGLE_TIMINGS);
|
|
writel_relaxed(t->timings0, cdns_ctrl->reg + TIMINGS0);
|
|
writel_relaxed(t->timings1, cdns_ctrl->reg + TIMINGS1);
|
|
writel_relaxed(t->timings2, cdns_ctrl->reg + TIMINGS2);
|
|
|
|
if (cdns_ctrl->caps2.is_phy_type_dll)
|
|
writel_relaxed(t->dll_phy_ctrl, cdns_ctrl->reg + DLL_PHY_CTRL);
|
|
|
|
writel_relaxed(t->phy_ctrl, cdns_ctrl->reg + PHY_CTRL);
|
|
|
|
if (cdns_ctrl->caps2.is_phy_type_dll) {
|
|
writel_relaxed(0, cdns_ctrl->reg + PHY_TSEL);
|
|
writel_relaxed(2, cdns_ctrl->reg + PHY_DQ_TIMING);
|
|
writel_relaxed(t->phy_dqs_timing,
|
|
cdns_ctrl->reg + PHY_DQS_TIMING);
|
|
writel_relaxed(t->phy_gate_lpbk_ctrl,
|
|
cdns_ctrl->reg + PHY_GATE_LPBK_CTRL);
|
|
writel_relaxed(PHY_DLL_MASTER_CTRL_BYPASS_MODE,
|
|
cdns_ctrl->reg + PHY_DLL_MASTER_CTRL);
|
|
writel_relaxed(0, cdns_ctrl->reg + PHY_DLL_SLAVE_CTRL);
|
|
}
|
|
}
|
|
|
|
static int cadence_nand_select_target(struct nand_chip *chip)
|
|
{
|
|
struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
|
|
struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
|
|
|
|
if (chip == cdns_ctrl->selected_chip)
|
|
return 0;
|
|
|
|
if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
|
|
1000000,
|
|
CTRL_STATUS_CTRL_BUSY, true))
|
|
return -ETIMEDOUT;
|
|
|
|
cadence_nand_set_timings(cdns_ctrl, &cdns_chip->timings);
|
|
|
|
cadence_nand_set_ecc_strength(cdns_ctrl,
|
|
cdns_chip->corr_str_idx);
|
|
|
|
cadence_nand_set_erase_detection(cdns_ctrl, true,
|
|
chip->ecc.strength);
|
|
|
|
cdns_ctrl->curr_trans_type = -1;
|
|
cdns_ctrl->selected_chip = chip;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cadence_nand_erase(struct nand_chip *chip, u32 page)
|
|
{
|
|
struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
|
|
struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
|
|
int status;
|
|
u8 thread_nr = cdns_chip->cs[chip->cur_cs];
|
|
|
|
cadence_nand_cdma_desc_prepare(cdns_ctrl,
|
|
cdns_chip->cs[chip->cur_cs],
|
|
page, 0, 0,
|
|
CDMA_CT_ERASE);
|
|
status = cadence_nand_cdma_send_and_wait(cdns_ctrl, thread_nr);
|
|
if (status) {
|
|
dev_err(cdns_ctrl->dev, "erase operation failed\n");
|
|
return -EIO;
|
|
}
|
|
|
|
status = cadence_nand_cdma_finish(cdns_ctrl);
|
|
if (status)
|
|
return status;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cadence_nand_read_bbm(struct nand_chip *chip, int page, u8 *buf)
|
|
{
|
|
int status;
|
|
struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
|
|
struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
|
|
cadence_nand_prepare_data_size(chip, TT_BBM);
|
|
|
|
cadence_nand_set_skip_bytes_conf(cdns_ctrl, 0, 0, 0);
|
|
|
|
/*
|
|
* Read only bad block marker from offset
|
|
* defined by a memory manufacturer.
|
|
*/
|
|
status = cadence_nand_cdma_transfer(cdns_ctrl,
|
|
cdns_chip->cs[chip->cur_cs],
|
|
page, cdns_ctrl->buf, NULL,
|
|
mtd->oobsize,
|
|
0, DMA_FROM_DEVICE, false);
|
|
if (status) {
|
|
dev_err(cdns_ctrl->dev, "read BBM failed\n");
|
|
return -EIO;
|
|
}
|
|
|
|
memcpy(buf + cdns_chip->bbm_offs, cdns_ctrl->buf, cdns_chip->bbm_len);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cadence_nand_write_page(struct nand_chip *chip,
|
|
const u8 *buf, int oob_required,
|
|
int page)
|
|
{
|
|
struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
|
|
struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
int status;
|
|
u16 marker_val = 0xFFFF;
|
|
|
|
status = cadence_nand_select_target(chip);
|
|
if (status)
|
|
return status;
|
|
|
|
cadence_nand_set_skip_bytes_conf(cdns_ctrl, cdns_chip->bbm_len,
|
|
mtd->writesize
|
|
+ cdns_chip->bbm_offs,
|
|
1);
|
|
|
|
if (oob_required) {
|
|
marker_val = *(u16 *)(chip->oob_poi
|
|
+ cdns_chip->bbm_offs);
|
|
} else {
|
|
/* Set oob data to 0xFF. */
|
|
memset(cdns_ctrl->buf + mtd->writesize, 0xFF,
|
|
cdns_chip->avail_oob_size);
|
|
}
|
|
|
|
cadence_nand_set_skip_marker_val(cdns_ctrl, marker_val);
|
|
|
|
cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREA_EXT);
|
|
|
|
if (cadence_nand_dma_buf_ok(cdns_ctrl, buf, mtd->writesize) &&
|
|
cdns_ctrl->caps2.data_control_supp) {
|
|
u8 *oob;
|
|
|
|
if (oob_required)
|
|
oob = chip->oob_poi;
|
|
else
|
|
oob = cdns_ctrl->buf + mtd->writesize;
|
|
|
|
status = cadence_nand_cdma_transfer(cdns_ctrl,
|
|
cdns_chip->cs[chip->cur_cs],
|
|
page, (void *)buf, oob,
|
|
mtd->writesize,
|
|
cdns_chip->avail_oob_size,
|
|
DMA_TO_DEVICE, true);
|
|
if (status) {
|
|
dev_err(cdns_ctrl->dev, "write page failed\n");
|
|
return -EIO;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
if (oob_required) {
|
|
/* Transfer the data to the oob area. */
|
|
memcpy(cdns_ctrl->buf + mtd->writesize, chip->oob_poi,
|
|
cdns_chip->avail_oob_size);
|
|
}
|
|
|
|
memcpy(cdns_ctrl->buf, buf, mtd->writesize);
|
|
|
|
cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREAS);
|
|
|
|
return cadence_nand_cdma_transfer(cdns_ctrl,
|
|
cdns_chip->cs[chip->cur_cs],
|
|
page, cdns_ctrl->buf, NULL,
|
|
mtd->writesize
|
|
+ cdns_chip->avail_oob_size,
|
|
0, DMA_TO_DEVICE, true);
|
|
}
|
|
|
|
static int cadence_nand_write_oob(struct nand_chip *chip, int page)
|
|
{
|
|
struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
|
|
memset(cdns_ctrl->buf, 0xFF, mtd->writesize);
|
|
|
|
return cadence_nand_write_page(chip, cdns_ctrl->buf, 1, page);
|
|
}
|
|
|
|
static int cadence_nand_write_page_raw(struct nand_chip *chip,
|
|
const u8 *buf, int oob_required,
|
|
int page)
|
|
{
|
|
struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
|
|
struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
int writesize = mtd->writesize;
|
|
int oobsize = mtd->oobsize;
|
|
int ecc_steps = chip->ecc.steps;
|
|
int ecc_size = chip->ecc.size;
|
|
int ecc_bytes = chip->ecc.bytes;
|
|
void *tmp_buf = cdns_ctrl->buf;
|
|
int oob_skip = cdns_chip->bbm_len;
|
|
size_t size = writesize + oobsize;
|
|
int i, pos, len;
|
|
int status = 0;
|
|
|
|
status = cadence_nand_select_target(chip);
|
|
if (status)
|
|
return status;
|
|
|
|
/*
|
|
* Fill the buffer with 0xff first except the full page transfer.
|
|
* This simplifies the logic.
|
|
*/
|
|
if (!buf || !oob_required)
|
|
memset(tmp_buf, 0xff, size);
|
|
|
|
cadence_nand_set_skip_bytes_conf(cdns_ctrl, 0, 0, 0);
|
|
|
|
/* Arrange the buffer for syndrome payload/ecc layout. */
|
|
if (buf) {
|
|
for (i = 0; i < ecc_steps; i++) {
|
|
pos = i * (ecc_size + ecc_bytes);
|
|
len = ecc_size;
|
|
|
|
if (pos >= writesize)
|
|
pos += oob_skip;
|
|
else if (pos + len > writesize)
|
|
len = writesize - pos;
|
|
|
|
memcpy(tmp_buf + pos, buf, len);
|
|
buf += len;
|
|
if (len < ecc_size) {
|
|
len = ecc_size - len;
|
|
memcpy(tmp_buf + writesize + oob_skip, buf,
|
|
len);
|
|
buf += len;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (oob_required) {
|
|
const u8 *oob = chip->oob_poi;
|
|
u32 oob_data_offset = (cdns_chip->sector_count - 1) *
|
|
(cdns_chip->sector_size + chip->ecc.bytes)
|
|
+ cdns_chip->sector_size + oob_skip;
|
|
|
|
/* BBM at the beginning of the OOB area. */
|
|
memcpy(tmp_buf + writesize, oob, oob_skip);
|
|
|
|
/* OOB free. */
|
|
memcpy(tmp_buf + oob_data_offset, oob,
|
|
cdns_chip->avail_oob_size);
|
|
oob += cdns_chip->avail_oob_size;
|
|
|
|
/* OOB ECC. */
|
|
for (i = 0; i < ecc_steps; i++) {
|
|
pos = ecc_size + i * (ecc_size + ecc_bytes);
|
|
if (i == (ecc_steps - 1))
|
|
pos += cdns_chip->avail_oob_size;
|
|
|
|
len = ecc_bytes;
|
|
|
|
if (pos >= writesize)
|
|
pos += oob_skip;
|
|
else if (pos + len > writesize)
|
|
len = writesize - pos;
|
|
|
|
memcpy(tmp_buf + pos, oob, len);
|
|
oob += len;
|
|
if (len < ecc_bytes) {
|
|
len = ecc_bytes - len;
|
|
memcpy(tmp_buf + writesize + oob_skip, oob,
|
|
len);
|
|
oob += len;
|
|
}
|
|
}
|
|
}
|
|
|
|
cadence_nand_prepare_data_size(chip, TT_RAW_PAGE);
|
|
|
|
return cadence_nand_cdma_transfer(cdns_ctrl,
|
|
cdns_chip->cs[chip->cur_cs],
|
|
page, cdns_ctrl->buf, NULL,
|
|
mtd->writesize +
|
|
mtd->oobsize,
|
|
0, DMA_TO_DEVICE, false);
|
|
}
|
|
|
|
static int cadence_nand_write_oob_raw(struct nand_chip *chip,
|
|
int page)
|
|
{
|
|
return cadence_nand_write_page_raw(chip, NULL, true, page);
|
|
}
|
|
|
|
static int cadence_nand_read_page(struct nand_chip *chip,
|
|
u8 *buf, int oob_required, int page)
|
|
{
|
|
struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
|
|
struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
int status = 0;
|
|
int ecc_err_count = 0;
|
|
|
|
status = cadence_nand_select_target(chip);
|
|
if (status)
|
|
return status;
|
|
|
|
cadence_nand_set_skip_bytes_conf(cdns_ctrl, cdns_chip->bbm_len,
|
|
mtd->writesize
|
|
+ cdns_chip->bbm_offs, 1);
|
|
|
|
/*
|
|
* If data buffer can be accessed by DMA and data_control feature
|
|
* is supported then transfer data and oob directly.
|
|
*/
|
|
if (cadence_nand_dma_buf_ok(cdns_ctrl, buf, mtd->writesize) &&
|
|
cdns_ctrl->caps2.data_control_supp) {
|
|
u8 *oob;
|
|
|
|
if (oob_required)
|
|
oob = chip->oob_poi;
|
|
else
|
|
oob = cdns_ctrl->buf + mtd->writesize;
|
|
|
|
cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREA_EXT);
|
|
status = cadence_nand_cdma_transfer(cdns_ctrl,
|
|
cdns_chip->cs[chip->cur_cs],
|
|
page, buf, oob,
|
|
mtd->writesize,
|
|
cdns_chip->avail_oob_size,
|
|
DMA_FROM_DEVICE, true);
|
|
/* Otherwise use bounce buffer. */
|
|
} else {
|
|
cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREAS);
|
|
status = cadence_nand_cdma_transfer(cdns_ctrl,
|
|
cdns_chip->cs[chip->cur_cs],
|
|
page, cdns_ctrl->buf,
|
|
NULL, mtd->writesize
|
|
+ cdns_chip->avail_oob_size,
|
|
0, DMA_FROM_DEVICE, true);
|
|
|
|
memcpy(buf, cdns_ctrl->buf, mtd->writesize);
|
|
if (oob_required)
|
|
memcpy(chip->oob_poi,
|
|
cdns_ctrl->buf + mtd->writesize,
|
|
mtd->oobsize);
|
|
}
|
|
|
|
switch (status) {
|
|
case STAT_ECC_UNCORR:
|
|
mtd->ecc_stats.failed++;
|
|
ecc_err_count++;
|
|
break;
|
|
case STAT_ECC_CORR:
|
|
ecc_err_count = FIELD_GET(CDMA_CS_MAXERR,
|
|
cdns_ctrl->cdma_desc->status);
|
|
mtd->ecc_stats.corrected += ecc_err_count;
|
|
break;
|
|
case STAT_ERASED:
|
|
case STAT_OK:
|
|
break;
|
|
default:
|
|
dev_err(cdns_ctrl->dev, "read page failed\n");
|
|
return -EIO;
|
|
}
|
|
|
|
if (oob_required)
|
|
if (cadence_nand_read_bbm(chip, page, chip->oob_poi))
|
|
return -EIO;
|
|
|
|
return ecc_err_count;
|
|
}
|
|
|
|
/* Reads OOB data from the device. */
|
|
static int cadence_nand_read_oob(struct nand_chip *chip, int page)
|
|
{
|
|
struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
|
|
|
|
return cadence_nand_read_page(chip, cdns_ctrl->buf, 1, page);
|
|
}
|
|
|
|
static int cadence_nand_read_page_raw(struct nand_chip *chip,
|
|
u8 *buf, int oob_required, int page)
|
|
{
|
|
struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
|
|
struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
int oob_skip = cdns_chip->bbm_len;
|
|
int writesize = mtd->writesize;
|
|
int ecc_steps = chip->ecc.steps;
|
|
int ecc_size = chip->ecc.size;
|
|
int ecc_bytes = chip->ecc.bytes;
|
|
void *tmp_buf = cdns_ctrl->buf;
|
|
int i, pos, len;
|
|
int status = 0;
|
|
|
|
status = cadence_nand_select_target(chip);
|
|
if (status)
|
|
return status;
|
|
|
|
cadence_nand_set_skip_bytes_conf(cdns_ctrl, 0, 0, 0);
|
|
|
|
cadence_nand_prepare_data_size(chip, TT_RAW_PAGE);
|
|
status = cadence_nand_cdma_transfer(cdns_ctrl,
|
|
cdns_chip->cs[chip->cur_cs],
|
|
page, cdns_ctrl->buf, NULL,
|
|
mtd->writesize
|
|
+ mtd->oobsize,
|
|
0, DMA_FROM_DEVICE, false);
|
|
|
|
switch (status) {
|
|
case STAT_ERASED:
|
|
case STAT_OK:
|
|
break;
|
|
default:
|
|
dev_err(cdns_ctrl->dev, "read raw page failed\n");
|
|
return -EIO;
|
|
}
|
|
|
|
/* Arrange the buffer for syndrome payload/ecc layout. */
|
|
if (buf) {
|
|
for (i = 0; i < ecc_steps; i++) {
|
|
pos = i * (ecc_size + ecc_bytes);
|
|
len = ecc_size;
|
|
|
|
if (pos >= writesize)
|
|
pos += oob_skip;
|
|
else if (pos + len > writesize)
|
|
len = writesize - pos;
|
|
|
|
memcpy(buf, tmp_buf + pos, len);
|
|
buf += len;
|
|
if (len < ecc_size) {
|
|
len = ecc_size - len;
|
|
memcpy(buf, tmp_buf + writesize + oob_skip,
|
|
len);
|
|
buf += len;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (oob_required) {
|
|
u8 *oob = chip->oob_poi;
|
|
u32 oob_data_offset = (cdns_chip->sector_count - 1) *
|
|
(cdns_chip->sector_size + chip->ecc.bytes)
|
|
+ cdns_chip->sector_size + oob_skip;
|
|
|
|
/* OOB free. */
|
|
memcpy(oob, tmp_buf + oob_data_offset,
|
|
cdns_chip->avail_oob_size);
|
|
|
|
/* BBM at the beginning of the OOB area. */
|
|
memcpy(oob, tmp_buf + writesize, oob_skip);
|
|
|
|
oob += cdns_chip->avail_oob_size;
|
|
|
|
/* OOB ECC */
|
|
for (i = 0; i < ecc_steps; i++) {
|
|
pos = ecc_size + i * (ecc_size + ecc_bytes);
|
|
len = ecc_bytes;
|
|
|
|
if (i == (ecc_steps - 1))
|
|
pos += cdns_chip->avail_oob_size;
|
|
|
|
if (pos >= writesize)
|
|
pos += oob_skip;
|
|
else if (pos + len > writesize)
|
|
len = writesize - pos;
|
|
|
|
memcpy(oob, tmp_buf + pos, len);
|
|
oob += len;
|
|
if (len < ecc_bytes) {
|
|
len = ecc_bytes - len;
|
|
memcpy(oob, tmp_buf + writesize + oob_skip,
|
|
len);
|
|
oob += len;
|
|
}
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cadence_nand_read_oob_raw(struct nand_chip *chip,
|
|
int page)
|
|
{
|
|
return cadence_nand_read_page_raw(chip, NULL, true, page);
|
|
}
|
|
|
|
static void cadence_nand_slave_dma_transfer_finished(void *data)
|
|
{
|
|
struct completion *finished = data;
|
|
|
|
complete(finished);
|
|
}
|
|
|
|
static int cadence_nand_slave_dma_transfer(struct cdns_nand_ctrl *cdns_ctrl,
|
|
void *buf,
|
|
dma_addr_t dev_dma, size_t len,
|
|
enum dma_data_direction dir)
|
|
{
|
|
DECLARE_COMPLETION_ONSTACK(finished);
|
|
struct dma_chan *chan;
|
|
struct dma_device *dma_dev;
|
|
dma_addr_t src_dma, dst_dma, buf_dma;
|
|
struct dma_async_tx_descriptor *tx;
|
|
dma_cookie_t cookie;
|
|
|
|
chan = cdns_ctrl->dmac;
|
|
dma_dev = chan->device;
|
|
|
|
buf_dma = dma_map_single(dma_dev->dev, buf, len, dir);
|
|
if (dma_mapping_error(dma_dev->dev, buf_dma)) {
|
|
dev_err(cdns_ctrl->dev, "Failed to map DMA buffer\n");
|
|
goto err;
|
|
}
|
|
|
|
if (dir == DMA_FROM_DEVICE) {
|
|
src_dma = cdns_ctrl->io.dma;
|
|
dst_dma = buf_dma;
|
|
} else {
|
|
src_dma = buf_dma;
|
|
dst_dma = cdns_ctrl->io.dma;
|
|
}
|
|
|
|
tx = dmaengine_prep_dma_memcpy(cdns_ctrl->dmac, dst_dma, src_dma, len,
|
|
DMA_CTRL_ACK | DMA_PREP_INTERRUPT);
|
|
if (!tx) {
|
|
dev_err(cdns_ctrl->dev, "Failed to prepare DMA memcpy\n");
|
|
goto err_unmap;
|
|
}
|
|
|
|
tx->callback = cadence_nand_slave_dma_transfer_finished;
|
|
tx->callback_param = &finished;
|
|
|
|
cookie = dmaengine_submit(tx);
|
|
if (dma_submit_error(cookie)) {
|
|
dev_err(cdns_ctrl->dev, "Failed to do DMA tx_submit\n");
|
|
goto err_unmap;
|
|
}
|
|
|
|
dma_async_issue_pending(cdns_ctrl->dmac);
|
|
wait_for_completion(&finished);
|
|
|
|
dma_unmap_single(cdns_ctrl->dev, buf_dma, len, dir);
|
|
|
|
return 0;
|
|
|
|
err_unmap:
|
|
dma_unmap_single(cdns_ctrl->dev, buf_dma, len, dir);
|
|
|
|
err:
|
|
dev_dbg(cdns_ctrl->dev, "Fall back to CPU I/O\n");
|
|
|
|
return -EIO;
|
|
}
|
|
|
|
static int cadence_nand_read_buf(struct cdns_nand_ctrl *cdns_ctrl,
|
|
u8 *buf, int len)
|
|
{
|
|
u8 thread_nr = 0;
|
|
u32 sdma_size;
|
|
int status;
|
|
|
|
/* Wait until slave DMA interface is ready to data transfer. */
|
|
status = cadence_nand_wait_on_sdma(cdns_ctrl, &thread_nr, &sdma_size);
|
|
if (status)
|
|
return status;
|
|
|
|
if (!cdns_ctrl->caps1->has_dma) {
|
|
int len_in_words = len >> 2;
|
|
|
|
/* read alingment data */
|
|
ioread32_rep(cdns_ctrl->io.virt, buf, len_in_words);
|
|
if (sdma_size > len) {
|
|
/* read rest data from slave DMA interface if any */
|
|
ioread32_rep(cdns_ctrl->io.virt, cdns_ctrl->buf,
|
|
sdma_size / 4 - len_in_words);
|
|
/* copy rest of data */
|
|
memcpy(buf + (len_in_words << 2), cdns_ctrl->buf,
|
|
len - (len_in_words << 2));
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
if (cadence_nand_dma_buf_ok(cdns_ctrl, buf, len)) {
|
|
status = cadence_nand_slave_dma_transfer(cdns_ctrl, buf,
|
|
cdns_ctrl->io.dma,
|
|
len, DMA_FROM_DEVICE);
|
|
if (status == 0)
|
|
return 0;
|
|
|
|
dev_warn(cdns_ctrl->dev,
|
|
"Slave DMA transfer failed. Try again using bounce buffer.");
|
|
}
|
|
|
|
/* If DMA transfer is not possible or failed then use bounce buffer. */
|
|
status = cadence_nand_slave_dma_transfer(cdns_ctrl, cdns_ctrl->buf,
|
|
cdns_ctrl->io.dma,
|
|
sdma_size, DMA_FROM_DEVICE);
|
|
|
|
if (status) {
|
|
dev_err(cdns_ctrl->dev, "Slave DMA transfer failed");
|
|
return status;
|
|
}
|
|
|
|
memcpy(buf, cdns_ctrl->buf, len);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cadence_nand_write_buf(struct cdns_nand_ctrl *cdns_ctrl,
|
|
const u8 *buf, int len)
|
|
{
|
|
u8 thread_nr = 0;
|
|
u32 sdma_size;
|
|
int status;
|
|
|
|
/* Wait until slave DMA interface is ready to data transfer. */
|
|
status = cadence_nand_wait_on_sdma(cdns_ctrl, &thread_nr, &sdma_size);
|
|
if (status)
|
|
return status;
|
|
|
|
if (!cdns_ctrl->caps1->has_dma) {
|
|
int len_in_words = len >> 2;
|
|
|
|
iowrite32_rep(cdns_ctrl->io.virt, buf, len_in_words);
|
|
if (sdma_size > len) {
|
|
/* copy rest of data */
|
|
memcpy(cdns_ctrl->buf, buf + (len_in_words << 2),
|
|
len - (len_in_words << 2));
|
|
/* write all expected by nand controller data */
|
|
iowrite32_rep(cdns_ctrl->io.virt, cdns_ctrl->buf,
|
|
sdma_size / 4 - len_in_words);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
if (cadence_nand_dma_buf_ok(cdns_ctrl, buf, len)) {
|
|
status = cadence_nand_slave_dma_transfer(cdns_ctrl, (void *)buf,
|
|
cdns_ctrl->io.dma,
|
|
len, DMA_TO_DEVICE);
|
|
if (status == 0)
|
|
return 0;
|
|
|
|
dev_warn(cdns_ctrl->dev,
|
|
"Slave DMA transfer failed. Try again using bounce buffer.");
|
|
}
|
|
|
|
/* If DMA transfer is not possible or failed then use bounce buffer. */
|
|
memcpy(cdns_ctrl->buf, buf, len);
|
|
|
|
status = cadence_nand_slave_dma_transfer(cdns_ctrl, cdns_ctrl->buf,
|
|
cdns_ctrl->io.dma,
|
|
sdma_size, DMA_TO_DEVICE);
|
|
|
|
if (status)
|
|
dev_err(cdns_ctrl->dev, "Slave DMA transfer failed");
|
|
|
|
return status;
|
|
}
|
|
|
|
static int cadence_nand_force_byte_access(struct nand_chip *chip,
|
|
bool force_8bit)
|
|
{
|
|
struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
|
|
int status;
|
|
|
|
/*
|
|
* Callers of this function do not verify if the NAND is using a 16-bit
|
|
* an 8-bit bus for normal operations, so we need to take care of that
|
|
* here by leaving the configuration unchanged if the NAND does not have
|
|
* the NAND_BUSWIDTH_16 flag set.
|
|
*/
|
|
if (!(chip->options & NAND_BUSWIDTH_16))
|
|
return 0;
|
|
|
|
status = cadence_nand_set_access_width16(cdns_ctrl, !force_8bit);
|
|
|
|
return status;
|
|
}
|
|
|
|
static int cadence_nand_cmd_opcode(struct nand_chip *chip,
|
|
const struct nand_subop *subop)
|
|
{
|
|
struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
|
|
struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
|
|
const struct nand_op_instr *instr;
|
|
unsigned int op_id = 0;
|
|
u64 mini_ctrl_cmd = 0;
|
|
int ret;
|
|
|
|
instr = &subop->instrs[op_id];
|
|
|
|
if (instr->delay_ns > 0)
|
|
mini_ctrl_cmd |= GCMD_LAY_TWB;
|
|
|
|
mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INSTR,
|
|
GCMD_LAY_INSTR_CMD);
|
|
mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INPUT_CMD,
|
|
instr->ctx.cmd.opcode);
|
|
|
|
ret = cadence_nand_generic_cmd_send(cdns_ctrl,
|
|
cdns_chip->cs[chip->cur_cs],
|
|
mini_ctrl_cmd);
|
|
if (ret)
|
|
dev_err(cdns_ctrl->dev, "send cmd %x failed\n",
|
|
instr->ctx.cmd.opcode);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int cadence_nand_cmd_address(struct nand_chip *chip,
|
|
const struct nand_subop *subop)
|
|
{
|
|
struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
|
|
struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
|
|
const struct nand_op_instr *instr;
|
|
unsigned int op_id = 0;
|
|
u64 mini_ctrl_cmd = 0;
|
|
unsigned int offset, naddrs;
|
|
u64 address = 0;
|
|
const u8 *addrs;
|
|
int ret;
|
|
int i;
|
|
|
|
instr = &subop->instrs[op_id];
|
|
|
|
if (instr->delay_ns > 0)
|
|
mini_ctrl_cmd |= GCMD_LAY_TWB;
|
|
|
|
mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INSTR,
|
|
GCMD_LAY_INSTR_ADDR);
|
|
|
|
offset = nand_subop_get_addr_start_off(subop, op_id);
|
|
naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
|
|
addrs = &instr->ctx.addr.addrs[offset];
|
|
|
|
for (i = 0; i < naddrs; i++)
|
|
address |= (u64)addrs[i] << (8 * i);
|
|
|
|
mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INPUT_ADDR,
|
|
address);
|
|
mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INPUT_ADDR_SIZE,
|
|
naddrs - 1);
|
|
|
|
ret = cadence_nand_generic_cmd_send(cdns_ctrl,
|
|
cdns_chip->cs[chip->cur_cs],
|
|
mini_ctrl_cmd);
|
|
if (ret)
|
|
dev_err(cdns_ctrl->dev, "send address %llx failed\n", address);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int cadence_nand_cmd_erase(struct nand_chip *chip,
|
|
const struct nand_subop *subop)
|
|
{
|
|
unsigned int op_id;
|
|
|
|
if (subop->instrs[0].ctx.cmd.opcode == NAND_CMD_ERASE1) {
|
|
int i;
|
|
const struct nand_op_instr *instr = NULL;
|
|
unsigned int offset, naddrs;
|
|
const u8 *addrs;
|
|
u32 page = 0;
|
|
|
|
instr = &subop->instrs[1];
|
|
offset = nand_subop_get_addr_start_off(subop, 1);
|
|
naddrs = nand_subop_get_num_addr_cyc(subop, 1);
|
|
addrs = &instr->ctx.addr.addrs[offset];
|
|
|
|
for (i = 0; i < naddrs; i++)
|
|
page |= (u32)addrs[i] << (8 * i);
|
|
|
|
return cadence_nand_erase(chip, page);
|
|
}
|
|
|
|
/*
|
|
* If it is not an erase operation then handle operation
|
|
* by calling exec_op function.
|
|
*/
|
|
for (op_id = 0; op_id < subop->ninstrs; op_id++) {
|
|
int ret;
|
|
const struct nand_operation nand_op = {
|
|
.cs = chip->cur_cs,
|
|
.instrs = &subop->instrs[op_id],
|
|
.ninstrs = 1};
|
|
ret = chip->controller->ops->exec_op(chip, &nand_op, false);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cadence_nand_cmd_data(struct nand_chip *chip,
|
|
const struct nand_subop *subop)
|
|
{
|
|
struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
|
|
struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
|
|
const struct nand_op_instr *instr;
|
|
unsigned int offset, op_id = 0;
|
|
u64 mini_ctrl_cmd = 0;
|
|
int len = 0;
|
|
int ret;
|
|
|
|
instr = &subop->instrs[op_id];
|
|
|
|
if (instr->delay_ns > 0)
|
|
mini_ctrl_cmd |= GCMD_LAY_TWB;
|
|
|
|
mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INSTR,
|
|
GCMD_LAY_INSTR_DATA);
|
|
|
|
if (instr->type == NAND_OP_DATA_OUT_INSTR)
|
|
mini_ctrl_cmd |= FIELD_PREP(GCMD_DIR,
|
|
GCMD_DIR_WRITE);
|
|
|
|
len = nand_subop_get_data_len(subop, op_id);
|
|
offset = nand_subop_get_data_start_off(subop, op_id);
|
|
mini_ctrl_cmd |= FIELD_PREP(GCMD_SECT_CNT, 1);
|
|
mini_ctrl_cmd |= FIELD_PREP(GCMD_LAST_SIZE, len);
|
|
if (instr->ctx.data.force_8bit) {
|
|
ret = cadence_nand_force_byte_access(chip, true);
|
|
if (ret) {
|
|
dev_err(cdns_ctrl->dev,
|
|
"cannot change byte access generic data cmd failed\n");
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
ret = cadence_nand_generic_cmd_send(cdns_ctrl,
|
|
cdns_chip->cs[chip->cur_cs],
|
|
mini_ctrl_cmd);
|
|
if (ret) {
|
|
dev_err(cdns_ctrl->dev, "send generic data cmd failed\n");
|
|
return ret;
|
|
}
|
|
|
|
if (instr->type == NAND_OP_DATA_IN_INSTR) {
|
|
void *buf = instr->ctx.data.buf.in + offset;
|
|
|
|
ret = cadence_nand_read_buf(cdns_ctrl, buf, len);
|
|
} else {
|
|
const void *buf = instr->ctx.data.buf.out + offset;
|
|
|
|
ret = cadence_nand_write_buf(cdns_ctrl, buf, len);
|
|
}
|
|
|
|
if (ret) {
|
|
dev_err(cdns_ctrl->dev, "data transfer failed for generic command\n");
|
|
return ret;
|
|
}
|
|
|
|
if (instr->ctx.data.force_8bit) {
|
|
ret = cadence_nand_force_byte_access(chip, false);
|
|
if (ret) {
|
|
dev_err(cdns_ctrl->dev,
|
|
"cannot change byte access generic data cmd failed\n");
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int cadence_nand_cmd_waitrdy(struct nand_chip *chip,
|
|
const struct nand_subop *subop)
|
|
{
|
|
int status;
|
|
unsigned int op_id = 0;
|
|
struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
|
|
struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
|
|
const struct nand_op_instr *instr = &subop->instrs[op_id];
|
|
u32 timeout_us = instr->ctx.waitrdy.timeout_ms * 1000;
|
|
|
|
status = cadence_nand_wait_for_value(cdns_ctrl, RBN_SETINGS,
|
|
timeout_us,
|
|
BIT(cdns_chip->cs[chip->cur_cs]),
|
|
false);
|
|
return status;
|
|
}
|
|
|
|
static const struct nand_op_parser cadence_nand_op_parser = NAND_OP_PARSER(
|
|
NAND_OP_PARSER_PATTERN(
|
|
cadence_nand_cmd_erase,
|
|
NAND_OP_PARSER_PAT_CMD_ELEM(false),
|
|
NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ERASE_ADDRESS_CYC),
|
|
NAND_OP_PARSER_PAT_CMD_ELEM(false),
|
|
NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
|
|
NAND_OP_PARSER_PATTERN(
|
|
cadence_nand_cmd_opcode,
|
|
NAND_OP_PARSER_PAT_CMD_ELEM(false)),
|
|
NAND_OP_PARSER_PATTERN(
|
|
cadence_nand_cmd_address,
|
|
NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC)),
|
|
NAND_OP_PARSER_PATTERN(
|
|
cadence_nand_cmd_data,
|
|
NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_DATA_SIZE)),
|
|
NAND_OP_PARSER_PATTERN(
|
|
cadence_nand_cmd_data,
|
|
NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_DATA_SIZE)),
|
|
NAND_OP_PARSER_PATTERN(
|
|
cadence_nand_cmd_waitrdy,
|
|
NAND_OP_PARSER_PAT_WAITRDY_ELEM(false))
|
|
);
|
|
|
|
static int cadence_nand_exec_op(struct nand_chip *chip,
|
|
const struct nand_operation *op,
|
|
bool check_only)
|
|
{
|
|
if (!check_only) {
|
|
int status = cadence_nand_select_target(chip);
|
|
|
|
if (status)
|
|
return status;
|
|
}
|
|
|
|
return nand_op_parser_exec_op(chip, &cadence_nand_op_parser, op,
|
|
check_only);
|
|
}
|
|
|
|
static int cadence_nand_ooblayout_free(struct mtd_info *mtd, int section,
|
|
struct mtd_oob_region *oobregion)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
|
|
|
|
if (section)
|
|
return -ERANGE;
|
|
|
|
oobregion->offset = cdns_chip->bbm_len;
|
|
oobregion->length = cdns_chip->avail_oob_size
|
|
- cdns_chip->bbm_len;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cadence_nand_ooblayout_ecc(struct mtd_info *mtd, int section,
|
|
struct mtd_oob_region *oobregion)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
|
|
|
|
if (section)
|
|
return -ERANGE;
|
|
|
|
oobregion->offset = cdns_chip->avail_oob_size;
|
|
oobregion->length = chip->ecc.total;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct mtd_ooblayout_ops cadence_nand_ooblayout_ops = {
|
|
.free = cadence_nand_ooblayout_free,
|
|
.ecc = cadence_nand_ooblayout_ecc,
|
|
};
|
|
|
|
static int calc_cycl(u32 timing, u32 clock)
|
|
{
|
|
if (timing == 0 || clock == 0)
|
|
return 0;
|
|
|
|
if ((timing % clock) > 0)
|
|
return timing / clock;
|
|
else
|
|
return timing / clock - 1;
|
|
}
|
|
|
|
/* Calculate max data valid window. */
|
|
static inline u32 calc_tdvw_max(u32 trp_cnt, u32 clk_period, u32 trhoh_min,
|
|
u32 board_delay_skew_min, u32 ext_mode)
|
|
{
|
|
if (ext_mode == 0)
|
|
clk_period /= 2;
|
|
|
|
return (trp_cnt + 1) * clk_period + trhoh_min +
|
|
board_delay_skew_min;
|
|
}
|
|
|
|
/* Calculate data valid window. */
|
|
static inline u32 calc_tdvw(u32 trp_cnt, u32 clk_period, u32 trhoh_min,
|
|
u32 trea_max, u32 ext_mode)
|
|
{
|
|
if (ext_mode == 0)
|
|
clk_period /= 2;
|
|
|
|
return (trp_cnt + 1) * clk_period + trhoh_min - trea_max;
|
|
}
|
|
|
|
static int
|
|
cadence_nand_setup_data_interface(struct nand_chip *chip, int chipnr,
|
|
const struct nand_data_interface *conf)
|
|
{
|
|
const struct nand_sdr_timings *sdr;
|
|
struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
|
|
struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
|
|
struct cadence_nand_timings *t = &cdns_chip->timings;
|
|
u32 reg;
|
|
u32 board_delay = cdns_ctrl->board_delay;
|
|
u32 clk_period = DIV_ROUND_DOWN_ULL(1000000000000ULL,
|
|
cdns_ctrl->nf_clk_rate);
|
|
u32 tceh_cnt, tcs_cnt, tadl_cnt, tccs_cnt;
|
|
u32 tfeat_cnt, trhz_cnt, tvdly_cnt;
|
|
u32 trhw_cnt, twb_cnt, twh_cnt = 0, twhr_cnt;
|
|
u32 twp_cnt = 0, trp_cnt = 0, trh_cnt = 0;
|
|
u32 if_skew = cdns_ctrl->caps1->if_skew;
|
|
u32 board_delay_skew_min = board_delay - if_skew;
|
|
u32 board_delay_skew_max = board_delay + if_skew;
|
|
u32 dqs_sampl_res, phony_dqs_mod;
|
|
u32 tdvw, tdvw_min, tdvw_max;
|
|
u32 ext_rd_mode, ext_wr_mode;
|
|
u32 dll_phy_dqs_timing = 0, phony_dqs_timing = 0, rd_del_sel = 0;
|
|
u32 sampling_point;
|
|
|
|
sdr = nand_get_sdr_timings(conf);
|
|
if (IS_ERR(sdr))
|
|
return PTR_ERR(sdr);
|
|
|
|
memset(t, 0, sizeof(*t));
|
|
/* Sampling point calculation. */
|
|
|
|
if (cdns_ctrl->caps2.is_phy_type_dll)
|
|
phony_dqs_mod = 2;
|
|
else
|
|
phony_dqs_mod = 1;
|
|
|
|
dqs_sampl_res = clk_period / phony_dqs_mod;
|
|
|
|
tdvw_min = sdr->tREA_max + board_delay_skew_max;
|
|
/*
|
|
* The idea of those calculation is to get the optimum value
|
|
* for tRP and tRH timings. If it is NOT possible to sample data
|
|
* with optimal tRP/tRH settings, the parameters will be extended.
|
|
* If clk_period is 50ns (the lowest value) this condition is met
|
|
* for asynchronous timing modes 1, 2, 3, 4 and 5.
|
|
* If clk_period is 20ns the condition is met only
|
|
* for asynchronous timing mode 5.
|
|
*/
|
|
if (sdr->tRC_min <= clk_period &&
|
|
sdr->tRP_min <= (clk_period / 2) &&
|
|
sdr->tREH_min <= (clk_period / 2)) {
|
|
/* Performance mode. */
|
|
ext_rd_mode = 0;
|
|
tdvw = calc_tdvw(trp_cnt, clk_period, sdr->tRHOH_min,
|
|
sdr->tREA_max, ext_rd_mode);
|
|
tdvw_max = calc_tdvw_max(trp_cnt, clk_period, sdr->tRHOH_min,
|
|
board_delay_skew_min,
|
|
ext_rd_mode);
|
|
/*
|
|
* Check if data valid window and sampling point can be found
|
|
* and is not on the edge (ie. we have hold margin).
|
|
* If not extend the tRP timings.
|
|
*/
|
|
if (tdvw > 0) {
|
|
if (tdvw_max <= tdvw_min ||
|
|
(tdvw_max % dqs_sampl_res) == 0) {
|
|
/*
|
|
* No valid sampling point so the RE pulse need
|
|
* to be widen widening by half clock cycle.
|
|
*/
|
|
ext_rd_mode = 1;
|
|
}
|
|
} else {
|
|
/*
|
|
* There is no valid window
|
|
* to be able to sample data the tRP need to be widen.
|
|
* Very safe calculations are performed here.
|
|
*/
|
|
trp_cnt = (sdr->tREA_max + board_delay_skew_max
|
|
+ dqs_sampl_res) / clk_period;
|
|
ext_rd_mode = 1;
|
|
}
|
|
|
|
} else {
|
|
/* Extended read mode. */
|
|
u32 trh;
|
|
|
|
ext_rd_mode = 1;
|
|
trp_cnt = calc_cycl(sdr->tRP_min, clk_period);
|
|
trh = sdr->tRC_min - ((trp_cnt + 1) * clk_period);
|
|
if (sdr->tREH_min >= trh)
|
|
trh_cnt = calc_cycl(sdr->tREH_min, clk_period);
|
|
else
|
|
trh_cnt = calc_cycl(trh, clk_period);
|
|
|
|
tdvw = calc_tdvw(trp_cnt, clk_period, sdr->tRHOH_min,
|
|
sdr->tREA_max, ext_rd_mode);
|
|
/*
|
|
* Check if data valid window and sampling point can be found
|
|
* or if it is at the edge check if previous is valid
|
|
* - if not extend the tRP timings.
|
|
*/
|
|
if (tdvw > 0) {
|
|
tdvw_max = calc_tdvw_max(trp_cnt, clk_period,
|
|
sdr->tRHOH_min,
|
|
board_delay_skew_min,
|
|
ext_rd_mode);
|
|
|
|
if ((((tdvw_max / dqs_sampl_res)
|
|
* dqs_sampl_res) <= tdvw_min) ||
|
|
(((tdvw_max % dqs_sampl_res) == 0) &&
|
|
(((tdvw_max / dqs_sampl_res - 1)
|
|
* dqs_sampl_res) <= tdvw_min))) {
|
|
/*
|
|
* Data valid window width is lower than
|
|
* sampling resolution and do not hit any
|
|
* sampling point to be sure the sampling point
|
|
* will be found the RE low pulse width will be
|
|
* extended by one clock cycle.
|
|
*/
|
|
trp_cnt = trp_cnt + 1;
|
|
}
|
|
} else {
|
|
/*
|
|
* There is no valid window to be able to sample data.
|
|
* The tRP need to be widen.
|
|
* Very safe calculations are performed here.
|
|
*/
|
|
trp_cnt = (sdr->tREA_max + board_delay_skew_max
|
|
+ dqs_sampl_res) / clk_period;
|
|
}
|
|
}
|
|
|
|
tdvw_max = calc_tdvw_max(trp_cnt, clk_period,
|
|
sdr->tRHOH_min,
|
|
board_delay_skew_min, ext_rd_mode);
|
|
|
|
if (sdr->tWC_min <= clk_period &&
|
|
(sdr->tWP_min + if_skew) <= (clk_period / 2) &&
|
|
(sdr->tWH_min + if_skew) <= (clk_period / 2)) {
|
|
ext_wr_mode = 0;
|
|
} else {
|
|
u32 twh;
|
|
|
|
ext_wr_mode = 1;
|
|
twp_cnt = calc_cycl(sdr->tWP_min + if_skew, clk_period);
|
|
if ((twp_cnt + 1) * clk_period < (sdr->tALS_min + if_skew))
|
|
twp_cnt = calc_cycl(sdr->tALS_min + if_skew,
|
|
clk_period);
|
|
|
|
twh = (sdr->tWC_min - (twp_cnt + 1) * clk_period);
|
|
if (sdr->tWH_min >= twh)
|
|
twh = sdr->tWH_min;
|
|
|
|
twh_cnt = calc_cycl(twh + if_skew, clk_period);
|
|
}
|
|
|
|
reg = FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TRH, trh_cnt);
|
|
reg |= FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TRP, trp_cnt);
|
|
reg |= FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TWH, twh_cnt);
|
|
reg |= FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TWP, twp_cnt);
|
|
t->async_toggle_timings = reg;
|
|
dev_dbg(cdns_ctrl->dev, "ASYNC_TOGGLE_TIMINGS_SDR\t%x\n", reg);
|
|
|
|
tadl_cnt = calc_cycl((sdr->tADL_min + if_skew), clk_period);
|
|
tccs_cnt = calc_cycl((sdr->tCCS_min + if_skew), clk_period);
|
|
twhr_cnt = calc_cycl((sdr->tWHR_min + if_skew), clk_period);
|
|
trhw_cnt = calc_cycl((sdr->tRHW_min + if_skew), clk_period);
|
|
reg = FIELD_PREP(TIMINGS0_TADL, tadl_cnt);
|
|
|
|
/*
|
|
* If timing exceeds delay field in timing register
|
|
* then use maximum value.
|
|
*/
|
|
if (FIELD_FIT(TIMINGS0_TCCS, tccs_cnt))
|
|
reg |= FIELD_PREP(TIMINGS0_TCCS, tccs_cnt);
|
|
else
|
|
reg |= TIMINGS0_TCCS;
|
|
|
|
reg |= FIELD_PREP(TIMINGS0_TWHR, twhr_cnt);
|
|
reg |= FIELD_PREP(TIMINGS0_TRHW, trhw_cnt);
|
|
t->timings0 = reg;
|
|
dev_dbg(cdns_ctrl->dev, "TIMINGS0_SDR\t%x\n", reg);
|
|
|
|
/* The following is related to single signal so skew is not needed. */
|
|
trhz_cnt = calc_cycl(sdr->tRHZ_max, clk_period);
|
|
trhz_cnt = trhz_cnt + 1;
|
|
twb_cnt = calc_cycl((sdr->tWB_max + board_delay), clk_period);
|
|
/*
|
|
* Because of the two stage syncflop the value must be increased by 3
|
|
* first value is related with sync, second value is related
|
|
* with output if delay.
|
|
*/
|
|
twb_cnt = twb_cnt + 3 + 5;
|
|
/*
|
|
* The following is related to the we edge of the random data input
|
|
* sequence so skew is not needed.
|
|
*/
|
|
tvdly_cnt = calc_cycl(500000 + if_skew, clk_period);
|
|
reg = FIELD_PREP(TIMINGS1_TRHZ, trhz_cnt);
|
|
reg |= FIELD_PREP(TIMINGS1_TWB, twb_cnt);
|
|
reg |= FIELD_PREP(TIMINGS1_TVDLY, tvdly_cnt);
|
|
t->timings1 = reg;
|
|
dev_dbg(cdns_ctrl->dev, "TIMINGS1_SDR\t%x\n", reg);
|
|
|
|
tfeat_cnt = calc_cycl(sdr->tFEAT_max, clk_period);
|
|
if (tfeat_cnt < twb_cnt)
|
|
tfeat_cnt = twb_cnt;
|
|
|
|
tceh_cnt = calc_cycl(sdr->tCEH_min, clk_period);
|
|
tcs_cnt = calc_cycl((sdr->tCS_min + if_skew), clk_period);
|
|
|
|
reg = FIELD_PREP(TIMINGS2_TFEAT, tfeat_cnt);
|
|
reg |= FIELD_PREP(TIMINGS2_CS_HOLD_TIME, tceh_cnt);
|
|
reg |= FIELD_PREP(TIMINGS2_CS_SETUP_TIME, tcs_cnt);
|
|
t->timings2 = reg;
|
|
dev_dbg(cdns_ctrl->dev, "TIMINGS2_SDR\t%x\n", reg);
|
|
|
|
if (cdns_ctrl->caps2.is_phy_type_dll) {
|
|
reg = DLL_PHY_CTRL_DLL_RST_N;
|
|
if (ext_wr_mode)
|
|
reg |= DLL_PHY_CTRL_EXTENDED_WR_MODE;
|
|
if (ext_rd_mode)
|
|
reg |= DLL_PHY_CTRL_EXTENDED_RD_MODE;
|
|
|
|
reg |= FIELD_PREP(DLL_PHY_CTRL_RS_HIGH_WAIT_CNT, 7);
|
|
reg |= FIELD_PREP(DLL_PHY_CTRL_RS_IDLE_CNT, 7);
|
|
t->dll_phy_ctrl = reg;
|
|
dev_dbg(cdns_ctrl->dev, "DLL_PHY_CTRL_SDR\t%x\n", reg);
|
|
}
|
|
|
|
/* Sampling point calculation. */
|
|
if ((tdvw_max % dqs_sampl_res) > 0)
|
|
sampling_point = tdvw_max / dqs_sampl_res;
|
|
else
|
|
sampling_point = (tdvw_max / dqs_sampl_res - 1);
|
|
|
|
if (sampling_point * dqs_sampl_res > tdvw_min) {
|
|
dll_phy_dqs_timing =
|
|
FIELD_PREP(PHY_DQS_TIMING_DQS_SEL_OE_END, 4);
|
|
dll_phy_dqs_timing |= PHY_DQS_TIMING_USE_PHONY_DQS;
|
|
phony_dqs_timing = sampling_point / phony_dqs_mod;
|
|
|
|
if ((sampling_point % 2) > 0) {
|
|
dll_phy_dqs_timing |= PHY_DQS_TIMING_PHONY_DQS_SEL;
|
|
if ((tdvw_max % dqs_sampl_res) == 0)
|
|
/*
|
|
* Calculation for sampling point at the edge
|
|
* of data and being odd number.
|
|
*/
|
|
phony_dqs_timing = (tdvw_max / dqs_sampl_res)
|
|
/ phony_dqs_mod - 1;
|
|
|
|
if (!cdns_ctrl->caps2.is_phy_type_dll)
|
|
phony_dqs_timing--;
|
|
|
|
} else {
|
|
phony_dqs_timing--;
|
|
}
|
|
rd_del_sel = phony_dqs_timing + 3;
|
|
} else {
|
|
dev_warn(cdns_ctrl->dev,
|
|
"ERROR : cannot find valid sampling point\n");
|
|
}
|
|
|
|
reg = FIELD_PREP(PHY_CTRL_PHONY_DQS, phony_dqs_timing);
|
|
if (cdns_ctrl->caps2.is_phy_type_dll)
|
|
reg |= PHY_CTRL_SDR_DQS;
|
|
t->phy_ctrl = reg;
|
|
dev_dbg(cdns_ctrl->dev, "PHY_CTRL_REG_SDR\t%x\n", reg);
|
|
|
|
if (cdns_ctrl->caps2.is_phy_type_dll) {
|
|
dev_dbg(cdns_ctrl->dev, "PHY_TSEL_REG_SDR\t%x\n", 0);
|
|
dev_dbg(cdns_ctrl->dev, "PHY_DQ_TIMING_REG_SDR\t%x\n", 2);
|
|
dev_dbg(cdns_ctrl->dev, "PHY_DQS_TIMING_REG_SDR\t%x\n",
|
|
dll_phy_dqs_timing);
|
|
t->phy_dqs_timing = dll_phy_dqs_timing;
|
|
|
|
reg = FIELD_PREP(PHY_GATE_LPBK_CTRL_RDS, rd_del_sel);
|
|
dev_dbg(cdns_ctrl->dev, "PHY_GATE_LPBK_CTRL_REG_SDR\t%x\n",
|
|
reg);
|
|
t->phy_gate_lpbk_ctrl = reg;
|
|
|
|
dev_dbg(cdns_ctrl->dev, "PHY_DLL_MASTER_CTRL_REG_SDR\t%lx\n",
|
|
PHY_DLL_MASTER_CTRL_BYPASS_MODE);
|
|
dev_dbg(cdns_ctrl->dev, "PHY_DLL_SLAVE_CTRL_REG_SDR\t%x\n", 0);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cadence_nand_attach_chip(struct nand_chip *chip)
|
|
{
|
|
struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
|
|
struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
|
|
u32 ecc_size;
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
int ret;
|
|
|
|
if (chip->options & NAND_BUSWIDTH_16) {
|
|
ret = cadence_nand_set_access_width16(cdns_ctrl, true);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
chip->bbt_options |= NAND_BBT_USE_FLASH;
|
|
chip->bbt_options |= NAND_BBT_NO_OOB;
|
|
chip->ecc.mode = NAND_ECC_HW;
|
|
|
|
chip->options |= NAND_NO_SUBPAGE_WRITE;
|
|
|
|
cdns_chip->bbm_offs = chip->badblockpos;
|
|
cdns_chip->bbm_offs &= ~0x01;
|
|
/* this value should be even number */
|
|
cdns_chip->bbm_len = 2;
|
|
|
|
ret = nand_ecc_choose_conf(chip,
|
|
&cdns_ctrl->ecc_caps,
|
|
mtd->oobsize - cdns_chip->bbm_len);
|
|
if (ret) {
|
|
dev_err(cdns_ctrl->dev, "ECC configuration failed\n");
|
|
return ret;
|
|
}
|
|
|
|
dev_dbg(cdns_ctrl->dev,
|
|
"chosen ECC settings: step=%d, strength=%d, bytes=%d\n",
|
|
chip->ecc.size, chip->ecc.strength, chip->ecc.bytes);
|
|
|
|
/* Error correction configuration. */
|
|
cdns_chip->sector_size = chip->ecc.size;
|
|
cdns_chip->sector_count = mtd->writesize / cdns_chip->sector_size;
|
|
ecc_size = cdns_chip->sector_count * chip->ecc.bytes;
|
|
|
|
cdns_chip->avail_oob_size = mtd->oobsize - ecc_size;
|
|
|
|
if (cdns_chip->avail_oob_size > cdns_ctrl->bch_metadata_size)
|
|
cdns_chip->avail_oob_size = cdns_ctrl->bch_metadata_size;
|
|
|
|
if ((cdns_chip->avail_oob_size + cdns_chip->bbm_len + ecc_size)
|
|
> mtd->oobsize)
|
|
cdns_chip->avail_oob_size -= 4;
|
|
|
|
ret = cadence_nand_get_ecc_strength_idx(cdns_ctrl, chip->ecc.strength);
|
|
if (ret < 0)
|
|
return -EINVAL;
|
|
|
|
cdns_chip->corr_str_idx = (u8)ret;
|
|
|
|
if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
|
|
1000000,
|
|
CTRL_STATUS_CTRL_BUSY, true))
|
|
return -ETIMEDOUT;
|
|
|
|
cadence_nand_set_ecc_strength(cdns_ctrl,
|
|
cdns_chip->corr_str_idx);
|
|
|
|
cadence_nand_set_erase_detection(cdns_ctrl, true,
|
|
chip->ecc.strength);
|
|
|
|
/* Override the default read operations. */
|
|
chip->ecc.read_page = cadence_nand_read_page;
|
|
chip->ecc.read_page_raw = cadence_nand_read_page_raw;
|
|
chip->ecc.write_page = cadence_nand_write_page;
|
|
chip->ecc.write_page_raw = cadence_nand_write_page_raw;
|
|
chip->ecc.read_oob = cadence_nand_read_oob;
|
|
chip->ecc.write_oob = cadence_nand_write_oob;
|
|
chip->ecc.read_oob_raw = cadence_nand_read_oob_raw;
|
|
chip->ecc.write_oob_raw = cadence_nand_write_oob_raw;
|
|
|
|
if ((mtd->writesize + mtd->oobsize) > cdns_ctrl->buf_size)
|
|
cdns_ctrl->buf_size = mtd->writesize + mtd->oobsize;
|
|
|
|
/* Is 32-bit DMA supported? */
|
|
ret = dma_set_mask(cdns_ctrl->dev, DMA_BIT_MASK(32));
|
|
if (ret) {
|
|
dev_err(cdns_ctrl->dev, "no usable DMA configuration\n");
|
|
return ret;
|
|
}
|
|
|
|
mtd_set_ooblayout(mtd, &cadence_nand_ooblayout_ops);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct nand_controller_ops cadence_nand_controller_ops = {
|
|
.attach_chip = cadence_nand_attach_chip,
|
|
.exec_op = cadence_nand_exec_op,
|
|
.setup_data_interface = cadence_nand_setup_data_interface,
|
|
};
|
|
|
|
static int cadence_nand_chip_init(struct cdns_nand_ctrl *cdns_ctrl,
|
|
struct device_node *np)
|
|
{
|
|
struct cdns_nand_chip *cdns_chip;
|
|
struct mtd_info *mtd;
|
|
struct nand_chip *chip;
|
|
int nsels, ret, i;
|
|
u32 cs;
|
|
|
|
nsels = of_property_count_elems_of_size(np, "reg", sizeof(u32));
|
|
if (nsels <= 0) {
|
|
dev_err(cdns_ctrl->dev, "missing/invalid reg property\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Allocate the nand chip structure. */
|
|
cdns_chip = devm_kzalloc(cdns_ctrl->dev, sizeof(*cdns_chip) +
|
|
(nsels * sizeof(u8)),
|
|
GFP_KERNEL);
|
|
if (!cdns_chip) {
|
|
dev_err(cdns_ctrl->dev, "could not allocate chip structure\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
cdns_chip->nsels = nsels;
|
|
|
|
for (i = 0; i < nsels; i++) {
|
|
/* Retrieve CS id. */
|
|
ret = of_property_read_u32_index(np, "reg", i, &cs);
|
|
if (ret) {
|
|
dev_err(cdns_ctrl->dev,
|
|
"could not retrieve reg property: %d\n",
|
|
ret);
|
|
return ret;
|
|
}
|
|
|
|
if (cs >= cdns_ctrl->caps2.max_banks) {
|
|
dev_err(cdns_ctrl->dev,
|
|
"invalid reg value: %u (max CS = %d)\n",
|
|
cs, cdns_ctrl->caps2.max_banks);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (test_and_set_bit(cs, &cdns_ctrl->assigned_cs)) {
|
|
dev_err(cdns_ctrl->dev,
|
|
"CS %d already assigned\n", cs);
|
|
return -EINVAL;
|
|
}
|
|
|
|
cdns_chip->cs[i] = cs;
|
|
}
|
|
|
|
chip = &cdns_chip->chip;
|
|
chip->controller = &cdns_ctrl->controller;
|
|
nand_set_flash_node(chip, np);
|
|
|
|
mtd = nand_to_mtd(chip);
|
|
mtd->dev.parent = cdns_ctrl->dev;
|
|
|
|
/*
|
|
* Default to HW ECC engine mode. If the nand-ecc-mode property is given
|
|
* in the DT node, this entry will be overwritten in nand_scan_ident().
|
|
*/
|
|
chip->ecc.mode = NAND_ECC_HW;
|
|
|
|
ret = nand_scan(chip, cdns_chip->nsels);
|
|
if (ret) {
|
|
dev_err(cdns_ctrl->dev, "could not scan the nand chip\n");
|
|
return ret;
|
|
}
|
|
|
|
ret = mtd_device_register(mtd, NULL, 0);
|
|
if (ret) {
|
|
dev_err(cdns_ctrl->dev,
|
|
"failed to register mtd device: %d\n", ret);
|
|
nand_cleanup(chip);
|
|
return ret;
|
|
}
|
|
|
|
list_add_tail(&cdns_chip->node, &cdns_ctrl->chips);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void cadence_nand_chips_cleanup(struct cdns_nand_ctrl *cdns_ctrl)
|
|
{
|
|
struct cdns_nand_chip *entry, *temp;
|
|
|
|
list_for_each_entry_safe(entry, temp, &cdns_ctrl->chips, node) {
|
|
nand_release(&entry->chip);
|
|
list_del(&entry->node);
|
|
}
|
|
}
|
|
|
|
static int cadence_nand_chips_init(struct cdns_nand_ctrl *cdns_ctrl)
|
|
{
|
|
struct device_node *np = cdns_ctrl->dev->of_node;
|
|
struct device_node *nand_np;
|
|
int max_cs = cdns_ctrl->caps2.max_banks;
|
|
int nchips, ret;
|
|
|
|
nchips = of_get_child_count(np);
|
|
|
|
if (nchips > max_cs) {
|
|
dev_err(cdns_ctrl->dev,
|
|
"too many NAND chips: %d (max = %d CS)\n",
|
|
nchips, max_cs);
|
|
return -EINVAL;
|
|
}
|
|
|
|
for_each_child_of_node(np, nand_np) {
|
|
ret = cadence_nand_chip_init(cdns_ctrl, nand_np);
|
|
if (ret) {
|
|
of_node_put(nand_np);
|
|
cadence_nand_chips_cleanup(cdns_ctrl);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
cadence_nand_irq_cleanup(int irqnum, struct cdns_nand_ctrl *cdns_ctrl)
|
|
{
|
|
/* Disable interrupts. */
|
|
writel_relaxed(INTR_ENABLE_INTR_EN, cdns_ctrl->reg + INTR_ENABLE);
|
|
}
|
|
|
|
static int cadence_nand_init(struct cdns_nand_ctrl *cdns_ctrl)
|
|
{
|
|
dma_cap_mask_t mask;
|
|
int ret;
|
|
|
|
cdns_ctrl->cdma_desc = dma_alloc_coherent(cdns_ctrl->dev,
|
|
sizeof(*cdns_ctrl->cdma_desc),
|
|
&cdns_ctrl->dma_cdma_desc,
|
|
GFP_KERNEL);
|
|
if (!cdns_ctrl->dma_cdma_desc)
|
|
return -ENOMEM;
|
|
|
|
cdns_ctrl->buf_size = SZ_16K;
|
|
cdns_ctrl->buf = kmalloc(cdns_ctrl->buf_size, GFP_KERNEL);
|
|
if (!cdns_ctrl->buf) {
|
|
ret = -ENOMEM;
|
|
goto free_buf_desc;
|
|
}
|
|
|
|
if (devm_request_irq(cdns_ctrl->dev, cdns_ctrl->irq, cadence_nand_isr,
|
|
IRQF_SHARED, "cadence-nand-controller",
|
|
cdns_ctrl)) {
|
|
dev_err(cdns_ctrl->dev, "Unable to allocate IRQ\n");
|
|
ret = -ENODEV;
|
|
goto free_buf;
|
|
}
|
|
|
|
spin_lock_init(&cdns_ctrl->irq_lock);
|
|
init_completion(&cdns_ctrl->complete);
|
|
|
|
ret = cadence_nand_hw_init(cdns_ctrl);
|
|
if (ret)
|
|
goto disable_irq;
|
|
|
|
dma_cap_zero(mask);
|
|
dma_cap_set(DMA_MEMCPY, mask);
|
|
|
|
if (cdns_ctrl->caps1->has_dma) {
|
|
cdns_ctrl->dmac = dma_request_channel(mask, NULL, NULL);
|
|
if (!cdns_ctrl->dmac) {
|
|
dev_err(cdns_ctrl->dev,
|
|
"Unable to get a DMA channel\n");
|
|
ret = -EBUSY;
|
|
goto disable_irq;
|
|
}
|
|
}
|
|
|
|
nand_controller_init(&cdns_ctrl->controller);
|
|
INIT_LIST_HEAD(&cdns_ctrl->chips);
|
|
|
|
cdns_ctrl->controller.ops = &cadence_nand_controller_ops;
|
|
cdns_ctrl->curr_corr_str_idx = 0xFF;
|
|
|
|
ret = cadence_nand_chips_init(cdns_ctrl);
|
|
if (ret) {
|
|
dev_err(cdns_ctrl->dev, "Failed to register MTD: %d\n",
|
|
ret);
|
|
goto dma_release_chnl;
|
|
}
|
|
|
|
kfree(cdns_ctrl->buf);
|
|
cdns_ctrl->buf = kzalloc(cdns_ctrl->buf_size, GFP_KERNEL);
|
|
if (!cdns_ctrl->buf) {
|
|
ret = -ENOMEM;
|
|
goto dma_release_chnl;
|
|
}
|
|
|
|
return 0;
|
|
|
|
dma_release_chnl:
|
|
if (cdns_ctrl->dmac)
|
|
dma_release_channel(cdns_ctrl->dmac);
|
|
|
|
disable_irq:
|
|
cadence_nand_irq_cleanup(cdns_ctrl->irq, cdns_ctrl);
|
|
|
|
free_buf:
|
|
kfree(cdns_ctrl->buf);
|
|
|
|
free_buf_desc:
|
|
dma_free_coherent(cdns_ctrl->dev, sizeof(struct cadence_nand_cdma_desc),
|
|
cdns_ctrl->cdma_desc, cdns_ctrl->dma_cdma_desc);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Driver exit point. */
|
|
static void cadence_nand_remove(struct cdns_nand_ctrl *cdns_ctrl)
|
|
{
|
|
cadence_nand_chips_cleanup(cdns_ctrl);
|
|
cadence_nand_irq_cleanup(cdns_ctrl->irq, cdns_ctrl);
|
|
kfree(cdns_ctrl->buf);
|
|
dma_free_coherent(cdns_ctrl->dev, sizeof(struct cadence_nand_cdma_desc),
|
|
cdns_ctrl->cdma_desc, cdns_ctrl->dma_cdma_desc);
|
|
|
|
if (cdns_ctrl->dmac)
|
|
dma_release_channel(cdns_ctrl->dmac);
|
|
}
|
|
|
|
struct cadence_nand_dt {
|
|
struct cdns_nand_ctrl cdns_ctrl;
|
|
struct clk *clk;
|
|
};
|
|
|
|
static const struct cadence_nand_dt_devdata cadence_nand_default = {
|
|
.if_skew = 0,
|
|
.has_dma = 1,
|
|
};
|
|
|
|
static const struct of_device_id cadence_nand_dt_ids[] = {
|
|
{
|
|
.compatible = "cdns,hp-nfc",
|
|
.data = &cadence_nand_default
|
|
}, {}
|
|
};
|
|
|
|
MODULE_DEVICE_TABLE(of, cadence_nand_dt_ids);
|
|
|
|
static int cadence_nand_dt_probe(struct platform_device *ofdev)
|
|
{
|
|
struct resource *res;
|
|
struct cadence_nand_dt *dt;
|
|
struct cdns_nand_ctrl *cdns_ctrl;
|
|
int ret;
|
|
const struct of_device_id *of_id;
|
|
const struct cadence_nand_dt_devdata *devdata;
|
|
u32 val;
|
|
|
|
of_id = of_match_device(cadence_nand_dt_ids, &ofdev->dev);
|
|
if (of_id) {
|
|
ofdev->id_entry = of_id->data;
|
|
devdata = of_id->data;
|
|
} else {
|
|
pr_err("Failed to find the right device id.\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
dt = devm_kzalloc(&ofdev->dev, sizeof(*dt), GFP_KERNEL);
|
|
if (!dt)
|
|
return -ENOMEM;
|
|
|
|
cdns_ctrl = &dt->cdns_ctrl;
|
|
cdns_ctrl->caps1 = devdata;
|
|
|
|
cdns_ctrl->dev = &ofdev->dev;
|
|
cdns_ctrl->irq = platform_get_irq(ofdev, 0);
|
|
if (cdns_ctrl->irq < 0)
|
|
return cdns_ctrl->irq;
|
|
|
|
dev_info(cdns_ctrl->dev, "IRQ: nr %d\n", cdns_ctrl->irq);
|
|
|
|
cdns_ctrl->reg = devm_platform_ioremap_resource(ofdev, 0);
|
|
if (IS_ERR(cdns_ctrl->reg)) {
|
|
dev_err(&ofdev->dev, "devm_ioremap_resource res 0 failed\n");
|
|
return PTR_ERR(cdns_ctrl->reg);
|
|
}
|
|
|
|
res = platform_get_resource(ofdev, IORESOURCE_MEM, 1);
|
|
cdns_ctrl->io.dma = res->start;
|
|
cdns_ctrl->io.virt = devm_ioremap_resource(&ofdev->dev, res);
|
|
if (IS_ERR(cdns_ctrl->io.virt)) {
|
|
dev_err(cdns_ctrl->dev, "devm_ioremap_resource res 1 failed\n");
|
|
return PTR_ERR(cdns_ctrl->io.virt);
|
|
}
|
|
|
|
dt->clk = devm_clk_get(cdns_ctrl->dev, "nf_clk");
|
|
if (IS_ERR(dt->clk))
|
|
return PTR_ERR(dt->clk);
|
|
|
|
cdns_ctrl->nf_clk_rate = clk_get_rate(dt->clk);
|
|
|
|
ret = of_property_read_u32(ofdev->dev.of_node,
|
|
"cdns,board-delay-ps", &val);
|
|
if (ret) {
|
|
val = 4830;
|
|
dev_info(cdns_ctrl->dev,
|
|
"missing cdns,board-delay-ps property, %d was set\n",
|
|
val);
|
|
}
|
|
cdns_ctrl->board_delay = val;
|
|
|
|
ret = cadence_nand_init(cdns_ctrl);
|
|
if (ret)
|
|
return ret;
|
|
|
|
platform_set_drvdata(ofdev, dt);
|
|
return 0;
|
|
}
|
|
|
|
static int cadence_nand_dt_remove(struct platform_device *ofdev)
|
|
{
|
|
struct cadence_nand_dt *dt = platform_get_drvdata(ofdev);
|
|
|
|
cadence_nand_remove(&dt->cdns_ctrl);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct platform_driver cadence_nand_dt_driver = {
|
|
.probe = cadence_nand_dt_probe,
|
|
.remove = cadence_nand_dt_remove,
|
|
.driver = {
|
|
.name = "cadence-nand-controller",
|
|
.of_match_table = cadence_nand_dt_ids,
|
|
},
|
|
};
|
|
|
|
module_platform_driver(cadence_nand_dt_driver);
|
|
|
|
MODULE_AUTHOR("Piotr Sroka <piotrs@cadence.com>");
|
|
MODULE_LICENSE("GPL v2");
|
|
MODULE_DESCRIPTION("Driver for Cadence NAND flash controller");
|
|
|