linux_dsm_epyc7002/drivers/clk/st/clkgen-fsyn.c
Gabriel FERNANDEZ 5f7aa9071e clk: st: Support for QUADFS inside ClockGenB/C/D/E/F
The patch supports the 216/432/660 type Quad Frequency Synthesizers
used by ClockGenB/C/D/E/F

QUADFS clock : It includes support for all 216/432/660 type Quad
Frequency Synthesizers : implemented as Fixed Parent / Rate / Gate clock,
with clock rate calculated reading H/w settings done at BOOT.

QuadFS have 4 outputs : chan0 chan1 chan2 chan3

Signed-off-by: Pankaj Dev <pankaj.dev@st.com>
Signed-off-by: Gabriel Fernandez <gabriel.fernandez@st.com>
Signed-off-by: Mike Turquette <mturquette@linaro.org>
2014-03-25 15:59:09 -07:00

1040 lines
26 KiB
C

/*
* Copyright (C) 2014 STMicroelectronics R&D Ltd
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
*/
/*
* Authors:
* Stephen Gallimore <stephen.gallimore@st.com>,
* Pankaj Dev <pankaj.dev@st.com>.
*/
#include <linux/slab.h>
#include <linux/of_address.h>
#include <linux/clk-provider.h>
#include "clkgen.h"
/*
* Maximum input clock to the PLL before we divide it down by 2
* although in reality in actual systems this has never been seen to
* be used.
*/
#define QUADFS_NDIV_THRESHOLD 30000000
#define PLL_BW_GOODREF (0L)
#define PLL_BW_VBADREF (1L)
#define PLL_BW_BADREF (2L)
#define PLL_BW_VGOODREF (3L)
#define QUADFS_MAX_CHAN 4
struct stm_fs {
unsigned long ndiv;
unsigned long mdiv;
unsigned long pe;
unsigned long sdiv;
unsigned long nsdiv;
};
static struct stm_fs fs216c65_rtbl[] = {
{ .mdiv = 0x1f, .pe = 0x0, .sdiv = 0x7, .nsdiv = 0 }, /* 312.5 Khz */
{ .mdiv = 0x17, .pe = 0x25ed, .sdiv = 0x1, .nsdiv = 0 }, /* 27 MHz */
{ .mdiv = 0x1a, .pe = 0x7b36, .sdiv = 0x2, .nsdiv = 1 }, /* 36.87 MHz */
{ .mdiv = 0x13, .pe = 0x0, .sdiv = 0x2, .nsdiv = 1 }, /* 48 MHz */
{ .mdiv = 0x11, .pe = 0x1c72, .sdiv = 0x1, .nsdiv = 1 }, /* 108 MHz */
};
static struct stm_fs fs432c65_rtbl[] = {
{ .mdiv = 0x1f, .pe = 0x0, .sdiv = 0x7, .nsdiv = 0 }, /* 625 Khz */
{ .mdiv = 0x11, .pe = 0x1c72, .sdiv = 0x2, .nsdiv = 1 }, /* 108 MHz */
{ .mdiv = 0x19, .pe = 0x121a, .sdiv = 0x0, .nsdiv = 1 }, /* 297 MHz */
};
static struct stm_fs fs660c32_rtbl[] = {
{ .mdiv = 0x01, .pe = 0x2aaa, .sdiv = 0x8, .nsdiv = 0 }, /* 600 KHz */
{ .mdiv = 0x02, .pe = 0x3d33, .sdiv = 0x0, .nsdiv = 0 }, /* 148.5 Mhz */
{ .mdiv = 0x13, .pe = 0x5bcc, .sdiv = 0x0, .nsdiv = 1 }, /* 297 Mhz */
{ .mdiv = 0x0e, .pe = 0x1025, .sdiv = 0x0, .nsdiv = 1 }, /* 333 Mhz */
{ .mdiv = 0x0b, .pe = 0x715f, .sdiv = 0x0, .nsdiv = 1 }, /* 350 Mhz */
};
struct clkgen_quadfs_data {
bool reset_present;
bool bwfilter_present;
bool lockstatus_present;
bool nsdiv_present;
struct clkgen_field ndiv;
struct clkgen_field ref_bw;
struct clkgen_field nreset;
struct clkgen_field npda;
struct clkgen_field lock_status;
struct clkgen_field nsb[QUADFS_MAX_CHAN];
struct clkgen_field en[QUADFS_MAX_CHAN];
struct clkgen_field mdiv[QUADFS_MAX_CHAN];
struct clkgen_field pe[QUADFS_MAX_CHAN];
struct clkgen_field sdiv[QUADFS_MAX_CHAN];
struct clkgen_field nsdiv[QUADFS_MAX_CHAN];
const struct clk_ops *pll_ops;
struct stm_fs *rtbl;
u8 rtbl_cnt;
int (*get_rate)(unsigned long , struct stm_fs *,
unsigned long *);
};
static const struct clk_ops st_quadfs_pll_c65_ops;
static const struct clk_ops st_quadfs_pll_c32_ops;
static const struct clk_ops st_quadfs_fs216c65_ops;
static const struct clk_ops st_quadfs_fs432c65_ops;
static const struct clk_ops st_quadfs_fs660c32_ops;
static int clk_fs216c65_get_rate(unsigned long, struct stm_fs *,
unsigned long *);
static int clk_fs432c65_get_rate(unsigned long, struct stm_fs *,
unsigned long *);
static int clk_fs660c32_dig_get_rate(unsigned long, struct stm_fs *,
unsigned long *);
/*
* Values for all of the standalone instances of this clock
* generator found in STiH415 and STiH416 SYSCFG register banks. Note
* that the individual channel standby control bits (nsb) are in the
* first register along with the PLL control bits.
*/
static struct clkgen_quadfs_data st_fs216c65_416 = {
/* 416 specific */
.npda = CLKGEN_FIELD(0x0, 0x1, 14),
.nsb = { CLKGEN_FIELD(0x0, 0x1, 10),
CLKGEN_FIELD(0x0, 0x1, 11),
CLKGEN_FIELD(0x0, 0x1, 12),
CLKGEN_FIELD(0x0, 0x1, 13) },
.nsdiv_present = true,
.nsdiv = { CLKGEN_FIELD(0x0, 0x1, 18),
CLKGEN_FIELD(0x0, 0x1, 19),
CLKGEN_FIELD(0x0, 0x1, 20),
CLKGEN_FIELD(0x0, 0x1, 21) },
.mdiv = { CLKGEN_FIELD(0x4, 0x1f, 0),
CLKGEN_FIELD(0x14, 0x1f, 0),
CLKGEN_FIELD(0x24, 0x1f, 0),
CLKGEN_FIELD(0x34, 0x1f, 0) },
.en = { CLKGEN_FIELD(0x10, 0x1, 0),
CLKGEN_FIELD(0x20, 0x1, 0),
CLKGEN_FIELD(0x30, 0x1, 0),
CLKGEN_FIELD(0x40, 0x1, 0) },
.ndiv = CLKGEN_FIELD(0x0, 0x1, 15),
.bwfilter_present = true,
.ref_bw = CLKGEN_FIELD(0x0, 0x3, 16),
.pe = { CLKGEN_FIELD(0x8, 0xffff, 0),
CLKGEN_FIELD(0x18, 0xffff, 0),
CLKGEN_FIELD(0x28, 0xffff, 0),
CLKGEN_FIELD(0x38, 0xffff, 0) },
.sdiv = { CLKGEN_FIELD(0xC, 0x7, 0),
CLKGEN_FIELD(0x1C, 0x7, 0),
CLKGEN_FIELD(0x2C, 0x7, 0),
CLKGEN_FIELD(0x3C, 0x7, 0) },
.pll_ops = &st_quadfs_pll_c65_ops,
.rtbl = fs216c65_rtbl,
.rtbl_cnt = ARRAY_SIZE(fs216c65_rtbl),
.get_rate = clk_fs216c65_get_rate,
};
static struct clkgen_quadfs_data st_fs432c65_416 = {
.npda = CLKGEN_FIELD(0x0, 0x1, 14),
.nsb = { CLKGEN_FIELD(0x0, 0x1, 10),
CLKGEN_FIELD(0x0, 0x1, 11),
CLKGEN_FIELD(0x0, 0x1, 12),
CLKGEN_FIELD(0x0, 0x1, 13) },
.nsdiv_present = true,
.nsdiv = { CLKGEN_FIELD(0x0, 0x1, 18),
CLKGEN_FIELD(0x0, 0x1, 19),
CLKGEN_FIELD(0x0, 0x1, 20),
CLKGEN_FIELD(0x0, 0x1, 21) },
.mdiv = { CLKGEN_FIELD(0x4, 0x1f, 0),
CLKGEN_FIELD(0x14, 0x1f, 0),
CLKGEN_FIELD(0x24, 0x1f, 0),
CLKGEN_FIELD(0x34, 0x1f, 0) },
.en = { CLKGEN_FIELD(0x10, 0x1, 0),
CLKGEN_FIELD(0x20, 0x1, 0),
CLKGEN_FIELD(0x30, 0x1, 0),
CLKGEN_FIELD(0x40, 0x1, 0) },
.ndiv = CLKGEN_FIELD(0x0, 0x1, 15),
.bwfilter_present = true,
.ref_bw = CLKGEN_FIELD(0x0, 0x3, 16),
.pe = { CLKGEN_FIELD(0x8, 0xffff, 0),
CLKGEN_FIELD(0x18, 0xffff, 0),
CLKGEN_FIELD(0x28, 0xffff, 0),
CLKGEN_FIELD(0x38, 0xffff, 0) },
.sdiv = { CLKGEN_FIELD(0xC, 0x7, 0),
CLKGEN_FIELD(0x1C, 0x7, 0),
CLKGEN_FIELD(0x2C, 0x7, 0),
CLKGEN_FIELD(0x3C, 0x7, 0) },
.pll_ops = &st_quadfs_pll_c65_ops,
.rtbl = fs432c65_rtbl,
.rtbl_cnt = ARRAY_SIZE(fs432c65_rtbl),
.get_rate = clk_fs432c65_get_rate,
};
static struct clkgen_quadfs_data st_fs660c32_E_416 = {
.npda = CLKGEN_FIELD(0x0, 0x1, 14),
.nsb = { CLKGEN_FIELD(0x0, 0x1, 10),
CLKGEN_FIELD(0x0, 0x1, 11),
CLKGEN_FIELD(0x0, 0x1, 12),
CLKGEN_FIELD(0x0, 0x1, 13) },
.nsdiv_present = true,
.nsdiv = { CLKGEN_FIELD(0x0, 0x1, 18),
CLKGEN_FIELD(0x0, 0x1, 19),
CLKGEN_FIELD(0x0, 0x1, 20),
CLKGEN_FIELD(0x0, 0x1, 21) },
.mdiv = { CLKGEN_FIELD(0x4, 0x1f, 0),
CLKGEN_FIELD(0x14, 0x1f, 0),
CLKGEN_FIELD(0x24, 0x1f, 0),
CLKGEN_FIELD(0x34, 0x1f, 0) },
.en = { CLKGEN_FIELD(0x10, 0x1, 0),
CLKGEN_FIELD(0x20, 0x1, 0),
CLKGEN_FIELD(0x30, 0x1, 0),
CLKGEN_FIELD(0x40, 0x1, 0) },
.ndiv = CLKGEN_FIELD(0x0, 0x7, 15),
.pe = { CLKGEN_FIELD(0x8, 0x7fff, 0),
CLKGEN_FIELD(0x18, 0x7fff, 0),
CLKGEN_FIELD(0x28, 0x7fff, 0),
CLKGEN_FIELD(0x38, 0x7fff, 0) },
.sdiv = { CLKGEN_FIELD(0xC, 0xf, 0),
CLKGEN_FIELD(0x1C, 0xf, 0),
CLKGEN_FIELD(0x2C, 0xf, 0),
CLKGEN_FIELD(0x3C, 0xf, 0) },
.lockstatus_present = true,
.lock_status = CLKGEN_FIELD(0xAC, 0x1, 0),
.pll_ops = &st_quadfs_pll_c32_ops,
.rtbl = fs660c32_rtbl,
.rtbl_cnt = ARRAY_SIZE(fs660c32_rtbl),
.get_rate = clk_fs660c32_dig_get_rate,
};
static struct clkgen_quadfs_data st_fs660c32_F_416 = {
.npda = CLKGEN_FIELD(0x0, 0x1, 14),
.nsb = { CLKGEN_FIELD(0x0, 0x1, 10),
CLKGEN_FIELD(0x0, 0x1, 11),
CLKGEN_FIELD(0x0, 0x1, 12),
CLKGEN_FIELD(0x0, 0x1, 13) },
.nsdiv_present = true,
.nsdiv = { CLKGEN_FIELD(0x0, 0x1, 18),
CLKGEN_FIELD(0x0, 0x1, 19),
CLKGEN_FIELD(0x0, 0x1, 20),
CLKGEN_FIELD(0x0, 0x1, 21) },
.mdiv = { CLKGEN_FIELD(0x4, 0x1f, 0),
CLKGEN_FIELD(0x14, 0x1f, 0),
CLKGEN_FIELD(0x24, 0x1f, 0),
CLKGEN_FIELD(0x34, 0x1f, 0) },
.en = { CLKGEN_FIELD(0x10, 0x1, 0),
CLKGEN_FIELD(0x20, 0x1, 0),
CLKGEN_FIELD(0x30, 0x1, 0),
CLKGEN_FIELD(0x40, 0x1, 0) },
.ndiv = CLKGEN_FIELD(0x0, 0x7, 15),
.pe = { CLKGEN_FIELD(0x8, 0x7fff, 0),
CLKGEN_FIELD(0x18, 0x7fff, 0),
CLKGEN_FIELD(0x28, 0x7fff, 0),
CLKGEN_FIELD(0x38, 0x7fff, 0) },
.sdiv = { CLKGEN_FIELD(0xC, 0xf, 0),
CLKGEN_FIELD(0x1C, 0xf, 0),
CLKGEN_FIELD(0x2C, 0xf, 0),
CLKGEN_FIELD(0x3C, 0xf, 0) },
.lockstatus_present = true,
.lock_status = CLKGEN_FIELD(0xEC, 0x1, 0),
.pll_ops = &st_quadfs_pll_c32_ops,
.rtbl = fs660c32_rtbl,
.rtbl_cnt = ARRAY_SIZE(fs660c32_rtbl),
.get_rate = clk_fs660c32_dig_get_rate,
};
/**
* DOC: A Frequency Synthesizer that multiples its input clock by a fixed factor
*
* Traits of this clock:
* prepare - clk_(un)prepare only ensures parent is (un)prepared
* enable - clk_enable and clk_disable are functional & control the Fsyn
* rate - inherits rate from parent. set_rate/round_rate/recalc_rate
* parent - fixed parent. No clk_set_parent support
*/
/**
* struct st_clk_quadfs_pll - A pll which outputs a fixed multiplier of
* its parent clock, found inside a type of
* ST quad channel frequency synthesizer block
*
* @hw: handle between common and hardware-specific interfaces.
* @ndiv: regmap field for the ndiv control.
* @regs_base: base address of the configuration registers.
* @lock: spinlock.
*
*/
struct st_clk_quadfs_pll {
struct clk_hw hw;
void __iomem *regs_base;
spinlock_t *lock;
struct clkgen_quadfs_data *data;
u32 ndiv;
};
#define to_quadfs_pll(_hw) container_of(_hw, struct st_clk_quadfs_pll, hw)
static int quadfs_pll_enable(struct clk_hw *hw)
{
struct st_clk_quadfs_pll *pll = to_quadfs_pll(hw);
unsigned long flags = 0, timeout = jiffies + msecs_to_jiffies(10);
if (pll->lock)
spin_lock_irqsave(pll->lock, flags);
/*
* Bring block out of reset if we have reset control.
*/
if (pll->data->reset_present)
CLKGEN_WRITE(pll, nreset, 1);
/*
* Use a fixed input clock noise bandwidth filter for the moment
*/
if (pll->data->bwfilter_present)
CLKGEN_WRITE(pll, ref_bw, PLL_BW_GOODREF);
CLKGEN_WRITE(pll, ndiv, pll->ndiv);
/*
* Power up the PLL
*/
CLKGEN_WRITE(pll, npda, 1);
if (pll->lock)
spin_unlock_irqrestore(pll->lock, flags);
if (pll->data->lockstatus_present)
while (!CLKGEN_READ(pll, lock_status)) {
if (time_after(jiffies, timeout))
return -ETIMEDOUT;
cpu_relax();
}
return 0;
}
static void quadfs_pll_disable(struct clk_hw *hw)
{
struct st_clk_quadfs_pll *pll = to_quadfs_pll(hw);
unsigned long flags = 0;
if (pll->lock)
spin_lock_irqsave(pll->lock, flags);
/*
* Powerdown the PLL and then put block into soft reset if we have
* reset control.
*/
CLKGEN_WRITE(pll, npda, 0);
if (pll->data->reset_present)
CLKGEN_WRITE(pll, nreset, 0);
if (pll->lock)
spin_unlock_irqrestore(pll->lock, flags);
}
static int quadfs_pll_is_enabled(struct clk_hw *hw)
{
struct st_clk_quadfs_pll *pll = to_quadfs_pll(hw);
u32 npda = CLKGEN_READ(pll, npda);
return !!npda;
}
int clk_fs660c32_vco_get_rate(unsigned long input, struct stm_fs *fs,
unsigned long *rate)
{
unsigned long nd = fs->ndiv + 16; /* ndiv value */
*rate = input * nd;
return 0;
}
static unsigned long quadfs_pll_fs660c32_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct st_clk_quadfs_pll *pll = to_quadfs_pll(hw);
unsigned long rate = 0;
struct stm_fs params;
params.ndiv = CLKGEN_READ(pll, ndiv);
if (clk_fs660c32_vco_get_rate(parent_rate, &params, &rate))
pr_err("%s:%s error calculating rate\n",
__clk_get_name(hw->clk), __func__);
pll->ndiv = params.ndiv;
return rate;
}
int clk_fs660c32_vco_get_params(unsigned long input,
unsigned long output, struct stm_fs *fs)
{
/* Formula
VCO frequency = (fin x ndiv) / pdiv
ndiv = VCOfreq * pdiv / fin
*/
unsigned long pdiv = 1, n;
/* Output clock range: 384Mhz to 660Mhz */
if (output < 384000000 || output > 660000000)
return -EINVAL;
if (input > 40000000)
/* This means that PDIV would be 2 instead of 1.
Not supported today. */
return -EINVAL;
input /= 1000;
output /= 1000;
n = output * pdiv / input;
if (n < 16)
n = 16;
fs->ndiv = n - 16; /* Converting formula value to reg value */
return 0;
}
static long quadfs_pll_fs660c32_round_rate(struct clk_hw *hw, unsigned long rate
, unsigned long *prate)
{
struct stm_fs params;
if (!clk_fs660c32_vco_get_params(*prate, rate, &params))
clk_fs660c32_vco_get_rate(*prate, &params, &rate);
pr_debug("%s: %s new rate %ld [sdiv=0x%x,md=0x%x,pe=0x%x,nsdiv3=%u]\n",
__func__, __clk_get_name(hw->clk),
rate, (unsigned int)params.sdiv,
(unsigned int)params.mdiv,
(unsigned int)params.pe, (unsigned int)params.nsdiv);
return rate;
}
static int quadfs_pll_fs660c32_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct st_clk_quadfs_pll *pll = to_quadfs_pll(hw);
struct stm_fs params;
long hwrate = 0;
unsigned long flags = 0;
if (!rate || !parent_rate)
return -EINVAL;
if (!clk_fs660c32_vco_get_params(parent_rate, rate, &params))
clk_fs660c32_vco_get_rate(parent_rate, &params, &hwrate);
pr_debug("%s: %s new rate %ld [ndiv=0x%x]\n",
__func__, __clk_get_name(hw->clk),
hwrate, (unsigned int)params.ndiv);
if (!hwrate)
return -EINVAL;
pll->ndiv = params.ndiv;
if (pll->lock)
spin_lock_irqsave(pll->lock, flags);
CLKGEN_WRITE(pll, ndiv, pll->ndiv);
if (pll->lock)
spin_unlock_irqrestore(pll->lock, flags);
return 0;
}
static const struct clk_ops st_quadfs_pll_c65_ops = {
.enable = quadfs_pll_enable,
.disable = quadfs_pll_disable,
.is_enabled = quadfs_pll_is_enabled,
};
static const struct clk_ops st_quadfs_pll_c32_ops = {
.enable = quadfs_pll_enable,
.disable = quadfs_pll_disable,
.is_enabled = quadfs_pll_is_enabled,
.recalc_rate = quadfs_pll_fs660c32_recalc_rate,
.round_rate = quadfs_pll_fs660c32_round_rate,
.set_rate = quadfs_pll_fs660c32_set_rate,
};
static struct clk * __init st_clk_register_quadfs_pll(
const char *name, const char *parent_name,
struct clkgen_quadfs_data *quadfs, void __iomem *reg,
spinlock_t *lock)
{
struct st_clk_quadfs_pll *pll;
struct clk *clk;
struct clk_init_data init;
/*
* Sanity check required pointers.
*/
if (WARN_ON(!name || !parent_name))
return ERR_PTR(-EINVAL);
pll = kzalloc(sizeof(*pll), GFP_KERNEL);
if (!pll)
return ERR_PTR(-ENOMEM);
init.name = name;
init.ops = quadfs->pll_ops;
init.flags = CLK_IS_BASIC;
init.parent_names = &parent_name;
init.num_parents = 1;
pll->data = quadfs;
pll->regs_base = reg;
pll->lock = lock;
pll->hw.init = &init;
clk = clk_register(NULL, &pll->hw);
if (IS_ERR(clk))
kfree(pll);
return clk;
}
/**
* DOC: A digital frequency synthesizer
*
* Traits of this clock:
* prepare - clk_(un)prepare only ensures parent is (un)prepared
* enable - clk_enable and clk_disable are functional
* rate - set rate is functional
* parent - fixed parent. No clk_set_parent support
*/
/**
* struct st_clk_quadfs_fsynth - One clock output from a four channel digital
* frequency synthesizer (fsynth) block.
*
* @hw: handle between common and hardware-specific interfaces
*
* @nsb: regmap field in the output control register for the digital
* standby of this fsynth channel. This control is active low so
* the channel is in standby when the control bit is cleared.
*
* @nsdiv: regmap field in the output control register for
* for the optional divide by 3 of this fsynth channel. This control
* is active low so the divide by 3 is active when the control bit is
* cleared and the divide is bypassed when the bit is set.
*/
struct st_clk_quadfs_fsynth {
struct clk_hw hw;
void __iomem *regs_base;
spinlock_t *lock;
struct clkgen_quadfs_data *data;
u32 chan;
/*
* Cached hardware values from set_rate so we can program the
* hardware in enable. There are two reasons for this:
*
* 1. The registers may not be writable until the parent has been
* enabled.
*
* 2. It restores the clock rate when a driver does an enable
* on PM restore, after a suspend to RAM has lost the hardware
* setup.
*/
u32 md;
u32 pe;
u32 sdiv;
u32 nsdiv;
};
#define to_quadfs_fsynth(_hw) \
container_of(_hw, struct st_clk_quadfs_fsynth, hw)
static void quadfs_fsynth_program_enable(struct st_clk_quadfs_fsynth *fs)
{
/*
* Pulse the program enable register lsb to make the hardware take
* notice of the new md/pe values with a glitchless transition.
*/
CLKGEN_WRITE(fs, en[fs->chan], 1);
CLKGEN_WRITE(fs, en[fs->chan], 0);
}
static void quadfs_fsynth_program_rate(struct st_clk_quadfs_fsynth *fs)
{
unsigned long flags = 0;
/*
* Ensure the md/pe parameters are ignored while we are
* reprogramming them so we can get a glitchless change
* when fine tuning the speed of a running clock.
*/
CLKGEN_WRITE(fs, en[fs->chan], 0);
CLKGEN_WRITE(fs, mdiv[fs->chan], fs->md);
CLKGEN_WRITE(fs, pe[fs->chan], fs->pe);
CLKGEN_WRITE(fs, sdiv[fs->chan], fs->sdiv);
if (fs->lock)
spin_lock_irqsave(fs->lock, flags);
if (fs->data->nsdiv_present)
CLKGEN_WRITE(fs, nsdiv[fs->chan], fs->nsdiv);
if (fs->lock)
spin_unlock_irqrestore(fs->lock, flags);
}
static int quadfs_fsynth_enable(struct clk_hw *hw)
{
struct st_clk_quadfs_fsynth *fs = to_quadfs_fsynth(hw);
unsigned long flags = 0;
pr_debug("%s: %s\n", __func__, __clk_get_name(hw->clk));
quadfs_fsynth_program_rate(fs);
if (fs->lock)
spin_lock_irqsave(fs->lock, flags);
CLKGEN_WRITE(fs, nsb[fs->chan], 1);
if (fs->lock)
spin_unlock_irqrestore(fs->lock, flags);
quadfs_fsynth_program_enable(fs);
return 0;
}
static void quadfs_fsynth_disable(struct clk_hw *hw)
{
struct st_clk_quadfs_fsynth *fs = to_quadfs_fsynth(hw);
unsigned long flags = 0;
pr_debug("%s: %s\n", __func__, __clk_get_name(hw->clk));
if (fs->lock)
spin_lock_irqsave(fs->lock, flags);
CLKGEN_WRITE(fs, nsb[fs->chan], 0);
if (fs->lock)
spin_unlock_irqrestore(fs->lock, flags);
}
static int quadfs_fsynth_is_enabled(struct clk_hw *hw)
{
struct st_clk_quadfs_fsynth *fs = to_quadfs_fsynth(hw);
u32 nsb = CLKGEN_READ(fs, nsb[fs->chan]);
pr_debug("%s: %s enable bit = 0x%x\n",
__func__, __clk_get_name(hw->clk), nsb);
return !!nsb;
}
#define P15 (uint64_t)(1 << 15)
static int clk_fs216c65_get_rate(unsigned long input, struct stm_fs *fs,
unsigned long *rate)
{
uint64_t res;
unsigned long ns;
unsigned long nd = 8; /* ndiv stuck at 0 => val = 8 */
unsigned long s;
long m;
m = fs->mdiv - 32;
s = 1 << (fs->sdiv + 1);
ns = (fs->nsdiv ? 1 : 3);
res = (uint64_t)(s * ns * P15 * (uint64_t)(m + 33));
res = res - (s * ns * fs->pe);
*rate = div64_u64(P15 * nd * input * 32, res);
return 0;
}
static int clk_fs432c65_get_rate(unsigned long input, struct stm_fs *fs,
unsigned long *rate)
{
uint64_t res;
unsigned long nd = 16; /* ndiv value; stuck at 0 (30Mhz input) */
long m;
unsigned long sd;
unsigned long ns;
m = fs->mdiv - 32;
sd = 1 << (fs->sdiv + 1);
ns = (fs->nsdiv ? 1 : 3);
res = (uint64_t)(sd * ns * P15 * (uint64_t)(m + 33));
res = res - (sd * ns * fs->pe);
*rate = div64_u64(P15 * nd * input * 32, res);
return 0;
}
#define P20 (uint64_t)(1 << 20)
static int clk_fs660c32_dig_get_rate(unsigned long input,
struct stm_fs *fs, unsigned long *rate)
{
unsigned long s = (1 << fs->sdiv);
unsigned long ns;
uint64_t res;
/*
* 'nsdiv' is a register value ('BIN') which is translated
* to a decimal value according to following rules.
*
* nsdiv ns.dec
* 0 3
* 1 1
*/
ns = (fs->nsdiv == 1) ? 1 : 3;
res = (P20 * (32 + fs->mdiv) + 32 * fs->pe) * s * ns;
*rate = (unsigned long)div64_u64(input * P20 * 32, res);
return 0;
}
static int quadfs_fsynt_get_hw_value_for_recalc(struct st_clk_quadfs_fsynth *fs,
struct stm_fs *params)
{
/*
* Get the initial hardware values for recalc_rate
*/
params->mdiv = CLKGEN_READ(fs, mdiv[fs->chan]);
params->pe = CLKGEN_READ(fs, pe[fs->chan]);
params->sdiv = CLKGEN_READ(fs, sdiv[fs->chan]);
if (fs->data->nsdiv_present)
params->nsdiv = CLKGEN_READ(fs, nsdiv[fs->chan]);
else
params->nsdiv = 1;
/*
* If All are NULL then assume no clock rate is programmed.
*/
if (!params->mdiv && !params->pe && !params->sdiv)
return 1;
fs->md = params->mdiv;
fs->pe = params->pe;
fs->sdiv = params->sdiv;
fs->nsdiv = params->nsdiv;
return 0;
}
static long quadfs_find_best_rate(struct clk_hw *hw, unsigned long drate,
unsigned long prate, struct stm_fs *params)
{
struct st_clk_quadfs_fsynth *fs = to_quadfs_fsynth(hw);
int (*clk_fs_get_rate)(unsigned long ,
struct stm_fs *, unsigned long *);
struct stm_fs prev_params;
unsigned long prev_rate, rate = 0;
unsigned long diff_rate, prev_diff_rate = ~0;
int index;
clk_fs_get_rate = fs->data->get_rate;
for (index = 0; index < fs->data->rtbl_cnt; index++) {
prev_rate = rate;
*params = fs->data->rtbl[index];
prev_params = *params;
clk_fs_get_rate(prate, &fs->data->rtbl[index], &rate);
diff_rate = abs(drate - rate);
if (diff_rate > prev_diff_rate) {
rate = prev_rate;
*params = prev_params;
break;
}
prev_diff_rate = diff_rate;
if (drate == rate)
return rate;
}
if (index == fs->data->rtbl_cnt)
*params = prev_params;
return rate;
}
static unsigned long quadfs_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct st_clk_quadfs_fsynth *fs = to_quadfs_fsynth(hw);
unsigned long rate = 0;
struct stm_fs params;
int (*clk_fs_get_rate)(unsigned long ,
struct stm_fs *, unsigned long *);
clk_fs_get_rate = fs->data->get_rate;
if (quadfs_fsynt_get_hw_value_for_recalc(fs, &params))
return 0;
if (clk_fs_get_rate(parent_rate, &params, &rate)) {
pr_err("%s:%s error calculating rate\n",
__clk_get_name(hw->clk), __func__);
}
pr_debug("%s:%s rate %lu\n", __clk_get_name(hw->clk), __func__, rate);
return rate;
}
static long quadfs_round_rate(struct clk_hw *hw, unsigned long rate,
unsigned long *prate)
{
struct stm_fs params;
rate = quadfs_find_best_rate(hw, rate, *prate, &params);
pr_debug("%s: %s new rate %ld [sdiv=0x%x,md=0x%x,pe=0x%x,nsdiv3=%u]\n",
__func__, __clk_get_name(hw->clk),
rate, (unsigned int)params.sdiv, (unsigned int)params.mdiv,
(unsigned int)params.pe, (unsigned int)params.nsdiv);
return rate;
}
static void quadfs_program_and_enable(struct st_clk_quadfs_fsynth *fs,
struct stm_fs *params)
{
fs->md = params->mdiv;
fs->pe = params->pe;
fs->sdiv = params->sdiv;
fs->nsdiv = params->nsdiv;
/*
* In some integrations you can only change the fsynth programming when
* the parent entity containing it is enabled.
*/
quadfs_fsynth_program_rate(fs);
quadfs_fsynth_program_enable(fs);
}
static int quadfs_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct st_clk_quadfs_fsynth *fs = to_quadfs_fsynth(hw);
struct stm_fs params;
long hwrate;
int uninitialized_var(i);
if (!rate || !parent_rate)
return -EINVAL;
memset(&params, 0, sizeof(struct stm_fs));
hwrate = quadfs_find_best_rate(hw, rate, parent_rate, &params);
if (!hwrate)
return -EINVAL;
quadfs_program_and_enable(fs, &params);
return 0;
}
static const struct clk_ops st_quadfs_ops = {
.enable = quadfs_fsynth_enable,
.disable = quadfs_fsynth_disable,
.is_enabled = quadfs_fsynth_is_enabled,
.round_rate = quadfs_round_rate,
.set_rate = quadfs_set_rate,
.recalc_rate = quadfs_recalc_rate,
};
static struct clk * __init st_clk_register_quadfs_fsynth(
const char *name, const char *parent_name,
struct clkgen_quadfs_data *quadfs, void __iomem *reg, u32 chan,
spinlock_t *lock)
{
struct st_clk_quadfs_fsynth *fs;
struct clk *clk;
struct clk_init_data init;
/*
* Sanity check required pointers, note that nsdiv3 is optional.
*/
if (WARN_ON(!name || !parent_name))
return ERR_PTR(-EINVAL);
fs = kzalloc(sizeof(*fs), GFP_KERNEL);
if (!fs)
return ERR_PTR(-ENOMEM);
init.name = name;
init.ops = &st_quadfs_ops;
init.flags = CLK_GET_RATE_NOCACHE | CLK_IS_BASIC;
init.parent_names = &parent_name;
init.num_parents = 1;
fs->data = quadfs;
fs->regs_base = reg;
fs->chan = chan;
fs->lock = lock;
fs->hw.init = &init;
clk = clk_register(NULL, &fs->hw);
if (IS_ERR(clk))
kfree(fs);
return clk;
}
static struct of_device_id quadfs_of_match[] = {
{
.compatible = "st,stih416-quadfs216",
.data = (void *)&st_fs216c65_416
},
{
.compatible = "st,stih416-quadfs432",
.data = (void *)&st_fs432c65_416
},
{
.compatible = "st,stih416-quadfs660-E",
.data = (void *)&st_fs660c32_E_416
},
{
.compatible = "st,stih416-quadfs660-F",
.data = (void *)&st_fs660c32_F_416
},
{}
};
static void __init st_of_create_quadfs_fsynths(
struct device_node *np, const char *pll_name,
struct clkgen_quadfs_data *quadfs, void __iomem *reg,
spinlock_t *lock)
{
struct clk_onecell_data *clk_data;
int fschan;
clk_data = kzalloc(sizeof(*clk_data), GFP_KERNEL);
if (!clk_data)
return;
clk_data->clk_num = QUADFS_MAX_CHAN;
clk_data->clks = kzalloc(QUADFS_MAX_CHAN * sizeof(struct clk *),
GFP_KERNEL);
if (!clk_data->clks) {
kfree(clk_data);
return;
}
for (fschan = 0; fschan < QUADFS_MAX_CHAN; fschan++) {
struct clk *clk;
const char *clk_name;
if (of_property_read_string_index(np, "clock-output-names",
fschan, &clk_name)) {
break;
}
/*
* If we read an empty clock name then the channel is unused
*/
if (*clk_name == '\0')
continue;
clk = st_clk_register_quadfs_fsynth(clk_name, pll_name,
quadfs, reg, fschan, lock);
/*
* If there was an error registering this clock output, clean
* up and move on to the next one.
*/
if (!IS_ERR(clk)) {
clk_data->clks[fschan] = clk;
pr_debug("%s: parent %s rate %u\n",
__clk_get_name(clk),
__clk_get_name(clk_get_parent(clk)),
(unsigned int)clk_get_rate(clk));
}
}
of_clk_add_provider(np, of_clk_src_onecell_get, clk_data);
}
static void __init st_of_quadfs_setup(struct device_node *np)
{
const struct of_device_id *match;
struct clk *clk;
const char *pll_name, *clk_parent_name;
void __iomem *reg;
spinlock_t *lock;
match = of_match_node(quadfs_of_match, np);
if (WARN_ON(!match))
return;
reg = of_iomap(np, 0);
if (!reg)
return;
clk_parent_name = of_clk_get_parent_name(np, 0);
if (!clk_parent_name)
return;
pll_name = kasprintf(GFP_KERNEL, "%s.pll", np->name);
if (!pll_name)
return;
lock = kzalloc(sizeof(*lock), GFP_KERNEL);
if (!lock)
goto err_exit;
spin_lock_init(lock);
clk = st_clk_register_quadfs_pll(pll_name, clk_parent_name,
(struct clkgen_quadfs_data *) match->data, reg, lock);
if (IS_ERR(clk))
goto err_exit;
else
pr_debug("%s: parent %s rate %u\n",
__clk_get_name(clk),
__clk_get_name(clk_get_parent(clk)),
(unsigned int)clk_get_rate(clk));
st_of_create_quadfs_fsynths(np, pll_name,
(struct clkgen_quadfs_data *)match->data,
reg, lock);
err_exit:
kfree(pll_name); /* No longer need local copy of the PLL name */
}
CLK_OF_DECLARE(quadfs, "st,quadfs", st_of_quadfs_setup);