linux_dsm_epyc7002/include/linux/page-flags.h
Vineet Gupta 3ca65c19dd mm: optimize PageHighMem() check
This came up when implementing HIHGMEM/PAE40 for ARC.  The kmap() /
kmap_atomic() generated code seemed needlessly bloated due to the way
PageHighMem() macro is implemented.  It derives the exact zone for page
and then does pointer subtraction with first zone to infer the zone_type.
The pointer arithmatic in turn generates the code bloat.

PageHighMem(page)
  is_highmem(page_zone(page))
     zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones

Instead use is_highmem_idx() to work on zone_type available in page flags

   ----- Before -----
80756348:	mov_s      r13,r0
8075634a:	ld_s       r2,[r13,0]
8075634c:	lsr_s      r2,r2,30
8075634e:	mpy        r2,r2,0x2a4
80756352:	add_s      r2,r2,0x80aef880
80756358:	ld_s       r3,[r2,28]
8075635a:	sub_s      r2,r2,r3
8075635c:	breq       r2,0x2a4,80756378 <kmap+0x48>
80756364:	breq       r2,0x548,80756378 <kmap+0x48>

   ----- After  -----
80756330:	mov_s      r13,r0
80756332:	ld_s       r2,[r13,0]
80756334:	lsr_s      r2,r2,30
80756336:	sub_s      r2,r2,1
80756338:	brlo       r2,2,80756348 <kmap+0x30>

For x86 defconfig build (32 bit only) it saves around 900 bytes.
For ARC defconfig with HIGHMEM, it saved around 2K bytes.

   ---->8-------
./scripts/bloat-o-meter x86/vmlinux-defconfig-pre x86/vmlinux-defconfig-post
add/remove: 0/0 grow/shrink: 0/36 up/down: 0/-934 (-934)
function                                     old     new   delta
saveable_page                                162     154      -8
saveable_highmem_page                        154     146      -8
skb_gro_reset_offset                         147     131     -16
...
...
__change_page_attr_set_clr                  1715    1678     -37
setup_data_read                              434     394     -40
mon_bin_event                               1967    1927     -40
swsusp_save                                 1148    1105     -43
_set_pages_array                             549     493     -56
   ---->8-------

e.g. For ARC kmap()

Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Jennifer Herbert <jennifer.herbert@citrix.com>
Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-05 19:34:48 -08:00

676 lines
20 KiB
C

/*
* Macros for manipulating and testing page->flags
*/
#ifndef PAGE_FLAGS_H
#define PAGE_FLAGS_H
#include <linux/types.h>
#include <linux/bug.h>
#include <linux/mmdebug.h>
#ifndef __GENERATING_BOUNDS_H
#include <linux/mm_types.h>
#include <generated/bounds.h>
#endif /* !__GENERATING_BOUNDS_H */
/*
* Various page->flags bits:
*
* PG_reserved is set for special pages, which can never be swapped out. Some
* of them might not even exist (eg empty_bad_page)...
*
* The PG_private bitflag is set on pagecache pages if they contain filesystem
* specific data (which is normally at page->private). It can be used by
* private allocations for its own usage.
*
* During initiation of disk I/O, PG_locked is set. This bit is set before I/O
* and cleared when writeback _starts_ or when read _completes_. PG_writeback
* is set before writeback starts and cleared when it finishes.
*
* PG_locked also pins a page in pagecache, and blocks truncation of the file
* while it is held.
*
* page_waitqueue(page) is a wait queue of all tasks waiting for the page
* to become unlocked.
*
* PG_uptodate tells whether the page's contents is valid. When a read
* completes, the page becomes uptodate, unless a disk I/O error happened.
*
* PG_referenced, PG_reclaim are used for page reclaim for anonymous and
* file-backed pagecache (see mm/vmscan.c).
*
* PG_error is set to indicate that an I/O error occurred on this page.
*
* PG_arch_1 is an architecture specific page state bit. The generic code
* guarantees that this bit is cleared for a page when it first is entered into
* the page cache.
*
* PG_highmem pages are not permanently mapped into the kernel virtual address
* space, they need to be kmapped separately for doing IO on the pages. The
* struct page (these bits with information) are always mapped into kernel
* address space...
*
* PG_hwpoison indicates that a page got corrupted in hardware and contains
* data with incorrect ECC bits that triggered a machine check. Accessing is
* not safe since it may cause another machine check. Don't touch!
*/
/*
* Don't use the *_dontuse flags. Use the macros. Otherwise you'll break
* locked- and dirty-page accounting.
*
* The page flags field is split into two parts, the main flags area
* which extends from the low bits upwards, and the fields area which
* extends from the high bits downwards.
*
* | FIELD | ... | FLAGS |
* N-1 ^ 0
* (NR_PAGEFLAGS)
*
* The fields area is reserved for fields mapping zone, node (for NUMA) and
* SPARSEMEM section (for variants of SPARSEMEM that require section ids like
* SPARSEMEM_EXTREME with !SPARSEMEM_VMEMMAP).
*/
enum pageflags {
PG_locked, /* Page is locked. Don't touch. */
PG_error,
PG_referenced,
PG_uptodate,
PG_dirty,
PG_lru,
PG_active,
PG_slab,
PG_owner_priv_1, /* Owner use. If pagecache, fs may use*/
PG_arch_1,
PG_reserved,
PG_private, /* If pagecache, has fs-private data */
PG_private_2, /* If pagecache, has fs aux data */
PG_writeback, /* Page is under writeback */
#ifdef CONFIG_PAGEFLAGS_EXTENDED
PG_head, /* A head page */
PG_tail, /* A tail page */
#else
PG_compound, /* A compound page */
#endif
PG_swapcache, /* Swap page: swp_entry_t in private */
PG_mappedtodisk, /* Has blocks allocated on-disk */
PG_reclaim, /* To be reclaimed asap */
PG_swapbacked, /* Page is backed by RAM/swap */
PG_unevictable, /* Page is "unevictable" */
#ifdef CONFIG_MMU
PG_mlocked, /* Page is vma mlocked */
#endif
#ifdef CONFIG_ARCH_USES_PG_UNCACHED
PG_uncached, /* Page has been mapped as uncached */
#endif
#ifdef CONFIG_MEMORY_FAILURE
PG_hwpoison, /* hardware poisoned page. Don't touch */
#endif
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
PG_compound_lock,
#endif
#if defined(CONFIG_IDLE_PAGE_TRACKING) && defined(CONFIG_64BIT)
PG_young,
PG_idle,
#endif
__NR_PAGEFLAGS,
/* Filesystems */
PG_checked = PG_owner_priv_1,
/* Two page bits are conscripted by FS-Cache to maintain local caching
* state. These bits are set on pages belonging to the netfs's inodes
* when those inodes are being locally cached.
*/
PG_fscache = PG_private_2, /* page backed by cache */
/* XEN */
/* Pinned in Xen as a read-only pagetable page. */
PG_pinned = PG_owner_priv_1,
/* Pinned as part of domain save (see xen_mm_pin_all()). */
PG_savepinned = PG_dirty,
/* Has a grant mapping of another (foreign) domain's page. */
PG_foreign = PG_owner_priv_1,
/* SLOB */
PG_slob_free = PG_private,
};
#ifndef __GENERATING_BOUNDS_H
/*
* Macros to create function definitions for page flags
*/
#define TESTPAGEFLAG(uname, lname) \
static inline int Page##uname(const struct page *page) \
{ return test_bit(PG_##lname, &page->flags); }
#define SETPAGEFLAG(uname, lname) \
static inline void SetPage##uname(struct page *page) \
{ set_bit(PG_##lname, &page->flags); }
#define CLEARPAGEFLAG(uname, lname) \
static inline void ClearPage##uname(struct page *page) \
{ clear_bit(PG_##lname, &page->flags); }
#define __SETPAGEFLAG(uname, lname) \
static inline void __SetPage##uname(struct page *page) \
{ __set_bit(PG_##lname, &page->flags); }
#define __CLEARPAGEFLAG(uname, lname) \
static inline void __ClearPage##uname(struct page *page) \
{ __clear_bit(PG_##lname, &page->flags); }
#define TESTSETFLAG(uname, lname) \
static inline int TestSetPage##uname(struct page *page) \
{ return test_and_set_bit(PG_##lname, &page->flags); }
#define TESTCLEARFLAG(uname, lname) \
static inline int TestClearPage##uname(struct page *page) \
{ return test_and_clear_bit(PG_##lname, &page->flags); }
#define __TESTCLEARFLAG(uname, lname) \
static inline int __TestClearPage##uname(struct page *page) \
{ return __test_and_clear_bit(PG_##lname, &page->flags); }
#define PAGEFLAG(uname, lname) TESTPAGEFLAG(uname, lname) \
SETPAGEFLAG(uname, lname) CLEARPAGEFLAG(uname, lname)
#define __PAGEFLAG(uname, lname) TESTPAGEFLAG(uname, lname) \
__SETPAGEFLAG(uname, lname) __CLEARPAGEFLAG(uname, lname)
#define TESTSCFLAG(uname, lname) \
TESTSETFLAG(uname, lname) TESTCLEARFLAG(uname, lname)
#define TESTPAGEFLAG_FALSE(uname) \
static inline int Page##uname(const struct page *page) { return 0; }
#define SETPAGEFLAG_NOOP(uname) \
static inline void SetPage##uname(struct page *page) { }
#define CLEARPAGEFLAG_NOOP(uname) \
static inline void ClearPage##uname(struct page *page) { }
#define __CLEARPAGEFLAG_NOOP(uname) \
static inline void __ClearPage##uname(struct page *page) { }
#define TESTSETFLAG_FALSE(uname) \
static inline int TestSetPage##uname(struct page *page) { return 0; }
#define TESTCLEARFLAG_FALSE(uname) \
static inline int TestClearPage##uname(struct page *page) { return 0; }
#define __TESTCLEARFLAG_FALSE(uname) \
static inline int __TestClearPage##uname(struct page *page) { return 0; }
#define PAGEFLAG_FALSE(uname) TESTPAGEFLAG_FALSE(uname) \
SETPAGEFLAG_NOOP(uname) CLEARPAGEFLAG_NOOP(uname)
#define TESTSCFLAG_FALSE(uname) \
TESTSETFLAG_FALSE(uname) TESTCLEARFLAG_FALSE(uname)
struct page; /* forward declaration */
TESTPAGEFLAG(Locked, locked)
PAGEFLAG(Error, error) TESTCLEARFLAG(Error, error)
PAGEFLAG(Referenced, referenced) TESTCLEARFLAG(Referenced, referenced)
__SETPAGEFLAG(Referenced, referenced)
PAGEFLAG(Dirty, dirty) TESTSCFLAG(Dirty, dirty) __CLEARPAGEFLAG(Dirty, dirty)
PAGEFLAG(LRU, lru) __CLEARPAGEFLAG(LRU, lru)
PAGEFLAG(Active, active) __CLEARPAGEFLAG(Active, active)
TESTCLEARFLAG(Active, active)
__PAGEFLAG(Slab, slab)
PAGEFLAG(Checked, checked) /* Used by some filesystems */
PAGEFLAG(Pinned, pinned) TESTSCFLAG(Pinned, pinned) /* Xen */
PAGEFLAG(SavePinned, savepinned); /* Xen */
PAGEFLAG(Foreign, foreign); /* Xen */
PAGEFLAG(Reserved, reserved) __CLEARPAGEFLAG(Reserved, reserved)
PAGEFLAG(SwapBacked, swapbacked) __CLEARPAGEFLAG(SwapBacked, swapbacked)
__SETPAGEFLAG(SwapBacked, swapbacked)
__PAGEFLAG(SlobFree, slob_free)
/*
* Private page markings that may be used by the filesystem that owns the page
* for its own purposes.
* - PG_private and PG_private_2 cause releasepage() and co to be invoked
*/
PAGEFLAG(Private, private) __SETPAGEFLAG(Private, private)
__CLEARPAGEFLAG(Private, private)
PAGEFLAG(Private2, private_2) TESTSCFLAG(Private2, private_2)
PAGEFLAG(OwnerPriv1, owner_priv_1) TESTCLEARFLAG(OwnerPriv1, owner_priv_1)
/*
* Only test-and-set exist for PG_writeback. The unconditional operators are
* risky: they bypass page accounting.
*/
TESTPAGEFLAG(Writeback, writeback) TESTSCFLAG(Writeback, writeback)
PAGEFLAG(MappedToDisk, mappedtodisk)
/* PG_readahead is only used for reads; PG_reclaim is only for writes */
PAGEFLAG(Reclaim, reclaim) TESTCLEARFLAG(Reclaim, reclaim)
PAGEFLAG(Readahead, reclaim) TESTCLEARFLAG(Readahead, reclaim)
#ifdef CONFIG_HIGHMEM
/*
* Must use a macro here due to header dependency issues. page_zone() is not
* available at this point.
*/
#define PageHighMem(__p) is_highmem_idx(page_zonenum(__p))
#else
PAGEFLAG_FALSE(HighMem)
#endif
#ifdef CONFIG_SWAP
PAGEFLAG(SwapCache, swapcache)
#else
PAGEFLAG_FALSE(SwapCache)
#endif
PAGEFLAG(Unevictable, unevictable) __CLEARPAGEFLAG(Unevictable, unevictable)
TESTCLEARFLAG(Unevictable, unevictable)
#ifdef CONFIG_MMU
PAGEFLAG(Mlocked, mlocked) __CLEARPAGEFLAG(Mlocked, mlocked)
TESTSCFLAG(Mlocked, mlocked) __TESTCLEARFLAG(Mlocked, mlocked)
#else
PAGEFLAG_FALSE(Mlocked) __CLEARPAGEFLAG_NOOP(Mlocked)
TESTSCFLAG_FALSE(Mlocked) __TESTCLEARFLAG_FALSE(Mlocked)
#endif
#ifdef CONFIG_ARCH_USES_PG_UNCACHED
PAGEFLAG(Uncached, uncached)
#else
PAGEFLAG_FALSE(Uncached)
#endif
#ifdef CONFIG_MEMORY_FAILURE
PAGEFLAG(HWPoison, hwpoison)
TESTSCFLAG(HWPoison, hwpoison)
#define __PG_HWPOISON (1UL << PG_hwpoison)
#else
PAGEFLAG_FALSE(HWPoison)
#define __PG_HWPOISON 0
#endif
#if defined(CONFIG_IDLE_PAGE_TRACKING) && defined(CONFIG_64BIT)
TESTPAGEFLAG(Young, young)
SETPAGEFLAG(Young, young)
TESTCLEARFLAG(Young, young)
PAGEFLAG(Idle, idle)
#endif
/*
* On an anonymous page mapped into a user virtual memory area,
* page->mapping points to its anon_vma, not to a struct address_space;
* with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
*
* On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
* the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
* and then page->mapping points, not to an anon_vma, but to a private
* structure which KSM associates with that merged page. See ksm.h.
*
* PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
*
* Please note that, confusingly, "page_mapping" refers to the inode
* address_space which maps the page from disk; whereas "page_mapped"
* refers to user virtual address space into which the page is mapped.
*/
#define PAGE_MAPPING_ANON 1
#define PAGE_MAPPING_KSM 2
#define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
static inline int PageAnon(struct page *page)
{
return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
}
#ifdef CONFIG_KSM
/*
* A KSM page is one of those write-protected "shared pages" or "merged pages"
* which KSM maps into multiple mms, wherever identical anonymous page content
* is found in VM_MERGEABLE vmas. It's a PageAnon page, pointing not to any
* anon_vma, but to that page's node of the stable tree.
*/
static inline int PageKsm(struct page *page)
{
return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) ==
(PAGE_MAPPING_ANON | PAGE_MAPPING_KSM);
}
#else
TESTPAGEFLAG_FALSE(Ksm)
#endif
u64 stable_page_flags(struct page *page);
static inline int PageUptodate(struct page *page)
{
int ret = test_bit(PG_uptodate, &(page)->flags);
/*
* Must ensure that the data we read out of the page is loaded
* _after_ we've loaded page->flags to check for PageUptodate.
* We can skip the barrier if the page is not uptodate, because
* we wouldn't be reading anything from it.
*
* See SetPageUptodate() for the other side of the story.
*/
if (ret)
smp_rmb();
return ret;
}
static inline void __SetPageUptodate(struct page *page)
{
smp_wmb();
__set_bit(PG_uptodate, &(page)->flags);
}
static inline void SetPageUptodate(struct page *page)
{
/*
* Memory barrier must be issued before setting the PG_uptodate bit,
* so that all previous stores issued in order to bring the page
* uptodate are actually visible before PageUptodate becomes true.
*/
smp_wmb();
set_bit(PG_uptodate, &(page)->flags);
}
CLEARPAGEFLAG(Uptodate, uptodate)
int test_clear_page_writeback(struct page *page);
int __test_set_page_writeback(struct page *page, bool keep_write);
#define test_set_page_writeback(page) \
__test_set_page_writeback(page, false)
#define test_set_page_writeback_keepwrite(page) \
__test_set_page_writeback(page, true)
static inline void set_page_writeback(struct page *page)
{
test_set_page_writeback(page);
}
static inline void set_page_writeback_keepwrite(struct page *page)
{
test_set_page_writeback_keepwrite(page);
}
#ifdef CONFIG_PAGEFLAGS_EXTENDED
/*
* System with lots of page flags available. This allows separate
* flags for PageHead() and PageTail() checks of compound pages so that bit
* tests can be used in performance sensitive paths. PageCompound is
* generally not used in hot code paths except arch/powerpc/mm/init_64.c
* and arch/powerpc/kvm/book3s_64_vio_hv.c which use it to detect huge pages
* and avoid handling those in real mode.
*/
__PAGEFLAG(Head, head) CLEARPAGEFLAG(Head, head)
__PAGEFLAG(Tail, tail)
static inline int PageCompound(struct page *page)
{
return page->flags & ((1L << PG_head) | (1L << PG_tail));
}
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
static inline void ClearPageCompound(struct page *page)
{
BUG_ON(!PageHead(page));
ClearPageHead(page);
}
#endif
#define PG_head_mask ((1L << PG_head))
#else
/*
* Reduce page flag use as much as possible by overlapping
* compound page flags with the flags used for page cache pages. Possible
* because PageCompound is always set for compound pages and not for
* pages on the LRU and/or pagecache.
*/
TESTPAGEFLAG(Compound, compound)
__SETPAGEFLAG(Head, compound) __CLEARPAGEFLAG(Head, compound)
/*
* PG_reclaim is used in combination with PG_compound to mark the
* head and tail of a compound page. This saves one page flag
* but makes it impossible to use compound pages for the page cache.
* The PG_reclaim bit would have to be used for reclaim or readahead
* if compound pages enter the page cache.
*
* PG_compound & PG_reclaim => Tail page
* PG_compound & ~PG_reclaim => Head page
*/
#define PG_head_mask ((1L << PG_compound))
#define PG_head_tail_mask ((1L << PG_compound) | (1L << PG_reclaim))
static inline int PageHead(struct page *page)
{
return ((page->flags & PG_head_tail_mask) == PG_head_mask);
}
static inline int PageTail(struct page *page)
{
return ((page->flags & PG_head_tail_mask) == PG_head_tail_mask);
}
static inline void __SetPageTail(struct page *page)
{
page->flags |= PG_head_tail_mask;
}
static inline void __ClearPageTail(struct page *page)
{
page->flags &= ~PG_head_tail_mask;
}
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
static inline void ClearPageCompound(struct page *page)
{
BUG_ON((page->flags & PG_head_tail_mask) != (1 << PG_compound));
clear_bit(PG_compound, &page->flags);
}
#endif
#endif /* !PAGEFLAGS_EXTENDED */
#ifdef CONFIG_HUGETLB_PAGE
int PageHuge(struct page *page);
int PageHeadHuge(struct page *page);
bool page_huge_active(struct page *page);
#else
TESTPAGEFLAG_FALSE(Huge)
TESTPAGEFLAG_FALSE(HeadHuge)
static inline bool page_huge_active(struct page *page)
{
return 0;
}
#endif
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
* PageHuge() only returns true for hugetlbfs pages, but not for
* normal or transparent huge pages.
*
* PageTransHuge() returns true for both transparent huge and
* hugetlbfs pages, but not normal pages. PageTransHuge() can only be
* called only in the core VM paths where hugetlbfs pages can't exist.
*/
static inline int PageTransHuge(struct page *page)
{
VM_BUG_ON_PAGE(PageTail(page), page);
return PageHead(page);
}
/*
* PageTransCompound returns true for both transparent huge pages
* and hugetlbfs pages, so it should only be called when it's known
* that hugetlbfs pages aren't involved.
*/
static inline int PageTransCompound(struct page *page)
{
return PageCompound(page);
}
/*
* PageTransTail returns true for both transparent huge pages
* and hugetlbfs pages, so it should only be called when it's known
* that hugetlbfs pages aren't involved.
*/
static inline int PageTransTail(struct page *page)
{
return PageTail(page);
}
#else
static inline int PageTransHuge(struct page *page)
{
return 0;
}
static inline int PageTransCompound(struct page *page)
{
return 0;
}
static inline int PageTransTail(struct page *page)
{
return 0;
}
#endif
/*
* PageBuddy() indicate that the page is free and in the buddy system
* (see mm/page_alloc.c).
*
* PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
* -2 so that an underflow of the page_mapcount() won't be mistaken
* for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
* efficiently by most CPU architectures.
*/
#define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
static inline int PageBuddy(struct page *page)
{
return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
}
static inline void __SetPageBuddy(struct page *page)
{
VM_BUG_ON_PAGE(atomic_read(&page->_mapcount) != -1, page);
atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
}
static inline void __ClearPageBuddy(struct page *page)
{
VM_BUG_ON_PAGE(!PageBuddy(page), page);
atomic_set(&page->_mapcount, -1);
}
#define PAGE_BALLOON_MAPCOUNT_VALUE (-256)
static inline int PageBalloon(struct page *page)
{
return atomic_read(&page->_mapcount) == PAGE_BALLOON_MAPCOUNT_VALUE;
}
static inline void __SetPageBalloon(struct page *page)
{
VM_BUG_ON_PAGE(atomic_read(&page->_mapcount) != -1, page);
atomic_set(&page->_mapcount, PAGE_BALLOON_MAPCOUNT_VALUE);
}
static inline void __ClearPageBalloon(struct page *page)
{
VM_BUG_ON_PAGE(!PageBalloon(page), page);
atomic_set(&page->_mapcount, -1);
}
/*
* If network-based swap is enabled, sl*b must keep track of whether pages
* were allocated from pfmemalloc reserves.
*/
static inline int PageSlabPfmemalloc(struct page *page)
{
VM_BUG_ON_PAGE(!PageSlab(page), page);
return PageActive(page);
}
static inline void SetPageSlabPfmemalloc(struct page *page)
{
VM_BUG_ON_PAGE(!PageSlab(page), page);
SetPageActive(page);
}
static inline void __ClearPageSlabPfmemalloc(struct page *page)
{
VM_BUG_ON_PAGE(!PageSlab(page), page);
__ClearPageActive(page);
}
static inline void ClearPageSlabPfmemalloc(struct page *page)
{
VM_BUG_ON_PAGE(!PageSlab(page), page);
ClearPageActive(page);
}
#ifdef CONFIG_MMU
#define __PG_MLOCKED (1 << PG_mlocked)
#else
#define __PG_MLOCKED 0
#endif
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
#define __PG_COMPOUND_LOCK (1 << PG_compound_lock)
#else
#define __PG_COMPOUND_LOCK 0
#endif
/*
* Flags checked when a page is freed. Pages being freed should not have
* these flags set. It they are, there is a problem.
*/
#define PAGE_FLAGS_CHECK_AT_FREE \
(1 << PG_lru | 1 << PG_locked | \
1 << PG_private | 1 << PG_private_2 | \
1 << PG_writeback | 1 << PG_reserved | \
1 << PG_slab | 1 << PG_swapcache | 1 << PG_active | \
1 << PG_unevictable | __PG_MLOCKED | \
__PG_COMPOUND_LOCK)
/*
* Flags checked when a page is prepped for return by the page allocator.
* Pages being prepped should not have these flags set. It they are set,
* there has been a kernel bug or struct page corruption.
*
* __PG_HWPOISON is exceptional because it needs to be kept beyond page's
* alloc-free cycle to prevent from reusing the page.
*/
#define PAGE_FLAGS_CHECK_AT_PREP \
(((1 << NR_PAGEFLAGS) - 1) & ~__PG_HWPOISON)
#define PAGE_FLAGS_PRIVATE \
(1 << PG_private | 1 << PG_private_2)
/**
* page_has_private - Determine if page has private stuff
* @page: The page to be checked
*
* Determine if a page has private stuff, indicating that release routines
* should be invoked upon it.
*/
static inline int page_has_private(struct page *page)
{
return !!(page->flags & PAGE_FLAGS_PRIVATE);
}
#endif /* !__GENERATING_BOUNDS_H */
#endif /* PAGE_FLAGS_H */