mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-22 12:00:28 +07:00
b17b01533b
We are going to split <linux/sched/debug.h> out of <linux/sched.h>, which will have to be picked up from other headers and a couple of .c files. Create a trivial placeholder <linux/sched/debug.h> file that just maps to <linux/sched.h> to make this patch obviously correct and bisectable. Include the new header in the files that are going to need it. Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
661 lines
17 KiB
C
661 lines
17 KiB
C
/*
|
|
* arch/arm64/kernel/probes/kprobes.c
|
|
*
|
|
* Kprobes support for ARM64
|
|
*
|
|
* Copyright (C) 2013 Linaro Limited.
|
|
* Author: Sandeepa Prabhu <sandeepa.prabhu@linaro.org>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*
|
|
*/
|
|
#include <linux/kasan.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/kprobes.h>
|
|
#include <linux/extable.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/stop_machine.h>
|
|
#include <linux/sched/debug.h>
|
|
#include <linux/stringify.h>
|
|
#include <asm/traps.h>
|
|
#include <asm/ptrace.h>
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/debug-monitors.h>
|
|
#include <asm/system_misc.h>
|
|
#include <asm/insn.h>
|
|
#include <linux/uaccess.h>
|
|
#include <asm/irq.h>
|
|
#include <asm/sections.h>
|
|
|
|
#include "decode-insn.h"
|
|
|
|
DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
|
|
DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
|
|
|
|
static void __kprobes
|
|
post_kprobe_handler(struct kprobe_ctlblk *, struct pt_regs *);
|
|
|
|
static void __kprobes arch_prepare_ss_slot(struct kprobe *p)
|
|
{
|
|
/* prepare insn slot */
|
|
p->ainsn.api.insn[0] = cpu_to_le32(p->opcode);
|
|
|
|
flush_icache_range((uintptr_t) (p->ainsn.api.insn),
|
|
(uintptr_t) (p->ainsn.api.insn) +
|
|
MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
|
|
|
|
/*
|
|
* Needs restoring of return address after stepping xol.
|
|
*/
|
|
p->ainsn.api.restore = (unsigned long) p->addr +
|
|
sizeof(kprobe_opcode_t);
|
|
}
|
|
|
|
static void __kprobes arch_prepare_simulate(struct kprobe *p)
|
|
{
|
|
/* This instructions is not executed xol. No need to adjust the PC */
|
|
p->ainsn.api.restore = 0;
|
|
}
|
|
|
|
static void __kprobes arch_simulate_insn(struct kprobe *p, struct pt_regs *regs)
|
|
{
|
|
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
|
|
|
|
if (p->ainsn.api.handler)
|
|
p->ainsn.api.handler((u32)p->opcode, (long)p->addr, regs);
|
|
|
|
/* single step simulated, now go for post processing */
|
|
post_kprobe_handler(kcb, regs);
|
|
}
|
|
|
|
int __kprobes arch_prepare_kprobe(struct kprobe *p)
|
|
{
|
|
unsigned long probe_addr = (unsigned long)p->addr;
|
|
extern char __start_rodata[];
|
|
extern char __end_rodata[];
|
|
|
|
if (probe_addr & 0x3)
|
|
return -EINVAL;
|
|
|
|
/* copy instruction */
|
|
p->opcode = le32_to_cpu(*p->addr);
|
|
|
|
if (in_exception_text(probe_addr))
|
|
return -EINVAL;
|
|
if (probe_addr >= (unsigned long) __start_rodata &&
|
|
probe_addr <= (unsigned long) __end_rodata)
|
|
return -EINVAL;
|
|
|
|
/* decode instruction */
|
|
switch (arm_kprobe_decode_insn(p->addr, &p->ainsn)) {
|
|
case INSN_REJECTED: /* insn not supported */
|
|
return -EINVAL;
|
|
|
|
case INSN_GOOD_NO_SLOT: /* insn need simulation */
|
|
p->ainsn.api.insn = NULL;
|
|
break;
|
|
|
|
case INSN_GOOD: /* instruction uses slot */
|
|
p->ainsn.api.insn = get_insn_slot();
|
|
if (!p->ainsn.api.insn)
|
|
return -ENOMEM;
|
|
break;
|
|
};
|
|
|
|
/* prepare the instruction */
|
|
if (p->ainsn.api.insn)
|
|
arch_prepare_ss_slot(p);
|
|
else
|
|
arch_prepare_simulate(p);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __kprobes patch_text(kprobe_opcode_t *addr, u32 opcode)
|
|
{
|
|
void *addrs[1];
|
|
u32 insns[1];
|
|
|
|
addrs[0] = (void *)addr;
|
|
insns[0] = (u32)opcode;
|
|
|
|
return aarch64_insn_patch_text(addrs, insns, 1);
|
|
}
|
|
|
|
/* arm kprobe: install breakpoint in text */
|
|
void __kprobes arch_arm_kprobe(struct kprobe *p)
|
|
{
|
|
patch_text(p->addr, BRK64_OPCODE_KPROBES);
|
|
}
|
|
|
|
/* disarm kprobe: remove breakpoint from text */
|
|
void __kprobes arch_disarm_kprobe(struct kprobe *p)
|
|
{
|
|
patch_text(p->addr, p->opcode);
|
|
}
|
|
|
|
void __kprobes arch_remove_kprobe(struct kprobe *p)
|
|
{
|
|
if (p->ainsn.api.insn) {
|
|
free_insn_slot(p->ainsn.api.insn, 0);
|
|
p->ainsn.api.insn = NULL;
|
|
}
|
|
}
|
|
|
|
static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
|
|
{
|
|
kcb->prev_kprobe.kp = kprobe_running();
|
|
kcb->prev_kprobe.status = kcb->kprobe_status;
|
|
}
|
|
|
|
static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
|
|
{
|
|
__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
|
|
kcb->kprobe_status = kcb->prev_kprobe.status;
|
|
}
|
|
|
|
static void __kprobes set_current_kprobe(struct kprobe *p)
|
|
{
|
|
__this_cpu_write(current_kprobe, p);
|
|
}
|
|
|
|
/*
|
|
* When PSTATE.D is set (masked), then software step exceptions can not be
|
|
* generated.
|
|
* SPSR's D bit shows the value of PSTATE.D immediately before the
|
|
* exception was taken. PSTATE.D is set while entering into any exception
|
|
* mode, however software clears it for any normal (none-debug-exception)
|
|
* mode in the exception entry. Therefore, when we are entering into kprobe
|
|
* breakpoint handler from any normal mode then SPSR.D bit is already
|
|
* cleared, however it is set when we are entering from any debug exception
|
|
* mode.
|
|
* Since we always need to generate single step exception after a kprobe
|
|
* breakpoint exception therefore we need to clear it unconditionally, when
|
|
* we become sure that the current breakpoint exception is for kprobe.
|
|
*/
|
|
static void __kprobes
|
|
spsr_set_debug_flag(struct pt_regs *regs, int mask)
|
|
{
|
|
unsigned long spsr = regs->pstate;
|
|
|
|
if (mask)
|
|
spsr |= PSR_D_BIT;
|
|
else
|
|
spsr &= ~PSR_D_BIT;
|
|
|
|
regs->pstate = spsr;
|
|
}
|
|
|
|
/*
|
|
* Interrupts need to be disabled before single-step mode is set, and not
|
|
* reenabled until after single-step mode ends.
|
|
* Without disabling interrupt on local CPU, there is a chance of
|
|
* interrupt occurrence in the period of exception return and start of
|
|
* out-of-line single-step, that result in wrongly single stepping
|
|
* into the interrupt handler.
|
|
*/
|
|
static void __kprobes kprobes_save_local_irqflag(struct kprobe_ctlblk *kcb,
|
|
struct pt_regs *regs)
|
|
{
|
|
kcb->saved_irqflag = regs->pstate;
|
|
regs->pstate |= PSR_I_BIT;
|
|
}
|
|
|
|
static void __kprobes kprobes_restore_local_irqflag(struct kprobe_ctlblk *kcb,
|
|
struct pt_regs *regs)
|
|
{
|
|
if (kcb->saved_irqflag & PSR_I_BIT)
|
|
regs->pstate |= PSR_I_BIT;
|
|
else
|
|
regs->pstate &= ~PSR_I_BIT;
|
|
}
|
|
|
|
static void __kprobes
|
|
set_ss_context(struct kprobe_ctlblk *kcb, unsigned long addr)
|
|
{
|
|
kcb->ss_ctx.ss_pending = true;
|
|
kcb->ss_ctx.match_addr = addr + sizeof(kprobe_opcode_t);
|
|
}
|
|
|
|
static void __kprobes clear_ss_context(struct kprobe_ctlblk *kcb)
|
|
{
|
|
kcb->ss_ctx.ss_pending = false;
|
|
kcb->ss_ctx.match_addr = 0;
|
|
}
|
|
|
|
static void __kprobes setup_singlestep(struct kprobe *p,
|
|
struct pt_regs *regs,
|
|
struct kprobe_ctlblk *kcb, int reenter)
|
|
{
|
|
unsigned long slot;
|
|
|
|
if (reenter) {
|
|
save_previous_kprobe(kcb);
|
|
set_current_kprobe(p);
|
|
kcb->kprobe_status = KPROBE_REENTER;
|
|
} else {
|
|
kcb->kprobe_status = KPROBE_HIT_SS;
|
|
}
|
|
|
|
|
|
if (p->ainsn.api.insn) {
|
|
/* prepare for single stepping */
|
|
slot = (unsigned long)p->ainsn.api.insn;
|
|
|
|
set_ss_context(kcb, slot); /* mark pending ss */
|
|
|
|
spsr_set_debug_flag(regs, 0);
|
|
|
|
/* IRQs and single stepping do not mix well. */
|
|
kprobes_save_local_irqflag(kcb, regs);
|
|
kernel_enable_single_step(regs);
|
|
instruction_pointer_set(regs, slot);
|
|
} else {
|
|
/* insn simulation */
|
|
arch_simulate_insn(p, regs);
|
|
}
|
|
}
|
|
|
|
static int __kprobes reenter_kprobe(struct kprobe *p,
|
|
struct pt_regs *regs,
|
|
struct kprobe_ctlblk *kcb)
|
|
{
|
|
switch (kcb->kprobe_status) {
|
|
case KPROBE_HIT_SSDONE:
|
|
case KPROBE_HIT_ACTIVE:
|
|
kprobes_inc_nmissed_count(p);
|
|
setup_singlestep(p, regs, kcb, 1);
|
|
break;
|
|
case KPROBE_HIT_SS:
|
|
case KPROBE_REENTER:
|
|
pr_warn("Unrecoverable kprobe detected at %p.\n", p->addr);
|
|
dump_kprobe(p);
|
|
BUG();
|
|
break;
|
|
default:
|
|
WARN_ON(1);
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static void __kprobes
|
|
post_kprobe_handler(struct kprobe_ctlblk *kcb, struct pt_regs *regs)
|
|
{
|
|
struct kprobe *cur = kprobe_running();
|
|
|
|
if (!cur)
|
|
return;
|
|
|
|
/* return addr restore if non-branching insn */
|
|
if (cur->ainsn.api.restore != 0)
|
|
instruction_pointer_set(regs, cur->ainsn.api.restore);
|
|
|
|
/* restore back original saved kprobe variables and continue */
|
|
if (kcb->kprobe_status == KPROBE_REENTER) {
|
|
restore_previous_kprobe(kcb);
|
|
return;
|
|
}
|
|
/* call post handler */
|
|
kcb->kprobe_status = KPROBE_HIT_SSDONE;
|
|
if (cur->post_handler) {
|
|
/* post_handler can hit breakpoint and single step
|
|
* again, so we enable D-flag for recursive exception.
|
|
*/
|
|
cur->post_handler(cur, regs, 0);
|
|
}
|
|
|
|
reset_current_kprobe();
|
|
}
|
|
|
|
int __kprobes kprobe_fault_handler(struct pt_regs *regs, unsigned int fsr)
|
|
{
|
|
struct kprobe *cur = kprobe_running();
|
|
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
|
|
|
|
switch (kcb->kprobe_status) {
|
|
case KPROBE_HIT_SS:
|
|
case KPROBE_REENTER:
|
|
/*
|
|
* We are here because the instruction being single
|
|
* stepped caused a page fault. We reset the current
|
|
* kprobe and the ip points back to the probe address
|
|
* and allow the page fault handler to continue as a
|
|
* normal page fault.
|
|
*/
|
|
instruction_pointer_set(regs, (unsigned long) cur->addr);
|
|
if (!instruction_pointer(regs))
|
|
BUG();
|
|
|
|
kernel_disable_single_step();
|
|
|
|
if (kcb->kprobe_status == KPROBE_REENTER)
|
|
restore_previous_kprobe(kcb);
|
|
else
|
|
reset_current_kprobe();
|
|
|
|
break;
|
|
case KPROBE_HIT_ACTIVE:
|
|
case KPROBE_HIT_SSDONE:
|
|
/*
|
|
* We increment the nmissed count for accounting,
|
|
* we can also use npre/npostfault count for accounting
|
|
* these specific fault cases.
|
|
*/
|
|
kprobes_inc_nmissed_count(cur);
|
|
|
|
/*
|
|
* We come here because instructions in the pre/post
|
|
* handler caused the page_fault, this could happen
|
|
* if handler tries to access user space by
|
|
* copy_from_user(), get_user() etc. Let the
|
|
* user-specified handler try to fix it first.
|
|
*/
|
|
if (cur->fault_handler && cur->fault_handler(cur, regs, fsr))
|
|
return 1;
|
|
|
|
/*
|
|
* In case the user-specified fault handler returned
|
|
* zero, try to fix up.
|
|
*/
|
|
if (fixup_exception(regs))
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
|
|
unsigned long val, void *data)
|
|
{
|
|
return NOTIFY_DONE;
|
|
}
|
|
|
|
static void __kprobes kprobe_handler(struct pt_regs *regs)
|
|
{
|
|
struct kprobe *p, *cur_kprobe;
|
|
struct kprobe_ctlblk *kcb;
|
|
unsigned long addr = instruction_pointer(regs);
|
|
|
|
kcb = get_kprobe_ctlblk();
|
|
cur_kprobe = kprobe_running();
|
|
|
|
p = get_kprobe((kprobe_opcode_t *) addr);
|
|
|
|
if (p) {
|
|
if (cur_kprobe) {
|
|
if (reenter_kprobe(p, regs, kcb))
|
|
return;
|
|
} else {
|
|
/* Probe hit */
|
|
set_current_kprobe(p);
|
|
kcb->kprobe_status = KPROBE_HIT_ACTIVE;
|
|
|
|
/*
|
|
* If we have no pre-handler or it returned 0, we
|
|
* continue with normal processing. If we have a
|
|
* pre-handler and it returned non-zero, it prepped
|
|
* for calling the break_handler below on re-entry,
|
|
* so get out doing nothing more here.
|
|
*
|
|
* pre_handler can hit a breakpoint and can step thru
|
|
* before return, keep PSTATE D-flag enabled until
|
|
* pre_handler return back.
|
|
*/
|
|
if (!p->pre_handler || !p->pre_handler(p, regs)) {
|
|
setup_singlestep(p, regs, kcb, 0);
|
|
return;
|
|
}
|
|
}
|
|
} else if ((le32_to_cpu(*(kprobe_opcode_t *) addr) ==
|
|
BRK64_OPCODE_KPROBES) && cur_kprobe) {
|
|
/* We probably hit a jprobe. Call its break handler. */
|
|
if (cur_kprobe->break_handler &&
|
|
cur_kprobe->break_handler(cur_kprobe, regs)) {
|
|
setup_singlestep(cur_kprobe, regs, kcb, 0);
|
|
return;
|
|
}
|
|
}
|
|
/*
|
|
* The breakpoint instruction was removed right
|
|
* after we hit it. Another cpu has removed
|
|
* either a probepoint or a debugger breakpoint
|
|
* at this address. In either case, no further
|
|
* handling of this interrupt is appropriate.
|
|
* Return back to original instruction, and continue.
|
|
*/
|
|
}
|
|
|
|
static int __kprobes
|
|
kprobe_ss_hit(struct kprobe_ctlblk *kcb, unsigned long addr)
|
|
{
|
|
if ((kcb->ss_ctx.ss_pending)
|
|
&& (kcb->ss_ctx.match_addr == addr)) {
|
|
clear_ss_context(kcb); /* clear pending ss */
|
|
return DBG_HOOK_HANDLED;
|
|
}
|
|
/* not ours, kprobes should ignore it */
|
|
return DBG_HOOK_ERROR;
|
|
}
|
|
|
|
int __kprobes
|
|
kprobe_single_step_handler(struct pt_regs *regs, unsigned int esr)
|
|
{
|
|
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
|
|
int retval;
|
|
|
|
/* return error if this is not our step */
|
|
retval = kprobe_ss_hit(kcb, instruction_pointer(regs));
|
|
|
|
if (retval == DBG_HOOK_HANDLED) {
|
|
kprobes_restore_local_irqflag(kcb, regs);
|
|
kernel_disable_single_step();
|
|
|
|
post_kprobe_handler(kcb, regs);
|
|
}
|
|
|
|
return retval;
|
|
}
|
|
|
|
int __kprobes
|
|
kprobe_breakpoint_handler(struct pt_regs *regs, unsigned int esr)
|
|
{
|
|
kprobe_handler(regs);
|
|
return DBG_HOOK_HANDLED;
|
|
}
|
|
|
|
int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
|
|
{
|
|
struct jprobe *jp = container_of(p, struct jprobe, kp);
|
|
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
|
|
|
|
kcb->jprobe_saved_regs = *regs;
|
|
/*
|
|
* Since we can't be sure where in the stack frame "stacked"
|
|
* pass-by-value arguments are stored we just don't try to
|
|
* duplicate any of the stack. Do not use jprobes on functions that
|
|
* use more than 64 bytes (after padding each to an 8 byte boundary)
|
|
* of arguments, or pass individual arguments larger than 16 bytes.
|
|
*/
|
|
|
|
instruction_pointer_set(regs, (unsigned long) jp->entry);
|
|
preempt_disable();
|
|
pause_graph_tracing();
|
|
return 1;
|
|
}
|
|
|
|
void __kprobes jprobe_return(void)
|
|
{
|
|
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
|
|
|
|
/*
|
|
* Jprobe handler return by entering break exception,
|
|
* encoded same as kprobe, but with following conditions
|
|
* -a special PC to identify it from the other kprobes.
|
|
* -restore stack addr to original saved pt_regs
|
|
*/
|
|
asm volatile(" mov sp, %0 \n"
|
|
"jprobe_return_break: brk %1 \n"
|
|
:
|
|
: "r" (kcb->jprobe_saved_regs.sp),
|
|
"I" (BRK64_ESR_KPROBES)
|
|
: "memory");
|
|
|
|
unreachable();
|
|
}
|
|
|
|
int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
|
|
{
|
|
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
|
|
long stack_addr = kcb->jprobe_saved_regs.sp;
|
|
long orig_sp = kernel_stack_pointer(regs);
|
|
struct jprobe *jp = container_of(p, struct jprobe, kp);
|
|
extern const char jprobe_return_break[];
|
|
|
|
if (instruction_pointer(regs) != (u64) jprobe_return_break)
|
|
return 0;
|
|
|
|
if (orig_sp != stack_addr) {
|
|
struct pt_regs *saved_regs =
|
|
(struct pt_regs *)kcb->jprobe_saved_regs.sp;
|
|
pr_err("current sp %lx does not match saved sp %lx\n",
|
|
orig_sp, stack_addr);
|
|
pr_err("Saved registers for jprobe %p\n", jp);
|
|
show_regs(saved_regs);
|
|
pr_err("Current registers\n");
|
|
show_regs(regs);
|
|
BUG();
|
|
}
|
|
unpause_graph_tracing();
|
|
*regs = kcb->jprobe_saved_regs;
|
|
preempt_enable_no_resched();
|
|
return 1;
|
|
}
|
|
|
|
bool arch_within_kprobe_blacklist(unsigned long addr)
|
|
{
|
|
if ((addr >= (unsigned long)__kprobes_text_start &&
|
|
addr < (unsigned long)__kprobes_text_end) ||
|
|
(addr >= (unsigned long)__entry_text_start &&
|
|
addr < (unsigned long)__entry_text_end) ||
|
|
(addr >= (unsigned long)__idmap_text_start &&
|
|
addr < (unsigned long)__idmap_text_end) ||
|
|
!!search_exception_tables(addr))
|
|
return true;
|
|
|
|
if (!is_kernel_in_hyp_mode()) {
|
|
if ((addr >= (unsigned long)__hyp_text_start &&
|
|
addr < (unsigned long)__hyp_text_end) ||
|
|
(addr >= (unsigned long)__hyp_idmap_text_start &&
|
|
addr < (unsigned long)__hyp_idmap_text_end))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
void __kprobes __used *trampoline_probe_handler(struct pt_regs *regs)
|
|
{
|
|
struct kretprobe_instance *ri = NULL;
|
|
struct hlist_head *head, empty_rp;
|
|
struct hlist_node *tmp;
|
|
unsigned long flags, orig_ret_address = 0;
|
|
unsigned long trampoline_address =
|
|
(unsigned long)&kretprobe_trampoline;
|
|
kprobe_opcode_t *correct_ret_addr = NULL;
|
|
|
|
INIT_HLIST_HEAD(&empty_rp);
|
|
kretprobe_hash_lock(current, &head, &flags);
|
|
|
|
/*
|
|
* It is possible to have multiple instances associated with a given
|
|
* task either because multiple functions in the call path have
|
|
* return probes installed on them, and/or more than one
|
|
* return probe was registered for a target function.
|
|
*
|
|
* We can handle this because:
|
|
* - instances are always pushed into the head of the list
|
|
* - when multiple return probes are registered for the same
|
|
* function, the (chronologically) first instance's ret_addr
|
|
* will be the real return address, and all the rest will
|
|
* point to kretprobe_trampoline.
|
|
*/
|
|
hlist_for_each_entry_safe(ri, tmp, head, hlist) {
|
|
if (ri->task != current)
|
|
/* another task is sharing our hash bucket */
|
|
continue;
|
|
|
|
orig_ret_address = (unsigned long)ri->ret_addr;
|
|
|
|
if (orig_ret_address != trampoline_address)
|
|
/*
|
|
* This is the real return address. Any other
|
|
* instances associated with this task are for
|
|
* other calls deeper on the call stack
|
|
*/
|
|
break;
|
|
}
|
|
|
|
kretprobe_assert(ri, orig_ret_address, trampoline_address);
|
|
|
|
correct_ret_addr = ri->ret_addr;
|
|
hlist_for_each_entry_safe(ri, tmp, head, hlist) {
|
|
if (ri->task != current)
|
|
/* another task is sharing our hash bucket */
|
|
continue;
|
|
|
|
orig_ret_address = (unsigned long)ri->ret_addr;
|
|
if (ri->rp && ri->rp->handler) {
|
|
__this_cpu_write(current_kprobe, &ri->rp->kp);
|
|
get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE;
|
|
ri->ret_addr = correct_ret_addr;
|
|
ri->rp->handler(ri, regs);
|
|
__this_cpu_write(current_kprobe, NULL);
|
|
}
|
|
|
|
recycle_rp_inst(ri, &empty_rp);
|
|
|
|
if (orig_ret_address != trampoline_address)
|
|
/*
|
|
* This is the real return address. Any other
|
|
* instances associated with this task are for
|
|
* other calls deeper on the call stack
|
|
*/
|
|
break;
|
|
}
|
|
|
|
kretprobe_hash_unlock(current, &flags);
|
|
|
|
hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
|
|
hlist_del(&ri->hlist);
|
|
kfree(ri);
|
|
}
|
|
return (void *)orig_ret_address;
|
|
}
|
|
|
|
void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
|
|
struct pt_regs *regs)
|
|
{
|
|
ri->ret_addr = (kprobe_opcode_t *)regs->regs[30];
|
|
|
|
/* replace return addr (x30) with trampoline */
|
|
regs->regs[30] = (long)&kretprobe_trampoline;
|
|
}
|
|
|
|
int __kprobes arch_trampoline_kprobe(struct kprobe *p)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
int __init arch_init_kprobes(void)
|
|
{
|
|
return 0;
|
|
}
|