mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-23 05:39:20 +07:00
4f256d5614
Change the data type of the following variables from int to bool across all macintosh drivers: started slots_started pm121_started wf_smu_started Some of these issues were detected with the help of Coccinelle. Suggested-by: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
847 lines
20 KiB
C
847 lines
20 KiB
C
/*
|
|
* Windfarm PowerMac thermal control.
|
|
* Control loops for PowerMac7,2 and 7,3
|
|
*
|
|
* Copyright (C) 2012 Benjamin Herrenschmidt, IBM Corp.
|
|
*
|
|
* Use and redistribute under the terms of the GNU GPL v2.
|
|
*/
|
|
#include <linux/types.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/device.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/reboot.h>
|
|
#include <asm/prom.h>
|
|
#include <asm/smu.h>
|
|
|
|
#include "windfarm.h"
|
|
#include "windfarm_pid.h"
|
|
#include "windfarm_mpu.h"
|
|
|
|
#define VERSION "1.0"
|
|
|
|
#undef DEBUG
|
|
#undef LOTSA_DEBUG
|
|
|
|
#ifdef DEBUG
|
|
#define DBG(args...) printk(args)
|
|
#else
|
|
#define DBG(args...) do { } while(0)
|
|
#endif
|
|
|
|
#ifdef LOTSA_DEBUG
|
|
#define DBG_LOTS(args...) printk(args)
|
|
#else
|
|
#define DBG_LOTS(args...) do { } while(0)
|
|
#endif
|
|
|
|
/* define this to force CPU overtemp to 60 degree, useful for testing
|
|
* the overtemp code
|
|
*/
|
|
#undef HACKED_OVERTEMP
|
|
|
|
/* We currently only handle 2 chips */
|
|
#define NR_CHIPS 2
|
|
#define NR_CPU_FANS 3 * NR_CHIPS
|
|
|
|
/* Controls and sensors */
|
|
static struct wf_sensor *sens_cpu_temp[NR_CHIPS];
|
|
static struct wf_sensor *sens_cpu_volts[NR_CHIPS];
|
|
static struct wf_sensor *sens_cpu_amps[NR_CHIPS];
|
|
static struct wf_sensor *backside_temp;
|
|
static struct wf_sensor *drives_temp;
|
|
|
|
static struct wf_control *cpu_front_fans[NR_CHIPS];
|
|
static struct wf_control *cpu_rear_fans[NR_CHIPS];
|
|
static struct wf_control *cpu_pumps[NR_CHIPS];
|
|
static struct wf_control *backside_fan;
|
|
static struct wf_control *drives_fan;
|
|
static struct wf_control *slots_fan;
|
|
static struct wf_control *cpufreq_clamp;
|
|
|
|
/* We keep a temperature history for average calculation of 180s */
|
|
#define CPU_TEMP_HIST_SIZE 180
|
|
|
|
/* Fixed speed for slot fan */
|
|
#define SLOTS_FAN_DEFAULT_PWM 40
|
|
|
|
/* Scale value for CPU intake fans */
|
|
#define CPU_INTAKE_SCALE 0x0000f852
|
|
|
|
/* PID loop state */
|
|
static const struct mpu_data *cpu_mpu_data[NR_CHIPS];
|
|
static struct wf_cpu_pid_state cpu_pid[NR_CHIPS];
|
|
static bool cpu_pid_combined;
|
|
static u32 cpu_thist[CPU_TEMP_HIST_SIZE];
|
|
static int cpu_thist_pt;
|
|
static s64 cpu_thist_total;
|
|
static s32 cpu_all_tmax = 100 << 16;
|
|
static struct wf_pid_state backside_pid;
|
|
static int backside_tick;
|
|
static struct wf_pid_state drives_pid;
|
|
static int drives_tick;
|
|
|
|
static int nr_chips;
|
|
static bool have_all_controls;
|
|
static bool have_all_sensors;
|
|
static bool started;
|
|
|
|
static int failure_state;
|
|
#define FAILURE_SENSOR 1
|
|
#define FAILURE_FAN 2
|
|
#define FAILURE_PERM 4
|
|
#define FAILURE_LOW_OVERTEMP 8
|
|
#define FAILURE_HIGH_OVERTEMP 16
|
|
|
|
/* Overtemp values */
|
|
#define LOW_OVER_AVERAGE 0
|
|
#define LOW_OVER_IMMEDIATE (10 << 16)
|
|
#define LOW_OVER_CLEAR ((-10) << 16)
|
|
#define HIGH_OVER_IMMEDIATE (14 << 16)
|
|
#define HIGH_OVER_AVERAGE (10 << 16)
|
|
#define HIGH_OVER_IMMEDIATE (14 << 16)
|
|
|
|
|
|
static void cpu_max_all_fans(void)
|
|
{
|
|
int i;
|
|
|
|
/* We max all CPU fans in case of a sensor error. We also do the
|
|
* cpufreq clamping now, even if it's supposedly done later by the
|
|
* generic code anyway, we do it earlier here to react faster
|
|
*/
|
|
if (cpufreq_clamp)
|
|
wf_control_set_max(cpufreq_clamp);
|
|
for (i = 0; i < nr_chips; i++) {
|
|
if (cpu_front_fans[i])
|
|
wf_control_set_max(cpu_front_fans[i]);
|
|
if (cpu_rear_fans[i])
|
|
wf_control_set_max(cpu_rear_fans[i]);
|
|
if (cpu_pumps[i])
|
|
wf_control_set_max(cpu_pumps[i]);
|
|
}
|
|
}
|
|
|
|
static int cpu_check_overtemp(s32 temp)
|
|
{
|
|
int new_state = 0;
|
|
s32 t_avg, t_old;
|
|
static bool first = true;
|
|
|
|
/* First check for immediate overtemps */
|
|
if (temp >= (cpu_all_tmax + LOW_OVER_IMMEDIATE)) {
|
|
new_state |= FAILURE_LOW_OVERTEMP;
|
|
if ((failure_state & FAILURE_LOW_OVERTEMP) == 0)
|
|
printk(KERN_ERR "windfarm: Overtemp due to immediate CPU"
|
|
" temperature !\n");
|
|
}
|
|
if (temp >= (cpu_all_tmax + HIGH_OVER_IMMEDIATE)) {
|
|
new_state |= FAILURE_HIGH_OVERTEMP;
|
|
if ((failure_state & FAILURE_HIGH_OVERTEMP) == 0)
|
|
printk(KERN_ERR "windfarm: Critical overtemp due to"
|
|
" immediate CPU temperature !\n");
|
|
}
|
|
|
|
/*
|
|
* The first time around, initialize the array with the first
|
|
* temperature reading
|
|
*/
|
|
if (first) {
|
|
int i;
|
|
|
|
cpu_thist_total = 0;
|
|
for (i = 0; i < CPU_TEMP_HIST_SIZE; i++) {
|
|
cpu_thist[i] = temp;
|
|
cpu_thist_total += temp;
|
|
}
|
|
first = false;
|
|
}
|
|
|
|
/*
|
|
* We calculate a history of max temperatures and use that for the
|
|
* overtemp management
|
|
*/
|
|
t_old = cpu_thist[cpu_thist_pt];
|
|
cpu_thist[cpu_thist_pt] = temp;
|
|
cpu_thist_pt = (cpu_thist_pt + 1) % CPU_TEMP_HIST_SIZE;
|
|
cpu_thist_total -= t_old;
|
|
cpu_thist_total += temp;
|
|
t_avg = cpu_thist_total / CPU_TEMP_HIST_SIZE;
|
|
|
|
DBG_LOTS(" t_avg = %d.%03d (out: %d.%03d, in: %d.%03d)\n",
|
|
FIX32TOPRINT(t_avg), FIX32TOPRINT(t_old), FIX32TOPRINT(temp));
|
|
|
|
/* Now check for average overtemps */
|
|
if (t_avg >= (cpu_all_tmax + LOW_OVER_AVERAGE)) {
|
|
new_state |= FAILURE_LOW_OVERTEMP;
|
|
if ((failure_state & FAILURE_LOW_OVERTEMP) == 0)
|
|
printk(KERN_ERR "windfarm: Overtemp due to average CPU"
|
|
" temperature !\n");
|
|
}
|
|
if (t_avg >= (cpu_all_tmax + HIGH_OVER_AVERAGE)) {
|
|
new_state |= FAILURE_HIGH_OVERTEMP;
|
|
if ((failure_state & FAILURE_HIGH_OVERTEMP) == 0)
|
|
printk(KERN_ERR "windfarm: Critical overtemp due to"
|
|
" average CPU temperature !\n");
|
|
}
|
|
|
|
/* Now handle overtemp conditions. We don't currently use the windfarm
|
|
* overtemp handling core as it's not fully suited to the needs of those
|
|
* new machine. This will be fixed later.
|
|
*/
|
|
if (new_state) {
|
|
/* High overtemp -> immediate shutdown */
|
|
if (new_state & FAILURE_HIGH_OVERTEMP)
|
|
machine_power_off();
|
|
if ((failure_state & new_state) != new_state)
|
|
cpu_max_all_fans();
|
|
failure_state |= new_state;
|
|
} else if ((failure_state & FAILURE_LOW_OVERTEMP) &&
|
|
(temp < (cpu_all_tmax + LOW_OVER_CLEAR))) {
|
|
printk(KERN_ERR "windfarm: Overtemp condition cleared !\n");
|
|
failure_state &= ~FAILURE_LOW_OVERTEMP;
|
|
}
|
|
|
|
return failure_state & (FAILURE_LOW_OVERTEMP | FAILURE_HIGH_OVERTEMP);
|
|
}
|
|
|
|
static int read_one_cpu_vals(int cpu, s32 *temp, s32 *power)
|
|
{
|
|
s32 dtemp, volts, amps;
|
|
int rc;
|
|
|
|
/* Get diode temperature */
|
|
rc = wf_sensor_get(sens_cpu_temp[cpu], &dtemp);
|
|
if (rc) {
|
|
DBG(" CPU%d: temp reading error !\n", cpu);
|
|
return -EIO;
|
|
}
|
|
DBG_LOTS(" CPU%d: temp = %d.%03d\n", cpu, FIX32TOPRINT((dtemp)));
|
|
*temp = dtemp;
|
|
|
|
/* Get voltage */
|
|
rc = wf_sensor_get(sens_cpu_volts[cpu], &volts);
|
|
if (rc) {
|
|
DBG(" CPU%d, volts reading error !\n", cpu);
|
|
return -EIO;
|
|
}
|
|
DBG_LOTS(" CPU%d: volts = %d.%03d\n", cpu, FIX32TOPRINT((volts)));
|
|
|
|
/* Get current */
|
|
rc = wf_sensor_get(sens_cpu_amps[cpu], &s);
|
|
if (rc) {
|
|
DBG(" CPU%d, current reading error !\n", cpu);
|
|
return -EIO;
|
|
}
|
|
DBG_LOTS(" CPU%d: amps = %d.%03d\n", cpu, FIX32TOPRINT((amps)));
|
|
|
|
/* Calculate power */
|
|
|
|
/* Scale voltage and current raw sensor values according to fixed scales
|
|
* obtained in Darwin and calculate power from I and V
|
|
*/
|
|
*power = (((u64)volts) * ((u64)amps)) >> 16;
|
|
|
|
DBG_LOTS(" CPU%d: power = %d.%03d\n", cpu, FIX32TOPRINT((*power)));
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
static void cpu_fans_tick_split(void)
|
|
{
|
|
int err, cpu;
|
|
s32 intake, temp, power, t_max = 0;
|
|
|
|
DBG_LOTS("* cpu fans_tick_split()\n");
|
|
|
|
for (cpu = 0; cpu < nr_chips; ++cpu) {
|
|
struct wf_cpu_pid_state *sp = &cpu_pid[cpu];
|
|
|
|
/* Read current speed */
|
|
wf_control_get(cpu_rear_fans[cpu], &sp->target);
|
|
|
|
DBG_LOTS(" CPU%d: cur_target = %d RPM\n", cpu, sp->target);
|
|
|
|
err = read_one_cpu_vals(cpu, &temp, &power);
|
|
if (err) {
|
|
failure_state |= FAILURE_SENSOR;
|
|
cpu_max_all_fans();
|
|
return;
|
|
}
|
|
|
|
/* Keep track of highest temp */
|
|
t_max = max(t_max, temp);
|
|
|
|
/* Handle possible overtemps */
|
|
if (cpu_check_overtemp(t_max))
|
|
return;
|
|
|
|
/* Run PID */
|
|
wf_cpu_pid_run(sp, power, temp);
|
|
|
|
DBG_LOTS(" CPU%d: target = %d RPM\n", cpu, sp->target);
|
|
|
|
/* Apply result directly to exhaust fan */
|
|
err = wf_control_set(cpu_rear_fans[cpu], sp->target);
|
|
if (err) {
|
|
pr_warning("wf_pm72: Fan %s reports error %d\n",
|
|
cpu_rear_fans[cpu]->name, err);
|
|
failure_state |= FAILURE_FAN;
|
|
break;
|
|
}
|
|
|
|
/* Scale result for intake fan */
|
|
intake = (sp->target * CPU_INTAKE_SCALE) >> 16;
|
|
DBG_LOTS(" CPU%d: intake = %d RPM\n", cpu, intake);
|
|
err = wf_control_set(cpu_front_fans[cpu], intake);
|
|
if (err) {
|
|
pr_warning("wf_pm72: Fan %s reports error %d\n",
|
|
cpu_front_fans[cpu]->name, err);
|
|
failure_state |= FAILURE_FAN;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void cpu_fans_tick_combined(void)
|
|
{
|
|
s32 temp0, power0, temp1, power1, t_max = 0;
|
|
s32 temp, power, intake, pump;
|
|
struct wf_control *pump0, *pump1;
|
|
struct wf_cpu_pid_state *sp = &cpu_pid[0];
|
|
int err, cpu;
|
|
|
|
DBG_LOTS("* cpu fans_tick_combined()\n");
|
|
|
|
/* Read current speed from cpu 0 */
|
|
wf_control_get(cpu_rear_fans[0], &sp->target);
|
|
|
|
DBG_LOTS(" CPUs: cur_target = %d RPM\n", sp->target);
|
|
|
|
/* Read values for both CPUs */
|
|
err = read_one_cpu_vals(0, &temp0, &power0);
|
|
if (err) {
|
|
failure_state |= FAILURE_SENSOR;
|
|
cpu_max_all_fans();
|
|
return;
|
|
}
|
|
err = read_one_cpu_vals(1, &temp1, &power1);
|
|
if (err) {
|
|
failure_state |= FAILURE_SENSOR;
|
|
cpu_max_all_fans();
|
|
return;
|
|
}
|
|
|
|
/* Keep track of highest temp */
|
|
t_max = max(t_max, max(temp0, temp1));
|
|
|
|
/* Handle possible overtemps */
|
|
if (cpu_check_overtemp(t_max))
|
|
return;
|
|
|
|
/* Use the max temp & power of both */
|
|
temp = max(temp0, temp1);
|
|
power = max(power0, power1);
|
|
|
|
/* Run PID */
|
|
wf_cpu_pid_run(sp, power, temp);
|
|
|
|
/* Scale result for intake fan */
|
|
intake = (sp->target * CPU_INTAKE_SCALE) >> 16;
|
|
|
|
/* Same deal with pump speed */
|
|
pump0 = cpu_pumps[0];
|
|
pump1 = cpu_pumps[1];
|
|
if (!pump0) {
|
|
pump0 = pump1;
|
|
pump1 = NULL;
|
|
}
|
|
pump = (sp->target * wf_control_get_max(pump0)) /
|
|
cpu_mpu_data[0]->rmaxn_exhaust_fan;
|
|
|
|
DBG_LOTS(" CPUs: target = %d RPM\n", sp->target);
|
|
DBG_LOTS(" CPUs: intake = %d RPM\n", intake);
|
|
DBG_LOTS(" CPUs: pump = %d RPM\n", pump);
|
|
|
|
for (cpu = 0; cpu < nr_chips; cpu++) {
|
|
err = wf_control_set(cpu_rear_fans[cpu], sp->target);
|
|
if (err) {
|
|
pr_warning("wf_pm72: Fan %s reports error %d\n",
|
|
cpu_rear_fans[cpu]->name, err);
|
|
failure_state |= FAILURE_FAN;
|
|
}
|
|
err = wf_control_set(cpu_front_fans[cpu], intake);
|
|
if (err) {
|
|
pr_warning("wf_pm72: Fan %s reports error %d\n",
|
|
cpu_front_fans[cpu]->name, err);
|
|
failure_state |= FAILURE_FAN;
|
|
}
|
|
err = 0;
|
|
if (cpu_pumps[cpu])
|
|
err = wf_control_set(cpu_pumps[cpu], pump);
|
|
if (err) {
|
|
pr_warning("wf_pm72: Pump %s reports error %d\n",
|
|
cpu_pumps[cpu]->name, err);
|
|
failure_state |= FAILURE_FAN;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Implementation... */
|
|
static int cpu_setup_pid(int cpu)
|
|
{
|
|
struct wf_cpu_pid_param pid;
|
|
const struct mpu_data *mpu = cpu_mpu_data[cpu];
|
|
s32 tmax, ttarget, ptarget;
|
|
int fmin, fmax, hsize;
|
|
|
|
/* Get PID params from the appropriate MPU EEPROM */
|
|
tmax = mpu->tmax << 16;
|
|
ttarget = mpu->ttarget << 16;
|
|
ptarget = ((s32)(mpu->pmaxh - mpu->padjmax)) << 16;
|
|
|
|
DBG("wf_72: CPU%d ttarget = %d.%03d, tmax = %d.%03d\n",
|
|
cpu, FIX32TOPRINT(ttarget), FIX32TOPRINT(tmax));
|
|
|
|
/* We keep a global tmax for overtemp calculations */
|
|
if (tmax < cpu_all_tmax)
|
|
cpu_all_tmax = tmax;
|
|
|
|
/* Set PID min/max by using the rear fan min/max */
|
|
fmin = wf_control_get_min(cpu_rear_fans[cpu]);
|
|
fmax = wf_control_get_max(cpu_rear_fans[cpu]);
|
|
DBG("wf_72: CPU%d max RPM range = [%d..%d]\n", cpu, fmin, fmax);
|
|
|
|
/* History size */
|
|
hsize = min_t(int, mpu->tguardband, WF_PID_MAX_HISTORY);
|
|
DBG("wf_72: CPU%d history size = %d\n", cpu, hsize);
|
|
|
|
/* Initialize PID loop */
|
|
pid.interval = 1; /* seconds */
|
|
pid.history_len = hsize;
|
|
pid.gd = mpu->pid_gd;
|
|
pid.gp = mpu->pid_gp;
|
|
pid.gr = mpu->pid_gr;
|
|
pid.tmax = tmax;
|
|
pid.ttarget = ttarget;
|
|
pid.pmaxadj = ptarget;
|
|
pid.min = fmin;
|
|
pid.max = fmax;
|
|
|
|
wf_cpu_pid_init(&cpu_pid[cpu], &pid);
|
|
cpu_pid[cpu].target = 1000;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Backside/U3 fan */
|
|
static struct wf_pid_param backside_u3_param = {
|
|
.interval = 5,
|
|
.history_len = 2,
|
|
.gd = 40 << 20,
|
|
.gp = 5 << 20,
|
|
.gr = 0,
|
|
.itarget = 65 << 16,
|
|
.additive = 1,
|
|
.min = 20,
|
|
.max = 100,
|
|
};
|
|
|
|
static struct wf_pid_param backside_u3h_param = {
|
|
.interval = 5,
|
|
.history_len = 2,
|
|
.gd = 20 << 20,
|
|
.gp = 5 << 20,
|
|
.gr = 0,
|
|
.itarget = 75 << 16,
|
|
.additive = 1,
|
|
.min = 20,
|
|
.max = 100,
|
|
};
|
|
|
|
static void backside_fan_tick(void)
|
|
{
|
|
s32 temp;
|
|
int speed;
|
|
int err;
|
|
|
|
if (!backside_fan || !backside_temp || !backside_tick)
|
|
return;
|
|
if (--backside_tick > 0)
|
|
return;
|
|
backside_tick = backside_pid.param.interval;
|
|
|
|
DBG_LOTS("* backside fans tick\n");
|
|
|
|
/* Update fan speed from actual fans */
|
|
err = wf_control_get(backside_fan, &speed);
|
|
if (!err)
|
|
backside_pid.target = speed;
|
|
|
|
err = wf_sensor_get(backside_temp, &temp);
|
|
if (err) {
|
|
printk(KERN_WARNING "windfarm: U4 temp sensor error %d\n",
|
|
err);
|
|
failure_state |= FAILURE_SENSOR;
|
|
wf_control_set_max(backside_fan);
|
|
return;
|
|
}
|
|
speed = wf_pid_run(&backside_pid, temp);
|
|
|
|
DBG_LOTS("backside PID temp=%d.%.3d speed=%d\n",
|
|
FIX32TOPRINT(temp), speed);
|
|
|
|
err = wf_control_set(backside_fan, speed);
|
|
if (err) {
|
|
printk(KERN_WARNING "windfarm: backside fan error %d\n", err);
|
|
failure_state |= FAILURE_FAN;
|
|
}
|
|
}
|
|
|
|
static void backside_setup_pid(void)
|
|
{
|
|
/* first time initialize things */
|
|
s32 fmin = wf_control_get_min(backside_fan);
|
|
s32 fmax = wf_control_get_max(backside_fan);
|
|
struct wf_pid_param param;
|
|
struct device_node *u3;
|
|
int u3h = 1; /* conservative by default */
|
|
|
|
u3 = of_find_node_by_path("/u3@0,f8000000");
|
|
if (u3 != NULL) {
|
|
const u32 *vers = of_get_property(u3, "device-rev", NULL);
|
|
if (vers)
|
|
if (((*vers) & 0x3f) < 0x34)
|
|
u3h = 0;
|
|
of_node_put(u3);
|
|
}
|
|
|
|
param = u3h ? backside_u3h_param : backside_u3_param;
|
|
|
|
param.min = max(param.min, fmin);
|
|
param.max = min(param.max, fmax);
|
|
wf_pid_init(&backside_pid, ¶m);
|
|
backside_tick = 1;
|
|
|
|
pr_info("wf_pm72: Backside control loop started.\n");
|
|
}
|
|
|
|
/* Drive bay fan */
|
|
static const struct wf_pid_param drives_param = {
|
|
.interval = 5,
|
|
.history_len = 2,
|
|
.gd = 30 << 20,
|
|
.gp = 5 << 20,
|
|
.gr = 0,
|
|
.itarget = 40 << 16,
|
|
.additive = 1,
|
|
.min = 300,
|
|
.max = 4000,
|
|
};
|
|
|
|
static void drives_fan_tick(void)
|
|
{
|
|
s32 temp;
|
|
int speed;
|
|
int err;
|
|
|
|
if (!drives_fan || !drives_temp || !drives_tick)
|
|
return;
|
|
if (--drives_tick > 0)
|
|
return;
|
|
drives_tick = drives_pid.param.interval;
|
|
|
|
DBG_LOTS("* drives fans tick\n");
|
|
|
|
/* Update fan speed from actual fans */
|
|
err = wf_control_get(drives_fan, &speed);
|
|
if (!err)
|
|
drives_pid.target = speed;
|
|
|
|
err = wf_sensor_get(drives_temp, &temp);
|
|
if (err) {
|
|
pr_warning("wf_pm72: drive bay temp sensor error %d\n", err);
|
|
failure_state |= FAILURE_SENSOR;
|
|
wf_control_set_max(drives_fan);
|
|
return;
|
|
}
|
|
speed = wf_pid_run(&drives_pid, temp);
|
|
|
|
DBG_LOTS("drives PID temp=%d.%.3d speed=%d\n",
|
|
FIX32TOPRINT(temp), speed);
|
|
|
|
err = wf_control_set(drives_fan, speed);
|
|
if (err) {
|
|
printk(KERN_WARNING "windfarm: drive bay fan error %d\n", err);
|
|
failure_state |= FAILURE_FAN;
|
|
}
|
|
}
|
|
|
|
static void drives_setup_pid(void)
|
|
{
|
|
/* first time initialize things */
|
|
s32 fmin = wf_control_get_min(drives_fan);
|
|
s32 fmax = wf_control_get_max(drives_fan);
|
|
struct wf_pid_param param = drives_param;
|
|
|
|
param.min = max(param.min, fmin);
|
|
param.max = min(param.max, fmax);
|
|
wf_pid_init(&drives_pid, ¶m);
|
|
drives_tick = 1;
|
|
|
|
pr_info("wf_pm72: Drive bay control loop started.\n");
|
|
}
|
|
|
|
static void set_fail_state(void)
|
|
{
|
|
cpu_max_all_fans();
|
|
|
|
if (backside_fan)
|
|
wf_control_set_max(backside_fan);
|
|
if (slots_fan)
|
|
wf_control_set_max(slots_fan);
|
|
if (drives_fan)
|
|
wf_control_set_max(drives_fan);
|
|
}
|
|
|
|
static void pm72_tick(void)
|
|
{
|
|
int i, last_failure;
|
|
|
|
if (!started) {
|
|
started = true;
|
|
printk(KERN_INFO "windfarm: CPUs control loops started.\n");
|
|
for (i = 0; i < nr_chips; ++i) {
|
|
if (cpu_setup_pid(i) < 0) {
|
|
failure_state = FAILURE_PERM;
|
|
set_fail_state();
|
|
break;
|
|
}
|
|
}
|
|
DBG_LOTS("cpu_all_tmax=%d.%03d\n", FIX32TOPRINT(cpu_all_tmax));
|
|
|
|
backside_setup_pid();
|
|
drives_setup_pid();
|
|
|
|
/*
|
|
* We don't have the right stuff to drive the PCI fan
|
|
* so we fix it to a default value
|
|
*/
|
|
wf_control_set(slots_fan, SLOTS_FAN_DEFAULT_PWM);
|
|
|
|
#ifdef HACKED_OVERTEMP
|
|
cpu_all_tmax = 60 << 16;
|
|
#endif
|
|
}
|
|
|
|
/* Permanent failure, bail out */
|
|
if (failure_state & FAILURE_PERM)
|
|
return;
|
|
|
|
/*
|
|
* Clear all failure bits except low overtemp which will be eventually
|
|
* cleared by the control loop itself
|
|
*/
|
|
last_failure = failure_state;
|
|
failure_state &= FAILURE_LOW_OVERTEMP;
|
|
if (cpu_pid_combined)
|
|
cpu_fans_tick_combined();
|
|
else
|
|
cpu_fans_tick_split();
|
|
backside_fan_tick();
|
|
drives_fan_tick();
|
|
|
|
DBG_LOTS(" last_failure: 0x%x, failure_state: %x\n",
|
|
last_failure, failure_state);
|
|
|
|
/* Check for failures. Any failure causes cpufreq clamping */
|
|
if (failure_state && last_failure == 0 && cpufreq_clamp)
|
|
wf_control_set_max(cpufreq_clamp);
|
|
if (failure_state == 0 && last_failure && cpufreq_clamp)
|
|
wf_control_set_min(cpufreq_clamp);
|
|
|
|
/* That's it for now, we might want to deal with other failures
|
|
* differently in the future though
|
|
*/
|
|
}
|
|
|
|
static void pm72_new_control(struct wf_control *ct)
|
|
{
|
|
bool all_controls;
|
|
bool had_pump = cpu_pumps[0] || cpu_pumps[1];
|
|
|
|
if (!strcmp(ct->name, "cpu-front-fan-0"))
|
|
cpu_front_fans[0] = ct;
|
|
else if (!strcmp(ct->name, "cpu-front-fan-1"))
|
|
cpu_front_fans[1] = ct;
|
|
else if (!strcmp(ct->name, "cpu-rear-fan-0"))
|
|
cpu_rear_fans[0] = ct;
|
|
else if (!strcmp(ct->name, "cpu-rear-fan-1"))
|
|
cpu_rear_fans[1] = ct;
|
|
else if (!strcmp(ct->name, "cpu-pump-0"))
|
|
cpu_pumps[0] = ct;
|
|
else if (!strcmp(ct->name, "cpu-pump-1"))
|
|
cpu_pumps[1] = ct;
|
|
else if (!strcmp(ct->name, "backside-fan"))
|
|
backside_fan = ct;
|
|
else if (!strcmp(ct->name, "slots-fan"))
|
|
slots_fan = ct;
|
|
else if (!strcmp(ct->name, "drive-bay-fan"))
|
|
drives_fan = ct;
|
|
else if (!strcmp(ct->name, "cpufreq-clamp"))
|
|
cpufreq_clamp = ct;
|
|
|
|
all_controls =
|
|
cpu_front_fans[0] &&
|
|
cpu_rear_fans[0] &&
|
|
backside_fan &&
|
|
slots_fan &&
|
|
drives_fan;
|
|
if (nr_chips > 1)
|
|
all_controls &=
|
|
cpu_front_fans[1] &&
|
|
cpu_rear_fans[1];
|
|
have_all_controls = all_controls;
|
|
|
|
if ((cpu_pumps[0] || cpu_pumps[1]) && !had_pump) {
|
|
pr_info("wf_pm72: Liquid cooling pump(s) detected,"
|
|
" using new algorithm !\n");
|
|
cpu_pid_combined = true;
|
|
}
|
|
}
|
|
|
|
|
|
static void pm72_new_sensor(struct wf_sensor *sr)
|
|
{
|
|
bool all_sensors;
|
|
|
|
if (!strcmp(sr->name, "cpu-diode-temp-0"))
|
|
sens_cpu_temp[0] = sr;
|
|
else if (!strcmp(sr->name, "cpu-diode-temp-1"))
|
|
sens_cpu_temp[1] = sr;
|
|
else if (!strcmp(sr->name, "cpu-voltage-0"))
|
|
sens_cpu_volts[0] = sr;
|
|
else if (!strcmp(sr->name, "cpu-voltage-1"))
|
|
sens_cpu_volts[1] = sr;
|
|
else if (!strcmp(sr->name, "cpu-current-0"))
|
|
sens_cpu_amps[0] = sr;
|
|
else if (!strcmp(sr->name, "cpu-current-1"))
|
|
sens_cpu_amps[1] = sr;
|
|
else if (!strcmp(sr->name, "backside-temp"))
|
|
backside_temp = sr;
|
|
else if (!strcmp(sr->name, "hd-temp"))
|
|
drives_temp = sr;
|
|
|
|
all_sensors =
|
|
sens_cpu_temp[0] &&
|
|
sens_cpu_volts[0] &&
|
|
sens_cpu_amps[0] &&
|
|
backside_temp &&
|
|
drives_temp;
|
|
if (nr_chips > 1)
|
|
all_sensors &=
|
|
sens_cpu_temp[1] &&
|
|
sens_cpu_volts[1] &&
|
|
sens_cpu_amps[1];
|
|
|
|
have_all_sensors = all_sensors;
|
|
}
|
|
|
|
static int pm72_wf_notify(struct notifier_block *self,
|
|
unsigned long event, void *data)
|
|
{
|
|
switch (event) {
|
|
case WF_EVENT_NEW_SENSOR:
|
|
pm72_new_sensor(data);
|
|
break;
|
|
case WF_EVENT_NEW_CONTROL:
|
|
pm72_new_control(data);
|
|
break;
|
|
case WF_EVENT_TICK:
|
|
if (have_all_controls && have_all_sensors)
|
|
pm72_tick();
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static struct notifier_block pm72_events = {
|
|
.notifier_call = pm72_wf_notify,
|
|
};
|
|
|
|
static int wf_pm72_probe(struct platform_device *dev)
|
|
{
|
|
wf_register_client(&pm72_events);
|
|
return 0;
|
|
}
|
|
|
|
static int wf_pm72_remove(struct platform_device *dev)
|
|
{
|
|
wf_unregister_client(&pm72_events);
|
|
|
|
/* should release all sensors and controls */
|
|
return 0;
|
|
}
|
|
|
|
static struct platform_driver wf_pm72_driver = {
|
|
.probe = wf_pm72_probe,
|
|
.remove = wf_pm72_remove,
|
|
.driver = {
|
|
.name = "windfarm",
|
|
},
|
|
};
|
|
|
|
static int __init wf_pm72_init(void)
|
|
{
|
|
struct device_node *cpu;
|
|
int i;
|
|
|
|
if (!of_machine_is_compatible("PowerMac7,2") &&
|
|
!of_machine_is_compatible("PowerMac7,3"))
|
|
return -ENODEV;
|
|
|
|
/* Count the number of CPU cores */
|
|
nr_chips = 0;
|
|
for_each_node_by_type(cpu, "cpu")
|
|
++nr_chips;
|
|
if (nr_chips > NR_CHIPS)
|
|
nr_chips = NR_CHIPS;
|
|
|
|
pr_info("windfarm: Initializing for desktop G5 with %d chips\n",
|
|
nr_chips);
|
|
|
|
/* Get MPU data for each CPU */
|
|
for (i = 0; i < nr_chips; i++) {
|
|
cpu_mpu_data[i] = wf_get_mpu(i);
|
|
if (!cpu_mpu_data[i]) {
|
|
pr_err("wf_pm72: Failed to find MPU data for CPU %d\n", i);
|
|
return -ENXIO;
|
|
}
|
|
}
|
|
|
|
#ifdef MODULE
|
|
request_module("windfarm_fcu_controls");
|
|
request_module("windfarm_lm75_sensor");
|
|
request_module("windfarm_ad7417_sensor");
|
|
request_module("windfarm_max6690_sensor");
|
|
request_module("windfarm_cpufreq_clamp");
|
|
#endif /* MODULE */
|
|
|
|
platform_driver_register(&wf_pm72_driver);
|
|
return 0;
|
|
}
|
|
|
|
static void __exit wf_pm72_exit(void)
|
|
{
|
|
platform_driver_unregister(&wf_pm72_driver);
|
|
}
|
|
|
|
module_init(wf_pm72_init);
|
|
module_exit(wf_pm72_exit);
|
|
|
|
MODULE_AUTHOR("Benjamin Herrenschmidt <benh@kernel.crashing.org>");
|
|
MODULE_DESCRIPTION("Thermal control for AGP PowerMac G5s");
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_ALIAS("platform:windfarm");
|