linux_dsm_epyc7002/drivers/misc/habanalabs/hw_queue.c
Tomer Tayar cb596aee88 habanalabs: Add a new H/W queue type
This patch adds a support for a new H/W queue type.
This type of queue is for DMA and compute engines jobs, for which
completion notification are sent by H/W.
Command buffer for this queue can be created either through the CB
IOCTL and using the retrieved CB handle, or by preparing a buffer on the
host or device SRAM/DRAM, and using the device address to that buffer.
The patch includes the handling of the 2 options, as well as the
initialization of the H/W queue and its jobs scheduling.

Signed-off-by: Tomer Tayar <ttayar@habana.ai>
Reviewed-by: Oded Gabbay <oded.gabbay@gmail.com>
Signed-off-by: Oded Gabbay <oded.gabbay@gmail.com>
2019-11-21 11:35:45 +02:00

796 lines
20 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright 2016-2019 HabanaLabs, Ltd.
* All Rights Reserved.
*/
#include "habanalabs.h"
#include <linux/slab.h>
/*
* hl_queue_add_ptr - add to pi or ci and checks if it wraps around
*
* @ptr: the current pi/ci value
* @val: the amount to add
*
* Add val to ptr. It can go until twice the queue length.
*/
inline u32 hl_hw_queue_add_ptr(u32 ptr, u16 val)
{
ptr += val;
ptr &= ((HL_QUEUE_LENGTH << 1) - 1);
return ptr;
}
static inline int queue_free_slots(struct hl_hw_queue *q, u32 queue_len)
{
int delta = (q->pi - q->ci);
if (delta >= 0)
return (queue_len - delta);
else
return (abs(delta) - queue_len);
}
void hl_int_hw_queue_update_ci(struct hl_cs *cs)
{
struct hl_device *hdev = cs->ctx->hdev;
struct hl_hw_queue *q;
int i;
hdev->asic_funcs->hw_queues_lock(hdev);
if (hdev->disabled)
goto out;
q = &hdev->kernel_queues[0];
for (i = 0 ; i < HL_MAX_QUEUES ; i++, q++) {
if (q->queue_type == QUEUE_TYPE_INT) {
q->ci += cs->jobs_in_queue_cnt[i];
q->ci &= ((q->int_queue_len << 1) - 1);
}
}
out:
hdev->asic_funcs->hw_queues_unlock(hdev);
}
/*
* ext_and_hw_queue_submit_bd() - Submit a buffer descriptor to an external or a
* H/W queue.
* @hdev: pointer to habanalabs device structure
* @q: pointer to habanalabs queue structure
* @ctl: BD's control word
* @len: BD's length
* @ptr: BD's pointer
*
* This function assumes there is enough space on the queue to submit a new
* BD to it. It initializes the next BD and calls the device specific
* function to set the pi (and doorbell)
*
* This function must be called when the scheduler mutex is taken
*
*/
static void ext_and_hw_queue_submit_bd(struct hl_device *hdev,
struct hl_hw_queue *q, u32 ctl, u32 len, u64 ptr)
{
struct hl_bd *bd;
bd = (struct hl_bd *) (uintptr_t) q->kernel_address;
bd += hl_pi_2_offset(q->pi);
bd->ctl = cpu_to_le32(ctl);
bd->len = cpu_to_le32(len);
bd->ptr = cpu_to_le64(ptr);
q->pi = hl_queue_inc_ptr(q->pi);
hdev->asic_funcs->ring_doorbell(hdev, q->hw_queue_id, q->pi);
}
/*
* ext_queue_sanity_checks - perform some sanity checks on external queue
*
* @hdev : pointer to hl_device structure
* @q : pointer to hl_hw_queue structure
* @num_of_entries : how many entries to check for space
* @reserve_cq_entry : whether to reserve an entry in the cq
*
* H/W queues spinlock should be taken before calling this function
*
* Perform the following:
* - Make sure we have enough space in the h/w queue
* - Make sure we have enough space in the completion queue
* - Reserve space in the completion queue (needs to be reversed if there
* is a failure down the road before the actual submission of work). Only
* do this action if reserve_cq_entry is true
*
*/
static int ext_queue_sanity_checks(struct hl_device *hdev,
struct hl_hw_queue *q, int num_of_entries,
bool reserve_cq_entry)
{
atomic_t *free_slots =
&hdev->completion_queue[q->hw_queue_id].free_slots_cnt;
int free_slots_cnt;
/* Check we have enough space in the queue */
free_slots_cnt = queue_free_slots(q, HL_QUEUE_LENGTH);
if (free_slots_cnt < num_of_entries) {
dev_dbg(hdev->dev, "Queue %d doesn't have room for %d CBs\n",
q->hw_queue_id, num_of_entries);
return -EAGAIN;
}
if (reserve_cq_entry) {
/*
* Check we have enough space in the completion queue
* Add -1 to counter (decrement) unless counter was already 0
* In that case, CQ is full so we can't submit a new CB because
* we won't get ack on its completion
* atomic_add_unless will return 0 if counter was already 0
*/
if (atomic_add_negative(num_of_entries * -1, free_slots)) {
dev_dbg(hdev->dev, "No space for %d on CQ %d\n",
num_of_entries, q->hw_queue_id);
atomic_add(num_of_entries, free_slots);
return -EAGAIN;
}
}
return 0;
}
/*
* int_queue_sanity_checks - perform some sanity checks on internal queue
*
* @hdev : pointer to hl_device structure
* @q : pointer to hl_hw_queue structure
* @num_of_entries : how many entries to check for space
*
* H/W queues spinlock should be taken before calling this function
*
* Perform the following:
* - Make sure we have enough space in the h/w queue
*
*/
static int int_queue_sanity_checks(struct hl_device *hdev,
struct hl_hw_queue *q,
int num_of_entries)
{
int free_slots_cnt;
/* Check we have enough space in the queue */
free_slots_cnt = queue_free_slots(q, q->int_queue_len);
if (free_slots_cnt < num_of_entries) {
dev_dbg(hdev->dev, "Queue %d doesn't have room for %d CBs\n",
q->hw_queue_id, num_of_entries);
return -EAGAIN;
}
return 0;
}
/*
* hw_queue_sanity_checks() - Perform some sanity checks on a H/W queue.
* @hdev: Pointer to hl_device structure.
* @q: Pointer to hl_hw_queue structure.
* @num_of_entries: How many entries to check for space.
*
* Perform the following:
* - Make sure we have enough space in the completion queue.
* This check also ensures that there is enough space in the h/w queue, as
* both queues are of the same size.
* - Reserve space in the completion queue (needs to be reversed if there
* is a failure down the road before the actual submission of work).
*
* Both operations are done using the "free_slots_cnt" field of the completion
* queue. The CI counters of the queue and the completion queue are not
* needed/used for the H/W queue type.
*/
static int hw_queue_sanity_checks(struct hl_device *hdev, struct hl_hw_queue *q,
int num_of_entries)
{
atomic_t *free_slots =
&hdev->completion_queue[q->hw_queue_id].free_slots_cnt;
/*
* Check we have enough space in the completion queue.
* Add -1 to counter (decrement) unless counter was already 0.
* In that case, CQ is full so we can't submit a new CB.
* atomic_add_unless will return 0 if counter was already 0.
*/
if (atomic_add_negative(num_of_entries * -1, free_slots)) {
dev_dbg(hdev->dev, "No space for %d entries on CQ %d\n",
num_of_entries, q->hw_queue_id);
atomic_add(num_of_entries, free_slots);
return -EAGAIN;
}
return 0;
}
/*
* hl_hw_queue_send_cb_no_cmpl - send a single CB (not a JOB) without completion
*
* @hdev: pointer to hl_device structure
* @hw_queue_id: Queue's type
* @cb_size: size of CB
* @cb_ptr: pointer to CB location
*
* This function sends a single CB, that must NOT generate a completion entry
*
*/
int hl_hw_queue_send_cb_no_cmpl(struct hl_device *hdev, u32 hw_queue_id,
u32 cb_size, u64 cb_ptr)
{
struct hl_hw_queue *q = &hdev->kernel_queues[hw_queue_id];
int rc = 0;
/*
* The CPU queue is a synchronous queue with an effective depth of
* a single entry (although it is allocated with room for multiple
* entries). Therefore, there is a different lock, called
* send_cpu_message_lock, that serializes accesses to the CPU queue.
* As a result, we don't need to lock the access to the entire H/W
* queues module when submitting a JOB to the CPU queue
*/
if (q->queue_type != QUEUE_TYPE_CPU)
hdev->asic_funcs->hw_queues_lock(hdev);
if (hdev->disabled) {
rc = -EPERM;
goto out;
}
/*
* hl_hw_queue_send_cb_no_cmpl() is called for queues of a H/W queue
* type only on init phase, when the queues are empty and being tested,
* so there is no need for sanity checks.
*/
if (q->queue_type != QUEUE_TYPE_HW) {
rc = ext_queue_sanity_checks(hdev, q, 1, false);
if (rc)
goto out;
}
ext_and_hw_queue_submit_bd(hdev, q, 0, cb_size, cb_ptr);
out:
if (q->queue_type != QUEUE_TYPE_CPU)
hdev->asic_funcs->hw_queues_unlock(hdev);
return rc;
}
/*
* ext_queue_schedule_job - submit a JOB to an external queue
*
* @job: pointer to the job that needs to be submitted to the queue
*
* This function must be called when the scheduler mutex is taken
*
*/
static void ext_queue_schedule_job(struct hl_cs_job *job)
{
struct hl_device *hdev = job->cs->ctx->hdev;
struct hl_hw_queue *q = &hdev->kernel_queues[job->hw_queue_id];
struct hl_cq_entry cq_pkt;
struct hl_cq *cq;
u64 cq_addr;
struct hl_cb *cb;
u32 ctl;
u32 len;
u64 ptr;
/*
* Update the JOB ID inside the BD CTL so the device would know what
* to write in the completion queue
*/
ctl = ((q->pi << BD_CTL_SHADOW_INDEX_SHIFT) & BD_CTL_SHADOW_INDEX_MASK);
cb = job->patched_cb;
len = job->job_cb_size;
ptr = cb->bus_address;
cq_pkt.data = cpu_to_le32(
((q->pi << CQ_ENTRY_SHADOW_INDEX_SHIFT)
& CQ_ENTRY_SHADOW_INDEX_MASK) |
(1 << CQ_ENTRY_SHADOW_INDEX_VALID_SHIFT) |
(1 << CQ_ENTRY_READY_SHIFT));
/*
* No need to protect pi_offset because scheduling to the
* H/W queues is done under the scheduler mutex
*
* No need to check if CQ is full because it was already
* checked in ext_queue_sanity_checks
*/
cq = &hdev->completion_queue[q->hw_queue_id];
cq_addr = cq->bus_address + cq->pi * sizeof(struct hl_cq_entry);
hdev->asic_funcs->add_end_of_cb_packets(hdev, cb->kernel_address, len,
cq_addr,
le32_to_cpu(cq_pkt.data),
q->hw_queue_id);
q->shadow_queue[hl_pi_2_offset(q->pi)] = job;
cq->pi = hl_cq_inc_ptr(cq->pi);
ext_and_hw_queue_submit_bd(hdev, q, ctl, len, ptr);
}
/*
* int_queue_schedule_job - submit a JOB to an internal queue
*
* @job: pointer to the job that needs to be submitted to the queue
*
* This function must be called when the scheduler mutex is taken
*
*/
static void int_queue_schedule_job(struct hl_cs_job *job)
{
struct hl_device *hdev = job->cs->ctx->hdev;
struct hl_hw_queue *q = &hdev->kernel_queues[job->hw_queue_id];
struct hl_bd bd;
__le64 *pi;
bd.ctl = 0;
bd.len = cpu_to_le32(job->job_cb_size);
bd.ptr = cpu_to_le64((u64) (uintptr_t) job->user_cb);
pi = (__le64 *) (uintptr_t) (q->kernel_address +
((q->pi & (q->int_queue_len - 1)) * sizeof(bd)));
q->pi++;
q->pi &= ((q->int_queue_len << 1) - 1);
hdev->asic_funcs->pqe_write(hdev, pi, &bd);
hdev->asic_funcs->ring_doorbell(hdev, q->hw_queue_id, q->pi);
}
/*
* hw_queue_schedule_job - submit a JOB to a H/W queue
*
* @job: pointer to the job that needs to be submitted to the queue
*
* This function must be called when the scheduler mutex is taken
*
*/
static void hw_queue_schedule_job(struct hl_cs_job *job)
{
struct hl_device *hdev = job->cs->ctx->hdev;
struct hl_hw_queue *q = &hdev->kernel_queues[job->hw_queue_id];
struct hl_cq *cq;
u64 ptr;
u32 offset, ctl, len;
/*
* Upon PQE completion, COMP_DATA is used as the write data to the
* completion queue (QMAN HBW message), and COMP_OFFSET is used as the
* write address offset in the SM block (QMAN LBW message).
* The write address offset is calculated as "COMP_OFFSET << 2".
*/
offset = job->cs->sequence & (HL_MAX_PENDING_CS - 1);
ctl = ((offset << BD_CTL_COMP_OFFSET_SHIFT) & BD_CTL_COMP_OFFSET_MASK) |
((q->pi << BD_CTL_COMP_DATA_SHIFT) & BD_CTL_COMP_DATA_MASK);
len = job->job_cb_size;
/*
* A patched CB is created only if a user CB was allocated by driver and
* MMU is disabled. If MMU is enabled, the user CB should be used
* instead. If the user CB wasn't allocated by driver, assume that it
* holds an address.
*/
if (job->patched_cb)
ptr = job->patched_cb->bus_address;
else if (job->is_kernel_allocated_cb)
ptr = job->user_cb->bus_address;
else
ptr = (u64) (uintptr_t) job->user_cb;
/*
* No need to protect pi_offset because scheduling to the
* H/W queues is done under the scheduler mutex
*
* No need to check if CQ is full because it was already
* checked in hw_queue_sanity_checks
*/
cq = &hdev->completion_queue[q->hw_queue_id];
cq->pi = hl_cq_inc_ptr(cq->pi);
ext_and_hw_queue_submit_bd(hdev, q, ctl, len, ptr);
}
/*
* hl_hw_queue_schedule_cs - schedule a command submission
*
* @job : pointer to the CS
*
*/
int hl_hw_queue_schedule_cs(struct hl_cs *cs)
{
struct hl_device *hdev = cs->ctx->hdev;
struct hl_cs_job *job, *tmp;
struct hl_hw_queue *q;
int rc = 0, i, cq_cnt;
hdev->asic_funcs->hw_queues_lock(hdev);
if (hl_device_disabled_or_in_reset(hdev)) {
dev_err(hdev->dev,
"device is disabled or in reset, CS rejected!\n");
rc = -EPERM;
goto out;
}
q = &hdev->kernel_queues[0];
for (i = 0, cq_cnt = 0 ; i < HL_MAX_QUEUES ; i++, q++) {
if (cs->jobs_in_queue_cnt[i]) {
switch (q->queue_type) {
case QUEUE_TYPE_EXT:
rc = ext_queue_sanity_checks(hdev, q,
cs->jobs_in_queue_cnt[i], true);
break;
case QUEUE_TYPE_INT:
rc = int_queue_sanity_checks(hdev, q,
cs->jobs_in_queue_cnt[i]);
break;
case QUEUE_TYPE_HW:
rc = hw_queue_sanity_checks(hdev, q,
cs->jobs_in_queue_cnt[i]);
break;
default:
dev_err(hdev->dev, "Queue type %d is invalid\n",
q->queue_type);
rc = -EINVAL;
break;
}
if (rc)
goto unroll_cq_resv;
if (q->queue_type == QUEUE_TYPE_EXT ||
q->queue_type == QUEUE_TYPE_HW)
cq_cnt++;
}
}
spin_lock(&hdev->hw_queues_mirror_lock);
list_add_tail(&cs->mirror_node, &hdev->hw_queues_mirror_list);
/* Queue TDR if the CS is the first entry and if timeout is wanted */
if ((hdev->timeout_jiffies != MAX_SCHEDULE_TIMEOUT) &&
(list_first_entry(&hdev->hw_queues_mirror_list,
struct hl_cs, mirror_node) == cs)) {
cs->tdr_active = true;
schedule_delayed_work(&cs->work_tdr, hdev->timeout_jiffies);
spin_unlock(&hdev->hw_queues_mirror_lock);
} else {
spin_unlock(&hdev->hw_queues_mirror_lock);
}
if (!hdev->cs_active_cnt++) {
struct hl_device_idle_busy_ts *ts;
ts = &hdev->idle_busy_ts_arr[hdev->idle_busy_ts_idx];
ts->busy_to_idle_ts = ktime_set(0, 0);
ts->idle_to_busy_ts = ktime_get();
}
list_for_each_entry_safe(job, tmp, &cs->job_list, cs_node)
switch (job->queue_type) {
case QUEUE_TYPE_EXT:
ext_queue_schedule_job(job);
break;
case QUEUE_TYPE_INT:
int_queue_schedule_job(job);
break;
case QUEUE_TYPE_HW:
hw_queue_schedule_job(job);
break;
default:
break;
}
cs->submitted = true;
goto out;
unroll_cq_resv:
q = &hdev->kernel_queues[0];
for (i = 0 ; (i < HL_MAX_QUEUES) && (cq_cnt > 0) ; i++, q++) {
if ((q->queue_type == QUEUE_TYPE_EXT ||
q->queue_type == QUEUE_TYPE_HW) &&
cs->jobs_in_queue_cnt[i]) {
atomic_t *free_slots =
&hdev->completion_queue[i].free_slots_cnt;
atomic_add(cs->jobs_in_queue_cnt[i], free_slots);
cq_cnt--;
}
}
out:
hdev->asic_funcs->hw_queues_unlock(hdev);
return rc;
}
/*
* hl_hw_queue_inc_ci_kernel - increment ci for kernel's queue
*
* @hdev: pointer to hl_device structure
* @hw_queue_id: which queue to increment its ci
*/
void hl_hw_queue_inc_ci_kernel(struct hl_device *hdev, u32 hw_queue_id)
{
struct hl_hw_queue *q = &hdev->kernel_queues[hw_queue_id];
q->ci = hl_queue_inc_ptr(q->ci);
}
static int ext_and_cpu_queue_init(struct hl_device *hdev, struct hl_hw_queue *q,
bool is_cpu_queue)
{
void *p;
int rc;
if (is_cpu_queue)
p = hdev->asic_funcs->cpu_accessible_dma_pool_alloc(hdev,
HL_QUEUE_SIZE_IN_BYTES,
&q->bus_address);
else
p = hdev->asic_funcs->asic_dma_alloc_coherent(hdev,
HL_QUEUE_SIZE_IN_BYTES,
&q->bus_address,
GFP_KERNEL | __GFP_ZERO);
if (!p)
return -ENOMEM;
q->kernel_address = (u64) (uintptr_t) p;
q->shadow_queue = kmalloc_array(HL_QUEUE_LENGTH,
sizeof(*q->shadow_queue),
GFP_KERNEL);
if (!q->shadow_queue) {
dev_err(hdev->dev,
"Failed to allocate shadow queue for H/W queue %d\n",
q->hw_queue_id);
rc = -ENOMEM;
goto free_queue;
}
/* Make sure read/write pointers are initialized to start of queue */
q->ci = 0;
q->pi = 0;
return 0;
free_queue:
if (is_cpu_queue)
hdev->asic_funcs->cpu_accessible_dma_pool_free(hdev,
HL_QUEUE_SIZE_IN_BYTES,
(void *) (uintptr_t) q->kernel_address);
else
hdev->asic_funcs->asic_dma_free_coherent(hdev,
HL_QUEUE_SIZE_IN_BYTES,
(void *) (uintptr_t) q->kernel_address,
q->bus_address);
return rc;
}
static int int_queue_init(struct hl_device *hdev, struct hl_hw_queue *q)
{
void *p;
p = hdev->asic_funcs->get_int_queue_base(hdev, q->hw_queue_id,
&q->bus_address, &q->int_queue_len);
if (!p) {
dev_err(hdev->dev,
"Failed to get base address for internal queue %d\n",
q->hw_queue_id);
return -EFAULT;
}
q->kernel_address = (u64) (uintptr_t) p;
q->pi = 0;
q->ci = 0;
return 0;
}
static int cpu_queue_init(struct hl_device *hdev, struct hl_hw_queue *q)
{
return ext_and_cpu_queue_init(hdev, q, true);
}
static int ext_queue_init(struct hl_device *hdev, struct hl_hw_queue *q)
{
return ext_and_cpu_queue_init(hdev, q, false);
}
static int hw_queue_init(struct hl_device *hdev, struct hl_hw_queue *q)
{
void *p;
p = hdev->asic_funcs->asic_dma_alloc_coherent(hdev,
HL_QUEUE_SIZE_IN_BYTES,
&q->bus_address,
GFP_KERNEL | __GFP_ZERO);
if (!p)
return -ENOMEM;
q->kernel_address = (u64) (uintptr_t) p;
/* Make sure read/write pointers are initialized to start of queue */
q->ci = 0;
q->pi = 0;
return 0;
}
/*
* queue_init - main initialization function for H/W queue object
*
* @hdev: pointer to hl_device device structure
* @q: pointer to hl_hw_queue queue structure
* @hw_queue_id: The id of the H/W queue
*
* Allocate dma-able memory for the queue and initialize fields
* Returns 0 on success
*/
static int queue_init(struct hl_device *hdev, struct hl_hw_queue *q,
u32 hw_queue_id)
{
int rc;
BUILD_BUG_ON(HL_QUEUE_SIZE_IN_BYTES > HL_PAGE_SIZE);
q->hw_queue_id = hw_queue_id;
switch (q->queue_type) {
case QUEUE_TYPE_EXT:
rc = ext_queue_init(hdev, q);
break;
case QUEUE_TYPE_INT:
rc = int_queue_init(hdev, q);
break;
case QUEUE_TYPE_CPU:
rc = cpu_queue_init(hdev, q);
break;
case QUEUE_TYPE_HW:
rc = hw_queue_init(hdev, q);
break;
case QUEUE_TYPE_NA:
q->valid = 0;
return 0;
default:
dev_crit(hdev->dev, "wrong queue type %d during init\n",
q->queue_type);
rc = -EINVAL;
break;
}
if (rc)
return rc;
q->valid = 1;
return 0;
}
/*
* hw_queue_fini - destroy queue
*
* @hdev: pointer to hl_device device structure
* @q: pointer to hl_hw_queue queue structure
*
* Free the queue memory
*/
static void queue_fini(struct hl_device *hdev, struct hl_hw_queue *q)
{
if (!q->valid)
return;
/*
* If we arrived here, there are no jobs waiting on this queue
* so we can safely remove it.
* This is because this function can only called when:
* 1. Either a context is deleted, which only can occur if all its
* jobs were finished
* 2. A context wasn't able to be created due to failure or timeout,
* which means there are no jobs on the queue yet
*
* The only exception are the queues of the kernel context, but
* if they are being destroyed, it means that the entire module is
* being removed. If the module is removed, it means there is no open
* user context. It also means that if a job was submitted by
* the kernel driver (e.g. context creation), the job itself was
* released by the kernel driver when a timeout occurred on its
* Completion. Thus, we don't need to release it again.
*/
if (q->queue_type == QUEUE_TYPE_INT)
return;
kfree(q->shadow_queue);
if (q->queue_type == QUEUE_TYPE_CPU)
hdev->asic_funcs->cpu_accessible_dma_pool_free(hdev,
HL_QUEUE_SIZE_IN_BYTES,
(void *) (uintptr_t) q->kernel_address);
else
hdev->asic_funcs->asic_dma_free_coherent(hdev,
HL_QUEUE_SIZE_IN_BYTES,
(void *) (uintptr_t) q->kernel_address,
q->bus_address);
}
int hl_hw_queues_create(struct hl_device *hdev)
{
struct asic_fixed_properties *asic = &hdev->asic_prop;
struct hl_hw_queue *q;
int i, rc, q_ready_cnt;
hdev->kernel_queues = kcalloc(HL_MAX_QUEUES,
sizeof(*hdev->kernel_queues), GFP_KERNEL);
if (!hdev->kernel_queues) {
dev_err(hdev->dev, "Not enough memory for H/W queues\n");
return -ENOMEM;
}
/* Initialize the H/W queues */
for (i = 0, q_ready_cnt = 0, q = hdev->kernel_queues;
i < HL_MAX_QUEUES ; i++, q_ready_cnt++, q++) {
q->queue_type = asic->hw_queues_props[i].type;
rc = queue_init(hdev, q, i);
if (rc) {
dev_err(hdev->dev,
"failed to initialize queue %d\n", i);
goto release_queues;
}
}
return 0;
release_queues:
for (i = 0, q = hdev->kernel_queues ; i < q_ready_cnt ; i++, q++)
queue_fini(hdev, q);
kfree(hdev->kernel_queues);
return rc;
}
void hl_hw_queues_destroy(struct hl_device *hdev)
{
struct hl_hw_queue *q;
int i;
for (i = 0, q = hdev->kernel_queues ; i < HL_MAX_QUEUES ; i++, q++)
queue_fini(hdev, q);
kfree(hdev->kernel_queues);
}
void hl_hw_queue_reset(struct hl_device *hdev, bool hard_reset)
{
struct hl_hw_queue *q;
int i;
for (i = 0, q = hdev->kernel_queues ; i < HL_MAX_QUEUES ; i++, q++) {
if ((!q->valid) ||
((!hard_reset) && (q->queue_type == QUEUE_TYPE_CPU)))
continue;
q->pi = q->ci = 0;
}
}